### Computational Statistics II

Unit A.1: Metropolis-Hastings and Gibbs sampling

### **Tommaso Rigon**

University of Milano-Bicocca

Ph.D. in Economics, Statistics and Data Science



# Unit A.1

### Main concepts

- Markov Chain Monte Carlo (MCMC)
- The Metropolis-Hastings algorithm
- The Gibbs sampling algorithm
- Writing clean and efficient R code

Associated **R** code is available on the website of the course

### Main references

- Robert, C. P., and Casella, G. (2004). Monte Carlo Statistical Methods. Springer.
- Roberts, G. O., and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Probability Surveys, 1(1), 20–71.
- Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics, 22(4), 1701-176.

- Over the past 30 years, Markov Chain Monte Carlo methods (MCMC) methods have revolutionized Bayesian statistics.
- Bayesian computational statistics is nowadays a lively and mature research field compared to the early days. Still, there are several open questions.
- The ISBA bulletin (2011). What are the open problems in Bayesian statistics?
- Alan Gelfand (ISBA bullettin, 2011): "Arguably the biggest challenge is in computation. If MCMC is no longer viable for the problems people want to address, then what is the role of INLA, of variational methods, of ABC approaches?"
- Link: https://www.stat.berkeley.edu/~aldous/157/Papers/Bayesian\_open\_problems.pdf

- Let X be the data, following some distribution  $\pi(X \mid \theta)$ , i.e. the likelihood, with  $\theta \in \Theta \subseteq \mathbb{R}^{p}$  being an unknown set of parameters.
- Let  $\pi(\theta)$  be the prior distribution associated to  $\theta$ .

In Bayesian analysis, inference is based on the posterior distribution for  $\theta$ , defined as

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{X}) = \frac{\pi(\boldsymbol{\theta})\pi(\boldsymbol{X} \mid \boldsymbol{\theta})}{\int_{\boldsymbol{\Theta}} \pi(\boldsymbol{\theta})\pi(\boldsymbol{X} \mid \boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}}$$

- Key issue: the normalizing constant, i.e. the above integral, is often intractable → no analytical solutions, beyond conjugate cases.
- Numerical approximations of  $\int_{\Theta} \pi(\theta) \pi(X \mid \theta) d\theta$  are highly unstable, especially in high dimensions  $\implies$  the integrate **R** function will not work in most cases.

- Key solution. It is sometimes possible to sample from the posterior distribution without knowing the normalizing constant.
- If we can get random samples  $\theta^{(1)}, \ldots, \theta^{(R)}$  from the posterior distribution, then we can approximate any functional of interest, i.e.

$$\mathbb{E}(g(\theta) \mid \boldsymbol{X}) \approx \frac{1}{R} \sum_{r=1}^{R} g(\theta^{(r)}).$$

- If  $\theta^{(1)}, \ldots, \theta^{(R)}$  were independent samples from the posterior distribution, this approximation would be called Monte Carlo integration.
- Monte Carlo integration is justified by the law of large numbers.
- In this course, we will consider samples  $\theta^{(1)}, \ldots, \theta^{(R)}$  that are dependent and follow a Markov Chain  $\implies$  Markov Chain Monte Carlo (MCMC).

# An introduction to Markov chains

### Markov chains

A sequence  $\mathbf{Y}^{(0)}, \mathbf{Y}^{(1)}, \dots, \mathbf{Y}^{(R)}$  of random elements is a Markov chain if

$$\mathbb{P}(\mathbf{Y}^{(r+1)} \in A \mid \mathbf{y}^{(0)}, \dots, \mathbf{y}^{(r)}) = \mathbb{P}(\mathbf{Y}^{(r+1)} \in A \mid \mathbf{y}^{(r)})$$

- In other words, the conditional distribution of **Y**<sup>(r+1)</sup> given **y**<sup>(0)</sup>,..., **y**<sup>(r)</sup> is the same as the conditional distribution of **Y**<sup>(r+1)</sup> given **y**<sup>(r)</sup>, called transition kernel.
- Given an initial condition  $y^{(0)}$ , a Markov chain is fully characterized by its transition kernel, which we assume does not depend on r (homogeneity).
- In continuous cases, the transition kernel is identified by a conditional density, denoted with

$$k(\boldsymbol{y}^{(r+1)} \mid \boldsymbol{y}^{(r)}).$$

When the sample space is finite, the transition kernel is a transition matrix, say P.

- Autoregressive processes provide a simple illustration of Markov chains on continuous state-space.
- Let  $Y^{(0)} \sim N(30, 1)$  and let us define

$$Y^{(r)} = \rho Y^{(r-1)} + \epsilon^{(r)}, \qquad \rho \in \mathbb{R},$$

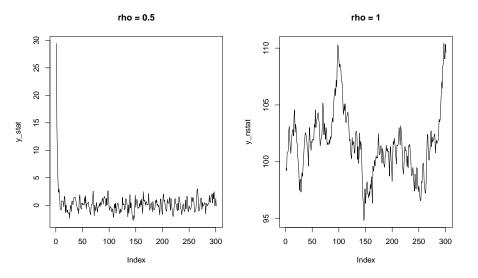
with the error terms  $\epsilon^{(r)}$  being iid according to a standard Gaussian N(0,1).

Then the sequence of Y<sup>(r)</sup> forms indeed a Markov chain and the transition density is such that

$$(y^{(r)} | y^{(r-1)}) \sim \mathsf{N}(\rho y^{(r-1)}, 1).$$

If the parameter  $|\rho| < 1$  then the Markov chain has a more "stable" behaviour.

