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Unit B.1

Main concepts
Optimal scaling for Metropolis-Hastings algorithm

Metropolis-within-Gibbs algorithm

Adaptive MCMC

Associated R code is available on the website of the course

Main references
Chopin, N. and Ridgway, J. (2017). Leave Pima Indians alone: binary regression as a
benchmark for Bayesian computation. Statistical Science, 32(1), 64–87.
Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings
algorithms. Statistical Science, 16(4), 351–367.
Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. Journal of
Computational and Graphical Statistics, 18(2), 349–367.
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Random walk Metropolis-Hastings

Let us consider a random walk Metropolis-Hastings (rwm) algorithm and let θ = θ(r)

be the current status of the chain.

It is called “random walk” because we sample θ∗ from a Gaussian proposal distribution

(θ∗ | θ(r)) ∼ Np(θ(r),S), implying that q(θ∗ | θ) = q(θ | θ∗).

In this special case the acceptance probability simplifies and we get

α = min
{

1, π(θ∗ | X)
π(θ | X)

q(θ | θ∗)
q(θ∗ | θ)

}
= min

{
1, π(θ∗)π(X | θ∗)

π(θ)π(X | θ)

}
.

This Gaussian proposal distribution is a sensible choice especially whenever the support
of θ is unbounded.
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Optimal choice of the proposal distribution

Among all the possible proposal densities for q(θ | θ∗), we restrict our focus on
multivariate Gaussians centered on θ∗.

Despite this important simplification, choosing the covariance matrix S remains a
difficult task and crucially affects the performance.

In the univariate / bivariate cases, one could tune the variance of the proposal
distribution S by trial and error and with some patience.

Unfortunately, whenever the parameter’s dimension is large, the ”manual” elicitation of
the matrix S is almost impossible.

Key question. Can we identify an ideal covariance matrix S that is optimal in some
sense? Can we “estimate” it from the data?
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Asymptotic variance

For an arbitrary squared-integrable function g(·) : Rp → R, let us consider the Monte
Carlo estimator

η̂g = 1
R

R∑
r=1

g(θ(r)),

for the posterior expectation ηg = E{g(θ) | X}.

If a central limit theorem holds, we have that
√

R η̂g − ηg

σg

d−→ Z , Z ∼ N(0, 1),

where σ2
g is the so-called asymptotic variance of the mcmc algorithm.

Intuitively, we seek a covariance matrix S that minimizes the asymptotic variance σ2
g .

Other measures of “optimality” can be defined, but it can be shown they are all
equivalent asymptotically (for large values of p).
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Asymptotic variance

Let θ(0), θ(1), θ(2), . . . be a Markov chain, with θ(0) ∼ π(θ | X) being a sample from
the stationary distribution.

The asymptotic variance can be written as follows

σ2
g = var{g(θ(0)) | X} τg = var{g(θ(0)) | X}

[
1 + 2

∞∑
r=1

Corr{g(θ(0)), g(θ(r))}

]
.

The quantity τg is sometimes called integrated autocorrelation time and measures
the loss of efficiency with respect to independent (iid) sampling (τg = 1).

When τg = 1, the mcmc algorithm is “optimal” and there is no autocorrelation.

Rarely, one could obtain τg < 1, which is indeed an improvement over iid sampling.

The effectiveSize R command produces an estimate of Rτ−1
g from the empirical

samples of the chain.
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Optimal scaling

The relationship between the matrix S and the asymptotic variance σ2
g is unclear. In

addition, the variance σ2
g depends on the chosen function g(·).

Let us initially assume that the posterior distribution has the following form

π(θ | X) =
p∏

j=1

f (θj ), var(θ | X) = σ2Ip

meaning that the components of θ are independent and identically distributed from
some density f .

Moreover, we consider the following proposal distribution

(θ∗ | θ(r)) ∼ Np(θ(r), s2
p Ip), s2

p = `2/p.

In this simplified setting, we seek an optimal scaling value for `2.
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Diffusion processes

This problem simplifies remarkably in the asymptotic regime, as p diverges.

Let us define a continuous-time stochastic process from the first component θ1 of the
θ = (θ1, . . . , θp), namely:

Z (t) = θ
([tp])
1

where [ · ] denotes the integer part function.

That is, Z (t) is a speeded-up continuous-time version of the original algorithm,
parametrized to make jumps every p−1 time units.

