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Unit A.1

Main concepts
Markov Chain Monte Carlo (mcmc)

The Metropolis-Hastings algorithm

The Gibbs sampling algorithm

Writing clean and efficient R code

Associated R code is available on the website of the course

Main references
Robert, C. P., and Casella, G. (2004). Monte Carlo Statistical Methods. Springer.
Roberts, G. O., and Rosenthal, J. S. (2004). General state space Markov chains and MCMC
algorithms. Probability Surveys, 1(1), 20–71.
Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics,
22(4), 1701-176.
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Bayesian computations

Over the past 30 years, Markov Chain Monte Carlo methods (mcmc) methods have
revolutionized Bayesian statistics.

Bayesian computational statistics is nowadays a lively and mature research field
compared to the early days. Still, there are several open questions.

The ISBA bulletin (2011). What are the open problems in Bayesian statistics?

Alan Gelfand (ISBA bullettin, 2011): “Arguably the biggest challenge is in
computation. If MCMC is no longer viable for the problems people want to address,
then what is the role of INLA, of variational methods, of ABC approaches?”

Link: https://www.stat.berkeley.edu/˜aldous/157/Papers/Bayesian_open_problems.pdf
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Bayesian inference (recap)

Let X be the data, following some distribution π(X | θ), i.e. the likelihood, with
θ ∈ Θ ⊆ Rp being an unknown set of parameters.

Let π(θ) be the prior distribution associated to θ.

In Bayesian analysis, inference is based on the posterior distribution for θ, defined as

π(θ | X) = π(θ)π(X | θ)∫
Θ π(θ)π(X | θ)dθ

.

Key issue: the normalizing constant, i.e. the above integral, is often intractable
=⇒ no analytical solutions, beyond conjugate cases.

Numerical approximations of
∫

Θ π(θ)π(X | θ)dθ are highly unstable, especially in high
dimensions =⇒ the integrate R function will not work in most cases.
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Bayesian inference using sampling

Key solution. It is sometimes possible to sample from the posterior distribution
without knowing the normalizing constant.

If we can get random samples θ(1), . . . , θ(R) from the posterior distribution, then we
can approximate any functional of interest, i.e.

E(g(θ) | X) ≈ 1
R

R∑
r=1

g(θ(r)).

If θ(1), . . . , θ(R) were independent samples from the posterior distribution, this
approximation would be called Monte Carlo integration.

Monte Carlo integration is justified by the law of large numbers.

In this course, we will consider samples θ(1), . . . , θ(R) that are dependent and follow a
Markov Chain =⇒ Markov Chain Monte Carlo (mcmc).

Tommaso Rigon (Milano-Bicocca) 5 / 56



An introduction to Markov chains
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Markov chains

A sequence Y (0),Y (1), . . . ,Y (R) of random elements is a Markov chain if

P(Y (r+1) ∈ A | y (0), . . . , y (r)) = P(Y (r+1) ∈ A | y (r)).

In other words, the conditional distribution of Y (r+1) given y (0), . . . , y (r) is the same as
the conditional distribution of Y (r+1) given y (r), called transition kernel.

Given an initial condition y (0), a Markov chain is fully characterized by its transition
kernel, which we assume does not depend on r (homogeneity).

In continuous cases, the transition kernel is identified by a conditional density,
denoted with

k(y (r+1) | y (r)).

When the sample space is finite, the transition kernel is a transition matrix, say P.
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Example: autoregressive process ar(1)

Autoregressive processes provide a simple illustration of Markov chains on continuous
state-space.

Let Y (0) ∼ N(30, 1) and let us define

Y (r) = ρY (r−1) + ε(r), ρ ∈ R,

with the error terms ε(r) being iid according to a standard Gaussian N(0, 1).

Then the sequence of Y (r) forms indeed a Markov chain and the transition density is
such that

(y (r) | y (r−1)) ∼ N(ρy (r−1), 1).

If the parameter |ρ| < 1 then the Markov chain has a more “stable” behaviour.
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Example: autoregressive processes ar(1)
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Invariant distribution

An increased level of stability of a Markov chain occurs when the latter admits an
invariant or stationary probability distribution.

A probability density π(y) is invariant for a Markov chain with kernel k if

π(y∗) =
∫

k(y∗ | y)π(y)dy .

