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A CHARACTERIZATION OF PRODUCT-FORM EXCHANGEABLE
FEATURE PROBABILITY FUNCTIONS
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We characterize the class of exchangeable feature allocations assigning
probability Vn,k

∏k
l=1 Wml Un−ml to a feature allocation of n individuals, dis-

playing k features with counts (m1, . . . ,mk) for these features. Each element
of this class is parametrized by a countable matrix V and two sequences U

and W of nonnegative weights. Moreover, a consistency condition is imposed
to guarantee that the distribution for feature allocations of (n− 1) individuals
is recovered from that of n individuals, when the last individual is integrated
out. We prove that the only members of this class satisfying the consistency
condition are mixtures of three-parameter Indian buffet Processes over the
mass parameter γ , mixtures of N -dimensional Beta–Bernoulli models over
the dimension N , or degenerate limits thereof. Hence, we provide a charac-
terization of these two models as the only consistent exchangeable feature
allocations having the required product form, up to randomization of the pa-
rameters.

1. Introduction. Random feature allocations are popular models within ma-
chine learning. These models posit a set of n individuals, each possessing a random
(possibly empty) set of features. Specifically, let (X ,B) be a measurable space,
representing the collection of all possible features. Each individual is described by
a random finite subset Xi of X , collecting his features. Each feature x ∈ X can be
shared by many individuals. Given n individuals X1, . . . ,Xn, a feature allocation
of [n] := {1, . . . , n}, denoted {Fn,1, . . . ,Fn,Kn}, is a multiset of nonempty subsets
of [n], where Kn is the total number of observed features, that is, the cardinality of⋃

1≤i≤n Xi , and Fn,j is the subset of [n] collecting the indices of those individuals
having the j th feature. Intuitively, given n individuals X1, . . . ,Xn, the associated
feature allocation forgets the particular feature values, but retains only the infor-
mation about the sharing of features among individuals.
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A random feature allocation is exchangeable when its distribution is invariant
under permutations of the indexes of the individuals, that is, the feature allocation
induced by the random sets {X1, . . . ,Xn} is equal in distribution to that induced by
{Xσ(1), . . . ,Xσ(n)}, for all permutation σ of [n]. Moreover, as pointed out in [2], it
is usually convenient to assign an order to the Kn features of a feature allocation of
n individuals. A way of achieving this purpose consists in drawing Kn values from
a continuous distribution and ordering the Kn features accordingly. The resulting
feature allocation is said to be a randomly ordered feature allocation and is denoted
by {F̄n,1, . . . , F̄n,Kn}. Its distribution is obtained from that of {Fn,1, . . . ,Fn,Kn} by
multiplying a combinatorial coefficient as outlined in formula (4) of [2].

Let Mn = (Mn,1, . . . ,Mn,Kn) denote the random cardinalities of the randomly
ordered feature allocation {F̄n,1, . . . , F̄n,Kn} of [n], that is, Mn,i = |F̄n,i | for all
i ∈ [Kn]. In [2], the authors study the class of randomly ordered exchangeable
feature allocations admitting as a sufficient statistics the vector Mn, that is, those
satisfying

(1.1) P
({F̄n,1, . . . , F̄n,Kn} = {f1, . . . , fk}) = πn(m1, . . . ,mk)

for a symmetric function πn : ⋃∞
k=0[n]k → [0,1], called an exchangeable feature

probability function (EFPF), defined over (possibly empty) finite vectors with en-
tries in [n].

When studying random feature allocations generated by a sequence of individu-
als, it is natural to demand projectivity of their distributions: that is, the distribution
of the feature allocation for n individuals should coincide with that for (n − 1) in-
dividuals, when the last individual is integrated out. Random feature allocations
satisfying this condition are said to be consistent. When considering randomly
ordered exchangeable feature allocations with EFPFs, the consistency condition
specializes to the condition

πn(m1, . . . ,mk)

=
∞∑

j=0

(
k + j

j

) ∑
z∈{0,1}k

πn+1(m1 + z1, . . . ,mk + zk,1, . . . ,1︸ ︷︷ ︸
j

)
(1.2)

for all n ≥ 1 and where the index z ranges over all binary vectors with k elements
and zk denotes the kth entry of this vector. This condition is obtained by combining
the last condition on page 4 of [2] with formula (4) of the same paper.

The most remarkable example of a consistent exchangeable feature allocation
with an EFPF is the Indian buffet Process (IBP), initially introduced in [6], in its
one parameter version, and then extended to its two, [4], and three parameters
versions, [10]. The EFPF of a 3-parameter (γ,α, θ) IBP has the following form:

1

k!
(

γ

(θ + 1)n−1↑

)k

exp

(
−

n∑
i=1

γ
(α + θ)i−1↑
(1 + θ)i−1↑

)
k∏

l=1

(1 − α)ml−1↑(θ + α)n−ml↑,
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where (x)m↑ denotes the rising factorial, that is, (x)m↑ = ∏m−1
i=0 (x + i) with the

proviso (x)0↑ = 1, and the parameters must satisfy the conditions γ ≥ 0, 0 ≤ α ≤
1, and ∞ > θ ≥ −α. The 2-parameter IBP is recovered when α is set equal to zero,
and the 1 parameter IBP when we also impose θ = 1. For a review of the IBP and
its applications in machine learning, the reader is referred to [7].

The IBP is derived as the limit of a Beta–Bernoulli model in [6]. This latter
model is the counterpart of the IBP when the set of all possible features X has finite
cardinality, N . The EFPF of a Beta–Bernoulli model with parameters (N,α, θ) is

(1.3)

(
N

k

)( −α

(θ + α)n↑

)k((θ + α)n↑
(θ)n↑

)N k∏
i=1

(1 − α)mi−1↑(θ + α)n−mi↑,

where ∞ < α < 0 and ∞ > θ ≥ −α. As a limiting case, for α → −∞ and −α
θ

→
q , we obtain the homogeneous Bernoulli model of parameter q . We refer to this
model as the Beta–Bernoulli model with α = −∞. In Appendix A.1, we provide
a brief description of the Beta–Bernoulli model and a derivation of its EFPF.

Feature allocations are generalizations of partitions. Indeed, a random parti-
tion is the particular case of a random feature allocation in which each random
set Xi is a singleton with probability one. All notions just introduced (consis-
tent, exchangeable, ordered feature allocation and EFPF) were first introduced for
partitions and only recently extended to the feature allocation case. The reader is
referred to [9] for a complete review of exchangeable random partitions. The most
important distribution for random partitions is the Ewens–Pitman formula, which
is a generalization of the famous Ewens formula. Starting from this distribution,
[5] considers a larger class of random partitions, having an exchangeable partition
probability function (see [8] for a definition) with the same product form as the
Ewens–Pitman formula, but allowing a more general parametrization, depending
on a triangular array and on a sequence of nonnegative weights. Theorem 12 of [5]
characterizes all elements of this class of distributions for random partitions satis-
fying a consistency condition similar to (1.2). The resulting class of distributions
is termed Gibbs-type partitions.

Motivated by the work [5] in the partition context and by the product form of the
EFPF of the IBP and of the Beta–Bernoulli, we consider the class of distributions
for consistent exchangeable feature allocations with EFPF of the form

(1.4) πn(m1, . . . ,mk) = Vn,k

k∏
l=1

Wml
Un−ml

for an infinite array V = (Vn,k : (n, k) ∈ N × N0) and two sequences W = (Wj :
j ∈ N) and U = (Uj : j ∈ N0) of nonnegative weights, where N denotes the set of
positive natural numbers and N0 = {0} ∪N.

