

Gibbs partitions and feature allocations with product-form exchangeable probability functions

Lorenzo Ghilotti

July 25, 2022

Outline

1. Random partitions and random feature allocations

2. Characterizations of Gibbs-type partitions and product-form feature allocations

3. Example: stable beta scaled processes SB-SP

Consider a set of n individuals indexed by $[n] = \{1, ..., n\}$.

Consider a set of n individuals indexed by $[n] = \{1, \dots, n\}$.

Definition (Partition of [n])

A partition $\rho_n = \{G_1, \dots, G_k\}$ of [n] is a decomposition of [n] in k disjoint (non-empty) subsets, called clusters: $[n] = \bigcup_i G_i$ and $G_i \cap G_j = \emptyset$ for $i \neq j$.

Consider a set of n individuals indexed by $[n] = \{1, \ldots, n\}$.

Definition (Partition of [n])

A partition $\rho_n = \{G_1, \dots, G_k\}$ of [n] is a decomposition of [n] in k disjoint (non-empty) subsets, called clusters: $[n] = \bigcup_i G_i$ and $G_i \cap G_j = \emptyset$ for $i \neq j$.

Definition (Feature allocation of [n])

A feature allocation $f_n = \{A_1, \ldots, A_k\}$ of [n] is a multiset of k (non-empty) subsets of [n] (counted with their multiplicities), called features: no index $i \in [n]$ belongs to infinitely many features.

Consider a set of n individuals indexed by $[n] = \{1, \ldots, n\}$.

Definition (Partition of [n])

A partition $\rho_n = \{G_1, \dots, G_k\}$ of [n] is a decomposition of [n] in k disjoint (non-empty) subsets, called clusters: $[n] = \bigcup_i G_i$ and $G_i \cap G_j = \emptyset$ for $i \neq j$.

Definition (Feature allocation of [n])

A feature allocation $f_n = \{A_1, \ldots, A_k\}$ of [n] is a multiset of k (non-empty) subsets of [n] (counted with their multiplicities), called features: no index $i \in [n]$ belongs to infinitely many features.

Example (n = 4, k = 3)

$$\rho_4 = \{\{2, 4\}, \{1, 2\}, \{3\}\}\$$

Exchangeable random partition and feature allocation

Definition (Exchangeable random partition)

A random partition \mathcal{P}_n of [n] is called *exchangeable* if for any permutation $\sigma:[n]\longrightarrow[n]$ and every partition $\{G_1,\ldots,G_k\}$ of [n],

$$P(\mathcal{P}_n = \{\sigma(G_1), \dots, \sigma(G_k)\}) = P(\mathcal{P}_n = \{G_1, \dots, G_k\})$$

Exchangeable random partition and feature allocation

Definition (Exchangeable random partition)

A random partition \mathcal{P}_n of [n] is called *exchangeable* if for any permutation $\sigma:[n] \longrightarrow [n]$ and every partition $\{G_1,\ldots,G_k\}$ of [n],

$$P(\mathcal{P}_n = \{\sigma(G_1), \dots, \sigma(G_k)\}) = P(\mathcal{P}_n = \{G_1, \dots, G_k\})$$

Definition (Exchangeable random feature allocation)

A random feature allocation F_n of [n] is called *exchangeable* if for any permutation $\sigma: [n] \longrightarrow [n]$ and every feature allocation $\{A_1, \ldots, A_k\}$ of [n],

$$P(F_n = {\sigma(A_1), \dots, \sigma(A_k)}) = P(F_n = {A_1, \dots, A_k})$$

EPPF and EFPF

EPPF for exchangeable random partition

A random partition \mathcal{P}_n of [n] is exchangeable \iff there exists a symmetric function $p_n: \mathcal{C}_n \longrightarrow [0,1]$ such that, for every partition $\{G_1,\ldots,G_k\}$ of [n],

$$P(\mathcal{P}_n = \{G_1, \dots, G_k\}) = p_n(|G_1|, \dots, |G_k|)$$

The function p_n is the EPPF of \mathcal{P}_n .

EPPF and EFPF

EPPF for exchangeable random partition

A random partition \mathcal{P}_n of [n] is exchangeable

 \iff there exists a symmetric function $p_n: \mathcal{C}_n \longrightarrow [0,1]$ such that, for every partition $\{G_1,\ldots,G_k\}$ of [n],

$$P(\mathcal{P}_n = \{G_1, \dots, G_k\}) = p_n(|G_1|, \dots, |G_k|)$$

The function p_n is the EPPF of \mathcal{P}_n .