This is to say that the marginal distributions of Y (r) and Y (r+1) are the same and are
equal to π(y), although Y (r) and Y (r+1) remain dependent.

Roughly speaking, if a Markov chain admits a stationary distribution + some technical
conditions, then for R large enough, the chain “stabilizes” around the invariant law.

In the previous ar(1) example the stationary distribution is N(0, 1/(1− ρ2)).
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Invariant distribution

Not every Markov chain admits a stationary law. However, Markov chains built for
Bayesian statistics should always converge to an invariant distribution.

Indeed, in Markov Chain Monte Carlo, the stationary distribution π(y) represents the
target density from which we wish to simulate.

Then, we will make use of the following approximation∫
g(y)π(y)dy ≈ 1

R

R∑
r=1

g(y (r)),

where y (1), . . . , y (R) are generated according to a Markov chain, with y (0) ∼ π(y).

How to construct a Markov chain that converges to the desired density π(y)?

Before delving into this key problem, let us briefly review the assumptions under which
this approximation is reasonable.
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Regularity conditions

We will consider Markov chains that are irreducible, aperiodic, and Harris recurrent.

A rigorous presentation of these properties is beyond the aims of this course, so we
offer only a brief description in the discrete case to help the intuition.

For a more detailed treatment, see Chapter 6 of Robert and Casella (2004).

Irreducibility. The chain is irreducible if it does not “get stuck” in a local region of the
sample space. In the discrete case, the chain is irreducible if all states are connected.

Aperiodicity. The chain is aperiodic if it does not have any deterministic cycle.

Harris recurrent. The chain is (Harris) recurrent if it visits any region of the sample
space “sufficiently often”.
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Irreducibility

The aforementioned properties are easy to formalize in the discrete setting, namely
when the values of the Markov chain are Y (r) ∈ {1, 2, . . . }.

The first passage time is the first r for which the chain is equal to j, namely:

τj = inf{r ≥ 1 : Y (r) = j},

where by convention we let τj =∞ if Y (r) 6= j for every r ≥ 1.

Moreover, let us denote the probability of return to j in a finite number of step,
starting from j ′

P(τj <∞ | y (0) = j ′).

Hence, the chain is irreducible if P(τj <∞ | y (0) = j ′) > 0 for all j, j ′ ∈ N.
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Aperiodicity

Consider the two-state chain with transition matrix

P =
(

0 1
1 0

)
.

The two-step ahead transition matrix is P2 = I, so P2r = I and P2r+1 = P for all r ≥ 1.

Hence, due to periodicity this chain is failing to converge anywhere.

In the discrete case, we call a state j aperiodic if the set

{r ≥ 1 : [P r ]jj > 0}

has no common divisor other than 1.

A chain is aperiodic if all its states are aperiodic.
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Harris recurrence

Informally, a state j of an irreducible Markov chain is recurrent when it is visited by
the chain “infinitely often”.

More formally, in the discrete setting a state j ∈ N is recurrent if and only if

P(τj <∞ | y (0) = j) = P(Y (r) = j for infinitely many r | y (0) = j) = 1.

The above definition, with the necessary adjustments, is a sufficient condition for
recurrence in the continuous case.

Indeed, in the continuous case recurrence is defined in terms of the average number
of passages on a Borel set, which must be divergent.

The stronger “Harris” recurrence condition is mostly needed to fix measure-theoretic
pathologies.
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Invariant measures

A Markov chain that is aperiodic and Harris recurrent displays a quite stable behavior,
so one may wonder if it admits an invariant distribution.

In general, the answer is no: the Gaussian random walk is an example.

Indeed, we call Harris positive a Markov chain, which is Harris recurrent and admits
an invariant probability distribution.

In the discrete case, this occurs if and only if E(τj | y (0) = j) <∞.

However, something can be said about the existence of invariant measures in general.

Theorem
If (Y (r))r≥1 is a recurrent chain, there exists an invariant σ-finite measure which is unique
up to a multiplicative factor.

Unfortunately, such an invariant measure is not necessarily a probability measure!