### Example: autoregressive processes AR(1)



- An increased level of stability of a Markov chain occurs when the latter admits an invariant or stationary probability distribution.
- A probability density  $\pi(\mathbf{y})$  is invariant for a Markov chain with kernel k if

$$\pi(\mathbf{y}^*) = \int k(\mathbf{y}^* \mid \mathbf{y}) \pi(\mathbf{y}) \mathrm{d}\mathbf{y}.$$

- This is to say that the marginal distributions of  $\mathbf{Y}^{(r)}$  and  $\mathbf{Y}^{(r+1)}$  are the same and are equal to  $\pi(\mathbf{y})$ , although  $\mathbf{Y}^{(r)}$  and  $\mathbf{Y}^{(r+1)}$  remain dependent.
- Roughly speaking, if a Markov chain admits a stationary distribution + some technical conditions, then for R large enough, the chain "stabilizes" around the invariant law.
- In the previous AR(1) example the stationary distribution is  $N(0, 1/(1-\rho^2))$ .

# Invariant distribution

- Not every Markov chain admits a stationary law. However, Markov chains built for Bayesian statistics should always converge to an invariant distribution.
- Indeed, in Markov Chain Monte Carlo, the stationary distribution  $\pi(\mathbf{y})$  represents the target density from which we wish to simulate.
- Then, we will make use of the following approximation

$$\int g(\boldsymbol{y}) \pi(\boldsymbol{y}) \mathrm{d} \boldsymbol{y} \approx \frac{1}{R} \sum_{r=1}^{R} g(\boldsymbol{y}^{(r)}),$$

where  $\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(R)}$  are generated according to a Markov chain, with  $\mathbf{y}^{(0)} \sim \pi(\mathbf{y})$ .

- How to construct a Markov chain that converges to the desired density  $\pi(\mathbf{y})$ ?
- Before delving into this key problem, let us briefly review the assumptions under which this approximation is reasonable.

We will consider Markov chains that are irreducible, aperiodic, and Harris recurrent.

- A rigorous presentation of these properties is beyond the aims of this course, so we offer only a brief description in the discrete case to help the intuition.
- For a more detailed treatment, see Chapter 6 of Robert and Casella (2004).
- Irreducibility. The chain is irreducible if it does not "get stuck" in a local region of the sample space. In the discrete case, the chain is irreducible if all states are connected.
- Aperiodicity. The chain is aperiodic if it does not have any deterministic cycle.
- Harris recurrent. The chain is (Harris) recurrent if it visits any region of the sample space "sufficiently often".

- The aforementioned properties are easy to formalize in the discrete setting, namely when the values of the Markov chain are Y<sup>(r)</sup> ∈ {1, 2, ...}.
- The first passage time is the first r for which the chain is equal to j, namely:

$$\tau_j = \inf\{r \ge 1 : Y^{(r)} = j\},$$

where by convention we let  $\tau_j = \infty$  if  $Y^{(r)} \neq j$  for every  $r \geq 1$ .

Moreover, let us denote the probability of return to j in a finite number of step, starting from j'

$$\mathbb{P}(\tau_j < \infty \mid y^{(0)} = j').$$

• Hence, the chain is irreducible if  $\mathbb{P}(\tau_j < \infty \mid y^{(0)} = j') > 0$  for all  $j, j' \in \mathbb{N}$ .

Consider the two-state chain with transition matrix

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• The two-step ahead transition matrix is  $P^2 = I$ , so  $P^{2r} = I$  and  $P^{2r+1} = P$  for all  $r \ge 1$ .

- Hence, due to periodicity this chain is failing to converge anywhere.
- In the discrete case, we call a state j aperiodic if the set

$$\{r \ge 1 : [P^r]_{jj} > 0\}$$

has no common divisor other than 1.

A chain is aperiodic if all its states are aperiodic.

- Informally, a state j of an irreducible Markov chain is recurrent when it is visited by the chain "infinitely often".
- $\blacksquare$  More formally, in the discrete setting a state  $j \in \mathbb{N}$  is recurrent if and only if

$$\mathbb{P}( au_j < \infty \mid y^{(0)} = j) = \mathbb{P}(Y^{(r)} = j ext{ for infinitely many } r \mid y^{(0)} = j) = 1.$$

- The above definition, with the necessary adjustments, is a sufficient condition for recurrence in the continuous case.
- Indeed, in the continuous case recurrence is defined in terms of the average number of passages on a Borel set, which must be divergent.
- The stronger "Harris" recurrence condition is mostly needed to fix measure-theoretic pathologies.

- A Markov chain that is aperiodic and Harris recurrent displays a quite stable behavior, so one may wonder if it admits an invariant distribution.
- In general, the answer is no: the Gaussian random walk is an example.
- Indeed, we call Harris positive a Markov chain, which is Harris recurrent and admits an invariant probability distribution.
- In the discrete case, this occurs if and only if  $\mathbb{E}(\tau_j \mid y^{(0)} = j) < \infty$ .
- However, something can be said about the existence of invariant measures in general.

### Theorem

If  $(\mathbf{Y}^{(r)})_{r\geq 1}$  is a recurrent chain, there exists an invariant  $\sigma$ -finite measure which is unique up to a multiplicative factor.

Unfortunately, such an invariant measure is not necessarily a probability measure!

