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Product-form exchangeable feature probability
functions and Gibbs partitions

Lorenzo Ghilotti ∗

Abstract. Feature allocation models may be seen as generalizations of partitions.
In fact, while in a partition model each individual is assigned to one and only one
class, in a feature allocation model each individual can belong to multiple groups.
In general, the groups can be naturally interpreted as traits or features: an in-
dividual belonging to multiple groups corresponds to the individual exhibiting
multiple traits or features. Feature allocations with product-form exchangeable
partition probability functions may be considered as the counterpart of Gibbs-
type partitions. Gnedin and Pitman (2004) propose a characterization of the class
of Gibbs-type partitions and Battiston et al. (2018) characterize the class of fea-
ture allocations with product-form. In this review, the two characterizations are
discussed. In particular, I focus on highlighting a clear common structure between
the two.

Keywords: product-form feature allocations, Gibbs partitions, Indian buffet
Process, Beta-Bernoulli Process.

1 Introduction to feature allocation models

Consider a set of n individuals (or points). In the setting of feature allocation models,
each individual is assumed to possess a random set of traits (or features) among the
collection of all possible traits. Formally, consider a set with n points and let the points
be indexed by the integers [n] := {1, . . . , n}. When n = +∞, I am referring to the index
set N = {1, 2, . . .}.
Definition 1.1. A feature allocation fn of [n] is a multiset of non-empty subsets of
[n] called features, such that no index i belongs to infinitely many features. I write
fn = {A1, . . . , Ak}, where k is the number of features.

For defining exchangeable feature allocations, let Fn be the space of all feature
allocations of [n]. A random feature allocation Fn of [n] is a random element of Fn.
Let σ : [n] −→ [n] be a finite permutation. Moreover, for any feature A ⊂ [n], denote
the permutation applied to the feature as follows: σ(A) := {σ(n) : n ∈ A}. For any
feature allocation fn, denote the permutation applied to the feature allocation as follows:
σ(fn) := {σ(A) : A ∈ fn}. Finally, let Fn be a random feature allocation of [n].

Definition 1.2. A random feature allocation Fn is exchangeable if Fn
d
= σ(Fn) for

every permutation σ of [n].

Let (Fn)n be a sequence of exchangeable random feature allocations. In addition
to exchangeability (from now on exchangeability will be always assumed but no more
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specified), a natural property to require is the coherence of the distributions across
different values of n. Intuitively, the distribution of Fn should coincide with the one of
Fn+1, once the last individual is integrated out. In this case, the sequence (Fn)n is said
to be consistent. Refer to Broderick et al. (2013) for the formal definition.

When dealing with exchangeable random feature allocations, the so-called random
ordered feature allocation F̃n is useful. Refer to Broderick et al. (2013), Section 3. Note
that F̃n is a random sequence - rather than a collection - of subsets of [n]. This alternative
tool allows to avoid some combinatorial factors needed to work with the distribution of
Fn (see Broderick et al. (2013), Example 1), while retaining exchangeability and possibly
consistency. Moreover, the probability of a random feature allocation, P(Fn = fn) is
related to the probability of a random ordered feature allocation, P(F̃n = f̃n), via
Equation (5) in Broderick et al. (2013).

Assume that the feature allocation probability (related to [n]) admits the represen-
tation

P(F̃n = f̃n) = πn(|A1|, . . . , |Ak|) (1.1)

for every ordered feature allocation f̃n = (A1, . . . , Ak) and some symmetric function
πn : ∪∞

k=0[n]
k −→ [0, 1], then πn is called the exchangeable feature probability function

(EFPF). It is worth noting that random feature allocations may not have an EFPF
(Proposition 7, Broderick et al. (2013)). However, in the following I focus on random
feature allocations with EFPF. It may be observed that, when dealing with random par-
titions, an exchangeable random partition distribution always admits an exchangeable
partition probability function (EPPF) representation.

When (Fn)n is a consistent sequence of random feature allocations (in the following
simply referred to as consistent feature allocation) with EFPFs, then the following
consistency condition for the EFPFs holds:

πn(m1, . . . ,mk) =

∞∑
j=0

(
k + j

j

) ∑
z∈{0,1}k

πn+1(m1 + z1, . . . ,mk + zk, 1, . . . , 1)

for all n ≥ 1, where the sequence of 1s in the second term is of length j.