In the feature context, we show that the IBP and the Beta–Bernoulli are the only
consistent exchangeable feature allocations with form (1.4), up to randomization
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of their γ and N parameters, respectively. Consistency and exchangeability imply
that the two sequences of weights, W and U , can be uniquely rewritten with the
same form as in the IBP or Beta–Bernoulli model, for two parameters α and θ sat-
isfying either −∞ < α ≤ 1 and −α ≤ θ < ∞ or α → −∞ and −α

θ
→ q ∈ (0,1).

In addition, V must satisfy a recursion with coefficients depending on α and θ and
the set of solutions of this recursion forms a convex set. For each fixed α and θ , we
describe the extreme points of this convex set. Their form remarkably depends on
the value of α. For 0 < α ≤ 1, the set of extreme points coincides with the family
of V of a 3-parameter IBP. For α = 0, this set of extreme points coincides with the
family of V of the 2-parameter IBP. For α < 0, the set of extreme points is count-
ably infinite and each extreme point corresponds to the V of a Beta–Bernoulli
model. In summary, we prove the following theorem.

THEOREM 1.1. The distribution of a consistent exchangeable feature alloca-
tion can be represented by an EFPF of form (1.4) iff one of the following three
cases holds:

1. W and U can be uniquely written as Wm = (1 − α)m−1↑ and Um = (θ + α)m↑,
for constants α, θ satisfying −∞ < α < 1 and −α < θ < ∞, and the elements
of V satisfy the recursion

Vn,k =
∞∑

j=0

(
k + j

j

)(
(θ + α)n↑

)j
(θ + n)kVn+1,k+j .

2. W and U can be uniquely written Wm = qm−1 and Um = (1 − q)m, for some
q ∈ (0,1), and V satisfies the recursion

Vn,k =
∞∑

j=0

(
k + j

j

)
(1 − q)njVn+1,k+j ,

corresponding to the limiting case α → −∞ and −α
θ

→ q .
3. One of the following two degenerate cases holds.

(a) There is no feature sharing, that is, Mn,i = 1 almost surely, for all i ≤ Kn.
In this case, Wm = (1 − α)m−1↑ for α = 1, and Ṽn,k := Vn,kU

k
n−1 satisfies

Ṽn,k = ∑∞
j=0

(k+j
j

)
Ṽn+1,k+j .

(b) There is complete feature sharing, that is, Mn,i = n almost surely, for all
i ≤ Kn. In this case, Um = (θ + α)m↑ for θ = −α, and Ṽn,k := Vn,kW

k
n

satisfies Ṽn,k = Ṽn+1,k .

Moreover, for fixed (α, θ), the set of solutions of these recursions is:

1. for 0 < α ≤ 1, mixtures over γ of the V of a 3-parameter IBP;
2. for α = 0, mixtures over γ of the V of a 2-parameter IBP;
3. for α < 0, mixtures over N of the V of a Beta–Bernoulli model with N features.
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In the next section, we prove Theorem 1.1. Specifically, in Section 2.1, we be-
gin by characterizing U and W , and identifying the recursion defining V . In Sec-
tion 2.2, we describe how to derive the extreme solutions of these recursions. Fi-
nally, in Section 2.3, we study the three cases 0 < α ≤ 1, α = 0, and α < 0 and the
two degenerate cases.

2. Proof of Theorem 1.1. The problem is to describe all distributions for ex-
changeable feature allocations with EFPF (1.4) subject to the consistency con-
straint (1.2), which becomes

Vn,k

k∏
i=1

Wmi
Un−mi

=
∞∑

j=0

(
k + j

j

)
Uj

n W
j
1

∑
z∈{0,1}k

Vn+1,k+j

k∏
i=1

Wmi+zi
Un+1−mi−zi

(2.1)

for all n ∈ N, k ∈ N0, and mi ≤ n, for i ≤ k. We start by noting that the representa-
tion (1.4) is not unique. Specifically, we can tilt the weights in the following ways,
for κ > 0, and obtain the same EFPF:

1. V̂n,k = κ−kVn,k and Ŵj = κWj ;
2. V̂n,k = κ−kVn,k and Ûj = κUj ;
3. V̂n,k = κ−nkVn,k , Ŵj = κjWj and Ûj = κjUj ;
4. V̂n,k = κ−k(n−1)Vn,k , Ŵj = κj−1Wj and Ûj = κjUj .

By imposing W1 = 1, we remove the first ambiguity, and with U0 = 1, we remove
the second one. These conditions also exclude the third ambiguity, but do not ex-
clude the last geometric tilting, which we address in Proposition 2.1.

2.1. Characterization of W and U . The following proposition shows that W

and U must have the same form as in the IBP and Beta–Bernoulli model and V is
constrained to satisfy a particular recursion. In the proof of Proposition 2.1, (x)n↑τ

denotes the generalized rising factorial, that is, (x)n↑τ = ∏n−1
i=0 (x + iτ ).

PROPOSITION 2.1. Let Wj,Uj > 0 for all j > 0. Then, the weights V , W ,
and U , with the normalizations W1 = U0 = 1, define a consistent exchangeable
feature allocation of form (1.4) iff

∑
j≥0 V1,j = 1 and one of the following two

cases holds:

1. For some constants α, θ satisfying −∞ < α < 1 and −α < θ < ∞, W and
U can be uniquely expressed as Wj = (1 − α)j−1↑ for all j ≥ 1 and Uj =
(θ + α)j↑ for all j ≥ 0, and V satisfies, for all (n, k) ∈ N×N0,

(2.2) Vn,k =
∞∑

j=0

(
k + j

j

)(
(θ + α)n↑

)j
(θ + n)kVn+1,k+j .
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2. For some constant q ∈ (0,1), W and U can be uniquely expressed as Wj =
qj−1 for all j ≥ 1 and Uj = (1 − q)j for all j ≥ 0, and V satisfies, for all
(n, k) ∈N×N0,

(2.3) Vn,k =
∞∑

j=0

(
k + j

j

)
(1 − q)njVn+1,k+j .

PROOF. The consistency condition (2.1) for k = 1 gives

(2.4) Vn,1Wm1Un−m1 =
∞∑

j=0

(j + 1)Vn+1,j+1U
j
n (Wm1+1Un−m1 +Wm1Un+1−m1).

The consistent exchangeable feature allocation with no features with probability
one can be represented as in (1.4), with Vn,0 = 1 for all n ∈ N and Vn,k = 0 for
k ≥ 1. Except this case,

∑∞
j=0(j + 1)Vn+1,j+1U

j
n cannot be equal to zero. There-

fore, because of Wj,Uj > 0 for all j > 0, condition (2.4) implies that, for all n ∈N

and for all m1 ≤ n,

(2.5)
Wm1+1

Wm1

+ Un+1−m1

Un−m1

= Vn,1∑∞
j=0(j + 1)Vn+1,j+1U

j
n

.

Since the right-hand side of (2.5) does not depend on m1, it follows that, for all n

and for all i, j ≤ n,

Wi+1

Wi

− Wj+1

Wj

= Un+1−j

Un−j

− Un+1−i

Un−i

.

In particular, considering n = 2, i = 2, and j = 1, we find

W3

W2
− W2 = U2

U1
− U1 =: τ.

For n > 1, i = n, and j = n − 1, we also obtain

(2.6)
Wn+1

Wn

− Wn

Wn−1
= U2

U1
− U1 = τ.

This last condition implies, for all n > 1,

Wn+1

Wn

= τ(n − 1) + W2,

hence Wn = ∏n−1
i=1 (W2 + iτ ). In a similar manner, we consider n > 1, i = 2, and

j = 1 and obtain

(2.7)
Un

Un−1
− Un−1

Un−2
= W3

W2
− W2 = τ.

As before, this formula implies Un = ∏n
i=1(U1 + iτ ).
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If τ 
= 0, we can introduce the parametrization α = 1 − W2
τ

and θ = U1+W2
τ

− 1.
Then Wn = (W2)n−1↑τ = τn−1(1 − α)n−1↑ and Un = (U1)n↑τ = τn(θ + α)n↑. We
can fix geometric tilting by the normalization τ = 1, in which case α, θ satisfy
−∞ < α < 1 and −α < θ < ∞.