# Reversibility and detailed balance

- What follows is a popular sufficient condition to ensure a recurrent chain is also positive recurrent. That is, it admits an invariant probability distribution.
- Interestingly enough, such a condition also has a quite intuitive interpretation.
- We call a Markov chain  $(\mathbf{Y}^{(r)})_{r\geq 1}$  reversible if the distribution of  $\mathbf{Y}^{(r)}$  conditionally on  $\mathbf{Y}^{(r+1)}$  is the same as the distribution of  $\mathbf{Y}^{(r+1)}$  conditionally on  $\mathbf{Y}^{(r)}$ .
- A Markov chain  $(\mathbf{Y}^{(r)})_{r\geq 1}$  with transition kernel k satisfies the detailed balance condition if there exists a function f such that

$$k(\mathbf{y} \mid \mathbf{y}^*)f(\mathbf{y}) = k(\mathbf{y}^* \mid \mathbf{y})f(\mathbf{y}^*).$$

#### Theorem

If  $(\mathbf{Y}^{(r)})_{r\geq 1}$  satisfies the detailed balance condition with  $\pi$  a probability density function, then  $\pi$  is the invariant (stationary) density, and the chain is reversible.

- From now on, we will always assume the aperiodicity and Harris positivity properties, assuming the existence of a stationary probability density π.
- The following result establishes that a chain converges in total variation to its invariant measures as  $r \to \infty$ .
- Importantly, this occurs regardless the initial conditions  $\mathbf{Y}^{(0)} \sim \pi_0$ .

#### Theorem

Let the Markov chain  $(\mathbf{Y}^{(r)})_{r\geq 1}$  be aperiodic and Harris positive, with  $\mathbf{Y}_0 \sim \pi_0$ . Moreover let  $\pi_r$  be the marginal probability density of  $\mathbf{Y}^{(r)}$ . Then

$$\lim_{r\to\infty}\left|\pi_r(\boldsymbol{y})-\pi(\boldsymbol{y})\right|_{\mathrm{TV}}=0.$$

Furthermore  $|\pi_r(\mathbf{y}) - \pi(\mathbf{y})|_{_{\mathrm{TV}}}$  is decreasing in r.

- The Ergodic Theorem is essentially the equivalent of the law of large numbers for Markov chains. It is the main justification for using MCMC methods.
- What follows is a slightly simplified version, which is amenable for our purposes.
- Again, the following result holds irrespectively on the initial conditions  $\mathbf{Y}^{(0)} \sim \pi_0$ .

### Theorem (Ergodic Theorem)

Let the Markov chain  $(\mathbf{Y}^{(r)})_{r\geq 1}$  be Harris positive with stationary distribution  $\pi$ . Let the function g be integrable w.r.t. to  $\pi$ . Then

$$rac{1}{R}\sum_{r=1}^R g(oldsymbol{y}^{(r)}) \longrightarrow \int g(oldsymbol{y}) \pi(oldsymbol{y}) \mathrm{d}oldsymbol{y}, \qquad R o \infty,$$

almost surely.

- **Sampling** the path of a Markov chain is straightforward from the definition.
- We firstly simulate  $\mathbf{Y}^{(0)} \sim \pi_0$ . Then we simulate the subsequent values  $(\mathbf{Y}^{(r+1)} | \mathbf{Y}^{(r)})$  according to the transition kernel k, assuming it is easy to do so.
- If a Markov chain has a stationary distribution  $\pi$ , then simulating from a Markov chain also leads to a practical strategy for simulating from  $\pi$ .
- Because of the previous results, the distribution  $\pi_r$  of  $\mathbf{Y}^{(r)}$  will eventually converge to the stationary law  $\pi$  we wish to simulate.
- Thus, Y<sup>(B)</sup> for B > 0 large enough can be regarded as a sample from π. Moreover, the subsequent values can also be regarded as samples from π, the invariant distribution.

- The values  $\boldsymbol{Y}^{(1)}, \boldsymbol{Y}^{(2)}, \dots, \boldsymbol{Y}^{(B)}$  represent the so-called burn-in period, namely the values the chain needs to reach convergence.
- The burn-in values should be discarded. The choice of *B* is not always easy in practice.
- Hence, the approximations of functionals of interest are based on the values

$$\int g(\boldsymbol{y}) \pi(\boldsymbol{y}) \mathrm{d} \boldsymbol{y} \approx \frac{1}{R-B} \sum_{r=B+1}^{R} g(\boldsymbol{y}^{(r)}),$$

which, once again, we emphasize it relies on the Ergodic Theorem.

• What we are still missing are some practical Markov chains algorithms that indeed target a specific stationary distribution.

# The Metropolis-Hastings algorithm

- We are now ready to introduce our first Markov Chain Monte Carlo MCMC method: the Metropolis-Hastings algorithm (MH).
- This idea goes back to Metropolis et al. (1953) and Hastings (1970).
- Like the acceptance-rejection algorithm, the MH is based on proposing values sampled from an instrumental proposal distribution.
- The proposed values are then accepted with a certain probability that reflects how likely they are from the target density  $\pi(\mathbf{y})$ .
- Under mild conditions, this ensures that the chain will converge to the target density  $\pi(\mathbf{y})$ , which is the stationary distribution.

# Metropolis-Hastings algorithm II

Set the first value of the chain  $y^{(0)}$  to some (reasonable) value.

