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Unit B.2

Main concepts
The MALA algorithm

Optimal scaling and pre-conditioning

Hamiltonian Monte Carlo

Associated R code is available on the website of the course

Main references
Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte
Carlo methods. JRSS-B, 73(2), 123–214.
Neal, R. M. (2011). MCMC using Hamiltonian dynamics. CRC press.
Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings
algorithms. Statistical Science, 16(4), 351–367.
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Limitations of the mh algorithm

The random walk Metropolis (rwm) algorithm is very popular among practitioners
because it is general and easy to implement.

In addition, the rwm is quite robust to the choice of the tuning (scaling) parameters.

Unfortunately, this seductive simplicity leads to performance that scales poorly with
increasing dimension and increasing complexity of the target density.

Even when the proposal is optimally chosen, the rwm relies on local moves that lead
to slow mixing, especially in high dimensions.

The proposal distribution of a rwm is indeed randomly exploring the interesting parts
of the posterior density without considering its structure.
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Gradient-based methods

Intuitively, we are seeking better proposal distributions that incorporate the structure
of the target density, leading to faster mixing.

Let π(θ | X) be a continuous and differentiable posterior density in Rp . We will
exploit the gradient of the logarithm of the target density, written

∇θ log π(θ | X) = ∇θ log π(X | θ) +∇θ log π(θ).

The gradient is often available in closed form, and it does not require the knowledge
of the normalizing constant.

The gradient informs about the direction and the rate of increase of a given function.

For instance, for a given value θ(r) and ε > 0, the update

θ(r+1) ←− θ(r) + ε∇θ log π(θ(r) | X),

leads to an increase of π(θ | X), for ε small enough. This corresponds to the
well-known gradient ascent method.
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Langevin diffusions

Incorporating the gradient in the mcmc procedure is an intuitive and appealing idea:
this will push the Markov chain towards values with higher density.

Besides, a strong theoretical justification exists for gradient adjusted mh proposals,
based on Langevin diffusions.

Let B(t) be a p-dimensional standard Brownian motion.

We consider a continuous-time stochastic process θ(t) satisfying the following
stochastic differential equation

dθ(t) = 1
2∇θ log π(θ(t) | X)dt + dB(t).

Key result. The stationary distribution of the above Langevin diffusion is the posterior
density π(θ | X).
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The MALA algorithm

In practice, we need to consider discrete approximations of the Langevin diffusion, for
example using the so-called Euler method.

This leads to the following discrete-time stochastic process

θ(r+1) = θ(r) + ε2

2 ∇θ log π(θ(r) | X) + ε z(r),

for any chosen discretization step ε > 0, and with iid z(r) ∼ Np(0, Ip).

This discrete approximation is no longer guaranteed to converge to π(θ | X).

There is a delicate trade-off between the accuracy of this approximation (ε→ 0) and
the sampling efficiency, increasing as ε grows.

This issue is solved by treating the above distribution as a proposal density of a
Metropolis-Hastings algorithm.
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The MALA algorithm

The Metropolis adjusted Langevin algorithm (mala) therefore can be seen as a
specific mh algorithm with proposal distribution

(θ∗ | θ) ∼ Np

(
θ +

s2
p

2 ∇θ log π(θ | X), s2
p Ip
)
,

where s2
p > 0 is some tuning parameter that must be carefully chosen.

Remark. This proposal distribution is not symmetric as in the rwm case therefore the
acceptance probability takes into account also the proposal densities, namely

α = min
{

1, π(θ∗ | X)
π(θ | X)

q(θ | θ∗)
q(θ∗ | θ)

}
.

There is strong theoretical and empirical evidence showing that a much faster mixing
compensates the price paid for computing the gradient.

Tommaso Rigon (Milano-Bicocca) 7 / 37



Asymptotics and optimal scaling

As for the rwm, some insights about the optimal choice of s2
p can be gained by

looking at the asymptotic behaviour of the mala, for large values of p.

Let us assume again that the posterior distribution has the following form

π(θ | X) =
p∏

j=1

f (θj ), var(θ | X) = σ2Ip

namely the components of θ are iid from some density f , satisfying the same
smoothness conditions mentioned in Unit B.1 and described in Roberts et al. (1997).