If τ = 0, then Wn = (W2)
n−1 and Un = (U1)

n. Let W2 = q > 0. Then Wn =
qn−1. In this case, we fix geometric tilting by imposing W2 = 1 − U1, in which
case it must also hold that q < 1 and Un = (1 − q)n.

The recursions (2.2) and (2.3) follow from rewriting (2.1) as

Vn,k =
∞∑

j=0

(
k + j

j

)
Uj

n Vn+1,k+j

∑
z∈{0,1}k

k∏
i=1

Wmi+zi

Wml

Un+1−mi−zi

Un−ml

,

noticing that

∑
z∈{0,1}k

k∏
i=1

Wmi+zi

Wml

Un+1−mi−zi

Un−ml

= (
U1 + W2 + τ(n − 1)

)k
,

and substituting the forms for W and U just obtained. Finally,
∑∞

j=0 V1,j = 1

follows from
∑∞

j=0 V1,jW
j
1 = 1 and W1 = 1.

Finally, the reverse implication easily follows by checking that the probability
distribution with form (1.4) and V , W , and U as in the statement of the proposition
satisfies the consistency condition (2.1). �

In Proposition 2.1, we assumed W,U > 0. In Propositions A.1 and A.2, we
show that only two feature allocations having Wj = 0 or Uj = 0 for some j are
the feature allocation with Wj = 1(j = 1) and the feature allocation with Uj =
1(j = 0).

The first solution, Wj = 1(j = 1), corresponds to a feature allocation where no
features are shared between individuals, that is, with probability one,
Mn,j = 1 for all j ≤ Kn. This sequence of weights can be represented as
Wm = (1 − α)m−1↑ for α = 1. Moreover, the only nonnegative EFPF is
πn(m1, . . . ,mk) = Vn,kU

k
n−1, with mj = 1 for all j ≤ k, which is a function of

n and k only. Therefore, we can define Ṽn,k = Vn,kU
k
n−1, which must satisfy the

recursion Ṽn,k = ∑∞
j=0

(k+j
j

)
Ṽn+1,k+j according to (2.1).

The second solution, Uj = 1(j = 0), is the feature allocation in which every
individual possesses the exact same features, that is, with probability one, Mn,j =
n for all j ≤ Kn (and Kn is independent of n). This sequence U can be represented
as Um = (θ + α)m↑ with α = −θ and any value of θ . The only nonnegative EFPF
is πn(m1, . . . ,mk) = Vn,kW

k
n , with mj = n for all j ≤ k, which is a function of n

and k only. Again, we can introduce a new parametrization, Ṽn,k = Vn,kW
k
n , which

must satisfy Ṽn+1,k = Ṽn,k according to (2.1).
We will exclude these two degenerate cases in our analysis until Sections 2.3.4

and 2.3.5.
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2.2. General tools to derive the extreme V . Fix constants α, θ satisfying
−∞ < α < 1 and −α < θ < ∞. (We will consider the limiting case α → −∞
at the end of the section.) Let Vα,θ be the set of those elements V ∈ R

N×N0+ sat-
isfying (2.2). Endow this set with the smallest σ -algebra BV that makes the maps
V �→ Vn,k measurable and define the barycenter V μ of each measure μ on BV as
the pointwise average,

(2.8) V
μ
n,k =

∫
Vα,θ

Vn,kμ(dV ).

It is easy to check that Vα,θ is a convex set, that is, for all probability measures μ

on BV , V μ ∈ Vα,θ (see Appendix A.2). The goal of this section is to check that this
set is also a simplex and to describe its extreme elements.

Given a measurable space of functions with the convex structure just defined,
[3] describes a general theory, which can be applied to show the space is a sim-
plex, and, then, determine its extreme points. Similar results have been studied and
rediscovered on several occasions (see references in [5]). In order to apply the re-
sults of [3] to our problem, we will follow the same strategy used by [5]: rather
than studying Vα,θ directly, we consider a space that is isomorphic to Vα,θ and
easier to study, and then we find its extreme points by applying the results in [3].

Let (N∞
0 ,C(N∞

0 )) be the infinite product space of N0, endowed with its cylin-
der σ -algebra. To each V ∈ Vα,θ we associate a Markov law, PV , on this space.
Specifically, writing Kn :N∞

0 →N0 for the nth coordinate projection on the prod-
uct space, the Markov law associated to V has an initial distribution given by

(2.9) PV (K1 = j) = V1,j ,

and transition probabilities

(2.10) PV (Kn+1 = j + k|Kn = k) =
(
k + j

j

)(
(α + θ)n↑

)j
(θ + n)k

Vn+1,k+j

Vn,k

,

if j ≥ 0 and 0 otherwise. Let PVα,θ = {PV : V ∈ Vα,θ } be the set of Markov laws.
The map T : Vα,θ → PVα,θ , defined by T (V ) = PV is a convex isomorphism (see
Appendix A.2 for a proof). Hence, if PV is extreme in PVα,θ , so is V in Vα,θ . We
now describe how to find the extreme points of PVα,θ . Before that, we remark that,
given an EFPF with form (1.4) parametrized by V , it is straightforward to show
that Kn corresponds to the number of features in the corresponding random feature
allocation of n individuals, that is, Kn is the cardinality of

⋃
1≤i≤n Xi .

As we will see from Proposition 2.2, for every n ∈ N, Fn = σ(Kn,Kn+1, . . .)

is a sufficient σ -algebra for PVα,θ . Hence, for each n ∈ N, there exists a common
regular conditional probability Qn : N∞

0 × C(N∞
0 ) → [0,1] for PVα,θ given Fn,

such that, for all PV ∈ PVα,θ and A ∈ C(N∞
0 ),

(2.11) Qn(ω,A) = PV

(
(Km)m∈N ∈ A|Fn

)
(ω)
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for PV -almost all ω ∈ N
∞
0 . When A ∈ σ(K1, . . . ,Kn), we will take advantage of

the Markov property of (Km)m∈N and write

(2.12) Qn(ω,A) = P
(
(Km)m∈N ∈ A|Fn

)
(ω) = P

(
(Km)m∈N ∈ A|Kn

)
(ω),

where we have dropped the V from the notation PV in order to highlight the inde-
pendence of the cotransition probabilities under PV from V itself.

Associated to each Markov kernel Qn, there is a Markov operator 
n given by

(2.13) 
nf (ω) =
∫

f
(
ω′)Qn

(
ω,dω′)

for all f bounded and C(N∞
0 )-measurable real functions. Henceforth, for every

σ -algebra F , we will simply write f ∈ F to denote that f is bounded and F -
measurable. The sequence (Fn,
n)n∈N forms a specification in (N∞

0 ,C(N∞
0 ))

(see Appendix A.2 for a proof). We can apply Theorem 5.1 of [3], which states
that (
n)n∈N is an asymptotically H-sufficient statistic, which in turn means (see
also Section 4.4 of [3]) that, for all PV that are extreme,

(2.14) PV

({
ω ∈N

∞
0 : ∀f ∈ C

(
N

∞
0

)
, lim
n→∞
nf (ω) =

∫
f dPV

})
= 1.

A path ω ∈ N
∞
0 induces a Markov law PV ∈ PVα,θ and is said to be regular iff for

all f ∈ C(N∞
0 ), lim

n→∞
nf (ω) = ∫
f dPV . The set of points in PVα,θ that are in-

duced by regular paths is called the maximal boundary. The set of extreme points,
also called the minimal boundary, is the subset of the maximal boundary, corre-
sponding to those points PV that also satisfy (2.14), that is, they assign probability
one to the set of regular paths inducing them.