### At the rth value of the chain

- Let  $y = y^{(r)}$  be the current status of the chain.
- Sample  $y^*$  from a proposal distribution  $q(y^* | y)$ .
- Compute the acceptance probability, defined as

$$\alpha(\mathbf{y}^*, \mathbf{y}) = \min\left\{1, \frac{\pi(\mathbf{y}^*)}{\pi(\mathbf{y})} \frac{q(\mathbf{y} \mid \mathbf{y}^*)}{q(\mathbf{y}^* \mid \mathbf{y})}\right\} = \min\left\{1, \frac{\tilde{\pi}(\mathbf{y}^*)}{\tilde{\pi}(\mathbf{y})} \frac{q(\mathbf{y} \mid \mathbf{y}^*)}{q(\mathbf{y}^* \mid \mathbf{y})}\right\}.$$

- With probability  $\alpha = \alpha(\mathbf{y}^*, \mathbf{y})$ , update the status of the chain and set  $\mathbf{y} \leftarrow \mathbf{y}^*$ .
- Key result. We do not need to know the normalizing constant K of  $\pi(\mathbf{y}) = K \tilde{\pi}(\mathbf{y})$  because it simplifies in the above ratio.

## Detailed balance and reversibility of the ${\rm MH}$

■ The transition kernel of the MH algorithm is therefore the following "mixture"

$$k(\mathbf{y}^* \mid \mathbf{y}) = lpha(\mathbf{y}^*, \mathbf{y})q(\mathbf{y}^* \mid \mathbf{y}) + \delta_{\mathbf{y}}(\mathbf{y}^*) \int q(\mathbf{s} \mid \mathbf{y})\{1 - lpha(\mathbf{s} \mid \mathbf{y})\} \mathrm{d}\mathbf{s},$$

where  $\delta_{\mathbf{y}}(\mathbf{y}^*)$  is a point mass at  $\mathbf{y}$ .

Exercise 1. Using the definition of the acceptance probability, verify the following condition:

$$\pi(\mathbf{y})\alpha(\mathbf{y}^*,\mathbf{y})q(\mathbf{y}^*\mid\mathbf{y})=\pi(\mathbf{y}^*)\alpha(\mathbf{y},\mathbf{y}^*)q(\mathbf{y}\mid\mathbf{y}^*).$$

Exercise II. From the above equations, conclude that

$$k(\mathbf{y} \mid \mathbf{y}^*)\pi(\mathbf{y}) = k(\mathbf{y}^* \mid \mathbf{y})\pi(\mathbf{y}^*),$$

corresponding to the detailed balance condition.

• Hence,  $\pi(\mathbf{y})$  is the stationary law of a MH process and the chain is reversible.

- The existence of an invariant stationary distribution is quite a strong theoretical result.
- However, one should also check for irreducibility, aperiodicity and Harris recurrence of the MH chain.
- This depends on the proposal distribution  $q(y^* | y)$  and the stationary density  $\pi(y)$ , although it is tipically true under very mild conditions.
- Quite general sufficient conditions for ergodicity are given in Chapter 7.3.2 of Robert and Casella (2004).
- Failure of MH algorithm typically occurs in presence of a disconnected support for  $\pi(\mathbf{y})$  and / or if the proposal  $q(\mathbf{y}^* | \mathbf{y})$  is not able to explore the support of  $\pi(\mathbf{y})$ .

### 170 6 Metropolis–Hastings Algorithms

We won't dabble any further into the theory of convergence of MCMC algorithms, relying instead on the guarantee that standard versions of these algorithms such as the Metropolis–Hastings algorithm or the Gibbs sampler are almost always theoretically convergent. Indeed, the real issue with MCMC algorithms is that, despite those convergence guarantees, the practical implementation of those principles may imply a very lengthy convergence time or, worse, may give an impression of convergence while missing some important aspects of f, as discussed in Chapter 8.

- This snapshot is taken from Chapter 6 of the textbook Robert, C. P., and Casella, G. (2009). *Introducing Monte Carlo methods with R*. Springer.
- In this notation *f* is the stationary distribution.

- Suppose we wish to simulate from a Gaussian distribution  $N(\mu, \sigma^2)$  using a MH algorithm, whose density is  $\pi(y)$ .
- This is obviously a toy example, because in practice one would just use rnorm.
- For the proposal distribution  $q(y^* | y)$ , we can use a uniform random walk, namely

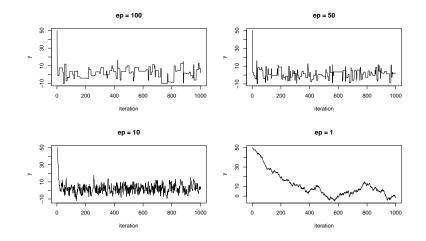
$$y^* = y + u, \qquad u \sim \text{Unif}(-\epsilon, \epsilon).$$

The choice of  $\epsilon > 0$  will impact the algorithm, as we shall see.

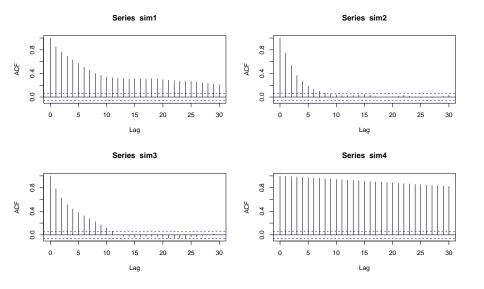
- Random walks are symmetric proposals distributions, so  $q(y^* | y) = q(y | y^*)$ .
- This means the acceptance probability  $\alpha$  is equal to

$$\alpha(y^*, y) = \min\left\{1, \frac{\pi(y^*)}{\pi(y)}\right\}.$$

```
norm mcmc <- function(R, mu, sig, ep, x0) {</pre>
    # Initialization
    out <- numeric(R + 1)
    out[1] <- x0
    # Beginning of the chain
    x < -x0
    # Metropolis algorithm
    for(r in 1:R){
        # Proposed values
               <-x + runif(1, -ep, ep)
        xs
        # Acceptance probability
        alpha <- min(dnorm(xs, mu, sig) / dnorm(x, mu, sig), 1)
        # Acceptance / rejection step
        accept <- rbinom(1, size = 1, prob = alpha)</pre>
        if(accept == 1) {
            x <- xs
        }
        out[r + 1] <- x
    }
    out
ł
```



• MH algorithm targeting the stationary density N(2,5<sup>2</sup>) using the proposal distribution  $y^* = y + u$ ,  $u \sim \text{Unif}(-\epsilon, \epsilon)$ , with  $\epsilon = 100, 50, 10, 1$  (ep).