It turns out that to get sensible asymptotic results, we need to set

s2
p = `2/p1/3,

as opposed to the p−1 term we have in the rwm case.
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Diffusion processes

As for the rwm case, let us define a speeded-up continuous-time stochastic process,

Z (t) = θ
([tp1/3])
1 ,

parametrized to make jumps every p−1/3 units.

Theorem (Roberts and Rosenthal, 1997)
The continuous time stochastic process Z weakly converges to

Z d−→W , p →∞,

where W is a diffusion process satisfying the stochastic differential equation

dW (t) = h(`)1/2dB(t) + h(`)∇ log f (W (t))
2 dt,

where the speed of the diffusion is

h(`) = `2 2Φ
(
−J `3) ,

for some constant J that only depends on f .
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Speed of diffusion h(`)

As in the rmw, the speed of diffusion h(`) is strictly related to the asymptotic
variance. Hence, we will look for the optimal ` that maximizes the diffusion h(`).

Let τg (`) be the integrated autocorrelation of the mala. Then, for large p, it holds
that

τg (`)−1 ≈ h(`) eg p−1/3,

where eg > 0 is some constant depending only on g(·).

Remark. These findings imply that the mala algorithm has complexity O(p1/3), which
is considerably more efficient than the O(p) complexity of the rwm.

In practice, these theoretical results suggest that the mala algorithm should perform
better, especially in high-dimensional problems (large p).
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Speed of diffusion and acceptance rate

Let us recall that the acceptance rate of a mh algorithm is informally defined as

Ap(`) = lim
R→∞

“# of accepted moves”
R .

Then, it can be shown that in the mala case, we have

lim
p→∞

Ap(`) = A(`) = 2Φ
(
−J `3) ,

implying that the speed of diffusion relates to the acceptance rate.

The optimal value `opt maximizing h(`) does not require the knowledge of J .

Indeed, the asymptotic acceptance rate evaluated at the optimum is such that

A(`opt) ≈ 0.574,

so ` can be chosen by trial and error or using adaptive methods.

Remark. This means that the optimally scaled mala mixes faster than the rwm.
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Getting practical

Let us consider the logistic regression problem under iid Gaussian priors and variance
100 again, using the Pima Indian dataset.

In this example, we do not standardize the predictors to make the problem more
challenging.

Recall that the gradient of the log-posterior in this case is easily obtained as follows

∇θ log π(θ | X) = ∇θ log π(X | θ) +∇θ log π(θ) = Xᵀ(y − π)− β/100,

where each entry of π is [1 + exp{−(xi1β1 + · · ·+ xipβp)}]−1, for i = 1, . . . , n.

The mathematical simplicity of the gradient follows from the fact that the logistic
regression belongs to an exponential family.
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MALA algorithm in practice

After some trial and error, we set sp = 0.0017, to get the optimal acceptance rate.

However, the results are a complete disaster. The chain does not reach convergence,
and the samples are garbage.

# Scaling parameter (after a few trials)
s <- 0.0017

# Running the MCMC (R = 30000, burn_in = 5000)
fit_MCMC <- as.mcmc(MALA(R = R, burn_in = burn_in, y, X, s, S = diag(ncol(X))))

summary(effectiveSize(fit_MCMC)) # Effective sample size (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 2.900 9.358 27.201 44.321 46.238 166.223

summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 180.5 728.7 1208.5 2671.3 3283.2 10343.4

summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638
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MALA algorithm in practice
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The true posterior density places mass in values in the interval (−12,−7). The
sampled values are not even close to that region =⇒ the results are garbage.
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What went wrong?

These performance issues are not specific to mala. Indeed, a vanilla rwm with
isotropic covariance matrix S = s2Ip would also perform poorly.

In both cases, the theory assumes a posterior distribution with iid components. We
need the posterior variances of each component θ1, . . . , θp to be similar.

If we standardize the predictors, the results improve remarkably. However, this is a
workaround that can not be applied in general.

In the rwm case we solved this issue by considering a covariance matrix S depending
on the posterior covariance matrix Σ.

The very same strategy can be applied to the mala algorithm, as well as in more
elaborate contexts such as Hamiltonian Monte Carlo.
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Rotating the diffusion

Let Σ be the posterior covariance and let Σ = AAᵀ be its Cholesky decomposition.

Let us consider a rotation of the parameters θ̃ = A−1θ (reparametrization), implying
that the new set of parameters are such that

var(θ̃ | X) = A−1(AAᵀ)(A−1)ᵀ = Ip ,

i.e. they are orthogonal. If the posterior of θ is Gaussian, they are also independent.