We need some smoothness conditions on the density f (Roberts et al., 1997), and in
particular we assume that

I = E

[{
f ′(θ1)
f (θ1)

}2
]
<∞,

is well-defined. The quantity I equals σ−2 in the Gaussian case.
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Diffusion processes

Theorem
Let B(t) be the standard Brownian motion and let Φ(·) be the cdf of a standard
Gaussian. The continuous-time stochastic process Z weakly converges to

Z d−→W , p →∞,

where W is a diffusion process satisfying the stochastic differential equation

dW (t) = h(`)1/2dB(t) + h(`)∇ log f (W (t))
2 dt,

where the speed of the diffusion is

h(`) = `2 2Φ
(
−I

1/2`

2

)
.

Note. All the involved quantities have a clear interpretation in terms of the original
rwm algorithm.
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Speed of the diffusion h(`)

The speed of the diffusion h(`) is strictly related to the asymptotic variance of the
mcmc algorithm.

Recall that we aim at finding an optimal value for ` that minimizes the autocorrelation.

In the first place, note that for small ε > 0, it holds that

Corr{g(W (0)), g(W (ε))} ≈ 1− εBg h(`),

where Bg is a constant not depending on `.

Let τg (`) be the integrated autocorrelation of the rwm. Then, for large p it holds that

τg (`)−1 ≈ h(`) eg p−1,

where eg > 0 is some constant depending only on g(·).

Remark. The maximization of the diffusion speed is equivalent to the minimization of
the autocorrelation for any function g(·).
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Speed of diffusion and acceptance rate

Let us define the acceptance rate of the original p-dimensional rwm as

Ap(`) = lim
R→∞

“# of accepted moves”
R ,

namely the long-term proportion of accepted moves.

Then, it can be shown that

lim
p→∞

Ap(`) = A(`) = 2Φ
(
−I

1/2`

2

)
.

Moreover, recall the definition of the speed of diffusion

h(`) = `2 2Φ
(
−I

1/2`

2

)
= `2 A(`),

implying that the speed of the diffusion is strictly related to the acceptance rate.
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Important consequences

Hence, we consider ` maximizing the speed of diffusion h(`), obtaining the optimal
scaling

`opt ≈
2.38
I1/2 .

The acceptance rate, evaluated at the optimal scaling, is

A(`opt) ≈ 0.234,

corresponding to the optimal acceptance rate.

This suggests the following optimal proposal variance for (θ∗ | θ(r)) ∼ Np(θ(r), s2
p Ip) for

large values of p, with
s2

p = 2.382 (p I)−1,

where I must be estimated/guessed somehow.

If f is a Gaussian density with variance σ2, then we obtain s2
p = 2.382σ2 p−1.

Tommaso Rigon (Milano-Bicocca) 12 / 28



Getting practical

These results are asymptotic (large p) and require that the posterior distribution has
independent components.

In practice, when p ≈ 5, the optimal acceptance rate is close to 0.234 based on
simulation studies (Gelman et al., 1996).

When p = 1 the optimal acceptance rate is higher and about 0.44.

Key extension. If the posterior distribution is Gaussian with p × p covariance matrix
Σ, it suffices to translate the components and rotate the axes according to Σ to
make the components iid, leading to

(θ∗ | θ(r)) ∼ Np(θ(r),S), S = 2.382 Σ / p.

This procedure is optimal for large p, although it requires the knowledge of Σ.
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Binary regression

Let y = (y1, . . . , yn)ᵀ be a vector of the observed binary responses.

Let X be the corresponding design matrix whose generic row is xi = (1, xi2, . . . , xip)ᵀ,
for i = 1, . . . , n. All predictors have been standardized.

We consider a generalized linear model such that

(yi | πi )
ind∼ Bern(πi ), πi = g(ηi ), ηi = β1xi1 + · · ·+ βpxip ,

where g(·) is either the inverse logit transform or the cdf of a standard normal. We
focus here on the logistic regression case.

We aim at estimating the parameter vector β = (β1, . . . , βp)ᵀ using rwm.

We will employ a relatively vague prior centered at 0, namely

β ∼ Np(0, 100 Ip).
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The Pima Indian dataset

During the course, we will test several algorithms on the “famous” Pima Indian
dataset, with n = 532 and p = 8.

The purpose of this exercise is mainly to present the implementation of the various
mcmc algorithms and show their performance in this specific example.

Warning. The following results should not be generalized to any statistical models nor
even to any logistic regression model.

Depending on the sample size n, the dimension of the parameter space p, as well as
the dependence structure of the predictor, the results may vary significantly.

Refer to the nice paper by Chopin & Ridgway (2017) for a more comprehensive
discussion on this aspect.
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Computational details

Recall that at each step of the algorithm, we need a sample from a multivariate
Gaussian distribution Np(0,S).