Tommaso Rigon (Milano-Bicocca) 15 / 56



Reversibility and detailed balance

What follows is a popular sufficient condition to ensure a recurrent chain is also
positive recurrent. That is, it admits an invariant probability distribution.

Interestingly enough, such a condition also has a quite intuitive interpretation.

We call a Markov chain (Y (r))r≥1 reversible if the distribution of Y (r) conditionally on
Y (r+1) is the same as the distribution of Y (r+1) conditionally on Y (r).

A Markov chain (Y (r))r≥1 with transition kernel k satisfies the detailed balance
condition if there exists a function f such that

k(y | y∗)f (y) = k(y∗ | y)f (y∗).

Theorem
If (Y (r))r≥1 satisfies the detailed balance condition with π a probability density function,
then π is the invariant (stationary) density, and the chain is reversible.
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Convergence to equilibrium

From now on, we will always assume the aperiodicity and Harris positivity properties,
assuming the existence of a stationary probability density π.

The following result establishes that a chain converges in total variation to its
invariant measures as r →∞.

Importantly, this occurs regardless the initial conditions Y (0) ∼ π0.

Theorem
Let the Markov chain (Y (r))r≥1 be aperiodic and Harris positive, with Y0 ∼ π0. Moreover
let πr be the marginal probability density of Y (r). Then

lim
r→∞

|πr (y)− π(y)|tv = 0.

Furthermore |πr (y)− π(y)|tv is decreasing in r .
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Ergodic theorem

The Ergodic Theorem is essentially the equivalent of the law of large numbers for
Markov chains. It is the main justification for using mcmc methods.

What follows is a slightly simplified version, which is amenable for our purposes.

Again, the following result holds irrespectively on the initial conditions Y (0) ∼ π0.

Theorem (Ergodic Theorem)
Let the Markov chain (Y (r))r≥1 be Harris positive with stationary distribution π. Let the
function g be integrable w.r.t. to π. Then

1
R

R∑
r=1

g(Y (r)) −→
∫

g(y)π(y)dy , R →∞,

almost surely.
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Summary I

Sampling the path of a Markov chain is straightforward from the definition.

We firstly simulate Y (0) ∼ π0. Then we simulate the subsequent values (Y (r+1) | Y (r))
according to the transition kernel k, assuming it is easy to do so.

If a Markov chain has a stationary distribution π, then simulating from a Markov
chain also leads to a practical strategy for simulating from π.

Because of the previous results, the distribution πr of Y (r) will eventually converge to
the stationary law π we wish to simulate.

Thus, Y (B) for B > 0 large enough can be regarded as a sample from π. Moreover, the
subsequent values can also be regarded as samples from π, the invariant distribution.

Tommaso Rigon (Milano-Bicocca) 19 / 56



Summary II

The values Y (1),Y (2), . . . ,Y (B) represent the so-called burn-in period, namely the
values the chain needs to reach convergence.

The burn-in values should be discarded. The choice of B is not always easy in practice.

Hence, the approximations of functionals of interest are based on the values∫
g(y)π(y)dy ≈ 1

R − B

R∑
r=B+1

g(y (r)),

which, once again, we emphasize it relies on the Ergodic Theorem.

What we are still missing are some practical Markov chains algorithms that indeed
target a specific stationary distribution.
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The Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm I

We are now ready to introduce our first Markov Chain Monte Carlo mcmc method:
the Metropolis-Hastings algorithm (mh).

This idea goes back to Metropolis et al. (1953) and Hastings (1970).

Like the acceptance-rejection algorithm, the mh is based on proposing values sampled
from an instrumental proposal distribution.

The proposed values are then accepted with a certain probability that reflects how
likely they are from the target density π(y).

Under mild conditions, this ensures that the chain will converge to the target density
π(y), which is the stationary distribution.
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Metropolis-Hastings algorithm II

Set the first value of the chain y (0) to some (reasonable) value.

At the r th value of the chain
Let y = y (r) be the current status of the chain.

Sample y∗ from a proposal distribution q(y∗ | y).

Compute the acceptance probability, defined as

α(y∗, y) = min
{

1, π(y∗)
π(y)

q(y | y∗)
q(y∗ | y)

}
= min

{
1, π̃(y∗)

π̃(y)
q(y | y∗)
q(y∗ | y)

}
.