EFPF for exchangeable random feature allocation

There exists a symmetric function $\pi_n : \bigcup_{k=0}^{\infty} [n]^k \longrightarrow [0,1]$ such that, for every ordered feature allocation (A_1, \ldots, A_k) of [n],

$$P(\tilde{F}_n = (A_1, \dots, A_k)) = \pi_n(|A_1|, \dots, |A_k|)$$

The function π_n is the EFPF of F_n

 \implies the random feature allocation F_n of [n] is exchangeable.

Consistency

Consider $(\mathcal{P}_n)_n$ (respectively, $(F_n)_n$) a sequence of exchangeable random partitions (respectively, feature allocations).

Consistency

Consider $(\mathcal{P}_n)_n$ (respectively, $(F_n)_n$) a sequence of exchangeable random partitions (respectively, feature allocations).

Definition (Consistent sequence)

 $(\mathcal{P}_n)_n$ (respectively, $(F_n)_n$) is consistent if the distribution of \mathcal{P}_n (respectively, F_n) may be obtained from the distribution of \mathcal{P}_{n+1} (respectively, F_{n+1}) by marginalizing out the n+1 individual.

Examples of e. c. random partitions

Example (The two-parameter family (also known as Ewens-Pitman family))

A random partition is a two-parameter (α, θ) process, if its EPPF has the form

$$\frac{(\theta + \alpha)_{k-1\uparrow\alpha}}{(\theta + 1)_{n-1\uparrow}} \prod_{l=1}^{k} (1 - \alpha)_{\lambda_j - 1\uparrow}$$

where
$$(x)_{m\uparrow\beta} = \prod_{i=0}^{m-1} (x+i\beta)$$
 and $(x)_{0\uparrow\beta} = 1$.

Parameters (α, θ) are such that either:

- $\alpha \in [-\infty, 0)$ and $\theta = m|\alpha|, m = 1, ..., \infty$ with proper definition in the limiting cases;
- $\alpha \in [0,1]$ and $\theta \ge -\alpha$.

Examples of e. c. random partitions

Example (The two-parameter family (also known as Ewens-Pitman family))

A random partition is a two-parameter (α, θ) process, if its EPPF has the form

$$\frac{(\theta + \alpha)_{k-1\uparrow\alpha}}{(\theta + 1)_{n-1\uparrow}} \prod_{l=1}^{k} (1 - \alpha)_{\lambda_j - 1\uparrow}$$

where
$$(x)_{m\uparrow\beta} = \prod^{m-1} (x+i\beta)$$
 and $(x)_{0\uparrow\beta} = 1$.

Parameters (α, θ) are such that either:

- $\alpha \in [-\infty, 0)$ and $\theta = m|\alpha|, m = 1, \dots, \infty$ with proper definition in the limiting cases;
- $\alpha \in [0,1]$ and $\theta \ge -\alpha$.

Special case: the Ewens family ("Dirichlet Process") when $\alpha = 0$.

Examples of e. c. random feature allocations with EFPFs

Example (The 3-parameter Indian buffet Process (3IBP))

A feature allocation is a 3-parameter (γ, α, θ) IBP, with $\gamma \geq 0$, $\alpha \in [0, 1]$, $\theta \in [-\alpha, \infty)$, if it admits EFPF of the form

$$\frac{1}{k!} \left(\frac{\gamma}{(\theta+1)_{n-1\uparrow}} \right)^k \exp\left(-\sum_{i=1}^n \gamma \frac{(\alpha+\theta)_{i-1\uparrow}}{(1+\theta)_{i-1\uparrow}} \right) \prod_{l=1}^k (1-\alpha)_{m_l-1\uparrow} (\theta+\alpha)_{n-m_l\uparrow}$$

where
$$(x)_{m\uparrow} = \prod_{i=0}^{m-1} (x+i)$$
 and $(x)_{0\uparrow} = 1$.

Examples of e. c. random feature allocations with EFPFs

Example (The 3-parameter Indian buffet Process (3IBP))

A feature allocation is a 3-parameter (γ, α, θ) IBP, with $\gamma \geq 0$, $\alpha \in [0, 1]$, $\theta \in [-\alpha, \infty)$, if it admits EFPF of the form

$$\frac{1}{k!} \left(\frac{\gamma}{(\theta+1)_{n-1\uparrow}} \right)^k \exp\left(-\sum_{i=1}^n \gamma \frac{(\alpha+\theta)_{i-1\uparrow}}{(1+\theta)_{i-1\uparrow}} \right) \prod_{l=1}^k (1-\alpha)_{m_l-1\uparrow} (\theta+\alpha)_{n-m_l\uparrow}$$

where
$$(x)_{m\uparrow} = \prod_{i=0}^{m-1} (x+i)$$
 and $(x)_{0\uparrow} = 1$.

