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Definitions

Consider a set of n individuals indexed by [n] = {1, . . . , n}.

Definition (Partition of [n])

A partition ρn = {G1, . . . , Gk} of [n] is a decomposition of [n] in k disjoint
(non-empty) subsets, called clusters: [n] = ∪iGi and Gi ∩Gj = ∅ for i ̸= j.

Definition (Feature allocation of [n])

A feature allocation fn = {A1, . . . , Ak} of [n] is a multiset of k (non-empty) subsets
of [n] (counted with their multiplicities), called features: no index i ∈ [n] belongs
to infinitely many features.

Example (n = 4, k = 3)

ρ4 = {{2, 4}, {1, 2}, {3}}
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Exchangeable random partition and feature allocation

Definition (Exchangeable random partition)

A random partition Pn of [n] is called exchangeable if for any permutation σ : [n] −→ [n]
and every partition {G1, . . . , Gk} of [n],

P (Pn = {σ(G1), . . . , σ(Gk)}) = P (Pn = {G1, . . . , Gk})

Definition (Exchangeable random feature allocation)

A random feature allocation Fn of [n] is called exchangeable if for any permutation
σ : [n] −→ [n] and every feature allocation {A1, . . . , Ak} of [n],

P (Fn = {σ(A1), . . . , σ(Ak)}) = P (Fn = {A1, . . . , Ak})
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EPPF and EFPF

EPPF for exchangeable random partition

A random partition Pn of [n] is exchangeable
⇐⇒ there exists a symmetric function pn : Cn −→ [0, 1] such that, for every partition
{G1, . . . , Gk} of [n],

P (Pn = {G1, . . . , Gk}) = pn(|G1|, . . . , |Gk|)

The function pn is the EPPF of Pn.

EFPF for exchangeable random feature allocation

There exists a symmetric function πn : ∪∞
k=0[n]

k −→ [0, 1] such that, for every ordered
feature allocation (A1, . . . , Ak) of [n],

P (F̃n = (A1, . . . , Ak)) = πn(|A1|, . . . , |Ak|)

The function πn is the EFPF of Fn

=⇒ the random feature allocation Fn of [n] is exchangeable.
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Consistency

Consider (Pn)n (respectively, (Fn)n) a sequence of exchangeable random partitions
(respectively, feature allocations).

Definition (Consistent sequence)

(Pn)n (respectively, (Fn)n) is consistent if the distribution of Pn (respectively, Fn) may be
obtained from the distribution of Pn+1 (respectively, Fn+1) by marginalizing out the n+ 1
individual.
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Examples of e. c. random partitions

Example (The two-parameter family (also known as Ewens-Pitman family))

A random partition is a two-parameter (α, θ) process, if its EPPF has the form

(θ + α)k−1↑α
(θ + 1)n−1↑

k∏
l=1

(1− α)λj−1↑

where (x)m↑β =
m−1∏
i=0

(x+ iβ) and (x)0↑β = 1.

Parameters (α, θ) are such that either:

• α ∈ [−∞, 0) and θ = m|α|,m = 1, . . . ,∞ with proper definition in the limiting
cases;

• α ∈ [0, 1] and θ ≥ −α.

Special case: the Ewens family (”Dirichlet Process”) when α = 0.
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Examples of e. c. random feature allocations with EFPFs

Example (The 3-parameter Indian buffet Process (3IBP))

A feature allocation is a 3-parameter (γ, α, θ) IBP, with γ ≥ 0, α ∈ [0, 1], θ ∈ [−α,∞), if it
admits EFPF of the form

1

k!

(
γ

(θ + 1)n−1↑

)k

exp

(
−

n∑
i=1

γ
(α+ θ)i−1↑

(1 + θ)i−1↑

)
k∏

l=1

(1− α)ml−1↑(θ + α)n−ml↑

where (x)m↑ =

m−1∏
i=0

(x+ i) and (x)0↑ = 1.