In our context, to identify the maximal boundary, it is enough to check (2.14)
for all functions f ∈ C(N∞

0 ) that are indicators of cylinder sets of the form K−1
n {k}

for n ∈ N and k ∈ N0. That is, the elements belonging to the maximal boundary
are those PV̄ ∈ PVα,θ such that, for some ω ∈N

∞
0 ,

lim
m→∞P(Kn = k|Fm)(ω) = lim

m→∞P(Kn = k|Km)(ω) = PV̄ (Kn = k)

for all (n, k) ∈ N × N0. To find the extremes measures of PVα,θ , we compute the
cotransition (backwards) probabilities of (Kn)n∈N. We denote by (x)n↓ the falling
factorial, that is, (x)n↓ = ∏n−1

i=0 (x − i) with the proviso (x)0↓ = 1.

PROPOSITION 2.2. For −∞ < α < 1 and −α < θ < ∞, the cotransition
probabilities are

(2.15) P(Kn = k|Km = l) = d
m,l
n,k

dm,l
dn,k

for n < m and k ≤ l, while the distribution of Kn under PV ∈PVα,θ is

(2.16) PV (Kn = k) = Vn,kd
n,k,
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where

(2.17) dm,l =
(

m∑
j=1

(θ + α)m−j↑(θ + 1 + m − j)j−1↑
)l

and

(2.18) d
m,l
n,k =

(
l

k

)(
(θ + n)m−n↑

)k(m−n∑
j=1

(α + θ)m−j↑(θ + m − 1)j−1↓
)l−k

.

PROOF. See Appendix A.3. �

Note that the cotransition probabilities are independent of V .
Along the same lines we can deal with the limiting case α → −∞ and −α

θ
→

q ∈ (0,1). In particular, the transition probability (2.10) is replaced by

(2.19) PV (Kn+1 = j + k|Kn = k) =
(
k + j

j

)
(1 − q)nj

Vn+1,k+j

Vn,k

,

and Proposition 2.2 still holds with

(2.20) dm,l =
(

m∑
j=1

(1 − q)m−j

)l

and

(2.21) d
m,l
n,k =

(
l

k

)(
m−n∑
j=1

(1 − q)m−j

)l−k

.

We omit the proof of these formulas because it follows the same steps of the proof
of Proposition 2.2 with (2.19) in place of (2.10).

2.3. Characterization of Vn,k . In this section, we study the three cases 0 <

α < 1, α = 0, and α < 0, and then study the degenerate cases α = 1 and α = −θ

separately. Recall that a path ω = (ω1,ω2, . . .) ∈ N
∞
0 is regular and induces V̄ ∈

Vα,θ if the limit

(2.22) lim
m→∞P(Kn = k|Km = ωm) = lim

m→∞
d

m,ωm

n,k

dm,ωm
dn,k = V̄n,kd

n,k

exists for all (n, k). In this case, PV̄ belongs to the maximal boundary of PVα,θ . If
PV̄ also assigns probability one to the set of regular paths inducing it, then PV̄ is
extreme.
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2.3.1. Case 0 < α < 1. For (α, θ) fixed, s.t. 0 < α < 1 and −α < θ < ∞, let
V 3IBP,α,θ (γ ) be the V of the 3-parameter IBP, defined as

V
3IBP,α,θ
n,k (γ ) = 1

k!
(

γ

(θ + 1)n−1↑

)k

exp

(
−

n∑
i=1

γ
(α + θ)i−1↑
(1 + θ)i−1↑

)

= 1

k!
(

γ

(θ + 1)n−1↑

)k

exp
(
−γ

(
�(θ + 1)�(α + θ + n)

α�(α + θ)�(θ + n)
− θ

α

))
for all γ ≥ 0. Define PV 3IBP,α,θ = {PV 3IBP,α,θ (γ ) ∈PVα,θ : γ ≥ 0}.

PROPOSITION 2.3. Let 0 < α < 1 and −α < θ < ∞.

(a) The elements of the set PV 3IBP,α,θ belong to the maximal boundary of PVα,θ and

they are induced by those paths w ∈N
∞
0 s.t. wm

mα → c, where c = γ�(θ+1)
α�(α+θ)

.
(b) The elements of PV 3IBP,α,θ also belong to the minimal boundary of PVα,θ , that

is, they are extreme points of PVα,θ .
(c) The elements of PV 3IBP,α,θ are the only extreme points, that is, PV 3IBP,α,θ coin-

cides with the maximal and the minimal boundary.

PROOF. (a) In Appendix A.4, we check that

(2.23) lim
m→∞
ωm
mα →c

d
m,ωm

n,k

dm,ωm
= V

3IBP,α,θ
n,k

(
cα�(α + θ)

�(θ + 1)

)
.

(b) From Theorem 4 of [1], it follows that

P
V 3IBP,α,θ (

cα�(α+θ)
�(θ+1)

)

(
Km

mα
→ c

)
= 1.

(c) In Appendix A.4, we show that the elements of PV 3IBP,α,θ are the only ones
belonging to the maximal boundary, that is, there are no other regular paths except
those of part (a). �

In Proposition 2.3, the case γ = 0 corresponds to the degenerate feature alloca-
tion with no features with probability one, corresponding to Vn,0 = 1 and Vn,k = 0
for all n ∈ N and k ≥ 1. This solution is induced by the path ωm = 0 for all m ∈ N,
which has probability one under this degenerate law.

2.3.2. Case α = 0. For θ fixed, nonnegative, and finite, the V of the 2-
parameter IBP are of the form

V
2IBP,θ
n,k (γ ) = 1

k!
(

γ

(θ + 1)n−1↑

)k

exp

(
−

n∑
i=1

γ
(θ)i−1↑

(1 + θ)i−1↑

)

= 1

k!
(

γ

(θ + 1)n−1↑

)k

exp

(
−γ

n∑
i=1

θ

θ + i − 1

)
,
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with the convention that, when γ = 0, we recover the degenerate feature allocation
with no features. Define PV 2IBP,θ = {PV 2IBP,θ (γ ) ∈PV0,θ

: γ ≥ 0}.

PROPOSITION 2.4. Let α = 0 and 0 < θ < ∞.

(a) The elements of the set PV 2IBP,θ belong to the maximal boundary of PV0,θ
and

they are induced by paths w ∈ N
∞
0 s.t. wm

log(m)
→ γ .

(b) The elements of PV 2IBP,θ also belong to the minimal boundary of PV0,θ
, that is,

they are extreme points of PV0,θ
.

(c) The elements of PV 2IBP,θ are the only extreme points, that is, PV 3IBP,θ coincides
with the maximal and the minimal boundary.

PROOF. (a) In Appendix A.5, we check that

(2.24) lim
m→∞
ωm

log(m)
→γ

d
m,ωm

n,k

dm,ωm
= V

2IBP,θ
n,k (γ ).

(b) This also follows from Theorem 4 of [1], which establish that

PV 2IBP,θ (γ )

(
Km

log(m)
→ γ

)
= 1.

(c) In Appendix A.5, we check that there are no other regular paths but those of
part (a). �

2.3.3. Case α < 0. From formula (1.3), we see that, if −∞ < α < 0 and −α <

θ < ∞, the Beta–Bernoulli is of form (1.4), with V of the form

V
BB,α,θ
n,k (N) =

(N
k

)
(−α�(θ+α)
�(θ+α+n)

)k

(�(θ+α)�(θ+n)
�(θ+α+n)�(θ)

)N

and, in the limiting case α → −∞ and −α
θ

→ q ∈ (0,1), from (A.1) we have

V
BB,α,θ
n,k (N) =

(
N

k

)
(1 − q)n(N−k)qk

for all N ∈ N. As before, when N = 0, we assume the feature allocation with
almost surely no features. Define PV BB,α,θ = {PV BB,α,θ (N) ∈ PVα,θ : N ∈ N0}.