Special cases:

- the 2-parameter (γ, θ) IBP: $\alpha = 0$
- the 1-parameter γ IBP: $\alpha = 0, \theta = 1$

Examples of e. c. random feature allocations with EFPFs

Example (The Beta-Bernoulli Process)

A feature allocation is a Beta-Bernoulli with parameters (N, α, θ) , with $N \in \mathbb{N}$, $\alpha \in (-\infty, 0)$, $\theta \in [-\alpha, \infty)$, if it admits EFPF of the form

$$\binom{N}{k} \left(\frac{-\alpha}{(\theta + \alpha)_{n\uparrow}} \right)^k \left(\frac{(\theta + \alpha)_{n\uparrow}}{(\theta)_{n\uparrow}} \right)^N \prod_{l=1}^k (1 - \alpha)_{m_l - 1\uparrow} (\theta + \alpha)_{n - m_l\uparrow}$$

Gibbs-type partitions

Definition (Gnedin and Pitman 2004)

An exchangeable random partition is said to be of Gibbs form if for some nonnegative weights $W = (W_j)$ and $V = (V_{n,k})$, its EPPF satisfies

$$p_n(\lambda_1, \dots, \lambda_k) = V_{n,k} \prod_{l=1}^k W_{\lambda_l}$$
(1)

for all $1 \le k \le n$ and all compositions $(\lambda_1, \ldots, \lambda_k)$ of n.

Gibbs-type partitions

Definition (Gnedin and Pitman 2004)

An exchangeable random partition is said to be of Gibbs form if for some nonnegative weights $W = (W_j)$ and $V = (V_{n,k})$, its EPPF satisfies

$$p_n(\lambda_1, \dots, \lambda_k) = V_{n,k} \prod_{l=1}^k W_{\lambda_l}$$
(1)

for all $1 \le k \le n$ and all compositions $(\lambda_1, \ldots, \lambda_k)$ of n.

Example

The two-parameter family (Ewens-Pitman family) is a class of Gibbs-type partitions.

Feature allocations with product-form EFPFs

Definition (Battiston et al. 2018)

An exchangeable feature allocation is said to have product-form EFPFs if for an infinite array $V = (V_{n,k} : (n,k) \in \mathbb{N} \times \mathbb{N}_0)$ and two sequences $W = (W_j : j \in \mathbb{N})$ and $U = (U_j : j \in \mathbb{N}_0)$ of nonnegative weights, its EFPF satisfies

$$\pi_n(m_1, \dots, m_k) = V_{n,k} \prod_{l=1}^k W_{m_l} U_{n-m_l}$$
 (2)

Feature allocations with product-form EFPFs

Definition (Battiston et al. 2018)

An exchangeable feature allocation is said to have product-form EFPFs if for an infinite array $V = (V_{n,k} : (n,k) \in \mathbb{N} \times \mathbb{N}_0)$ and two sequences $W = (W_j : j \in \mathbb{N})$ and $U = (U_j : j \in \mathbb{N}_0)$ of nonnegative weights, its EFPF satisfies

$$\pi_n(m_1, \dots, m_k) = V_{n,k} \prod_{l=1}^k W_{m_l} U_{n-m_l}$$
 (2)

Example

The 3-parameter Indian buffet Process (as well as the 2IBP and the 1IBP) and the Beta-Bernoulli process are exchangeable feature allocations with product-form EFPFs

Gibbs-type partitions

 \iff (Gnedin and Pitman 2004)

Feature allocations with product-form

 \iff (Battiston et al. 2018)

Gibbs-type partitions

 \iff (Gnedin and Pitman 2004)

ullet the sequence W s.t.

Feature allocations with product-form

 \iff (Battiston et al. 2018)

ullet the sequences W and U s.t.