Special cases:

• the 2-parameter (γ, θ) IBP: α = 0

• the 1-parameter γ IBP: α = 0, θ = 1
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Examples of e. c. random feature allocations with EFPFs

Example (The Beta-Bernoulli Process)

A feature allocation is a Beta-Bernoulli with parameters (N,α, θ), with N ∈ N,
α ∈ (−∞, 0), θ ∈ [−α,∞), if it admits EFPF of the form(

N

k

)(
−α

(θ + α)n↑

)k ((θ + α)n↑
(θ)n↑

)N k∏
l=1

(1− α)ml−1↑(θ + α)n−ml↑
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Gibbs-type partitions

Definition (Gnedin and Pitman 2004)

An exchangeable random partition is said to be of Gibbs form if for some
nonnegative weights W = (Wj) and V = (Vn,k), its EPPF satisfies

pn(λ1, . . . , λk) = Vn,k

k∏
l=1

Wλl
(1)

for all 1 ≤ k ≤ n and all compositions (λ1, . . . , λk) of n.

Example

The two-parameter family (Ewens-Pitman family) is a class of Gibbs-type
partitions.
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Feature allocations with product-form EFPFs

Definition (Battiston et al. 2018)

An exchangeable feature allocation is said to have product-form EFPFs if for an
infinite array V = (Vn,k : (n, k) ∈ N× N0) and two sequences W = (Wj : j ∈ N)
and U = (Uj : j ∈ N0) of nonnegative weights, its EFPF satisfies

πn(m1, . . . ,mk) = Vn,k

k∏
l=1

Wml
Un−ml

(2)

Example

The 3-parameter Indian buffet Process (as well as the 2IBP and the 1IBP) and the
Beta-Bernoulli process are exchangeable feature allocations with product-form
EFPFs
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Characterizations of the weights

Gibbs-type partitions

⇐⇒ (Gnedin and Pitman 2004)

• the sequence W s.t.

* α ∈ (−∞, 1):

Wj = (1− α)j−1↑

* α = −∞:

Wj = 1

• the array V satisfies a recursive
equation

Feature allocations with product-form

⇐⇒ (Battiston et al. 2018)

• the sequences W and U s.t.

* α ∈ (−∞, 1), θ ∈ (−α,∞):

Wm = (1−α)m−1↑, Um = (θ+α)m↑

* α = −∞, q ∈ (0, 1):

Wm = qm−1, Um = (1− q)m

• the array V satisfies a recursive
equation

12 / 15



Characterizations of the weights

Gibbs-type partitions

⇐⇒ (Gnedin and Pitman 2004)

• the sequence W s.t.

* α ∈ (−∞, 1):

Wj = (1− α)j−1↑

* α = −∞:

Wj = 1

• the array V satisfies a recursive
equation

Feature allocations with product-form

⇐⇒ (Battiston et al. 2018)

• the sequences W and U s.t.

* α ∈ (−∞, 1), θ ∈ (−α,∞):

Wm = (1−α)m−1↑, Um = (θ+α)m↑

* α = −∞, q ∈ (0, 1):

Wm = qm−1, Um = (1− q)m

• the array V satisfies a recursive
equation

12 / 15



Characterizations of the weights

Gibbs-type partitions

⇐⇒ (Gnedin and Pitman 2004)

• the sequence W s.t.

* α ∈ (−∞, 1):

Wj = (1− α)j−1↑

* α = −∞:

Wj = 1

• the array V satisfies a recursive
equation

Feature allocations with product-form

⇐⇒ (Battiston et al. 2018)

• the sequences W and U s.t.

* α ∈ (−∞, 1), θ ∈ (−α,∞):

Wm = (1−α)m−1↑, Um = (θ+α)m↑

* α = −∞, q ∈ (0, 1):

Wm = qm−1, Um = (1− q)m

• the array V satisfies a recursive
equation

12 / 15



Characterizations of the weights

Gibbs-type partitions

⇐⇒ (Gnedin and Pitman 2004)

• the sequence W s.t.

* α ∈ (−∞, 1):

Wj = (1− α)j−1↑

* α = −∞:

Wj = 1

• the array V satisfies a recursive
equation

Feature allocations with product-form

⇐⇒ (Battiston et al. 2018)

• the sequences W and U s.t.

* α ∈ (−∞, 1), θ ∈ (−α,∞):

Wm = (1−α)m−1↑, Um = (θ+α)m↑

* α = −∞, q ∈ (0, 1):

Wm = qm−1, Um = (1− q)m

• the array V satisfies a recursive
equation

12 / 15



Characterizations of the weights

Gibbs-type partitions

⇐⇒ (Gnedin and Pitman 2004)

• the sequence W s.t.