Histogram of sim

```
# Simulate the MH chain
sim <- norm_mccc(50000, mu = 2, sig = 5, ep = 10, x0 = 50)
# Identify a burn-in period
burn_in <- 1:200; sim <- sim[-c(burn_in)]
# Plot the results
hist(sim, breaks = 100, freq = FALSE)
curve(dnorm(x, 2, 5), add = T) # This is usually not known!</pre>
```

- The actual advantage of MCMC over classical sampling methods is actually evident in high dimensions. Recall that  $\mathbf{Y}^{(r)} = (Y_1^{(r)}, \dots, Y_p^{(r)})$ .
- An option is to use the "vanilla" Metropolis-Hastings algorithm. However, the proposal distribution is not easy to choose if p > 2. Unit B.1 is devoted to this issue.
- An alternative is using a "hybrid" Metropolis-Hastings algorithm. This scheme is also known as Metropolis-within-Gibbs.
- The idea is quite simple: iteratively apply a Metropolis-Hastings update to each coordinate  $Y_i^{(r)}$ , according to the proposal distributions  $q_i(y_j^* | y_j)$ .
- Sometimes, updating a block of coordinates rather than univariate components is convenient.
- This algorithms is ergodic and has stationary distribution  $\pi(\mathbf{y})$ , under mild conditions. This should be taken for granted, e.g., Chapter 10.3.3 of Robert and Casella (2004).

Suppose we aim at simulating from a bivariate Gaussian distribution whose density is

$$\pi(y_1, y_2) = \frac{1}{2\pi\sqrt{(1-\rho^2)}} \exp\left\{-\frac{1}{2(1-\rho^2)}(y_1^2 - 2\rho y_1 y_2 + y_2^2)\right\}.$$

# Density of a bivariate Gaussian (up to a proportionality constant)
dbvnorm <- function(x, rho) {
 exp(-(x[1]^2 - 2 \* rho \* x[1] \* x[2] + x[2]^2) / (2 \* (1 - rho^2)))
}</pre>

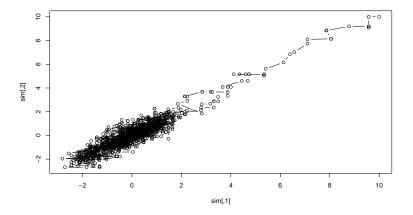
For the proposal distributions  $q_j(y_j^* | y_j)$ , we can again use a uniform random walk, namely

$$y_j^* = y_j + u_j, \qquad u \sim \mathsf{Unif}(-\epsilon_j, \epsilon_j), \qquad j = 1, 2.$$

• As before, the choice of  $\epsilon_j$  affects the performance of the MH.

```
# Hybrid Metropolis (Metropolis-within-Gibbs)
bvnorm mcmc <- function(R, rho, ep, x0) {</pre>
    out <- matrix(0, R + 1, 2)
    out[1, ] <- x0
    x <- x0
    for(r in 1:R){
        for(j in 1:2){
            xs <- x
            xs[j] <- x[j] + runif(1, -ep[j], ep[j])</pre>
            alpha <- min(dbvnorm(xs, rho) / dbvnorm(x, rho), 1) # Acceptance probability
            accept <- rbinom(1, size = 1, prob = alpha) # Acceptance / rejection step</pre>
            if(accept == 1) {
                x[i] <- xs[i]
             }
        }
        out[r + 1, ] <- x
    }
    out
```

### Example: bivariate Gaussian



• Hybrid MH algorithm targeting the stationary density of a bivariate normal with correlation  $\rho = 0.8$ , with starting point (10, 10).

# MCMC for Bayesian statistics

## Metropolis-Hastings algorithm in Bayesian statistics

- The Metropolis-Hastings (MH) algorithm is especially useful for Bayesian inference. In the following, we rephrase the MH using the Bayesian notation.
- Set the first value of the chain  $\theta^{(0)}$  to some (reasonable) value.

#### At the rth value of the chain

- Let  $\theta = \theta^{(r)}$  be the current status of the chain.
- Sample  $\theta^*$  from a proposal distribution  $q(\theta^* \mid \theta)$ .
- Compute the acceptance probability, defined as

$$\alpha = \min\left\{1, \frac{\pi(\theta^* \mid \mathbf{X})}{\pi(\theta \mid \mathbf{X})} \frac{q(\theta \mid \theta^*)}{q(\theta^* \mid \theta)}\right\} = \min\left\{1, \frac{\pi(\theta^*)\pi(\mathbf{X} \mid \theta^*)}{\pi(\theta)\pi(\mathbf{X} \mid \theta)} \frac{q(\theta \mid \theta^*)}{q(\theta^* \mid \theta)}\right\}.$$

• With probability  $\alpha$ , update the status of the chain and set  $\theta \leftarrow \theta^*$ .

- Here we focus on practical considerations concerning the implementation with R. Higher performance can be achieved using C++ and the Rcpp package (i.e., unit A.2).
- This is far from a comprehensive guide about R programming. We will consider a specific model, and we will implement the relevant code in R.