Gibbs-type partitions

$$\iff$$
 (Gnedin and Pitman 2004)

- the sequence W s.t.
- * $\alpha \in (-\infty, 1)$:

$$W_j = (1 - \alpha)_{j-1\uparrow}$$

Feature allocations with product-form

$$\iff$$
 (Battiston et al. 2018)

- ullet the sequences W and U s.t.
- * $\alpha \in (-\infty, 1), \theta \in (-\alpha, \infty)$:

$$W_m = (1 - \alpha)_{m-1\uparrow}, \quad U_m = (\theta + \alpha)_{m\uparrow}$$

Gibbs-type partitions

$$\iff$$
 (Gnedin and Pitman 2004)

- the sequence W s.t.
- * $\alpha \in (-\infty, 1)$:

$$W_j = (1 - \alpha)_{j-1\uparrow}$$

* $\alpha = -\infty$:

$$W_j = 1$$

Feature allocations with product-form

 \iff (Battiston et al. 2018)

- \bullet the sequences W and U s.t.
- * $\alpha \in (-\infty, 1), \theta \in (-\alpha, \infty)$:

$$W_m = (1 - \alpha)_{m-1\uparrow}, \quad U_m = (\theta + \alpha)_{m\uparrow}$$

*
$$\alpha = -\infty, q \in (0, 1)$$
:

$$W_m = q^{m-1}, \quad U_m = (1-q)^m$$

Gibbs-type partitions

$$\iff$$
 (Gnedin and Pitman 2004)

- the sequence W s.t.
- * $\alpha \in (-\infty, 1)$:

$$W_j = (1 - \alpha)_{j-1\uparrow}$$

* $\alpha = -\infty$:

$$W_i = 1$$

ullet the array V satisfies a recursive equation

Feature allocations with product-form

 \iff (Battiston et al. 2018)

- the sequences W and U s.t.
- * $\alpha \in (-\infty, 1), \theta \in (-\alpha, \infty)$:

$$W_m = (1 - \alpha)_{m-1\uparrow}, \quad U_m = (\theta + \alpha)_{m\uparrow}$$

* $\alpha = -\infty, q \in (0, 1)$:

$$W_m = q^{m-1}, \quad U_m = (1-q)^m$$

ullet the array V satisfies a recursive equation

Gibbs-type partitions

 \iff (Gnedin and Pitman 2004)

Feature allocations with product-form

 \iff (Battiston et al. 2018)

Gibbs-type partitions

 \iff (Gnedin and Pitman 2004)

• $\alpha \in (0, 1)$: mixture over s of Poisson-Kingman $(\alpha|s)$ -partitions;

Feature allocations with product-form

 \iff (Battiston et al. 2018)

• $\alpha \in (0,1)$: mixture over γ of 3 -parameter IBPs;

Gibbs-type partitions

 \iff (Gnedin and Pitman 2004)

- $\alpha \in (0,1)$: mixture over s of Poisson-Kingman $(\alpha|s)$ -partitions;
- $\alpha = 0$: mixture over θ of the Ewens $(0, \theta)$ -partitions;

Feature allocations with product-form

 \iff (Battiston et al. 2018)

- $\alpha \in (0,1)$: mixture over γ of 3 -parameter IBPs;
- $\alpha = 0$: mixture over γ of 2 -parameter IBPs;

Gibbs-type partitions

 \iff (Gnedin and Pitman 2004)

- $\alpha \in (0,1)$: mixture over s of Poisson-Kingman $(\alpha|s)$ -partitions;
- $\alpha = 0$: mixture over θ of the Ewens $(0, \theta)$ -partitions;
- $\alpha \in [-\infty, 0)$: mixture over m of $(\alpha, |\alpha|m)$ -partitions

Feature allocations with product-form

 \iff (Battiston et al. 2018)

- $\alpha \in (0,1)$: mixture over γ of 3 -parameter IBPs;
- $\alpha = 0$: mixture over γ of 2 -parameter IBPs;
- $\alpha \in [-\infty, 0)$: mixture over N of Beta-Bernoulli models with N features

From Proposition 4 of Camerlenghi et al. 2021, the EFPF of the feature allocation induced by the SB-SP (σ, c, β) , with $\sigma \in (0, 1), c, \beta > 0$ is

$$\pi_n(m_1, \dots, m_k) = \frac{1}{k!} \frac{\sigma^k \beta^{c+1} \Gamma(k+c+1)}{(\beta + \gamma_0^{(n)})^{k+c+1} \Gamma(c+1)} \prod_{l=1}^k \frac{\Gamma(m_l - \sigma) \Gamma(n - m_l + 1)}{\Gamma(n - \sigma + 1)}$$