The most common example of consistent feature allocation with EFPF is the Indian
buffet Process (IBP). Specifically, I refer to the 3-parameter (γ, α, θ) IBP, with γ ≥
0, α ∈ [0, 1], θ ∈ [−α,∞), if the EFPF has the form

1

k!

(
γ

(θ + 1)n−1↑

)k

exp

(
−

n∑
i=1

γ
(α+ θ)i−1↑

(1 + θ)i−1↑

)
k∏

l=1

(1− α)ml−1↑(θ + α)n−ml↑

where (x)m↑ =
∏m−1

i=0 (x+ i) and (x)0↑ = 1. The 2-parameter (γ, θ) IBP is obtained
when α = 0 and the 1-parameter γ IBP is obtained when α = 0, θ = 1. For the purpose
of the paper, I further need to introduce the Beta-Bernoulli model with parameters
(N,α, θ), with N ∈ N, α ∈ (−∞, 0), θ ∈ [−α,∞) , whose EFPF writes(

N

k

)(
−α

(θ + α)n↑

)k (
(θ + α)n↑
(θ)n↑

)N k∏
l=1

(1− α)ml−1↑(θ + α)n−ml↑
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For α → −∞,−α
θ → q ∈ (0, 1), the homogeneous Bernoulli model of parameters (N, q)

is obtained (see Appendix A.1, Battiston et al. (2018)). In the following refer to the
homogeneous Bernoulli model of parameters (N, q) as the special Beta-Bernoulli model
with α = −∞ and characterize it with q ∈ (0, 1).

The next sections are organized as follows. In Section 2, Gibbs-type random parti-
tions are briefly recalled and the well-known characterizations of Gnedin and Pitman
(2004) are reviewed. In the setting of random partitions, Gibbs-type models can be seen
as the counterpart of the class of models studied by Battiston et al. (2018) within the
setting of random feature allocations, the so-called feature allocations with product-
form EFPFs (discussed in Section 3). In Section 3, the class of feature allocations with
product-form EFPFs is introduced and the main theorem of Battiston et al. (2018) is
reported (Theorem 3.1). It is a characterization for such a class of models which repre-
sents the counterpart of results in Section 2 within the feature allocations setting. As an
example, the feature allocation distributions induced by the stable beta scaled processes
SB-SP (Camerlenghi et al. (2021)) are characterized via Theorem 3.1. Finally, in Section
4, the analogies between the characterization for Gibbs-type partitions of Gnedin and
Pitman (2004) (Theorems 2.1 and 2.2) and the characterization for feature allocations
with product-form EFPFs of Battiston et al. (2018) (Theorem 3.1) are pointed out.

2 Random partitions of Gibbs-type and the main
characterization

Random partitions may be regarded as particular cases of random feature allocations
where each individual possesses one and only one feature. The notions of consistency
and exchangeability (see Pitman (2006)) were first introduced for random partitions and
then extended to feature allocations. Any consistent and exchangeable random partition
distribution can be characterized by its exchangeable partition probability function
(EPPF) pn. A distinguished class of exchangeable partitions is the two-parameter (α, θ)
family (also known as Ewens-Pitman family), with EPPF

pn(λ1, . . . , λk) =
(θ + α)k−1↑α

(θ + 1)n−1↑

k∏
l=1

(1− α)λj−1↑

where λ1, . . . , λk is a composition of n and (x)m↑β =
∏m−1

i=0 (x+ iβ), with (x)0↑β = 1.
Parameters (α, θ) are such that either (i) α ∈ [−∞, 0) and θ = m|α|,m = 1, . . . ,∞
or (ii) α ∈ [0, 1] and θ ≥ −α, with proper definition in the limiting cases. Gnedin and
Pitman (2004) introduce the class of random partition distributions called Gibbs-type
partitions, which generalizes the class of Ewens-Pitman models.