PROPOSITION 2.5. Let −∞ < α < 0 and −α < θ < ∞ or α → −∞ and
−α

θ
→ q ∈ (0,1).

(a) The elements of the set PV BB,α,θ belong to the maximal boundary of PVα,θ and
they are induced by paths w ∈ N

∞
0 s.t. wm → N .

(b) The elements of PV BB,α,θ also belong to the minimal boundary of PVα,θ , that
is, they are extreme points of PVα,θ .
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(c) The elements of PV BB,α,θ are the only extreme points, that is, PV BB,α,θ coincides
with the maximal and the minimal boundary.

PROOF. (a) In Appendix A.6, we check that

(2.25) lim
m→∞
ωm→N

d
m,ωm

n,k

dm,ωm
= V

BB,α,θ
n,k (N).

(b) This follows since under a Beta–Bernoulli model with N features, Km →
N a.s. Indeed, the probability of each feature, Qj , is a.s. strictly positive, being
Beta distributed (or being fixed to q for α → −∞). The probability of this feature
having all zeros in a m-individuals allocation is (1 − Qk)

m, which tends to zero as
m → ∞.

(c) In Appendix A.6, we check that there are no other regular paths but those of
part (a). �

2.3.4. Degenerate case: α = 1. Proceeding along the same lines of Sec-
tion 2.2, we can show that for the recursion Ṽn,k = ∑∞

j=0
(k+j

j

)
Ṽn+1,k+j , we

have d
m,l
n,k = ( l

k

)
(m − n)l−k and dm,l = ml . As m → ∞ and ωm

m
→ γ , the ratio

d
m,ωm

n,k /dm,ωm converges to Ṽn,k = 1
k!γ

kexp(−nγ ), which is the EFPF of the IBP
with α = 1 and all cardinalities ml = 1. Moreover, it is easy to show that these
are the only regular paths. Therefore, all feature allocations with no sharing are
mixtures over γ of the IBP with α = 1.

2.3.5. Degenerate case: α = −θ . In this case Ṽ satisfies Ṽn+1,k = Ṽn,k and∑
j Ṽ1,j = 1. Therefore, the first row of Ṽ is a generic mass function over N0 and

all other rows are equal to the first. This feature allocation can be written as a
mixture over the parameter N of Beta–Bernoulli models with α = −θ . Indeed, in
a Beta–Bernoulli model (N,α,−α) the underlying Beta distribution is degenerate
and it is a point mass at 1. Therefore, all individuals display all N features. Mixing
over N with mixing measure (Ṽ1,j )j∈N0 , we recover all possible feature allocations
with complete sharing.

3. Discussion. In this work, we have considered the class of consistent ex-
changeable feature allocations with EFPF of the form (1.4). While this is a
tractable family, the only elements of this class are mixtures over γ of the 2 and
3-parameter IBP or mixtures over N of the Beta–Bernoulli model. From both
an applied and theoretical perspective, it would be of interest to have larger but
still tractable classes of exchangeable feature allocations. Finding new tractable
priors for feature models is still an active area of research. A possible direc-
tion of research would be to study a more general class than (1.4), with form
Vn,k

∏k
l=1 Wn,ml

, for a triangular array W = (Wn,k : n ∈ N,0 ≤ k ≤ n). However, a
characterization of W in this case would seem to be much more complicated than
Proposition 2.1.
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APPENDIX: SOME FACTS AND PROOFS

A.1. EFPF of the Beta–Bernoulli model. The Beta–Bernoulli is described
by considering a finite space of features, which can numbered using the integers
in [N ], where N is the cardinality of the feature set. To each feature, we asso-
ciate a random parameter Qj with distribution Beta(η1, η2) and independent of
the parameters of other features. Given Qj , each individual Xi possesses feature
j with probability Qj , independently of other individuals and other features. Let
Zi,j be a binary random variable denoting the presence or absence of feature j in
individual i. Then, the Beta–Bernoulli model can be written as

Zi,j |Qj
ind∼ Bernoulli(Qj ), i = 1, . . . , n; j = 1, . . . ,N;

Qj |η1, η2
i.i.d.∼ Beta(η1, η2), j = 1, . . . ,N.

The conditional probability that Z = (Zi,j )i≤n,j≤N is equal to z = (zi,j )i≤n,j≤N

given Q = (Q1, . . . ,QN) is

P(Z = z|Q) =
N∏

j=1

n∏
i=1

Bernoulli(zi,j |Qj).

Integrating Q out, we obtain the probability mass function of Z

P(Z = z) =
(

�(η1 + η2)

�(η1)�(η2)

)N N∏
i=1

�(mi + η1)�(n − mi + η2)

�(n + η1 + η2)
,

where mi = ∑n
j=1 zi,j . If (m1, . . . ,mk) has k nonzero entries, denoted

(m1, . . . ,mN), this probability becomes(
�(η1 + η2)

�(η1)�(η2)�(n + η1 + η2)

)N (
�(η1)�(n + η2)

)N−k

×
k∏

i=1

�(mi + η1)�(n − mi + η2).

Finally, taking into account all
(N
k

)
possible uniform orderings of the N −k features

not possessed by any individual, which give rise to the same uniformly ordered
feature allocation, we obtain the EFPF(

N

k

)(
�(η1 + η2)

�(η1)�(η2)�(n + η1 + η2)

)N (
�(η1)�(n + η2)

)N−k

×
k∏

i=1

�(mi + η1)�(n − mi + η2),

which can be rewritten as in formula (1.3), by using rising factorials and by chang-
ing the parametrization to α = −η1 and θ = η2 + η1, with α < 0 and θ ≥ −α.
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The homogeneous Bernoulli model. In the homogeneous Bernoulli model, ev-
ery individual displays any of the N possible features with a nonrandom prob-
ability q . This model is the limiting case of the Beta–Bernoulli model when
η1/(η1 + η2) → q and η1, η2 → ∞. The homogeneous Bernoulli model can be
written as follows:

Zi,j
i.i.d.∼ Bernoulli(q), i = 1, . . . , n; j = 1, . . . ,N.

The probability mass function of a n × N matrix Z generated by this model is

P(Z = z) =
N∏

j=1

n∏
i=1

qzj,i (1 − q)1−zj,i = (1 − q)n(N−k)
k∏

j=1

qmj (1 − q)n−mj ,

where as before mi are the column sums of the k nonzero columns in z. Taking
into account the

(N
k

)
uniform orderings of the N − k zero columns, the EFPF of

the homogeneous Bernoulli model is

(A.1)

(
N

k

)
(1 − q)n(N−k)qk

k∏
j=1

qmj−1(1 − q)n−mj .

A.2. Some facts.

PROPOSITION A.1. Let (Xi)i∈N be a sequence of random finite sets generat-
ing an exchangeable feature allocation with EFPF of form (1.4). If W2 > 0, then
Wj > 0 for all j > 2.

PROOF. The random sets (Xi)i∈N, defined on a probability space (,F,P),
define an exchangeable feature allocation with EFPF of form (1.4) with W2 > 0
iff, for all n ∈ N, the sets

An =
{
ω ∈  : ∃xω ∈

n⋃
i=1

Xi(ω) s.t.
n∑

i=1

1
(
xω ∈ Xi(ω)

) ≥ 2

}

have positive probability, that is, P(An) > 0. We will show that for all ω ∈ An

(except possibly in a null set) we have

(A.2) lim
m→∞

m∑
j=1

1
(
xω ∈ Xn+j (ω)

) = ∞,

which in turns implies that Wj > 0 for all j > 2.
Suppose (A.2) does not hold, that means that ∃Bn ⊆ An with P(Bn) > 0 s.t. for

all ω ∈ Bn

lim
m→∞

m∑
j=1

1
(
xω ∈ Xn+j (ω)

)
< ∞.
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Since
∑m

j=1 1(xω ∈ Xn+j (ω)) is not decreasing, for all ω ∈ Bn ∃Mω > 1 s.t.

lim
m→∞

m∑
j=1

1
(
xω ∈ Xn+j (ω)

) = Mω < ∞.