From Proposition 4 of Camerlenghi et al. 2021, the EFPF of the feature allocation induced by the SB-SP (σ, c, β) , with $\sigma \in (0, 1), c, \beta > 0$ is

$$\pi_n(m_1, \dots, m_k) = \frac{1}{k!} \frac{\sigma^k \beta^{c+1} \Gamma(k+c+1)}{(\beta + \gamma_0^{(n)})^{k+c+1} \Gamma(c+1)} \prod_{l=1}^k \frac{\Gamma(m_l - \sigma) \Gamma(n - m_l + 1)}{\Gamma(n - \sigma + 1)}$$

or equivalently

$$\pi_n(m_1, \dots, m_k) = \frac{1}{k!} \frac{\sigma^k \beta^{c+1}(c+1)_{k\uparrow}}{(\beta + \gamma_0^{(n)})^{k+c+1}(1-\sigma)_{n\uparrow}} \prod_{l=1}^k (1-\sigma)_{m_l-1\uparrow}(1)_{n-m_l\uparrow}$$

From Proposition 4 of Camerlenghi et al. 2021, the EFPF of the feature allocation induced by the SB-SP (σ, c, β) , with $\sigma \in (0, 1), c, \beta > 0$ is

$$\pi_n(m_1, \dots, m_k) = \frac{1}{k!} \frac{\sigma^k \beta^{c+1} \Gamma(k+c+1)}{(\beta + \gamma_0^{(n)})^{k+c+1} \Gamma(c+1)} \prod_{l=1}^k \frac{\Gamma(m_l - \sigma) \Gamma(n - m_l + 1)}{\Gamma(n - \sigma + 1)}$$

or equivalently

$$\pi_n(m_1, \dots, m_k) = \frac{1}{k!} \frac{\sigma^k \beta^{c+1}(c+1)_{k\uparrow}}{(\beta + \gamma_0^{(n)})^{k+c+1}(1-\sigma)_{n\uparrow}} \prod_{l=1}^k (1-\sigma)_{m_l-1\uparrow}(1)_{n-m_l\uparrow}$$

Let $\alpha = \sigma \in (0,1)$, the sequences of weights are

$$W_m = (1 - \alpha)_{m-1\uparrow}, \quad U_m = (\alpha + \theta)_{m\uparrow}$$

with $\alpha \in (0,1), \theta = 1 - \alpha$.

From Proposition 4 of Camerlenghi et al. 2021, the EFPF of the feature allocation induced by the SB-SP (σ, c, β) , with $\sigma \in (0, 1), c, \beta > 0$ is

$$\pi_n(m_1, \dots, m_k) = \frac{1}{k!} \frac{\sigma^k \beta^{c+1} \Gamma(k+c+1)}{(\beta + \gamma_0^{(n)})^{k+c+1} \Gamma(c+1)} \prod_{l=1}^k \frac{\Gamma(m_l - \sigma) \Gamma(n - m_l + 1)}{\Gamma(n - \sigma + 1)}$$

or equivalently

$$\pi_n(m_1, \dots, m_k) = \frac{1}{k!} \frac{\sigma^k \beta^{c+1}(c+1)_{k\uparrow}}{(\beta + \gamma_0^{(n)})^{k+c+1}(1-\sigma)_{n\uparrow}} \prod_{l=1}^k (1-\sigma)_{m_l-1\uparrow}(1)_{n-m_l\uparrow}$$

Let $\alpha = \sigma \in (0,1)$, the sequences of weights are

$$W_m = (1 - \alpha)_{m-1\uparrow}, \quad U_m = (\alpha + \theta)_{m\uparrow}$$

with $\alpha \in (0,1), \theta = 1 - \alpha$.

 \implies it is a mixture over γ of 3-parameter IBP $(\gamma, \sigma, 1 - \sigma)$ distributions.

References

- Battiston, Marco, Stefano Favaro, Daniel M. Roy, and Yee Whye Teh (2018). "A characterization of product-form exchangeable feature probability functions". In: *The Annals of Applied Probability* 28.3, pp. 1423–1448.
- Broderick, Tamara, Jim Pitman, and Michael I. Jordan (2013). "Feature Allocations, Probability Functions, and Paintboxes". In: *Bayesian Analysis* 8.4, pp. 801–836.
- Camerlenghi, Federico, Stefano Favaro, Lorenzo Masoero, and Tamara Broderick (2021). Scaled process priors for Bayesian nonparametric estimation of the unseen genetic variation.
- Gnedin, Alexander and Jim Pitman (2004). Exchangeable Gibbs partitions and Stirling triangles.
- Pitman, Jim (2003). "Poisson-kingman partitions". In: Lecture Notes-Monograph Series, pp. 1–34.

Consider a set of n individuals indexed by $[n] = \{1, ..., n\}$.

Definition (Partition of [n])

A partition $\rho_n = \{G_1, \dots, G_k\}$ of [n] is a decomposition of [n] in k disjoint (non-empty) subsets, called clusters: $[n] = \bigcup_i G_i$ and $G_i \cap G_j = \emptyset$ for $i \neq j$.