Definition 2.1. An exchangeable random partition is said to be of Gibbs form if, for
some nonnegative weights W = (Wj) and V = (Vn,k), its EPPF satisfies

pn(λ1, . . . , λk) = Vn,k

k∏
l=1

Wλl
(2.1)
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for all 1 ≤ k ≤ n and all compositions (λ1, . . . , λk) of n.

Lemma 2 in Gnedin and Pitman (2004) provides a characterization of the Gibbs-type
partitions in terms of the form of W and V , equivalently restated as follows.

Theorem 2.1. The distribution of a consistent exchangeable random partition can be
represented by an EPPF of form (2.1), i.e. it is of Gibbs form, with W1 = V1,1 if and
only if one of the following two cases holds:

(i) W can be uniquely written as Wj = (1 − α)j−1↑ for fixed α ∈ (−∞, 1), and the
elements of V satisfy the recursion (with V1,1 = 1)

Vn,k = (n− αk)Vn+1,k + Vn+1,k+1, 1 ≤ k ≤ n

(ii) W can be uniquely written as Wj = 1 and V satisfies the recursion (with V1,1 = 1)

Vn,k = kVn+1,k + Vn+1,k+1, 1 ≤ k ≤ n

corresponding to the limiting case α → −∞ (indicate this case with α = −∞).

The theorem could also deal with the extension for α = 1, but it corresponds to the
trivial singleton partition, so it is excluded here. Similarly, the random partition having
a unique cluster almost surely is not taken into consideration. Moreover, the main
result of Gnedin and Pitman (2004) is the characterization of each Gibbs partition of
type α ∈ [−∞, 1) as a mixture of special partitions (depending on α). The theorem is
presented as follows.

Theorem 2.2 (Theorem 12 of Gnedin and Pitman (2004)). Each Gibbs partition of
fixed type α ∈ [−∞, 1) is a unique probability mixture of the extreme partitions of type

(i) (α, |α|m)-partitions with m = 1, . . . ,∞, for α ∈ [−∞, 0);

(ii) the Ewens (0, θ)-partitions with θ ∈ [0,∞], for α = 0 ;

(iii) the Poisson-Kingman (α|s)-partitions with s ∈ [0,∞], for α ∈ (0, 1), where Poisson-
Kingman (α, s)-partition refers to the partition derived from a Poisson-Kingman
discrete distribution denoted in Pitman (2003) by PK(ρα|t) for t = s−α.

3 Feature allocations with product-form EFPFs and the
main characterization

Battiston et al. (2018) consider the class of distributions for feature allocations with
EFPFs of the form

πn(m1, . . . ,mk) = Vn,k

k∏
l=1

Wml
Un−ml

(3.1)
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for an infinite array V = (Vn,k : (n, k) ∈ N× N0) and two sequences W = (Wj : j ∈ N)
and U = (Uj : j ∈ N0) of nonnegative weights. They refer to them as feature allocations
with product-form EFPFs. They provide the following characterization of such a class
of distributions in terms of V,W and U .

Theorem 3.1. The distribution of a consistent exchangeable feature allocation can be
represented by an EFPF of the form (3.1) if and only if one of the following three cases
holds:

(i) W and U can be uniquely written as Wm = (1−α)m−1↑ and Um = (θ+α)m↑, for
fixed α, θ satisfying α ∈ (−∞, 1) and θ ∈ (−α,∞), and the elements of V satisfy
the recursion

Vn,k =

∞∑
j=0

(
k + j

j

)
((θ + α)n↑)

j
(θ + n)kVn+1,k+j (3.2)

(ii) W and U can be uniquely written as Wm = qm−1 and Um = (1 − q)m, for some
q ∈ (0, 1), and V satisfies the recursion

Vn,k =

∞∑
j=0

(
k + j

j

)
(1− q)njVn+1,k+j

corresponding to the limiting case α → −∞ and −α
θ → q (indicate this case with

α = −∞ and characterize it with q ∈ (0, 1)).

(iii) One of the following two degenerate cases holds.