Now, by dominated convergence

lim
m→∞

m∑
j=1

∫
Bn

1
(
xω ∈ Xn+j (ω)

)
dP =

∫
Bn

lim
m→∞

m∑
j=1

1
(
xω ∈ Xn+j (ω)

)
dP

= E
(
Mω1(Bn)

)
< ∞.

By exchangeability of the Xi’s,

lim
m→∞

m∑
j=1

E
(
1
(
xω ∈ Xn+j (ω)

)
1(Bn)

) = lim
m→∞mE

(
1
(
xω ∈ Xn+1(ω)

)
1(Bn)

)
= E

(
Mω1(Bn)

)
< ∞.

(A.3)

Therefore, it must be E(1(xω ∈ Xn+1(ω))1(Bn)) = 0, but on Bn ⊆ An, from ex-
changeability of the Xi ’s, P(xω ∈ Xn+1(ω)) > 0. As a consequence, in order for
(A.3) to be true it must be P(Bn) = 0, hence a contradiction. �

PROPOSITION A.2. Let (Xi)i∈N be a sequence of random finite sets generat-
ing an exchangeable feature allocation with EFPF of form (1.4). If U1 > 0, then
Uj > 0 for all j > 1.

PROOF. Proceed along similar lines of the proof of Proposition A.1, consider
the sets

An =
{
ω ∈  : ∃xω ∈

n⋃
i=1

Xi(ω) s.t.
n∑

i=1

1
(
xω /∈ Xi(ω)

) ≥ 1

}
,

and check that for almost all ω ∈ An,

lim
m→∞

m∑
j=1

1
(
xω /∈ Xn+j (ω)

) = ∞.
�

PROPOSITION A.3. Vα,θ is a convex set.

PROOF. We want to show that Vα,θ is a convex set, that is, for all probability
measures μ on BV , V μ ∈ Vα,θ . We have

V
μ
n,k =

∫
Vα,θ

Vn,kμ(dV )

=
∫
Vα,θ

∞∑
j=0

(
k + j

j

)(
(α + θ)n↑

)j
(θ + n)kVn+1,k+jμ(dV )
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=
∞∑

j=0

(
k + j

j

)(
(α + θ)n↑

)j
(θ + n)k

∫
Vα,θ

Vn+1,k+jμ(dV )

=
∞∑

j=0

(
k + j

j

)(
(α + θ)n↑

)j
(θ + n)kV

μ
n+1,k+j ,

for all (n, k), where the first and last equality follow from the definition of barycen-
ter, and the second from the monotone convergence theorem. In a similar manner,

∞∑
j=0

V
μ
1,j =

∞∑
j=0

∫
Vα,θ

V1,jμ(dV )

=
∫
Vα,θ

∞∑
j=0

V1,jμ(dV )

=
∫
Vα,θ

1μ(dV ) = 1. �

PROPOSITION A.4. T (V ) = PV is an isomorphism between convex sets.

PROOF. According to [3], page 706, the map T (V ) = PV is a convex isomor-
phism if T is invertible and T and T −1 are measurable and preserve the convex
structure. T is 1–1 from Proposition 2.2 and it is onto by construction. We prove
T is measurable and preserves the convex structure, proving that the same is true
for T −1 can be done in similar way.

PVα,θ is endowed with the smallest σ -algebra BP that makes the maps PV �→
PV (A) measurable for all A ∈ C(N∞

0 ). A generator of this σ -algebra is composed
by sets {PV ∈ PVα,θ : PV (Kn = k) ≤ x} for (n, k) ∈ N × N0 and x ∈ [0,1]. The
inverse image under T of this set is {V ∈ Vα,θ : Vn,kdn,k ≤ x} (see Proposition 2.2
for the definition of dn,k), which lies in BV . Hence, T is measurable.

T preserves the convex structure if, for every measure μ on BV , we have
T (V μ) = P μ′

, where μ′ the push-forward measure of μ on BP (i.e., μ′ = μ ◦
T −1), and P μ′

is the barycenter of μ′, defined as

(A.4) P μ′
(A) =

∫
PVα,θ

P (A)μ′(dP)

for all A ∈ C(N∞
0 ). Using the change of variable formula, it is easy to check that

T preserves the convex structure. Indeed, considering cylinder sets of the form
K−1

n {k} for n ∈ N and k ∈ N0, we have

P μ′
(Kn = k) =

∫
PVα,θ

P (Kn = k)μ′(dP)

=
∫
PVα,θ

P (Kn = k)μ ◦ T −1(dP)
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=
∫
Vα,θ

dn,kVn,kμ(dV )

= dn,kV
μ
n,k.

Hence, T (V μ) = P μ′
. �

PROPOSITION A.5. (Fn,
n)n∈N forms a specification in (N∞
0 ,C(N∞

0 )).

PROOF. According to [3], Section 5.1, given a directed set L and a measurable
space (�,F), a specification on this is space (F�,
�)�∈L is a family of sub-σ -
algebras and Markov operators satisfying:

(i) F�′ ⊆ F�, if �′ � �;
(ii) 
�′
� = 
�′ , if �′ � �;

(iii) 
�f ∈ F�, for all f ∈ F ;
(iv) 
�f = f , for all f ∈ F�.

In our context, with L = N and the sub-σ -algebras and Markov operators defined
in Section 2.2, formula (2.13), (i), (ii), and (iv) follow immediately. To check (ii),
it is enough to check for indicators of measurable sets. In particular, for f = 1A,
with A ∈ C(N∞

0 ), we must check∫
N

∞
0

Qn

(
ω′,A

)
Qn+1

(
ω,dω′) = Qn+1(ω,A).

Indeed, it is enough to check this condition for a thin cylinder A of the form
K−1

1 {k1} ∩ K−1
2 {k2} ∩ · · · ∩ K−1

m {km} for m > n + 1 and ki ∈ N0 for all i ≤ m,∫
N

∞
0

Qn

(
ω′,A

)
Qn+1

(
ω,dω′)

=
∫
N

∞
0

P(K1 = k1, . . . ,Km = km|Fn)
(
ω′)P (

(Kl)l∈N ∈ dω′|Fn+1
)
(ω)

=
∫
N

∞
0

P(K1 = k1, . . . ,Kn−1 = kn−1|Kn = kn)

× 1
(
ω′

n = kn

) · · ·1(
ω′

m = km

)
P

(
(Kl)l∈N ∈ dω′|Fn+1

)
(ω)

= P(K1 = k1, . . . ,Kn−1 = kn−1|Kn = kn)

×
∫
N

∞
0

1
(
ω′

n = kn

) · · ·1(
ω′

m = km

)
P

(
(Kl)l∈N ∈ dω′|Fn+1

)
(ω)

= P(K1 = k1, . . . ,Kn−1 = kn−1|Kn = kn)P (Kn = kn|Fn+1)(ω)

× 1(ωn+1 = kn+1) · · ·1(ωm = km)

= P(K1 = k1, . . . ,Km = km|Fn+1)(ω) = Qn+1(ω,A). �
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A.3. Proof of Proposition 2.2. First, note that for m > n and l ≥ k

PV (Km = l|Kn = k) = Vm,ld
m,l
n,k , for a function d

m,l
n,k independent of V . Indeed,

from (2.10), the probability of a path (kn+1, kn+2, . . . , km−1, l) depends only on
the last Vm,l . Summing over all possible paths from Kn = k to Km = l, we see that
PV (Km = l|Kn = k) must be of the form Vm,ld

m,l
n,k . In addition, by considering

PV (Km = l) = ∑l
i=0 PV (Km = l|K1 = i) · PV (K1 = i), PV (Km = l) must be of

the form Vm,ld
m,l . Also, from

PV (Km = l) =
l∑

j=0

PV (Km = l|Km−1 = j) · PV (Km−1 = j),

it follows that, for l > 2, the function dm,l must satisfy

Vm,ld
m,l =

l∑
j=0

Vm,l

Vm−1,j

(
l

l − j

)(
(α + θ)m−1↑

)l−j
(θ + m − 1)jVm−1,j d

m−1,j ,

which gives the following the recursion:

dm,l =
l∑

j=0

(
l

l − j

)(
(α + θ)m−1↑

)l−j
(θ + m − 1)j dm−1,j .