Consider a set of n individuals indexed by $[n] = \{1, \ldots, n\}$.

Definition (Partition of [n])

A partition $\rho_n = \{G_1, \dots, G_k\}$ of [n] is a decomposition of [n] in k disjoint (non-empty) subsets, called clusters: $[n] = \bigcup_i G_i$ and $G_i \cap G_j = \emptyset$ for $i \neq j$.

Example
$$(n = 4, k = 3)$$

$$\rho_4 = \{\{2,4\},\{1\},\{3\}\}\$$

Consider a set of n individuals indexed by $[n] = \{1, ..., n\}$.

Definition (Partition of [n])

A partition $\rho_n = \{G_1, \dots, G_k\}$ of [n] is a decomposition of [n] in k disjoint (non-empty) subsets, called clusters: $[n] = \bigcup_i G_i$ and $G_i \cap G_j = \emptyset$ for $i \neq j$.

Example (n = 4, k = 3)

$$\rho_4 = \{\{2,4\},\{1\},\{3\}\}\$$

$$\rho_4 = \{\{2,4\}, \{1,2\}, \{3\}\}\$$

Consider a set of n individuals indexed by $[n] = \{1, \ldots, n\}$.

Definition (Partition of [n])

A partition $\rho_n = \{G_1, \dots, G_k\}$ of [n] is a decomposition of [n] in k disjoint (non-empty) subsets, called clusters: $[n] = \bigcup_i G_i$ and $G_i \cap G_j = \emptyset$ for $i \neq j$.

Example (n = 4, k = 3)

$$\rho_4 = \{\{2,4\},\{1\},\{3\}\}\$$

$$p_4 = \{\{2,4\},\{1,2\},\{3\}\}$$

Consider a set of n individuals indexed by $[n] = \{1, \ldots, n\}$.

Definition (Feature allocation of [n])

A feature allocation $f_n = \{A_1, \dots, A_k\}$ of [n] is a multiset of k (non-empty) subsets of [n], called features: no index $i \in [n]$ belongs to infinitely many features.

Consider a set of n individuals indexed by $[n] = \{1, ..., n\}$.

Definition (Feature allocation of [n])

A feature allocation $f_n = \{A_1, \dots, A_k\}$ of [n] is a multiset of k (non-empty) subsets of [n], called features: no index $i \in [n]$ belongs to infinitely many features.

Example (n = 4, k = 3)

$$\rho_4 = \{\{2,4\},\{1\},\{3\}\}\$$

Consider a set of n individuals indexed by $[n] = \{1, ..., n\}$.

Definition (Feature allocation of [n])

A feature allocation $f_n = \{A_1, \dots, A_k\}$ of [n] is a multiset of k (non-empty) subsets of [n], called features: no index $i \in [n]$ belongs to infinitely many features.

Example (n = 4, k = 3)

$$\rho_4 = \{\{2,4\},\{1\},\{3\}\}\$$

$$\rho_4 = \{\{2,4\}, \{1,2\}, \{3\}\}\$$

Consider a set of n individuals indexed by $[n] = \{1, \ldots, n\}$.

Definition (Feature allocation of [n])

A feature allocation $f_n = \{A_1, \dots, A_k\}$ of [n] is a multiset of k (non-empty) subsets of [n], called features: no index $i \in [n]$ belongs to infinitely many features.

Example (n = 4, k = 3)

$$\rho_4 = \{\{2,4\},\{1\},\{3\}\}\$$

$$\rho_4 = \{\{2,4\}, \{1,2\}, \{3\}\}$$

Example (n = 4, k = 5)

$$\rho_4 = \{\{2,4\}, \{1,2\}, \{3\}, \{1,2,3\}, \{2,5\}\}$$

Examples of e. c. random feature allocations with EFPFs

Example (The Beta-Bernoulli Process)

A feature allocation is a Beta-Bernoulli with parameters (N, α, θ) , with $N \in \mathbb{N}$, $\alpha \in (-\infty, 0)$, $\theta \in [-\alpha, \infty)$, if it admits EFPF of the form

$$\binom{N}{k} \left(\frac{-\alpha}{(\theta + \alpha)_{n\uparrow}} \right)^k \left(\frac{(\theta + \alpha)_{n\uparrow}}{(\theta)_{n\uparrow}} \right)^N \prod_{l=1}^k (1 - \alpha)_{m_l - 1\uparrow} (\theta + \alpha)_{n - m_l \uparrow}$$