Therefore, the mala based on the rotated Langevin diffusion is

dθ̃(t) = 1
2∇θ̃ log π(θ̃(t) | X)dt + dB(t).

This leads to a mala proposal distribution targeting the posterior law of θ̃, namely

(θ̃∗ | θ̃) ∼ Np

(
θ̃ +

s2
p

2 ∇θ̃ log π(θ̃ | X), s2
p Ip
)
,

which is expected to perform well due to the orthogonality of θ̃.
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Rotating the diffusion

By pre-multiplying by A the diffusion for θ̃(t), one obtain that

dθ(t) = 1
2 Σ∇θ log π(θ(t) | X)dt + A dB(t),

which by construction targets the posterior law of θ.

This leads to a pre-conditioned mala, targeting the posterior law of θ, namely

(θ∗ | θ) ∼ Np

(
θ +

s2
p

2 Σ∇θ log π(θ | X), s2
p Σ
)
,

with s2
p = `2/p1/3.

In other words, this simple modification of the original mala proposal is equivalent to
running the mala algorithm on the orthogonal parametrization.

Σ is unknown, but fast approximations and adaptive strategies can be used, following
the guidelines outlined in unit B.1.
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Pre-conditioned MALA algorithm
After some trial and error, we set sp = 1.68, to get the optimal acceptance rate.

The pre-conditioned mala, based on the Laplace approximation, leads to a very high
effective sample size.

# Covariance matrix is selected via Laplace approximation
fit_logit <- glm(y ˜ X - 1, family = binomial(link = "logit"))
S <- vcov(fit_logit)
s_p <- 1.68 # After some trial and error

# Running the MCMC (R = 30000, burn_in = 5000)
fit_MCMC <- as.mcmc(MALA(R = R, burn_in = burn_in, y, X, s_p, S))

summary(effectiveSize(fit_MCMC)) # Effective sample size (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 8583 8762 9196 9063 9312 9409

summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 3.189 3.222 3.263 3.314 3.424 3.495

summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.5686 0.5686 0.5686 0.5686 0.5686 0.5686
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Pre-conditioned MALA algorithm in practice
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General comments

The take-home message is that pre-conditioning is crucial for both the rwm and the
mala to get practically useful samples.

In high-dimensional problems, i.e., when obtaining an estimate for Σ could be
problematic, it is recommended to use at least a diagonal matrix specification.

Gradient-based methods such as mala are more fragile than rwm, meaning that
miscalibration for the proposal density leads to a drastic performance drop.

These issues motivated recent works on robust gradient-based proposals aimed at
correcting this behavior.

Main reference
Livingstone, S. and G. Zanella (2022). The Barker proposal: combining robustness and
efficiency in gradient-based MCMC. JRSS-B, 84(2), 496–523.
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Hamiltonian Monte Carlo

In complicated inferential problems, pushing the Markov chain towards the mode, as
in the mala, may lead to an inefficient exploration of the parameter space.

mala dynamics. Picture stolen taken from Betancourt (2017).
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Hamiltonian Monte Carlo

Ideally, we would like the Markov Chain to explore the values of a given level set,
following the complex dynamics implied by the gradient information.

Hamiltonian dynamics. Picture stolen taken from Betancourt (2017).
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Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (hmc) is essentially a Metropolis-Hastings algorithm with a
“smart” proposal distribution based on the gradient.

hmc performs several steps in the parameter space before accepting/rejecting the
move, favoring bigger jumps and better mixing.

The proposed value is far from the previous one but remains on a similar level set. This
is in contrast with rwm, in which big jumps often lead to values with low density.

hmc, also known as Hybrid Monte Carlo, has been known for some time in physics, but
it seems to have be considered only recently in statistics.

Main reference
Neal, R. M. (2011). MCMC using Hamiltonian dynamics. CRC press.
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hmc: basic quantities

Recall that θ ⊆ Rp is the parameter of interests. We aim at sampling from the
posterior distribution π(θ | X).

In hmc we rely on an auxiliary set of parameters ψ ⊆ Rp independent on θ, so that
the joint density of (θ,ψ) is given by

π(θ,ψ | X) = π(θ | X) π(ψ).

We let ψ ∼ Np(0,M) be multivariate Gaussian with zero mean and covariance M.