With probability α = α(y∗, y), update the status of the chain and set y ← y∗.

Key result. We do not need to know the normalizing constant K of π(y) = K π̃(y)
because it simplifies in the above ratio.
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Detailed balance and reversibility of the mh

The transition kernel of the mh algorithm is therefore the following “mixture”

k(y∗ | y) = α(y∗, y)q(y∗ | y) + δy (y∗)
∫

q(s | y){1− α(s | y)}ds,

where δy (y∗) is a point mass at y .

Exercise I. Using the definition of the acceptance probability, verify the following
condition:

π(y)α(y∗, y)q(y∗ | y) = π(y∗)α(y , y∗)q(y | y∗).

Exercise II. From the above equations, conclude that

k(y | y∗)π(y) = k(y∗ | y)π(y∗),

corresponding to the detailed balance condition.

Hence, π(y) is the stationary law of a mh process and the chain is reversible.
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Convergence properties

The existence of an invariant stationary distribution is quite a strong theoretical result.

However, one should also check for irreducibility, aperiodicity and Harris recurrence
of the mh chain.

This depends on the proposal distribution q(y∗ | y) and the stationary density π(y),
although it is tipically true under very mild conditions.

Quite general sufficient conditions for ergodicity are given in Chapter 7.3.2 of Robert
and Casella (2004).

Failure of mh algorithm typically occurs in presence of a disconnected support for π(y)
and / or if the proposal q(y∗ | y) is not able to explore the support of π(y).
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An important caveat

This snapshot is taken from Chapter 6 of the textbook Robert, C. P., and Casella, G.
(2009). Introducing Monte Carlo methods with R. Springer.

In this notation f is the stationary distribution.
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Example: Gaussian distribution

Suppose we wish to simulate from a Gaussian distribution N(µ, σ2) using a mh
algorithm, whose density is π(y).

This is obviously a toy example, because in practice one would just use rnorm.

For the proposal distribution q(y∗ | y), we can use a uniform random walk, namely

y∗ = y + u, u ∼ Unif(−ε, ε).

The choice of ε > 0 will impact the algorithm, as we shall see.

Random walks are symmetric proposals distributions, so q(y∗ | y) = q(y | y∗).

This means the acceptance probability α is equal to

α(y∗, y) = min
{

1, π(y∗)
π(y)

}
.
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Example: Gaussian distribution

norm_mcmc <- function(R, mu, sig, ep, x0) {
# Initialization
out <- numeric(R + 1)
out[1] <- x0
# Beginning of the chain
x <- x0
# Metropolis algorithm
for(r in 1:R){

# Proposed values
xs <- x + runif(1, -ep, ep)
# Acceptance probability
alpha <- min(dnorm(xs, mu, sig) / dnorm(x, mu, sig), 1)
# Acceptance / rejection step
accept <- rbinom(1, size = 1, prob = alpha)
if(accept == 1) {

x <- xs
}
out[r + 1] <- x

}
out

}
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Example: Gaussian distribution

0 200 400 600 800 1000

−
10

10
30

50
ep = 100

iteration

y

0 200 400 600 800 1000

−
10

10
30

50

ep = 50

iteration

y

0 200 400 600 800 1000

−
10

10
30

50

ep = 10

iteration

y

0 200 400 600 800 1000

0
10

30
50

ep = 1

iteration

y

mh algorithm targeting the stationary density N(2, 52) using the proposal distribution
y∗ = y + u, u ∼ Unif(−ε, ε), with ε = 100, 50, 10, 1 (ep).

Tommaso Rigon (Milano-Bicocca) 28 / 56



Example: Gaussian distribution
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Example: Gaussian distribution
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# Simulate the MH chain
sim <- norm_mcmc(50000, mu = 2, sig = 5, ep = 10, x0 = 50)
# Identify a burn-in period
burn_in <- 1:200; sim <- sim[-c(burn_in)]
# Plot the results
hist(sim, breaks = 100, freq = FALSE)
curve(dnorm(x, 2, 5), add = T) # This is usually not known!
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Hybrid Metropolis-Hastings

The actual advantage of mcmc over classical sampling methods is actually evident in
high dimensions. Recall that Y (r) = (Y (r)

1 , . . . ,Y (r)
p ).