Examples of e. c. random feature allocations with EFPFs

Example (The Beta-Bernoulli Process)

A feature allocation is a Beta-Bernoulli with parameters (N, α, θ) , with $N \in \mathbb{N}$, $\alpha \in (-\infty, 0)$, $\theta \in [-\alpha, \infty)$, if it admits EFPF of the form

$$\binom{N}{k} \left(\frac{-\alpha}{(\theta + \alpha)_{n\uparrow}} \right)^k \left(\frac{(\theta + \alpha)_{n\uparrow}}{(\theta)_{n\uparrow}} \right)^N \prod_{l=1}^k (1 - \alpha)_{m_l - 1\uparrow} (\theta + \alpha)_{n - m_l \uparrow}$$

For $\alpha \to -\infty$, $-\frac{\alpha}{\theta} \to q \in (0,1)$, the homogeneous Bernoulli model of parameters (N,q) is obtained. In the following refer to the homogeneous Bernoulli model of parameters (N,q) as the special Beta-Bernoulli model with $\alpha = -\infty$ and characterize it with $q \in (0,1)$.

Characterization of weights in Gibbs-type partitions

Characterization of weights in Gibbs-type partitions

Theorem (Lemma 2 of Gnedin and Pitman 2004)

The distribution of a consistent exchangeable random partition is of Gibbs form, with $W_1 = V_{1,1}$ if and only if

Characterization of weights in Gibbs-type partitions

Theorem (Lemma 2 of Gnedin and Pitman 2004)

The distribution of a consistent exchangeable random partition is of Gibbs form, with $W_1 = V_{1,1}$ if and only if one of the following two cases holds:

(i) W can be uniquely written as $W_j = (1 - \alpha)_{j-1\uparrow}$ for fixed $\alpha \in (-\infty, 1)$, and the elements of V satisfy the recursion (with $V_{1,1} = 1$)

$$V_{n,k} = (n - \alpha k)V_{n+1,k} + V_{n+1,k+1}, \qquad 1 \le k \le n$$

(ii) W can be uniquely written as $W_j = 1$ and V satisfies the recursion (with $V_{1,1} = 1$)

$$V_{n,k} = kV_{n+1,k} + V_{n+1,k+1}, \qquad 1 \le k \le n$$

corresponding to the limiting case $\alpha \to -\infty$ (indicate this case with $\alpha = -\infty$).

Characterization of weights in product-form feature allocations

Theorem (Battiston et al. 2018)

The distribution of a consistent exchangeable feature allocation has product-form EFPF if and only if

Characterization of weights in product-form feature allocations

Theorem (Battiston et al. 2018)

The distribution of a consistent exchangeable feature allocation has product-form EFPF if and only if one of the following two cases holds:

(i) W and U can be uniquely written as $W_m = (1 - \alpha)_{m-1\uparrow}$ and $U_m = (\theta + \alpha)_{m\uparrow}$, for fixed α, θ satisfying $\alpha \in (-\infty, 1)$ and $\theta \in (-\alpha, \infty)$, and the elements of V satisfy the recursion

$$V_{n,k} = \sum_{j=0}^{\infty} {k+j \choose j} \left((\theta + \alpha)_{n\uparrow} \right)^j (\theta + n)^k V_{n+1,k+j}$$

(ii) W and U can be uniquely written $W_m = q^{m-1}$ and $U_m = (1-q)^m$, for some $q \in (0,1)$, and V satisfies the recursion

$$V_{n,k} = \sum_{j=0}^{\infty} {k+j \choose j} (1-q)^{nj} V_{n+1,k+j}$$

corresponding to the limiting case $\alpha \to -\infty$ and $-\frac{\alpha}{\theta} \to q$ (indicate this case with $\alpha = -\infty$ and characterize it with $q \in (0,1)$).

Gibbs-type partitions

ullet sequence of weights: W

Feature allocations with product-form

ullet sequences of weights: W and U

Gibbs-type partitions

- sequence of weights: W
- W is parametrized by the single parameter $\alpha \in [-\infty, 1)$

Feature allocations with product-form

- \bullet sequences of weights: W and U
- W and U are parametrized by two parameters (α, θ) such that $\alpha \in [-\infty, 1), \theta \in (-\alpha, \infty)$

Gibbs-type partitions

- \bullet sequence of weights: W
- W is parametrized by the single parameter $\alpha \in [-\infty, 1)$