Substituting dm−1,j , we find

dm,l =
l∑

j=0

(
l

l − j

)(
(α + θ)m−1↑

)l−j
(θ + m − 1)j

×
j∑

i=0

(
j

j − i

)(
(α + θ)m−2↑

)j−i
(θ + m − 2)idm−2,i .

Grouping together all coefficient multiplying dm−2,k on the right-hand side (0 ≤
k ≤ l), we find

d
m,l
m−2,k =

(
l

l − k

)(
(α + θ)m−1↑

)l−k
(θ + m − 1)k(θ + m − 2)k

+
(

l

l − k − 1

)(
(α + θ)m−1↑

)l−k−1
(θ + m − 1)k+1

× (
(α + θ)m−2↑

)
(θ + m − 2)k

+
(

l

l − k − 2

)(
(α + θ)m−1↑

)l−k−2
(θ + m − 1)k+2

×
(
k + 2

2

)(
(α + θ)m−2↑

)2
(θ + m − 2)k
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...

+ (
(α + θ)m−1↑

)
(θ + m − 1)l−1

×
(

l − 1

l − 1 − k

)(
(α + θ)m−2↑

)l−1−k
(θ + m − 2)k

+ (θ + m − 1)l

(
l

l − k

)(
(α + θ)m−2↑

)l−k
(θ + m − 2)k

= (
(θ + m − 1)(θ + m − 2)

)k
× (

(α + θ)m−1↑ + (θ + m − 1)(α + θ)m−2↑
)l−k

(
l

l − k

)
.

So, the recursion for dm,l becomes

dm,l =
l∑

j=0

(
l

l − j

)(
(θ + m − 1)(θ + m − 2)

)j
× (

(α + θ)m−1↑ + (θ + m − 1)(α + θ)m−2↑
)l−j

dm−2,j .

In the same manner, we find

d
m,l
m−3,k = (

(θ + m − 1)(θ + m − 2)(θ + m − 3)
)k

×
(

l

l − k

)(
(α + θ)m−1↑ + (θ + m − 1)(α + θ)m−2↑

+ (θ + m − 1)(θ + m − 2)(α + θ)m−3↑
)l−k

.

Finally, we obtain

d
m,l
n,k =

(
l

l − k

)(
(θ + m − 1)m−n↓

)k(m−n∑
j=1

(α + θ)m−j↑(θ + m − 1)j−1↓
)l−k

=
(

l

k

)(
(θ + n)m−n↑

)k(m−n∑
j=1

(α + θ)m−j↑(θ + m − 1)j−1↓
)l−k

.

In addition,

dm,l =
l∑

i=0

d
m,l
1,i =

l∑
i=0

(
l

i

)(
(θ + 1)m−1↑

)i(m−1∑
j=1

(α + θ)m−j↑(θ + m − 1)j−1↓
)l−i

=
(
(θ + 1)m−1↑ +

m−1∑
j=1

(α + θ)m−j↑(θ + 1 + m − j)j−1↑
)l

.
�
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A.4. Proof of Proposition 2.3. We begin with some technical results about
asymptotic equivalence of functions: write f ≈ g to denote that f (m)/g(m) → 1
as m → ∞.

LEMMA A.6. Let g(m) → ∞ as m → ∞, let f ≈ g and h/g → c for some
constant c ≥ 0. Then, for every p,q ∈ R, we have

(A.5)
(

f (m) − p

f (m) − q

)h(m)

≈
(

g(m) − p

g(m) − q

)cg(m)

→ ec(q−p).

PROOF. We prove only the first equivalence, because the limiting exponential
form is well known. Taking logarithms, we have

log
[(

f (m) − p

f (m) − q

)h(m)(g(m) − q

g(m) − p

)cg(m)]
(A.6)

= cg(m) log
(f (m) − p)(g(m) − q)

(f (m) − q)(g(m) − p)
(A.7)

+ (
h(m) − cg(m)

)
log

f (m) − p

f (m) − q
.(A.8)

The arguments to the logarithms can we written as

(f (m) − p)(g(m) − q)

(f (m) − q)(g(m) − p)
= 1 + (f (m) − g(m))(p − q)

(f (m) − q)(g(m) − p)
(A.9)

and

f (m) − p

f (m) − q
= 1 + q − p

f (m) − q
.(A.10)

Using the fact that z(m) → 0 implies log(1 + z(m)) ≈ z(m), and that both terms
(A.9) and (A.10) converge to one, it follows that

(A.11) (A.6) ≈ cg(m)
(f (m) − g(m))(p − q)

(f (m) − q)(g(m) − p)
+ (

h(m) − cg(m)
) q − p

f (m) − q
.

It is straightforward to show that the right-hand side converges to 0. �

LEMMA A.7. Let f (m) → ∞ as m → ∞, let g(m)/f (m) → ∞ as m → ∞,
and let h ≈ f . For every p > q ,

(
g(m)

f (m)

)k(h(m) − p

h(m) − q

)g(m)

→ 0 as m → ∞.
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PROOF. Taking logarithms

k log
g(m)

f (m)
+ g(m) log

{
1 + q − p

h(m) − q

}

≈ k log
g(m)

f (m)
+ (q − p)

g(m)

h(m) − q

≈ k log
g(m)

f (m)
+ (q − p)

g(m)

f (m)
→ −∞

as m → ∞, completing the proof. �

We now proceed to prove each part of Proposition 2.3:
(a) We must check the limit (2.23). From Proposition 2.2,

d
m,ωm

n,k

dm,ωm
=

(
ωm

k

) [(θ + m − 1)m−n↓]k[∑m−n
i=1 (α + θ)m−i↑(θ + m − 1)i−1↓]ωm−k

[(θ + m − 1)m−1↓ + ∑m−1
i=1 (α + θ)m−i↑(θ + m − 1)i−1↓]ωm

=
(
ωm

k

)[
(θ + m − 1)m−n↓∑m−n

i=1 (α + θ)m−i↑(θ + m − 1)i−1↓

]k

×
[ ∑m−n

i=1 (α + θ)m−i↑(θ + m − 1)i−1↓
(θ + m − 1)m−1↓ + ∑m−1

i=1 (α + θ)m−i↑(θ + m − 1)i−1↓

]ωm

(A.12)

=
(
ωm

k

)[ �(θ+m)
�(θ+n)

�(α+θ+m)
α·�(α+θ)

− �(θ+m)·�(α+θ+n)
α·�(α+θ)·�(θ+n)

]k

×
[ �(α+θ+m)

α·�(α+θ)
− �(θ+m)·�(α+θ+n)

α·�(α+θ)·�(θ+n)

�(θ+m)
�(θ+1)

+ �(α+θ+m)
α·�(α+θ)

− �(θ+m)·�(α+θ+1)
α·�(α+θ)·�(θ+1)

]ωm

,

where the third equality follows from the identity

m−n∑
i=1

(α + θ)m−i↑(θ + m − 1)i−1↓

= �(α + θ + m)

α�(α + θ)
− �(θ + m)�(α + θ + n)

α�(α + θ)�(θ + n)
,

which itself arises from rewriting the sum as a difference of two infinite hyperge-
ometric series evaluated at 1 and applying the Gauss theorem for hypergeometric
series.

