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Unit C.1

Main concepts
Missing data problems;

Data augmentation and Gibbs sampling;

The em algorithm and generalizations;

Minorize maximize (mm) algorithms.

Main references
Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Chapter 9. Springer.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. JRSS-B, 39(1), 1–38.
Hunter, D. R., and Lange, K. (2004). A Tutorial on MM Algorithms. The American
Statistician, 58(1), 30–37.
McLachlan, G. J. and Krishnan, T. (1998). The EM Algorithm and Extensions. Wiley.
Robert, C. P., and Casella, G. (2009). Introducing Monte Carlo methods with R. Springer.

Tommaso Rigon (Milano-Bicocca) 2 / 20



Missing data problems

In this unit, we will take advantage of specific structures of the model to facilitate both
frequentist and Bayesian computations via the em and Gibbs sampling.

In most cases, this will involve the introduction of hidden features of the model,
sometimes called latent variables.

Depending on the context, these latent quantities will have a precise meaning, or they
will be regarded as purely abstract objects.

An obvious example of latent components with a precise interpretation is the case of
missing or censored observations.

Key idea. If the complete data were available, computations would be easier. Besides,
imputing the missing values could be interesting on its own.
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Example: survival analysis with an exponential model

Let z = (z1, . . . , zn)ᵀ be iid exponential random variables with rate parameter θ > 0.

If the prior θ ∼ Ga(a, b), then thanks to conjugacy we get the following posterior

(θ | z) ∼ Ga

(
a + n, b +

n∑
i=1

zi

)
.

However, in many cases observations are censored, as in Unit A.1. In fact, we observe
the values t = (t1, . . . , tn)ᵀ which are either complete (ti = zi ) or censored (ti ≤ zi ).

If the observations were all complete, then inference would be straightforward.

Intuitively, we aim at sampling or imputing the missing information from the
appropriate conditional distribution to make inference about θ.
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Data augmentation

Let X be the observed data, following some distribution π(X | θ), i.e. the likelihood,
with θ ∈ Θ ⊆ Rp being an unknown set of parameters.

Let π(θ) be the prior distribution associated to θ and let π(θ | X) be the posterior.

Let z ∈ Z ⊆ Rq be a vector of latent variables, which are not observed.

We assume that the likelihood function π(X | θ) can be written as the marginal
distribution of a complete likelihood, namely

π(X | θ) =
∫
Z
π(X , z | θ)dz.

Remark. We focus on continuous densities w.r.t. the Lebesgue measure for notational
simplicity, but these ideas apply in general.
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Data augmentation

The quantity π(X , z | θ) is the complete or augmented likelihood.

Within the Bayesian framework, we treat the latent variables z as if they were an
additional set of unknown parameters, leading to the augmented posterior

π(θ, z | X) ∝ π(X , z | θ)π(θ).

In other words, we aim at sampling (θ(r), z(r)) using mcmc from the joint posterior
π(θ, z | X), which can be performed using any of the strategies we have described.

If one is interested only in the original parameters θ or in the latent dimensions z, then
it suffices to ignore the other set of parameters.

We sample from π(θ, z | X) and then discard z rather than directly targeting π(θ | X)
because the augmented likelihood is typically more tractable than the original one.
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Data augmentation schemes

Unfortunately, there are no general recipes for finding useful data augmentation
schemes. We will see proposals in the probit and logit case in unit C.2.

In principle, whenever the likelihood can be expressed in an integral form, this leads to
a potential data augmentation mechanism.

The resulting augmented likelihood must be tractable, otherwise the whole procedure
is of little practical utility.

Mixture models greatly benefit from data-augmentation schemes, but we do not
discuss them here because they would deserve an entire course on their own.
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Data augmentation and Gibbs sampling

Although in principle any mcmc strategy could be used to target π(θ, z | X), the Gibbs
sampling is a natural choice in this setting.

In fact, it is often the case that the following full conditional distributions are
available in closed form. Moreover, they also have a nice interpretation.

Step 1. Sample from the “posterior” of θ based on the complete likelihood, namely

π(θ | X , z) ∝ π(X , z | θ)π(θ).

Step 2. Impute the missing observations z by sampling from the full conditional

π(z | X , θ) ∝ π(X , z | θ).

Obviously, we are allowed to split θ and z into blocks of parameters if this facilitates
the Gibbs sampling.
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Example: survival analysis with an exponential model

Recall the exponential model example with censored data t and censorship indicators
d = (d1, . . . , dn)ᵀ. The original likelihood is therefore equal to

π(t, d | θ) = θnc exp

{
−θ

n∑
i=1

ti

}
, nc =

n∑
i=1

di .

Remark. This is a toy example. Indeed, under a Gamma prior, the posterior
distribution of θ, based on the original likelihood, is known.

In this setting, the latent variables z represent the complete survival times having
exponential distribution so that the complete likelihood is

π(z | θ) = θn exp

{
−θ

n∑
i=1

zi

}
.