The term H(θ,ψ) = − log π(θ,ψ | X) is called the Hamiltonian, which equals

H(θ,ψ) = − log π(θ | X) + 1
2ψ

ᵀM−1ψ,

up to an irrelevant additive constant not depending on (θ,ψ).

In hmc we will sample values from the joint distribution π(θ,ψ | X) and then we will
discard the samples for ψ.
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Hamiltonian dinamics

The gradient of H(θ,ψ) with respect to (θ,ψ) admits a physical interpretation as the
time evolution, with respect to a fictitious time t, of an Hamiltonian dynamic system.

Let us assume that (θ(t),ψ(t)) is a deterministic evolution flowing according to the
following set of differential equations

dθ(t)
dt = ∂H(θ,ψ)

∂ψ
= M−1ψ(t),

dψ(t)
dt = −∂H(θ,ψ)

∂θ
= ∇θ log π(θ(t) | X).

By assuming that H(θ,ψ) does not depend on time t, for any t, s ∈ R we have that

(θ(t + s),ψ(t + s)) = Ts{θ(t),ψ(t)},

for some mapping Ts depending only on s.

Tommaso Rigon (Milano-Bicocca) 25 / 37



Properties of Hamiltonian dynamics

These differential equations preserve the value of the Hamiltonian, namely

H{θ(t),ψ(t)} = H{θ(t + s),ψ(t + s)},

Hence, they also preserve the value of the joint density

π(θ(t) | X) π(ψ(t)) = π(θ(t + s) | X) π(ψ(t + s)).

Remark. Any move according to Hamiltonian dynamics preserves the level set.

The mapping Ts is also time-reversible, which is crucial for showing that mcmc
updates that use the dynamics leave the desired distribution invariant.

Moreover, the mapping preserves the volume, a property which significantly simplifies
the computations of the mcmc algorithm.
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A Gaussian example

Let us assume that (θ,ψ) ∼ N2(0, I2), so that the Hamiltonian is equal to

H{θ(t),ψ(t)} = θ(t)2

2 + ψ(t)2

2 .

In this special case, the differential equations simplify as follows

dθ(t)
dt = ∂H(θ,ψ)

∂ψ
= ψ(t),

dψ(t)
dt = −∂H(θ,ψ)

∂θ
= −θ(t).

It is easy to show that the solution is in the following form

θ(t) = ρ cos(α + t), ψ(t) = −ρ sin(α + t),

for some constants ρ and α.

Hence, the mapping Ts is a rotation by s radians clockwise around the origin.
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A Gaussian example
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Trajectory of the dynamics with ρ = 1, α = −π/2 and for values of t ∈ [0, 2π − 1/2].
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The ideal hmc algorithm

If the solution of the Hamiltonian dynamics were available in closed form, the hmc
would proceed as follows.

Recall that we aim at sampling values from the joint distribution π(θ,ψ | X) using an
algorithm. Let θ(r) be the current value of the chain.

At each step of the chain, draw a new value ψ sampling from a multivariate Gaussian
distribution Np(0,M); this identifies a new level set.

Obtain the proposed values (θ∗,ψ∗) remaining on the given level set by applying the
mapping

(θ∗,ψ∗) = Ts{θ(r),ψ},

for a certain value of time s, which is a tuning parameter.

Thanks to the properties of Hamiltonian dynamics, the acceptance probability is always
1 therefore the next value of the chain coincides with the proposal θ(r+1) ←− θ∗.
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Approximating Hamiltonian dynamics

Unfortunately, most of the time the Hamiltonian differential equations do not admit a
closed-form solution, thus, approximations are required.

To maintain the main properties of the ideal hmc, we look for discretized Hamiltonian
dynamics preserving the volume and also being time-reversible.

Among several methods that aim at solving this issue, we focus on the leapfrog
method, which unfortunately does not keep the Hamiltonian exactly constant over time.

The leapfrog method is essentially a variation and more reliable version of the natural
Euler’s discretization method.

Remark. The leapfrog method retains most of the properties of the ideal hmc, thus
making it extremely appealing for sampling purposes.

Tommaso Rigon (Milano-Bicocca) 30 / 37



The leapfrog method

We aim at approximating the mapping Tε for some small ε > 0.

For any given time t and set of values θ(t),ψ(t), a small step ahead in time of size ε
in the Hamiltonian dynamics can be obtained using the leapfrog method.