(a) There is no feature sharing. In this case, Wm = (1− α)m−1↑ for α = 1, and

Ṽn,k := Vn,kU
k
n−1 satisfies Ṽn,k =

∑∞
j=0

(
k+j
j

)
Ṽn+1,k+j

(b) There is complete feature sharing. In this case, Um = (θ+α)m↑ for θ = −α,

and Ṽn,k := Vn,kW
k
n satisfies Ṽn,k = Ṽn+1,k

Moreover, for fixed (α, θ) (or q if α = −∞), the set of solutions of these recursions is:

1. for α ∈ (0, 1], mixtures over γ of the V of a 3 -parameter IBP;

2. for α = 0, mixtures over γ of the V of a 2 -parameter IBP;

3. for α ∈ [−∞, 0), mixtures over N of the V of a Beta-Bernoulli model with N
features.

Note that this theorem may be seen as the counterpart, in the context of feature
allocations with product-form EFPFs, of the characterization for Gibbs-type partitions
described in Theorem 2.1 and Theorem 2.2.
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General idea for the proof of points 1, 2 and 3 (second part) For α ∈ (−∞, 1), θ ∈
(−α,∞) (the case α = −∞ and q ∈ (0, 1) is similar), let Vα,θ be the set of the elements

V ∈ RN×N0
+ satisfying (3.2). Let BV be the smallest σ-algebra that makes the maps

V 7→ Vn,k measurable, and equip Vα,θ with BV . For each measure µ on BV , define the
barycenter V µ as

V µ
n,k =

∫
Vα,θ

Vn,kdµ

It is shown that Vα,θ is a convex set, i.e. for all probability measures µ on BV , V
µ ∈ Vα,θ.

Let PVα,θ
be the set of all distributions of feature allocations with product-form EFPF

(3.1) with W and U set as in point (i) of Theorem 3.1. Consequently, each P ∈ PVα,θ

induces a distribution for (Kn)n, n ∈ N, where Kn is the number of features in the
corresponding random feature allocation of n individuals. Such a distribution is defined
on (N∞

0 , C(N∞
0 )), where C(N∞

0 ) is the cylinder σ-algebra. Consider the map T : Vα,θ −→
PVα,θ

, such that T (V ) = PV ∈ PVα,θ
, where PV is the feature allocation distribution

with product-form EFPF (3.1) with weights W and U set as in point (i) of Theorem
3.1, and V . Battiston et al. (2018) show that the map T is a convex isomorphism, that
is an isomorphism between convex sets (note that PVα,θ

is a convex set), meaning that
T is invertible and T and T−1 are measurable and preserve the convex structure (see
Proposition A.4 in Battiston et al. (2018)). This establishes a bijection between the
extreme points of Vα,θ and PVα,θ

(recall that an extreme point of a convex set is a point
which cannot be represented as a convex combination of two other points of the set).
The importance of extreme points here stems from the following remark: by general
theory of Dynkin (1978) and Diaconis and Freedman (1984), each element of PVα,θ

can
be uniquely represented as a convex mixture of the extreme elements of PVα,θ

, and the
same can be said for Vα,θ. Therefore, the proof proceeds by determining the extreme
points of PVα,θ

(refer to Battiston et al. (2018)). It turns out that the set of extreme
points of PVα,θ

, and consequently of Vα,θ, remarkably depends on the value of α, as
described in points 1, 2 and 3 of Theorem 3.1.

In the next example the novel class of stable beta scaled processes SB-SP introduced
by Camerlenghi et al. (2021) is shown to induce a family of feature allocations with
product-form EFPFs of type α ∈ (0, 1) (case 1, Theorem 3.1).

Example 3.1. Consider the SB-SP of parameters (σ, c, β), with σ ∈ (0, 1), c, β > 0
(refer to Camerlenghi et al. (2021)). From Proposition 4 of Camerlenghi et al. (2021),
the EFPF of the induced feature allocation is

πn(m1, . . . ,mk) =
1

k!

σkβc+1Γ(k + c+ 1)

(β + γ
(n)
0 )k+c+1Γ(c+ 1)

k∏
l=1

Γ(ml − σ)Γ(n−ml + 1)

Γ(n− σ + 1)

It can be equivalently expresses as

πn(m1, . . . ,mk) =
1

k!