An option is to use the “vanilla” Metropolis-Hastings algorithm. However, the proposal
distribution is not easy to choose if p > 2. Unit B.1 is devoted to this issue.

An alternative is using a “hybrid” Metropolis-Hastings algorithm. This scheme is also
known as Metropolis-within-Gibbs.

The idea is quite simple: iteratively apply a Metropolis-Hastings update to each
coordinate Y (r)

j , according to the proposal distributions qj (y∗j | yj ).

Sometimes, updating a block of coordinates rather than univariate components is
convenient.

This algorithms is ergodic and has stationary distribution π(y), under mild conditions.
This should be taken for granted, e.g., Chapter 10.3.3 of Robert and Casella (2004).
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Example: bivariate Gaussian

Suppose we aim at simulating from a bivariate Gaussian distribution whose density is

π(y1, y2) = 1
2π
√

(1− ρ2)
exp
{
− 1

2(1− ρ2) (y 2
1 − 2ρy1y2 + y 2

2 )
}
.

# Density of a bivariate Gaussian (up to a proportionality constant)
dbvnorm <- function(x, rho) {

exp(-(x[1]ˆ2 - 2 * rho * x[1] * x[2] + x[2]ˆ2) / (2 * (1 - rhoˆ2)))
}

For the proposal distributions qj (y∗j | yj ), we can again use a uniform random walk,
namely

y∗j = yj + uj , u ∼ Unif(−εj , εj ), j = 1, 2.

As before, the choice of εj affects the performance of the mh.
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Example: bivariate Gaussian

# Hybrid Metropolis (Metropolis-within-Gibbs)
bvnorm_mcmc <- function(R, rho, ep, x0) {

out <- matrix(0, R + 1, 2)
out[1, ] <- x0
x <- x0
for(r in 1:R){

for(j in 1:2){
xs <- x
xs[j] <- x[j] + runif(1, -ep[j], ep[j])
alpha <- min(dbvnorm(xs, rho) / dbvnorm(x, rho), 1) # Acceptance probability
accept <- rbinom(1, size = 1, prob = alpha) # Acceptance / rejection step
if(accept == 1) {

x[j] <- xs[j]
}

}
out[r + 1, ] <- x

}
out

}
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Example: bivariate Gaussian
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Hybrid mh algorithm targeting the stationary density of a bivariate normal with
correlation ρ = 0.8, with starting point (10, 10).
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MCMC for Bayesian statistics
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Metropolis-Hastings algorithm in Bayesian statistics

The Metropolis-Hastings (mh) algorithm is especially useful for Bayesian inference. In
the following, we rephrase the mh using the Bayesian notation.

Set the first value of the chain θ(0) to some (reasonable) value.

At the r th value of the chain
Let θ = θ(r) be the current status of the chain.

Sample θ∗ from a proposal distribution q(θ∗ | θ).

Compute the acceptance probability, defined as

α = min
{

1, π(θ∗ | X)
π(θ | X)

q(θ | θ∗)
q(θ∗ | θ)

}
= min

{
1, π(θ∗)π(X | θ∗)

π(θ)π(X | θ)
q(θ | θ∗)
q(θ∗ | θ)

}
.

With probability α, update the status of the chain and set θ ← θ∗.
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Implementation of mcmc

Here we focus on practical considerations concerning the implementation with R.
Higher performance can be achieved using C++ and the Rcpp package (i.e., unit A.2).

This is far from a comprehensive guide about R programming. We will consider a
specific model, and we will implement the relevant code in R.

What about BUGS / JAGS / Stan?
If the performance is not a concern, Stan-like software is a handy tool for practitioners
who wish to implement standard Bayesian models.

Conversely, any non-standard or novel model, i.e., those usually developed by
researchers in statistics, may be difficult or even impossible to implement.

Besides, the “manual” implementation is very useful to gain insights about the model
itself and it facilitates a lot the debugging process.
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Example II: Weibull model for censored data

We consider an example from survival analysis, i.e., the data are survival times, which
may be censored.

In this example, we assume that the survival times are iid random variables following a
Weibull distribution Weib(γ, β).

The observed survival time ti is either complete (di = 1) or right censored (di = 0),
meaning that the survival time is higher than the observed ti .