* α ∈ (−∞, 1):

Wj = (1− α)j−1↑

* α = −∞:

Wj = 1

• the array V satisfies a recursive
equation

Feature allocations with product-form

⇐⇒ (Battiston et al. 2018)

• the sequences W and U s.t.

* α ∈ (−∞, 1), θ ∈ (−α,∞):

Wm = (1−α)m−1↑, Um = (θ+α)m↑

* α = −∞, q ∈ (0, 1):

Wm = qm−1, Um = (1− q)m

• the array V satisfies a recursive
equation

12 / 15



Gibbs partitions and product-form features as mixtures

Gibbs-type partitions

⇐⇒ (Gnedin and Pitman 2004)

• α ∈ (0, 1): mixture over s of
Poisson-Kingman (α|s)-partitions;

• α = 0: mixture over θ of the Ewens
(0, θ)-partitions;

• α ∈ [−∞, 0): mixture over m of
(α, |α|m)-partitions

Feature allocations with product-form

⇐⇒ (Battiston et al. 2018)

• α ∈ (0, 1): mixture over γ of 3
-parameter IBPs;

• α = 0: mixture over γ of 2
-parameter IBPs;

• α ∈ [−∞, 0): mixture over N of
Beta-Bernoulli models with N
features
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Stable beta scaled processes SB-SP

From Proposition 4 of Camerlenghi et al. 2021, the EFPF of the feature allocation
induced by the SB-SP (σ, c, β), with σ ∈ (0, 1), c, β > 0 is

πn(m1, . . . ,mk) =
1

k!

σkβc+1Γ(k + c+ 1)

(β + γ
(n)
0 )k+c+1Γ(c+ 1)

k∏
l=1

Γ(ml − σ)Γ(n−ml + 1)

Γ(n− σ + 1)

or equivalently

πn(m1, . . . ,mk) =
1

k!

σkβc+1(c+ 1)k↑

(β + γ
(n)
0 )k+c+1(1− σ)n↑

k∏
l=1

(1− σ)ml−1↑(1)n−ml↑

Let α = σ ∈ (0, 1), the sequences of weights are

Wm = (1− α)m−1↑, Um = (α+ θ)m↑

with α ∈ (0, 1), θ = 1− α.

=⇒ it is a mixture over γ of 3-parameter IBP (γ, σ, 1− σ) distributions.
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Partition - definition

Consider a set of n individuals indexed by [n] = {1, . . . , n}.

Definition (Partition of [n])

A partition ρn = {G1, . . . , Gk} of [n] is a decomposition of [n] in k disjoint
(non-empty) subsets, called clusters: [n] = ∪iGi and Gi ∩Gj = ∅ for i ̸= j.

Example (n = 4, k = 3)

ρ4 = {{2, 4}, {1}, {3}}
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Feature allocation - definition

Consider a set of n individuals indexed by [n] = {1, . . . , n}.

Definition (Feature allocation of [n])

A feature allocation fn = {A1, . . . , Ak} of [n] is a multiset of k (non-empty) subsets
of [n], called features: no index i ∈ [n] belongs to infinitely many features.

Example (n = 4, k = 3)

ρ4 = {{2, 4}, {1}, {3}}

ρ4 = {{2, 4}, {1, 2}, {3}}

Example (n = 4, k = 5)

ρ4 = {{2, 4}, {1, 2}, {3}, {1, 2, 3}, {2, 5}}
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Examples of e. c. random feature allocations with EFPFs

Example (The Beta-Bernoulli Process)

A feature allocation is a Beta-Bernoulli with parameters (N,α, θ), with N ∈ N,
α ∈ (−∞, 0), θ ∈ [−α,∞), if it admits EFPF of the form(

N

k

)(
−α

(θ + α)n↑

)k ((θ + α)n↑
(θ)n↑

)N k∏
l=1

(1− α)ml−1↑(θ + α)n−ml↑

For α → −∞,−α

θ
→ q ∈ (0, 1), the homogeneous Bernoulli model of parameters

(N, q) is obtained. In the following refer to the homogeneous Bernoulli model of
parameters (N, q) as the special Beta-Bernoulli model with α = −∞ and
characterize it with q ∈ (0, 1).
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Characterization of weights in Gibbs-type partitions

Theorem (Lemma 2 of Gnedin and Pitman 2004)

The distribution of a consistent exchangeable random partition is of Gibbs form,
with W1 = V1,1 if and only if one of the following two cases holds:

(i) W can be uniquely written as Wj = (1− α)j−1↑ for fixed α ∈ (−∞, 1), and the
elements of V satisfy the recursion (with V1,1 = 1)

Vn,k = (n− αk)Vn+1,k + Vn+1,k+1, 1 ≤ k ≤ n

(ii) W can be uniquely written as Wj = 1 and V satisfies the recursion (with
V1,1 = 1)

Vn,k = kVn+1,k + Vn+1,k+1, 1 ≤ k ≤ n

corresponding to the limiting case α → −∞ (indicate this case with α = −∞).
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Characterization of weights in product-form feature allocations

Theorem (Battiston et al. 2018)

The distribution of a consistent exchangeable feature allocation has product-form EFPF if and only
if

one of the following two cases holds:

(i) W and U can be uniquely written as Wm = (1− α)m−1↑ and Um = (θ + α)m↑, for fixed α, θ
satisfying α ∈ (−∞, 1) and θ ∈ (−α,∞), and the elements of V satisfy the recursion

Vn,k =

∞∑
j=0

(
k + j

j

)
((θ + α)n↑)

j (θ + n)kVn+1,k+j

(ii) W and U can be uniquely written Wm = qm−1 and Um = (1− q)m, for some q ∈ (0, 1), and
V satisfies the recursion

Vn,k =

∞∑
j=0

(
k + j

j

)
(1− q)njVn+1,k+j

corresponding to the limiting case α → −∞ and −α

θ
→ q (indicate this case with α = −∞

and characterize it with q ∈ (0, 1)).
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Analogies between the characterizations of the weight sequences

Gibbs-type partitions

• sequence of weights: W

• W is parametrized by the single
parameter α ∈ [−∞, 1)

* α ∈ (−∞, 1):

Wj = (1− α)j−1↑

* α = −∞ is the limiting case:

Wj = 1

Feature allocations with product-form

• sequences of weights: W and U

• W and U are parametrized by two
parameters (α, θ) such that
α ∈ [−∞, 1), θ ∈ (−α,∞)

* α ∈ (−∞, 1):

Wm = (1−α)m−1↑, Um = (θ+α)m↑

* α = −∞ is the limiting case:

Wm = qm−1, Um = (1− q)m

still parametrized by the single
parameter q ∈ (0, 1)
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Gibbs-type partitions as mixtures

Theorem (Theorem 12 of Gnedin and Pitman 2004)

Each Gibbs partition of fixed type α ∈ [−∞, 1) is a unique probability mixture of
the extreme partitions. In particular,

(i) for α ∈ [−∞, 0), mixtures over m of (α, |α|m)-partitions with m = 1, . . . ,∞;

(ii) for α = 0, mixtures over θ of Ewens (0, θ)-partitions with θ ∈ [0,∞];

(iii) for α ∈ (0, 1), mixtures over s of Poisson-Kingman (α|s)-partitions with
s ∈ [0,∞], where Poisson-Kingman (α, s)-partition refers to the partition
derived from a Poisson-Kingman discrete distribution denoted in Pitman 2003
by PK(ρα|t) for t = s−α.
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Product-form feature allocations as mixtures

Theorem (Battiston et al. 2018)

Each feature allocation with product-form EFPF of fixed parameters (α, θ) (or q if
α = −∞) is a unique probability mixture of the extreme feature allocations. In
particular,

(i) for α ∈ [−∞, 0), mixtures over N of Beta-Bernoulli models with N features;

(ii) for α ∈ (0, 1), mixtures over γ of 3 -parameter IBPs;

(iii) for α = 0, mixtures over γ of 2 -parameter IBPs.
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Analogies between the characterizations of the V-weights

Once fixed the parameters α for the Gibbs type partition and (α, θ) for the feature
allocation with product-form EFPF, each of them can be written as

Gibbs-type partitions

• α ∈ (0, 1): mixture over s of
Poisson-Kingman (α|s)-partitions;

• α = 0: mixture over θ of the Ewens
(0, θ)-partitions;

• α ∈ [−∞, 0): mixture over m of
(α, |α|m)-partitions

Feature allocations with product-form

• α ∈ (0, 1): mixture over γ of 3
-parameter IBPs;

• α = 0: mixture over γ of 2
-parameter IBPs;

• α ∈ [−∞, 0): mixture over N of
Beta-Bernoulli models with N
features
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