*
$$\alpha \in (-\infty, 1)$$
:

$$W_j = (1 - \alpha)_{j-1\uparrow}$$

Feature allocations with product-form

- \bullet sequences of weights: W and U
- W and U are parametrized by two parameters (α, θ) such that $\alpha \in [-\infty, 1), \theta \in (-\alpha, \infty)$
- * $\alpha \in (-\infty, 1)$:

$$W_m = (1 - \alpha)_{m-1\uparrow}, \quad U_m = (\theta + \alpha)_{m\uparrow}$$

Gibbs-type partitions

- sequence of weights: W
- W is parametrized by the single parameter $\alpha \in [-\infty, 1)$
- * $\alpha \in (-\infty, 1)$:

$$W_j = (1 - \alpha)_{j-1\uparrow}$$

* $\alpha = -\infty$ is the limiting case:

$$W_j = 1$$

Feature allocations with product-form

- \bullet sequences of weights: W and U
- W and U are parametrized by two parameters (α, θ) such that $\alpha \in [-\infty, 1), \theta \in (-\alpha, \infty)$
- * $\alpha \in (-\infty, 1)$:

$$W_m = (1 - \alpha)_{m-1\uparrow}, \quad U_m = (\theta + \alpha)_{m\uparrow}$$

* $\alpha = -\infty$ is the limiting case:

$$W_m = q^{m-1}, \quad U_m = (1-q)^m$$

still parametrized by the single parameter $q \in (0,1)$

Gibbs-type partitions as mixtures

Theorem (Theorem 12 of Gnedin and Pitman 2004)

Each Gibbs partition of fixed type $\alpha \in [-\infty, 1)$ is a unique probability mixture of the extreme partitions. In particular,

- (i) for $\alpha \in [-\infty, 0)$, mixtures over m of $(\alpha, |\alpha|m)$ -partitions with $m = 1, \ldots, \infty$;
- (ii) for $\alpha = 0$, mixtures over θ of Ewens $(0, \theta)$ -partitions with $\theta \in [0, \infty]$;
- (iii) for $\alpha \in (0,1)$, mixtures over s of Poisson-Kingman ($\alpha|s$)-partitions with $s \in [0,\infty]$, where Poisson-Kingman (α,s)-partition refers to the partition derived from a Poisson-Kingman discrete distribution denoted in Pitman 2003 by $PK(\rho_{\alpha}|t)$ for $t=s^{-\alpha}$.

Product-form feature allocations as mixtures

Theorem (Battiston et al. 2018)

Each feature allocation with product-form EFPF of fixed parameters (α, θ) (or q if $\alpha = -\infty$) is a unique probability mixture of the extreme feature allocations. In particular,

- (i) for $\alpha \in [-\infty, 0)$, mixtures over N of Beta-Bernoulli models with N features;
- (ii) for $\alpha \in (0,1)$, mixtures over γ of 3 -parameter IBPs;
- (iii) for $\alpha = 0$, mixtures over γ of 2-parameter IBPs.

Once fixed the parameters α for the Gibbs type partition and (α, θ) for the feature allocation with product-form EFPF, each of them can be written as

Gibbs-type partitions

• $\alpha \in (0,1)$: mixture over s of Poisson-Kingman $(\alpha|s)$ -partitions;

Feature allocations with product-form

• $\alpha \in (0,1)$: mixture over γ of 3 -parameter IBPs;

Once fixed the parameters α for the Gibbs type partition and (α, θ) for the feature allocation with product-form EFPF, each of them can be written as

Gibbs-type partitions

- $\alpha \in (0, 1)$: mixture over s of Poisson-Kingman $(\alpha|s)$ -partitions;
- $\alpha = 0$: mixture over θ of the Ewens $(0, \theta)$ -partitions;

Feature allocations with product-form

- $\alpha \in (0,1)$: mixture over γ of 3 -parameter IBPs;
- $\alpha = 0$: mixture over γ of 2 -parameter IBPs;

Once fixed the parameters α for the Gibbs type partition and (α, θ) for the feature allocation with product-form EFPF, each of them can be written as

Gibbs-type partitions

- $\alpha \in (0,1)$: mixture over s of Poisson-Kingman $(\alpha|s)$ -partitions;
- $\alpha = 0$: mixture over θ of the Ewens $(0, \theta)$ -partitions;
- $\alpha \in [-\infty, 0)$: mixture over m of $(\alpha, |\alpha|m)$ -partitions

Feature allocations with product-form

- $\alpha \in (0,1)$: mixture over γ of 3 -parameter IBPs;
- $\alpha = 0$: mixture over γ of 2 -parameter IBPs;
- $\alpha \in [-\infty, 0)$: mixture over N of Beta-Bernoulli models with N features