We make a first update on the auxiliary variables of size ε/2, namely we get

ψ(t + ε/2) = ψ(t) + ε

2∇θ log π(θ(t) | X).

Secondly, we make a complete step for the variables of interest, namely

θ(t + ε) = θ(t) + εM−1ψ(t + ε/2).

Finally, we update again the auxiliary variable of size ε/2, so that

ψ(t + ε) = ψ(t + ε/2) + ε∇θ log π(θ(t + ε) | X).
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A single hmc step

A single step of hmc proceeds as follows. Let θ(r) be the current value of the chain.

Draw a new value ψ sampling from a multivariate Gaussian distribution Np(0,M).

Obtain the proposed values (θ∗,ψ∗) by applying L times the leapfrog method with
step-size ε and starting time t = 0, thus aiming at approximating the ideal dynamics

(θ∗,ψ∗) ≈ Ts{θ(r),ψ},

for a certain time value s = L ε.

Due to the symmetricity of the proposal, accept or reject the proposed value with a
probability depending only on the Hamiltonian, namely

min[1, exp{−H(θ∗,ψ∗) +H(θ(r),ψ(r))}],

which is usually very close to 1 as the Hamiltonian is kept approximately constant by
the leapfrog method.
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Connection with the mala algorithm

There is a strong connection between mala and hmc, even though these methods
rely on very different notions.

Indeed, it can be shown hmc using a single L = 1 leapfrog step coincides with the
pre-conditioned mala algorithm.

More precisely, at each step, we propose from

(θ∗ | θ) ∼ Np

(
θ + ε2

2 M−1∇θ log π(θ | X), ε2M−1
)
,

and the acceptance probability coincides with that of mala.

This connection highlights that the covariance matrix of the Gaussian auxiliary
variables is of great practical importance.

In practice, it is advised to set M = Σ−1, where Σ represents an estimate for the
posterior covariance; see Neal (2010) for further details and a deeper perspective.
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How to choose ε and L?

Beside the covariance matrix M, there are other 2 tuning parameters that must be
chosen: the stepsize ε and number of leapfrog steps L.

The trajectory length εL is often set equal to some constant, say εL = 1 or selected
by trial and error.

Small values for the step-size ε increase the goodness of the leapfrog approximation
but require larger values for L, leading to higher computational costs.

Large values for the step-size ε could lead to catastrophic results, as the approximated
trajectory could diverge from the ideal dynamics.

The no-u-turn algorithm implemented in Stan automatically selects L so that the
trajectory completes a “loop”.

However, the no-u-turn requires a somewhat complex procedure that preserves the
chain’s reversibility.
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hmc algorithm in practice
After some trial and error, we set ε = 0.1 and L = 10.

We again relied on the Laplace approximation for Σ̂ = M−1, which leads to an
extremely high effective sample size.

epsilon <- 0.25 # Stepsize - After some trial and error
L <- 10 # Number of leapfrog steps

# Covariance matrix is selected via Laplace approximation
fit_logit <- glm(y ˜ X - 1, family = binomial(link = "logit"))
S <- vcov(fit_logit)
# Running the MCMC
fit_MCMC <- as.mcmc(HMC(R = R, burn_in = burn_in, y, X, epsilon, S, L))

# Running the MCMC (R = 30000, burn_in = 5000)
summary(effectiveSize(fit_MCMC)) # Effective sample size
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 215765 222946 226610 225565 228360 233334
summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.1286 0.1314 0.1324 0.1331 0.1346 0.1390
summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.9892 0.9892 0.9892 0.9892 0.9892 0.9892
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hmc algorithm in practice
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ACF of the intercept

The acf has an alternate sign behavior, implying that the integrated autocorrelation
τg < 1 is smaller than 1, leading to an efficiency higher than iid sampling.
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Summary of the results

The following table compare the average results. Here, ess represents the estimated
and average effective sample size.

A suitably tuned hmc can be extremely effective and is the clear winner in this case.

The implementation could even be improved by writing it in Rcpp!

Refer to the link: https://tommasorigon.github.io/CompStat/exe/un_B2.html

Seconds ess ess / Sec. Acceptance rate
mh Laplace in Rcpp 0.61 1165.76 1897.52 0.27

mala 3.43 44.32 12.91 0.56
Pre-conditioned mala 3.85 9063.32 2351.34 0.57

hmc 15.32 225565.17 14724.08 0.99
Stan 78.85 29864.59 378.77 1
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