Albeit tempting, using built-in R functions such as rmvnorm and mvrnorm leads to a
sensible waste of computing time.

Indeed, in order to get a sample from V ∼ Np(µ,S), one needs to compute

V = µ+ AZ ,

where Z ∼ N(0, Ip) is standard Gaussian and A is a p × p matrix such that AAT = S.

Hence, there is no need to compute A at every step, as this can be done before
running the mcmc.

A <- chol(S) # Cholesky decomposition of S (outside the MCMC)
V <- mu + crossprod(A, rnorm(2)) # Sample from V (inside the MCMC)
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Naive covariance matrix

Let us start with a naive choice for the proposal covariance S = diag{10−3, . . . , 10−3}.

Albeit being sub-optimal, this “random” choice of S works decently.

# Covariance matrix of the proposal
S <- diag(1e-3, ncol(X))

# Running the MCMC (R = 30000, burn_in = 30000)
fit_MCMC <- as.mcmc(RMH(R, burn_in, y, X, S)) # Convert the matrix into a "coda" object

summary(effectiveSize(fit_MCMC)) # Effective sample size (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 174.9 205.0 258.5 259.6 320.7 333.1

summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 90.06 93.56 119.31 122.76 146.43 171.52

summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.7191 0.7191 0.7191 0.7191 0.7191 0.7191
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Approximating the posterior covariance matrix

We know that a sensible choice for S would be based on posterior covariance matrix Σ.

The true Σ is unknown and therefore we need to rely on some (fast) approximation.

A possibility is based on a quadratic approximation of the likelihood function,
evaluated at the maximum likelihood estimate.

This is particularly simple in the logistic regression case (do it as an exercise!) since we
can set

Σ̂ = (XT ĤX)−1, Ĥ = diag{π̂1(1− π̂1), . . . , π̂n(1− π̂n)},

where π̂i = [1 + exp{−(xi1β̂1,ml + · · ·+ xipβ̂p,ml)}]−1.

This estimate Σ̂ corresponds to the Fisher information, evaluated at the mle.

This is a variant of the Laplace approximation that ignores the prior contribution. For
a more general and detailed explanation, refer to Chopin and Ridgway (2017).
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Laplace covariance matrix

Let us use a covariance matrix based on the Laplace approximation S = 2.382 Σ̂ / p.

This choice for S is almost optimal, and the effective sample size is much higher.

# Covariance matrix is selected using a Laplace approximation
fit_logit <- glm(type ˜ X - 1, family = binomial(link = "logit"), data = Pima)
S <- 2.38ˆ2 * vcov(fit_logit) / ncol(X) # The desired matrix is extracted using vcov

# Running the MCMC (R = 30000, burn_in = 30000)
fit_MCMC <- as.mcmc(RMH(R, burn_in, y, X, S))

summary(effectiveSize(fit_MCMC)) # Effective sample size
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 1107 1174 1206 1194 1228 1245

summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 24.10 24.43 24.87 25.15 25.56 27.10

summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.2746 0.2746 0.2746 0.2746 0.2746 0.2746
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Adaptive MCMC

In several cases, it is not possible to come up with a fast and reasonable estimate Σ̂.

Hence, a possibility is tuning the covariance matrix S on the fly, namely using the
previously obtained samples.

Warning. This is no longer a mh algorithm; therefore, the chain is not necessarily
converging to the correct stationary distribution or converging.

However, in many cases ergodicity of the chain is preserved as long as we adaptively
tune S in a reasonable manner.

The key condition is called diminishing adaptation, which essentially means that the
changes in S are negligible as R →∞; see Roberts & Rosenthal (2009).
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Adaptive Metropolis

An example of adaptive MCMC is the so-called adaptive Metropolis (am) algorithm.

We implement here a version of the am which makes use of the following proposal
distribution

qr (β∗ | β) ∼ N(β, 2.382/p Σr + εIp),

where Σr is the covariance matrix of the previously r sampled values β(1), . . . , β(r).

The constant ε > 0 is some small value that avoid degeneracies. We will use ε = 10−6.

Moreover, note that the following recursive formula holds true:

Σr = 1
r − 1

r∑
j=1

(β(j)−β̄(r))(β(j)−β̄(r))ᵀ = r − 2
r − 1 Σr−1+ 1

r (β(r)−β̄(r−1))(β(r)−β̄(r−1))ᵀ.

where β̄(r) = (r − 1)/r β̄(r−1) + β(r)/r is the arithmetic means of the first r values.