The Gibbs sampling alternates between the Gamma full conditional π(θ | z) and a
sampling step from π(z | t, θ). Note that (zi − ti | ti , di , θ) ind∼ Exp(θ) when di = 0.
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The em algorithm

A Gibbs sampling based on data augmentation strategies is strongly connected with
the so-called expectation-maximization (em) algorithm.

The em is a deterministic algorithm that aims at maximizing the likelihood (mle) or
the posterior distribution (map), namely at finding

arg max
θ∈Θ

π(θ | X) = arg max
θ∈Θ

π(X | θ)π(θ).

The em is widely used within the frequentist and the Bayesian framework. The mle
case is recovered whenever π(θ) ∝ 1.

Compared to other gradient-based maximizers, it leads to a monotonic sequence. The
target function always increases during the procedure, thus being more stable.

On the other hand, the em requires a (tractable) augmented likelihood. Moreover,
the em could be slower than other algorithms to reach convergence.
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The em algorithm

The em algorithm alternates between the following steps, which are reminiscent of
those of the Gibbs sampling, as they involve similar quantities.

Initialize the algorithm at a reasonable θ(0). The generic iteration proceeds as follows.

Step 1 (Expectation). Let θ(r) be the current value of the maximization procedure,
then obtain the function

Q(θ | θ(r)) = E{log π(X , z | θ)},

where the expectation is taken with respect to the conditional law π(z | X , θ(r)).

Step 2 (Maximization). The new value of the procedure θ(r+1) is obtained by
maximizing the function

arg max
θ∈Θ
Q(θ | θ(r)) + log π(θ).

In many cases, the e-step amounts at calculating E(z) and then plugging-in this
quantity in the augmented log-likelihood. Indeed, log π(X , z | θ) is often linear in z.
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Example: survival analysis with an exponential model

Recall that in the exponential model example, we have that (zi − ti | ti , di , θ) ind∼ Exp(θ)
when di = 0 and the augmented likelihood is π(z | θ) = θn exp{−θ

∑n
i=1 zi}.

Let us focus on the maximum likelihood so that π(θ) ∝ 1.

Step 1 (Expectation). Let θ(r) be the current value of the procedure, then

Q(θ | θ(r)) = n log θ − θ
n∑

i=1

E(zi ) = n log θ − θ
n∑

i=1

{
ti + (1− di )

θ(r)

}
,

where the expectation is taken with respect to the conditional law π(z | t, d , θ(r)).

Step 2 (Maximization). The new value of the procedure θ(r+1) is obtained by
considering the maximum of Q(θ | θ(r)), thus obtaining

θ(r+1) =

(
1
n

n∑
i=1

ti + n − nc

n
1
θ(r)

)−1

.
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Why does the em work?

Theorem (monotonic em sequence)
The em sequence for finding the mle satisfies the following inequality

π(X | θ(r+1)) ≥ π(X | θ(r)).

Similarly, the em sequence for finding the map satisfies the following inequality

π(θ(r+1) | X) ≥ π(θ(r) | X).

With some further continuity assumptions w.r.t. θ, this theorem implies that the em is
guaranteed to reach a stationary point.

If the posterior / likelihood function is concave, the stationary point will also be the
global maximum.

In general, as in any maximization procedure, it is recommended to initialize the
algorithm at different starting points.
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Sketch of the proof

In the first place, recognize that the following identity holds (do it as an exercise!)
log π(θ | X) = log π(X, z | θ) + log π(θ)− log π(z | X, θ)− log π(X),

Consequently, one gets the following identity
log π(θ | X) = Q(θ | θ

′) + log π(θ)− E{log π(z | X, θ)} − log π(X),
after taking the expectation w.r.t. π(z | X, θ′).

Let θ(r) and θ(r+1) be subsequent steps in the em procedure. Then, it necessarily holds that

Q(θ(r+1) | θ
(r)) + log π(θ(r+1)) ≥ Q(θ(r) | θ

(r)) + log π(θ(r)),

as the value θ(r+1) is indeed maximizing the left-hand-side. Furthermore, note that because of Jensen’s
inequality, we get

E

{
log

π(z | X, θ(r+1))
π(z | X, θ(r))

}
≤ logE

{
π(z | X, θ(r+1))
π(z | X, θ(r))

}
= 0,

expectations being taken w.r.t. to π(z | X, θ(r)). This implies that

−E{log π(z | X, θ(r+1))} ≥ −E{log π(z | X, θ(r))}.

The proof follows by combining the above results, after noting that

log π(θ(r+1) | X) = Q(θ(r+1) | θ
(r)) + log π(θ(r+1))− E{log π(z | X, θ(r+1))} − log π(X) ≥

≥ Q(θ(r) | θ
(r)) + log π(θ(r))− E{log π(z | X, θ(r))} − log π(X) = log π(θ(r) | X).
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An alternative derivation of the em

There exists an alternative derivation of the em purely based on maximization.