Using the asymptotic equivalence �(m + δ) ≈ �(m)mδ and limit (m + θ)α −
mα → 0, the Stirling formula

(ωm

k

) ≈ 1
k!ω

k
m for the binomial coefficient, and then
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the limit ωm

mα → c, the first line of (A.12) can be simplified to yield a limiting
form: (

ωm

k

)[ �(θ+m)
�(θ+n)

�(α+θ+m)
α·�(α+θ)

− �(θ+m)·�(α+θ+n)
α·�(α+θ)·�(θ+n)

]k

≈
(
ωm

k

)[ 1
�(θ+n)

mα

α�(α+θ)
− �(α+θ+n)

α�(α+θ)�(θ+n)

]k

≈ 1

k!
[
ωmm−α ·

1
�(θ+n)

1
α�(α+θ)

− �(α+θ+n)
mαα�(α+θ)�(θ+n)

]k

≈ 1

k!
[
c ·

1
�(θ+n)

1
α�(α+θ)

− �(α+θ+n)
mαα�(α+θ)�(θ+n)

]k

→ 1

k!
(
c
α�(α + θ)

�(θ + n)

)k

.

(A.13)

Similarly, the second line of (A.12) can be simplified by Lemma A.6, using the
asymptotic equivalence �(m + δ) ≈ �(m)mδ and the limits (m + θ)α − mα → 0
and ωm

mα → c, to yield

[ �(α+θ+m)
α·�(α+θ)

− �(θ+m)·�(α+θ+n)
α·�(α+θ)·�(θ+n)

�(θ+m)
�(θ+1)

+ �(α+θ+m)
α·�(α+θ)

− �(θ+m)·�(α+θ+1)
α·�(α+θ)·�(θ+1)

]ωm

≈
[mα − �(α+θ+n)

�(θ+n)

mα − θ�(α+θ)
�(θ+1)

]cmα

→ exp
{
c

(
θ�(α + θ)

�(θ + 1)
− �(α + θ + n)

�(θ + n)

)}
.

(A.14)

Substituting back into (A.12), we obtain the V of the 3-parameter IBP.
(c) To check that the only regular paths are those paths ω ∈N

N

0 such that wm

mα →
c for some c ≥ 0, suppose otherwise; that is, let ω ∈ N

N

0 be a regular path, but
assume wm

mα does not converge to some finite c ≥ 0.
If (wm

mα )m∈N has at least two distinct subsequential limits, then, from the proof
of part (a), we see that d

m,ωm

n,k /dm,ωm has at least two distinct subsequential limits,
a contradiction, and so wm

mα → ∞.
But then it follows from equations (A.12), (A.13) and (A.14); the asymptotic

equivalence �(m + δ) ≈ �(m)mδ and limit (m + θ)α − mα → 0; and finally an

application of Lemma A.7 that
d

m,ωm
n,k

dm,ωm → 0 as m → ∞ for every k ∈ N0. As these
limits must define a probability distribution, this is a contradiction, completing the
proof. �
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A.5. Proof of Proposition 2.4. (a) We must check the limit (2.24). From
Proposition 2.2,

d
m,ωm

n,k

dm,ωm
=

(ωm

k

)[(θ + m − 1)m−n↓]k[∑m−n
i=1 (θ)m−i↑(θ + m − 1)i−1↓]l−k

[(θ + m − 1)m−1↓ + ∑m−1
i=1 (θ)m−i↑(θ + m − 1)i−1↓]ωm

=
(
ωm

k

)[ �(θ+m)
�(θ+n)

�(θ+m)
�(θ)

∑m−n
i=1

1
θ+m−i

]k[ �(θ+m)
�(θ)

∑m−n
i=1

1
θ+m−i

�(θ+m)
�(θ)

∑m−1
i=1

1
θ+m−i

+ �(θ+m)
�(θ+1)

]ωm

,

where the second equality follows from the identity

m−n∑
i=1

(θ)m−i↑(θ + m − 1)i−1↓ = (θ)m↑
m−n∑
i=1

1

θ + m − i
.

Using the Stirling formula for the binomial coefficient,
(ωm

k

) ≈ 1
k!ω

k
m, and the iden-

tity
∑m

i=1
1

θ+m−i
= ∑m−n

i=1
1

θ+m−i
+ ∑n

i=1
1

θ+n−i
, we have

d
m,ωm

n,k

dm,ωm
≈ 1

k!
[
ωm

�(θ)
�(θ+n)∑m−n

i=1
1

θ+m−i

]k[∑m−n
i=1

1
θ+m−i∑m

i=1
1

θ+m−i

]ωm

≈ 1

k!
[

ωm∑m−n
i=1

1
θ+m−i

�(θ)

�(θ + n)

]k[ ∑m−n
i=1

1
θ+m−i∑m−n

i=1
1

θ+m−i
+ ∑n

i=1
1

θ+n−i

]ωm

.

Therefore, by Lemma A.6 and the fact that log(m) ≈ ∑m−n
i=1

1
θ+m−i

and
ωm/ log(m) → γ , we have

d
m,ωm

n,k

dm,ωm
≈ 1

k!
[
γ

�(θ)

�(θ + n)

]k[ log(m)

log(m) + ∑n
i=1

1
θ+n−i

]γ log(m)

→ 1

k!
[
γ

�(θ)

�(θ + n)

]k

exp

(
−γ

n∑
i=1

1

θ + n − i

)

as m → ∞, recovering the V of the 2-parameter IBP.
(c) To check that the only regular paths are those paths ω ∈ N

N

0 such that
ωm

log(m)
→ γ for some γ ≥ 0, we can repeat the same argument as in the proof

of Proposition 2.3, part (c). First, we note that if ( wm

log(m)
)m∈N has at least two dis-

tinct subsequential limits, then ω cannot be regular, because the proof of point (a)
shows that there will be two distinct induced laws, a contradiction. If ωm

log(m)
→ ∞

as m → ∞, then it follows again from Lemma A.7 that
d

m,ωm
n,k

dm,ωm → 0 as m → ∞ for
all k ∈ N0, a contradiction. �
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A.6. Proof of Proposition 2.5. (a) We must check the limit (2.25). For α ∈
(−∞,0), starting with Proposition 2.2 and following similar steps as for the case
0 < α < 1, we obtain the approximation

(A.15)
d

m,ωm

n,k

dm,ωm
≈

(
ωm

k

)( 1
�(θ+n)

mα

α�(α+θ)
− �(α+θ+n)

α�(α+θ)�(θ+n)

)k(mα − �(α+θ+n)
�(θ+n)

mα − θ�(α+θ)
�(θ+1)

)ωm

,

assuming ωm → N and α < 0. Taking the limit as m → ∞, we obtain

d
m,ωm

n,k

dm,ωm
→

(
N

k

)[ −α�(α + θ)

�(α + θ + n)

]k[�(α + θ + n)�(θ)

�(α + θ)�(θ + n)

]N

.

For α → −∞ and −α
θ

→ q ∈ (0,1),

d
m,ωm

n,k

dm,ωm
=

(ωm

k

)
(
∑m−n

j=1 (1 − q)m−j )ωm−k

(
∑m

j=1(1 − q)m−j )ωm

=
(ωm

k

)
(
(1−q)n−(1−q)m

q
)ωm−k

(
1−(1−q)m

q
)ωm

→
(N
k

)
(
(1−q)n

q
)N−k

( 1
q
)N

=
(
N

k

)
(1 − q)n(N−k)qk.

(A.16)

(c) By the a.s. monotonicity of regular paths, as m → ∞, the number of features
ωm either diverges or converges to a finite (integer) limit. The divergent paths
cannot be regular for α < 0, because for these paths, (A.15) and (A.16) diverge as
m → ∞. Hence, the only regular paths are those of part (a). �
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