Several variants of this scheme exist, but the core idea is trying to estimate Σ.
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Adaptive Metropolis

We obtain results that are comparable to the mh based on the Laplace approximation
in terms of effective sample size.

However, the computing time is much higher, because we need to decompose S at
each iteration.

# Running the MCMC (R = 30000, burn_in = 30000)
fit_MCMC <- as.mcmc(RMH_Adaptive(R = R, burn_in = burn_in, y, X))

# summary(effectiveSize(fit_MCMC)) # Effective sample size (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 856.7 905.9 1124.5 1110.9 1269.2 1412.6

# summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 21.24 23.65 26.69 27.89 33.12 35.02

# summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.1907 0.1907 0.1907 0.1907 0.1907 0.1907
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Traceplot of β1, including the burn-in
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Metropolis-within-Gibbs (recap)

The Metropolis-within-Gibbs algorithm is an mcmc algorithm that combines the mh
and the Gibbs sampling algorithms.

Let π(θj | −) be the so-called full-conditional of θj , that is

π(θj | −) = π(θj | X , θ1, . . . , θj−1, θj+1, . . . , θp), j = 1, . . . , p,

namely the conditional distribution of θj given the data and the other parameters.

In the Metropolis-within-Gibbs, we proceed as in a standard Gibbs sampling, but
instead of drawing from the full conditional π(θj | −), we conduct a Metropolis step.

We propose a value from q(θ∗j | θj ), typically a univariate Gaussian random walk, that
we accept/reject in the usual manner.

This means that at each step of the chain, some parameters are updated, others are
not. This produces local moves rather than global moves.
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Metropolis-within-Gibbs

We use random walk proposals (θ∗j | θj ) ∼ N1(θj , s2
j ), for j = 1, . . . , p.

In this first experiment we set s2
1 = · · · = s2

p = 10−4.

These results are unacceptable. We need a better specification for the variances s2
j .

p <- ncol(X) # Dimension of the parameter space
se <- sqrt(rep(1e-4, p)) # Standard deviations of the proposal distributions

# Running the MCMC (R = 30000, burn_in = 30000)
fit_MCMC <- as.mcmc(RMH_Gibbs(R = R, burn_in = burn_in, y, X, se))

summary(effectiveSize(fit_MCMC)) # Effective sample size (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 27.02 36.43 37.37 37.57 40.58 44.21
summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 678.6 740.1 802.8 814.8 824.1 1110.1
summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.9682 0.9685 0.9697 0.9698 0.9710 0.9719
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Adaptive Metropolis-within-Gibbs

In order to get a better mixing, we could adaptively choose the variances s2
j as in

Roberts and Rosenthal (2009).

Since the updates are univariate, we can rely on a more direct adaptive approach
targeting the optimal acceptance rate, which is 0.44.

Every 50 iterations (a batch), the algorithm increases or decreases the standard errors
sj according to the fraction of accepted values among the 50 batch values.

It is convenient to work in the logarithmic scale, to facilitate the exploration of the
space of suitable values.

If the fraction of accepted values for the jth component is higher/lower than 0.44,
then we increase/decrease the corresponding log sj by the quantity min{0.01, 1/

√
r}.

Note that the diminishing adaptation condition is satisfied, as the correction is
vanishing as r (the number of iterations) increases.
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Adaptive Metropolis-within-Gibbs

These results are comparable with the other suitably tuned mh approaches.

However, the computing time is much higher.

Note that the overall acceptance rates are close to 0.44.

fit_MCMC <- as.mcmc(RMH_Gibbs_Adaptive(R = R, burn_in = burn_in, y, X)) #

summary(effectiveSize(fit_MCMC)) # Effective sample size (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 653.2 733.1 1021.5 1009.3 1293.6 1373.3

summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 21.84 23.19 31.43 32.76 41.07 45.93

summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.4451 0.4472 0.4479 0.4483 0.4494 0.4517
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Summary of the results

The following table compare the average results. Here, ess represents the estimated
and average effective sample size.

Among these competitors, the Laplace mh seems preferable.

Note that we could sensibly speed up these results by using Rcpp!

Seconds ess ess / Sec. Acceptance rate
Vanilla mh 1.89 259.58 137.60 0.72

Laplace mh 1.77 1194.42 676.49 0.27
am 4.88 1110.90 227.45 0.19

Metropolis-within-Gibbs 11.95 37.57 3.14 0.97
Ad. Metropolis-within-Gibbs 11.95 1009.32 84.48 0.45
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