The hazard and survival functions of a Weibull distribution are

h(t | γ, β) = γ

β

(
t
β

)γ−1

, S(t | γ, β) = exp
{
−
(

t
β

)γ}
.

Recall that the density function is obtained as f (t | γ, β) = h(t | γ, β)S(t | γ, β).
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Likelihood function

The likelihood for this parametric model, under suitable censorship assumptions, is
proportional to the following quantity

π(t, d | θ) ∝
n∏

i=1

h(ti | γ, β)di S(ti | γ, β) =
∏

i :di =1

f (ti | γ, β)
∏

i :di =0

S(ti | γ, β),

with (γ, β) being the parameter vector.

Remark When performing (Bayesian) inference, note that the likelihood is always
defined up to an irrelevant normalizing constant, not depending on the parameters θ.

These irrelevant constants can and should be omitted when performing
computations, especially if they are expensive to evaluate.
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Bad implementation I (use the log-scale)

In our experiments, we make use the stanford2 dataset of the survival package.

In the first place, we need to implement the log-likelihood function, say loglik.

The following implementation of the log-likelihood is correct, but numerically
unstable.

loglik_inaccurate <- function(t, d, gamma, beta) {
hazard <- prod((gamma / beta * (t / beta)ˆ(gamma - 1))ˆd)
survival <- prod(exp(-(t / beta)ˆgamma))
log(hazard * survival)

}

# Evaluate the log-likelihood at the point (0.5, 1000)
loglik_inaccurate(t, d, gamma = 0.5, beta = 1000)
# [1] -Inf

The product of several terms close to 0 leads to numerical inaccuracies =⇒ use the
log-scale instead.
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Bad implementation II (initialize the output)

This second coding attempt relies on the log scale and is numerically much more stable
than the previous version.

However, this implementation is inefficient =⇒ do not increase objects’ dimension.

loglik_inefficient2 <- function(t, d, gamma, beta) {
n <- length(t) # Sample size
log_hazards <- NULL
log_survivals <- NULL

for (i in 1:n) {
log_hazards <- c(log_hazards, d[i] * ((gamma - 1) * log(t[i] / beta) + log(gamma / beta)))
log_survivals <- c(log_survivals, -(t[i] / beta)ˆgamma)

}
sum(log_hazards) + sum(log_survivals)

}

# Evaluate the log-likelihood at the point (0.5, 1000)
loglik_inefficient2(t, d, gamma = 0.5, beta = 1000)
# [1] -873.3299
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Bad implementation III (avoid for loops)

This third attempt avoids the previous pitfalls, but it is still quite inefficient =⇒ use
vectorized code whenever possible.

loglik_inefficient1 <- function(t, d, gamma, beta) {
n <- length(t) # Sample size
log_hazards <- numeric(n)
log_survivals <- numeric(n)

for (i in 1:n) {
log_hazards[i] <- d[i] * ((gamma - 1) * log(t[i] / beta) + log(gamma / beta))
log_survivals[i] <- -(t[i] / beta)ˆgamma

}
sum(log_hazards) + sum(log_survivals)

}

# Evaluate the log-likelihood at the point (0.5, 1000)
loglik_inefficient1(t, d, gamma = 0.5, beta = 1000)
# [1] -873.3299

Tommaso Rigon (Milano-Bicocca) 41 / 56



Good implementation

The following version is both numerically stable and efficient.

loglik <- function(t, d, gamma, beta) {
log_hazard <- sum(d * ((gamma - 1) * log(t / beta) + log(gamma / beta)))
log_survival <- sum(-(t / beta)ˆgamma)
log_hazard + log_survival

}

# Evaluate the log-likelihood at the point (0.5, 1000)
loglik(t, d, gamma = 0.5, beta = 1000)
# [1] -873.3299

All these versions of loglik run in fractions of seconds. However, the loglik function
must be executed i.e., ∼ 105 times within a mh algorithm.

Moreover, several instances of these inefficiencies in more complex models add up.
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Benchmarking the code

To understand which function works better, you need to test its performance.

There exist specialized packages to do so, i.e. R rbenchmark or microbenchmark.

These packages execute the code several times and report the average execution time.