σkβc+1Γ(k + c+ 1)Γ(1− σ)

(β + γ
(n)
0 )k+c+1Γ(c+ 1)

k∏
l=1

(1− σ)ml−1↑(1)n−ml↑

Γ(n− σ + 1)

=
1

k!

σkβc+1(c+ 1)k↑

(β + γ
(n)
0 )k+c+1(1− σ)n↑

k∏
l=1

(1− σ)ml−1↑(1)n−ml↑
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It is clear that this EFPF is in product-form (3.1). Consider the two sequences of weights
W and U as Wm = (1− σ)m−1↑ and Um = (1)m↑. Identifying α := σ ∈ (0, 1), this cor-
responds to case (i) of Theorem 3.1 with α ∈ (0, 1) and θ = 1−α ∈ (−α,∞). Moreover,
since α ∈ (0, 1) and point 1 of Theorem 3.1, each feature allocation distribution induced
by a SB-SP (σ, c, β) is a mixture over γ of 3-parameter IBP (γ, σ, 1− σ) distributions.

4 Similarities between the two characterizations

In this section, analogies and differences between the characterizations for Gibbs-type
random partitions and feature allocations with product-form EFPFs, without focusing
on degenerate cases like (iii) of Theorem 3.1, are discussed. Firstly, I focus on the
comparison between the sequence of weights W for the Gibbs-type partitions and the
sequences W and U for the feature allocations with product-form EFPFs. Secondly,
for fixed values of the parameters defining the already discussed weights, i.e. α for
the Gibbs-type partitions and (α, θ) or q for the feature allocations with product-form
EFPFs, considerations about the sequence V are presented.

On the sequence of weights W (and U for feature allocations) For Gibbs-type
partitions, the sequence of weights W (refer to Definition 2.1) is parametrized by the
single parameter α ∈ [−∞, 1). The case α = −∞ denotes the limiting case described in
point (ii) of Theorem 2.1, where W is a sequence of 1s.

For feature allocations with product-form EFPFs, the two sequences of weights W
and U are parametrized by two parameters (α, θ) such that α ∈ [−∞, 1), θ ∈ (−α,∞).
The case α = −∞ denotes the limiting case described in point (ii) of Theorem 3.1,
where W and U are still parametrized by the single parameter q ∈ (0, 1).

On the sequence V for fixed values of the parameters determining W (and U for
feature allocations) For Gibbs-type partitions, V must satisfy a recursion depending
on α (Theorem 2.1) and the set of solutions Vα forms a convex set (see Gnedin and Pit-
man (2004)). The extreme points of Vα distinguishably depend on α. For α ∈ [−∞, 0),
the set of extreme points of Vα is countably infinite and coincide with the family of V
of the Ewens-Pitman models (α,m|α|), with m = 1, . . . ,∞. For α = 0, this set coin-
cides with the family of V of the Ewens family θ, θ ∈ (0,∞) (i.e. the Ewens-Pitman
family (0, θ)). For α ∈ (0, 1), the set of extremes coincides with the family of V of the
Poisson-Kingman (α|s)-partitions, with s ∈ [0,∞].

For feature allocations with product-form EFPFs, V must satisfy a recursion de-
pending on (α, θ) or q (Theorem 3.1) and the set of solutions Vα,θ (or Vq) forms a
convex set (see Battiston et al. (2018)). Similarly to the Gibbs-type partitions setting,
the extreme points of such a convex set strongly depend on α (and a minor role is
played by θ or q). For α ∈ [−∞, 0), the set of extreme points is countably infinite
and coincides with the family of V of the Beta-Bernoulli models (N,α, θ), with N ∈ N
(when α = −∞, the Beta-Bernoulli is intended as the homogeneous Bernoulli model
of parameters (N, q), review Section 1). For α = 0, the set of extreme points coincides
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with the family of V of the 2-parameter IBP family (γ, θ), γ ≥ 0 (i.e. the 3-parameter
IBP (γ, 0, θ)). For α ∈ (0, 1), the set of extremes coincides with the family of V of the
3-parameter IBP family (γ, α, θ), γ ≥ 0.
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