Albeit less common, this way of thinking leads to a more elegant proof and puts the
basis for variational Bayes (vb) procedures unit D.1.

Let q(z) ∈ Q be a generic density of the latent variables z and define

L{q(z) | X , θ} = Eq

(
log π(X , z | θ)

q(z)

)
,

where the expectations are taken w.r.t. q(z).

Moreover, define the Kullback-Leibler divergence

kl{q(z) || π(z | X , θ)} = −Eq

(
log π(z | X , θ)

q(z)

)
.
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A maximization / maximization procedure
Let us focus on the mle case for notational simplicity. The map case is recovered with
minor adjustments (do it as an exercise!)

For any q ∈ Q the following identity holds true

log π(X | θ) = L{q(z) | X , θ}+ kl{q(z) || π(z | X , θ)}.

Since the Kullback-Leibler divergence kl{q(z) || π(z | X , θ)} ≥ 0, then we will have

L{q(z) | X , θ} ≤ log π(X | θ),

meaning that L{q(z) | θ,X} is the lower bound of the log-likelihood.

This suggests that the mle can be found maximizing the lower bound, since

arg max
θ∈Θ

log π(X | θ) = arg max
θ∈Θ

max
q∈Q
L{q(z) | X , θ}.

Indeed, the value q(z) = π(z | X , θ) is the maximum of L{q(z) | X , θ}, because

L{q(z) | X , θ} = log π(X | θ)− kl{q(z) || π(z | X , θ)}︸ ︷︷ ︸
=0

= log π(X | θ).
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A maximization / maximization procedure

Consequently, the mle can be obtained by iteratively maximizing L{q(z) | θ,X} over
q(z) for a given value of θ and then over θ for a given q(z).

Let θ(r) be the current value of the procedure.

Step 1 (Maximization over q). Given the fixed value θ(r), obtain

π(z | X , θ(r)) = arg max
q∈Q
L{q(z) | X , θ(r)} = arg min

q∈Q
kl{q(z) || π(z | X , θ(r))}.

Step 2 (Maximization over θ). Given the locally optimal value q(z) = π(z | X , θ(r)),
obtain the new value θ(r+1) as the maximizer

θ(r+1) = arg max
θ∈Θ
L{π(z | X , θ(r)) | X , θ} = arg max

θ∈Θ
Q(θ | θ(r)).

These are the steps of the em, which therefore has an alternative interpretation.

Moreover, recalling that L{π(z | X , θ(r)) | X , θ(r)} = log π(X | θ(r)), the monotonicity
property of the em is obvious.
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Generalizations of the em

Sometimes the maximization of Q(θ | θ(r)) + log π(θ), namely the maximization step,
could be difficult.

Thus, an obvious generalization of the em algorithm that preserves the monotonicity of
the procedure is considering some value θ(r+1) such that

Q(θ(r+1) | θ(r)) + log π(θ(r+1)) ≥ Q(θ(r) | θ(r)) + log π(θ(r))

that is, θ(r+1) increases the function rather maximizing it.

An example is the expectation conditional maximization (ecm) of Meng and Rubin
(1993), where the parameters are partitioned into sub-groups and iteratively maximized.

Similar ideas can be applied to generalize the expectation step by doing a “partial”
update in the maximization of q.
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mm algorithms

We finally consider a large class of optimization methods called minorize maximize
(mm) that includes the em as a special case.

mm methods do not involve missing data or data augmentations but rather rely on
general convexity arguments.

The mm is used to optimize a `(θ; X) of the parameters θ and the data X , with f (·)
being the posterior distribution, the likelihood, or a general loss function.

Let θ(r) be the current value of the iterative maximization procedure. We are seeking
for a minorization function g(θ | θ(r)), such that

g(θ | θ(r)) ≤ `(θ; X), for any θ ∈ Θ,

and satisfying g(θ | θ) = `(θ; X).
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mm algorithms

In mm algorithms we iteratively maximize the lower bound g(θ; θ(r),X), so that

θ(r+1) = arg max
θ∈Θ

g(θ | θ(r))

mm leads to monotonic sequences, since

`(θ(r+1); X) ≥ g(θ(r+1) | θ(r)) ≥ g(θ(r) | θ(r)) = `(θ(r); X).

This property ensures remarkable numerical stability but does not provide any hint
about the actual construction of g(θ | θ(r)).

The em is indeed a special case of this framework, recovered in the mle case by
defining

g(θ | θ(r)) = L{π(z | X , θ(r)) | X , θ} ≤ log π(X | θ).

and recalling that g(θ | θ(r)) = Q(θ | θ(r)) + const, and that g(θ | θ) = log π(X | θ).

We will see an example in unit C.2 for the logistic regression case.
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