The column “elapsed” refers to the overall time (in seconds) over 1000 replications.

library(rbenchmark) # Library for performing benchmarking

benchmark(
loglik1 = loglik(t, d, gamma = 0.5, beta = 1000),
loglik2 = loglik_inefficient1(t, d, gamma = 0.5, beta = 1000),
loglik3 = loglik_inefficient2(t, d, gamma = 0.5, beta = 1000),
columns = c("test", "replications", "elapsed", "relative"),
replications = 1000

)

# test replications elapsed relative
#1 loglik1 1000 0.014 1.000
#2 loglik2 1000 0.079 5.643
#3 loglik3 1000 0.412 29.429
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A matter of style

Formatting your code properly is a healthy programming practice.

You can refer to https://style.tidyverse.org for a comprehensive overview of
good practices in R.

Quoting the tidyverse style guide: “Good coding style is like correct punctuation: you
can manage without it, butitsuremakesthingseasiertoread”.

The styler R package automatically restyles your code for you, and it is integrated
within RStudio as an add-in.

# Good
x <- 5

# Bad
x = 5
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Reparametrizations I

When performing (Bayesian) inference, the choice of the parametrization strongly
impacts computations.

General advice: perform computations on the most convenient parametrization and
then transform back the obtained samples.

As a rule of thumb, you should use parametrizations with unbounded domains. This
facilitates the choice of proposal distributions and could also improve the mixing.

In our model, the two parameters γ, β are strictly positive. Hence, a common strategy
is to consider their logarithm, i.e., θ = (θ1, θ2) = (log γ, log β).

To log or not to log?
Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. Journal of
Computational and Graphical Statistics, 18(2), 349–367.
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Reparametrizations & priors
When reparametrizations are involved, there are two possible modeling strategies.

Choose the prior before the reparametrization. In our setting, we could let for example

γ ∼ Ga(0.1, 0.1), β ∼ Ga(0.1, 0.1).

If you do so, remember to include the jacobian of the transformation when considering
the transformed posterior!

Choose the prior after the reparametrization. In our setting, we could let for example

θ1 = log(γ) ∼ N(0, 100), θ2 = log(β) ∼ N(0, 100).

This strategy is more straightforward as it avoids the extra step of computing the
jacobian.

logprior <- function(theta) {
sum(dnorm(theta, 0, sqrt(100), log = TRUE))

}

logpost <- function(t, d, theta) {
loglik(t, d, exp(theta[1]), exp(theta[2])) + logprior(theta)

}
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The mh implementation

Since the space of θ is unbounded, it is reasonable to select a Gaussian random walk
as proposal distribution, namely

(θ∗ | θ) ∼ N2(θ, 0.252I2).

The choice of the variance will be discussed in unit B.1.

Gaussian random walks are symmetric proposals distributions, implying that

q(θ | θ∗) = q(θ∗ | θ),

which means that their ratio can be simplified (= 1) when computing the acceptance
probability α.

As before, compute α using the log scale to avoid numerical instabilities.

Remark. Unfortunately, there is no way to avoid for loops, which are highly inefficient
=⇒ . This justifies the usage of Rcpp and RcppArmadillo.
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Metropolis-Hastings code

RMH <- function(R, burn_in, t, d) {
out <- matrix(0, R, 2) # Initialize an empty matrix to store the values
theta <- c(0, 0) # Initial values
logp <- logpost(t, d, theta) # Log-posterior
for (r in 1:(burn_in + R)) {

theta_new <- rnorm(2, mean = theta, sd = 0.25) # Propose a new value
logp_new <- logpost(t, d, theta_new)
alpha <- min(1, exp(logp_new - logp))
if (runif(1) < alpha) {

theta <- theta_new; logp <- logp_new # Accept the value
}
if (r > burn_in) {

out[r - burn_in, ] <- theta # Store the values after the burn-in period
}

}
out

}

# Executing the code
library(tictoc) # Library for "timing" the functions
tic()
fit_MCMC <- RMH(R = 50000, burn_in = 5000, t, d)
toc()
# 0.92 sec elapsed
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Estimated survival function

Posterior mean of the survival function with pointwise 95% credible intervals.
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The Gibbs sampling algorithm
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Gibbs sampling

We now introduce another Markov Chain Monte Carlo method: the Gibbs Sampling.