#### What about BUGS / JAGS / Stan?

- If the performance is not a concern, Stan-like software is a handy tool for practitioners who wish to implement standard Bayesian models.
- Conversely, any non-standard or novel model, i.e., those usually developed by researchers in statistics, may be difficult or even impossible to implement.
- Besides, the "manual" implementation is very useful to gain insights about the model itself and it facilitates a lot the debugging process.

# Example II: Weibull model for censored data

- We consider an example from survival analysis, i.e., the data are survival times, which may be censored.
- In this example, we assume that the survival times are iid random variables following a Weibull distribution Weib(γ, β).
- The observed survival time  $t_i$  is either complete  $(d_i = 1)$  or right censored  $(d_i = 0)$ , meaning that the survival time is higher than the observed  $t_i$ .
- The hazard and survival functions of a Weibull distribution are

$$h(t \mid \gamma, \beta) = \frac{\gamma}{\beta} \left(\frac{t}{\beta}\right)^{\gamma-1}, \quad S(t \mid \gamma, \beta) = \exp\left\{-\left(\frac{t}{\beta}\right)^{\gamma}\right\}.$$

Recall that the density function is obtained as  $f(t \mid \gamma, \beta) = h(t \mid \gamma, \beta)S(t \mid \gamma, \beta)$ .

The likelihood for this parametric model, under suitable censorship assumptions, is proportional to the following quantity

$$\pi(\mathbf{t},\mathbf{d}\midm{ heta})\propto\prod_{i=1}^nh(t_i\mid\gamma,eta)^{d_i}S(t_i\mid\gamma,eta)=\prod_{i:d_i=1}f(t_i\mid\gamma,eta)\prod_{i:d_i=0}S(t_i\mid\gamma,eta),$$

with  $(\gamma, \beta)$  being the parameter vector.

- <u>Remark</u> When performing (Bayesian) inference, note that the likelihood is always defined up to an irrelevant normalizing constant, not depending on the parameters θ.
- These irrelevant constants can and should be omitted when performing computations, especially if they are expensive to evaluate.

# Bad implementation I (use the log-scale)

- In our experiments, we make use the stanford2 dataset of the survival package.
- In the first place, we need to implement the log-likelihood function, say loglik.
- The following implementation of the log-likelihood is correct, but numerically unstable.

```
loglik_inaccurate <- function(t, d, gamma, beta) {
    hazard <- prod((gamma / beta * (t / beta)^(gamma - 1))^d)
    survival <- prod(exp(-(t / beta)^gamma))
    log(hazard * survival)
}
# Evaluate the log-likelihood at the point (0.5, 1000)
loglik_inaccurate(t, d, gamma = 0.5, beta = 1000)
# [1] -Inf</pre>
```

■ The product of several terms close to 0 leads to numerical inaccuracies ⇒ use the log-scale instead.

# Bad implementation II (initialize the output)

- This second coding attempt relies on the log scale and is numerically much more stable than the previous version.
- However, this implementation is inefficient  $\implies$  do not increase objects' dimension.

```
loglik_inefficient2 <- function(t, d, gamma, beta) {
  n <- length(t) # Sample size
  log_hazards <- NULL
  log_survivals <- NULL
  for (i in 1:n) {
    log_hazards <- c(log_hazards, d[i] * ((gamma - 1) * log(t[i] / beta) + log(gamma / beta)))
    log_survivals <- c(log_survivals, -(t[i] / beta)^gamma)
  }
  sum(log_hazards) + sum(log_survivals)
}
# Evaluate the log-likelihood at the point (0.5, 1000)
loglik_inefficient2(t, d, gamma = 0.5, beta = 1000)
# [1] -873.3299</pre>
```

# Bad implementation III (avoid for loops)

■ This third attempt avoids the previous pitfalls, but it is still quite inefficient ⇒ use vectorized code whenever possible.

```
loglik_inefficient1 <- function(t, d, gamma, beta) {
  n <- length(t) # Sample size
  log_hazards <- numeric(n)
  log_survivals <- numeric(n)
  for (i in 1:n) {
    log_hazards[i] <- d[i] * ((gamma - 1) * log(t[i] / beta) + log(gamma / beta))
    log_survivals[i] <- -(t[i] / beta)^gamma
  }
  sum(log_hazards) + sum(log_survivals)
}
# Evaluate the log-likelihood at the point (0.5, 1000)
loglik_inefficient1(t, d, gamma = 0.5, beta = 1000)
# [1] -873.3299</pre>
```

The following version is both numerically stable and efficient.

```
loglik <- function(t, d, gamma, beta) {
    log_hazard <- sum(d * ((gamma - 1) * log(t / beta) + log(gamma / beta)))
    log_survival <- sum(-(t / beta)^gamma)
    log_hazard + log_survival
}
# Evaluate the log-likelihood at the point (0.5, 1000)
loglik(t, d, gamma = 0.5, beta = 1000)
# [1] -873.3299</pre>
```

• All these versions of loglik run in fractions of seconds. However, the loglik function must be executed i.e.,  $\sim 10^5$  times within a MH algorithm.

Moreover, several instances of these inefficiencies in more complex models add up.