Recall that π(θ | X) denotes the posterior distribution of θ ∈ Θ ⊆ Rp given the data.

Let us partition the parameter vector θ = (θ1, . . . , θL) into L blocks of parameters.
Sometimes, we will have as many blocks as parameters, so that θ = (θ1, . . . , θp).

Let π(θ` | −) be the so-called full-conditional of θ`, that is

π(θ` | −) = π(θ` | X , θ1, . . . , θ`−1, θ`+1, . . . , θL), ` = 1, . . . , L,

namely the conditional distribution of θ` given the data and the other parameters.

Repeatedly sampling θ`, for ` = 1, . . . , L, from the corresponding full conditionals leads
to a mcmc algorithm targeting the posterior distribution π(θ | X).
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Connection with the hybrid Metropolis-Hastings

The Gibbs sampler is a special case of the hybrid Metropolis-Hastings, in which the
full conditionals are used as proposal distribution.

The general hybrid mh is indeed often called Metropolis-within-Gibbs.

Suppose that θ = (θ1, . . . , θp). Then it can be shown that

π(θ∗ | X)
π(θ | X) =

π(θ∗j | X , θ−j )
π(θj | X , θ−j )

.

In addition, note that the acceptance probabilities of the hybrid mh algorithm are

αj = min
{

1, π(θ∗ | X)
π(θ | X)

qj (θj | θ∗)
qj (θ∗j | θ)

}
= min

{
1, π(θ∗ | X)

π(θ | X)
π(θj | X , θ−j )
π(θ∗j | X , θ−j )

}
= 1.
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General considerations

The acceptance rate of the Gibbs sampler is uniformly equal to 1.

The use of a Gibbs sampler requires the knowledge of the full-conditional distributions,
from which we should be able to sample.

The Gibbs sampling is “automatic”, in the sense that there are no tuning parameters
that we need to choose, which is both good and bad news.

Ergodicity and convergence to the posterior stationary distribution are ensured under
very mild conditions, i.e. requiring the connectedness of the support.

The Hammersley-Clifford theorem implies that a sufficiently regular joint density can
be expressed as a function of the full conditionals.
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Example: non-connected support

Example of non-connected support: gray areas have a positive probability. Picture taken from
Robert and Casella (2004).
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Example: conditionally-conjugate Gaussian model

Let us assume the observations (x1, . . . , xn) are draws from

(xi | µ, σ2) iid∼ N(µ, σ2), i = 1, . . . , n.

with independent priors µ ∼ N(µµ, σ2
µ) and σ−2 ∼ Ga(aσ, bσ).

The full conditional distribution for the mean µ is:

(µ | −) ∼ N
(
µn, σ

2
n
)
, µn = σ2

n

(
µµ
σ2
µ

+ 1
σ2

n∑
i=1

xi

)
, σ2

n =
(

n
σ2 + 1

σ2
µ

)−1

.

The full conditional distribution for the precision σ−2 is:

(σ−2 | −) ∼ Ga (an, bn) , an = aσ + n/2, bn = bσ + 1
2

n∑
i=1

(xi − µ)2.
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Example: conditionally-conjugate Gaussian model

gibbs_R <- function(x, mu_mu, sigma2_mu, a_sigma, b_sigma, R, burn_in) {
# Initialization
n <- length(x); xbar <- mean(x)
out <- matrix(0, R, 2)
# Initial values for mu and sigma
sigma2 <- var(x); mu <- xbar
for (r in 1:(burn_in + R)) {

# Sample mu
sigma2_n <- 1 / (1 / sigma2_mu + n / sigma2)
mu_n <- sigma2_n * (mu_mu / sigma2_mu + n / sigma2 * xbar)
mu <- rnorm(1, mu_n, sqrt(sigma2_n))
# Sample sigma2
a_n <- a_sigma + 0.5 * n
b_n <- b_sigma + 0.5 * sum((x - mu)ˆ2)
sigma2 <- 1 / rgamma(1, a_n, b_n)
# Store the values after the burn-in period
if (r > burn_in) {

out[r - burn_in, ] <- c(mu, sigma2)
}

}
out

}
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Example: conditionally-conjugate Gaussian model
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