## Benchmarking the code

- To understand which function works better, you need to test its performance.
- There exist specialized packages to do so, i.e. **R** rbenchmark or microbenchmark.
- These packages execute the code several times and report the average execution time.
- The column "elapsed" refers to the overall time (in seconds) over 1000 replications.

library(rbenchmark) # Library for performing benchmarking

```
benchmark(
    loglik1 = loglik(t, d, gamma = 0.5, beta = 1000),
    loglik2 = loglik_inefficient1(t, d, gamma = 0.5, beta = 1000),
    loglik3 = loglik_inefficient2(t, d, gamma = 0.5, beta = 1000),
    columns = c("test", "replications", "elapsed", "relative"),
    replications = 1000
)
# test replications elapsed relative
#1 loglik1 1000 0.014 1.000
#2 loglik2 1000 0.079 5.643
#3 loglik3 1000 0.412 29.429
```

**Formatting your code** properly is a healthy programming practice.

- You can refer to https://style.tidyverse.org for a comprehensive overview of good practices in **R**.
- Quoting the tidyverse style guide: "Good coding style is like correct punctuation: you can manage without it, butitsuremakesthingseasiertoread".
- The styler **R** package automatically restyles your code for you, and it is integrated within **RStudio** as an add-in.

| # Good<br>x <- 5 |  |  |  |
|------------------|--|--|--|
| x <- 5           |  |  |  |
| # Bad            |  |  |  |
| x = 5            |  |  |  |

- When performing (Bayesian) inference, the choice of the parametrization strongly impacts computations.
- General advice: perform computations on the most convenient parametrization and then transform back the obtained samples.
- As a rule of thumb, you should use parametrizations with <u>unbounded domains</u>. This facilitates the choice of proposal distributions and could also improve the mixing.
- In our model, the two parameters γ, β are strictly positive. Hence, a common strategy is to consider their logarithm, i.e., θ = (θ<sub>1</sub>, θ<sub>2</sub>) = (log γ, log β).

#### To log or not to log?

Roberts, G. O. and Rosenthal, J. S. (2009). *Examples of adaptive MCMC*. Journal of Computational and Graphical Statistics, **18**(2), 349–367.

When reparametrizations are involved, there are two possible modeling strategies.

Choose the prior before the reparametrization. In our setting, we could let for example

```
\gamma \sim {\sf Ga}(0.1, 0.1), \qquad \beta \sim {\sf Ga}(0.1, 0.1).
```

If you do so, remember to include the  $\underline{jacobian}$  of the transformation when considering the transformed posterior!

Choose the prior after the reparametrization. In our setting, we could let for example

```
\theta_1 = \log(\gamma) \sim \mathsf{N}(0, 100), \qquad \theta_2 = \log(\beta) \sim \mathsf{N}(0, 100).
```

This strategy is more straightforward as it avoids the extra step of computing the jacobian.

```
logprior <- function(theta) {
   sum(dnorm(theta, 0, sqrt(100), log = TRUE))
}
logpost <- function(t, d, theta) {
   logplik(t, d, exp(theta[1]), exp(theta[2])) + logprior(theta)
}</pre>
```

## The MH implementation

Since the space of θ is unbounded, it is reasonable to select a Gaussian random walk as proposal distribution, namely

$$(\boldsymbol{ heta}^* \mid \boldsymbol{ heta}) \sim \mathsf{N}_2(\boldsymbol{ heta}, \mathsf{0.25}^2 \boldsymbol{I}_2).$$

The choice of the variance will be discussed in unit B.1.

Gaussian random walks are symmetric proposals distributions, implying that

$$q( heta \mid heta^*) = q( heta^* \mid heta),$$

which means that their ratio can be simplified (= 1) when computing the acceptance probability  $\alpha$ .

- As before, compute  $\alpha$  using the log scale to avoid numerical instabilities.
- <u>Remark</u>. Unfortunately, there is no way to avoid for loops, which are highly inefficient
   This justifies the usage of **Rcpp** and **RcppArmadillo**.

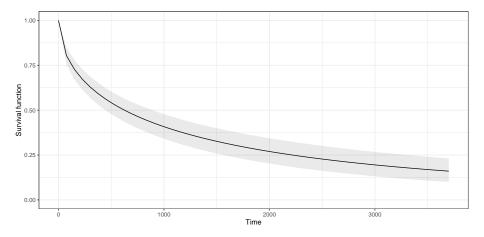
### Metropolis-Hastings code

```
RMH <- function(R, burn in, t, d) {
  out <- matrix(0, R, 2) # Initialize an empty matrix to store the values
  theta <-c(0, 0) # Initial values
  logp <- logpost(t, d, theta) # Log-posterior</pre>
  for (r in 1: (burn in + R)) {
    theta new <- rnorm(2, mean = theta, sd = 0.25) # Propose a new value
    logp_new <- logpost(t, d, theta_new)</pre>
    alpha <- min(1, exp(logp_new - logp))
    if (runif(1) < alpha) {</pre>
      theta <- theta new; logp <- logp new # Accept the value
    3
    if (r > burn in) {
      out[r - burn in, ] <- theta # Store the values after the burn-in period
    }
  }
  out
```

```
# Executing the code
library(tictoc) # Library for "timing" the functions
tic()
fit_MCMC <- RMH(R = 50000, burn_in = 5000, t, d)
toc()
# 0.92 sec elapsed
```

## Estimated survival function

Posterior mean of the survival function with pointwise 95% credible intervals.



# The Gibbs sampling algorithm

- We now introduce another Markov Chain Monte Carlo method: the Gibbs Sampling.
- Recall that  $\pi(\theta \mid \mathbf{X})$  denotes the posterior distribution of  $\theta \in \Theta \subseteq \mathbb{R}^{p}$  given the data.
- Let us partition the parameter vector  $\theta = (\theta_1, \dots, \theta_L)$  into L blocks of parameters. Sometimes, we will have as many blocks as parameters, so that  $\theta = (\theta_1, \dots, \theta_p)$ .
- Let  $\pi(\theta_{\ell} \mid -)$  be the so-called full-conditional of  $\theta_{\ell}$ , that is

$$\pi(oldsymbol{ heta}_\ell\mid -)=\pi(oldsymbol{ heta}_\ell\mid oldsymbol{X},oldsymbol{ heta}_1,\ldots,oldsymbol{ heta}_{\ell+1},\ldots,oldsymbol{ heta}_L), \quad \ell=1,\ldots,L,$$

namely the conditional distribution of  $\theta_{\ell}$  given the data and the other parameters.

Repeatedly sampling  $\theta_{\ell}$ , for  $\ell = 1, ..., L$ , from the corresponding full conditionals leads to a MCMC algorithm targeting the posterior distribution  $\pi(\theta \mid X)$ .

# Connection with the hybrid Metropolis-Hastings

- The Gibbs sampler is a special case of the hybrid Metropolis-Hastings, in which the full conditionals are used as proposal distribution.
- The general hybrid MH is indeed often called Metropolis-within-Gibbs.
- Suppose that  $\theta = (\theta_1, \dots, \theta_p)$ . Then it can be shown that

$$rac{\pi(oldsymbol{ heta}^*\midoldsymbol{X})}{\pi(oldsymbol{ heta}\midoldsymbol{X})} = rac{\pi( heta_j^*\midoldsymbol{X},oldsymbol{ heta}_{-j})}{\pi( heta_j\midoldsymbol{X},oldsymbol{ heta}_{-j})}.$$

■ In addition, note that the acceptance probabilities of the hybrid MH algorithm are

$$\alpha_{j} = \min\left\{1, \frac{\pi(\boldsymbol{\theta}^{*} \mid \boldsymbol{X})}{\pi(\boldsymbol{\theta} \mid \boldsymbol{X})} \frac{q_{j}(\theta_{j} \mid \boldsymbol{\theta}^{*})}{q_{j}(\theta_{j}^{*} \mid \boldsymbol{\theta})}\right\} = \min\left\{1, \frac{\pi(\boldsymbol{\theta}^{*} \mid \boldsymbol{X})}{\pi(\boldsymbol{\theta} \mid \boldsymbol{X})} \frac{\pi(\theta_{j} \mid \boldsymbol{X}, \boldsymbol{\theta}_{-j})}{\pi(\theta_{j}^{*} \mid \boldsymbol{X}, \boldsymbol{\theta}_{-j})}\right\} = 1.$$

- The acceptance rate of the Gibbs sampler is uniformly equal to 1.
- The use of a Gibbs sampler requires the knowledge of the full-conditional distributions, from which we should be able to sample.
- The Gibbs sampling is "automatic", in the sense that there are no tuning parameters that we need to choose, which is both good and bad news.
- Ergodicity and convergence to the posterior stationary distribution are ensured under very mild conditions, i.e. requiring the connectedness of the support.
- The Hammersley-Clifford theorem implies that a sufficiently regular joint density can be expressed as a function of the full conditionals.

### Example: non-connected support

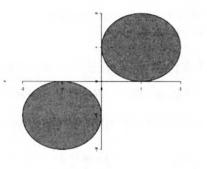


Fig. 10.1. Support of the function  $f(x_1, x_2)$  of (10.3)

Example of non-connected support: gray areas have a positive probability. Picture taken from Robert and Casella (2004).

#### Example: conditionally-conjugate Gaussian model

• Let us assume the observations  $(x_1, \ldots, x_n)$  are draws from

$$(x_i \mid \mu, \sigma^2) \stackrel{\text{iid}}{\sim} \mathsf{N}(\mu, \sigma^2), \qquad i = 1, \dots, n.$$

with independent priors  $\mu \sim N(\mu_{\mu}, \sigma_{\mu}^2)$  and  $\sigma^{-2} \sim Ga(a_{\sigma}, b_{\sigma})$ .

• The full conditional distribution for the mean  $\mu$  is:

$$(\mu \mid -) \sim \mathsf{N}\left(\mu_n, \sigma_n^2\right), \qquad \mu_n = \sigma_n^2 \left(\frac{\mu_\mu}{\sigma_\mu^2} + \frac{1}{\sigma^2} \sum_{i=1}^n x_i\right), \quad \sigma_n^2 = \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_\mu^2}\right)^{-1}$$

• The full conditional distribution for the precision  $\sigma^{-2}$  is:

$$(\sigma^{-2} \mid -) \sim \mathsf{Ga}(a_n, b_n), \qquad a_n = a_\sigma + n/2, \quad b_n = b_\sigma + \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2.$$

## Example: conditionally-conjugate Gaussian model

```
gibbs R <- function(x, mu_mu, sigma2_mu, a_sigma, b_sigma, R, burn_in) {
  # Initialization
  n <- length(x); xbar <- mean(x)</pre>
  out <- matrix(0, R, 2)
  # Initial values for mu and sigma
  sigma2 <- var(x); mu <- xbar</pre>
  for (r in 1: (burn in + R)) {
    # Sample mu
    sigma2 n <- 1 / (1 / sigma2 mu + n / sigma2)
    mu_n <- sigma2_n * (mu_mu / sigma2_mu + n / sigma2 * xbar)</pre>
    mu <- rnorm(1, mu n, sqrt(sigma2 n))</pre>
    # Sample sigma2
    a n <- a sigma + 0.5 * n
    b n <- b sigma + 0.5 * sum((x - mu)^2)
    sigma2 <- 1 / rgamma(1, a n, b n)
    # Store the values after the burn-in period
    if (r > burn in) {
      out[r - burn in, ] <- c(mu, sigma2)
    }
  }
  011t.
ł
```

### Example: conditionally-conjugate Gaussian model

