Computational Statistics II

Unit C.1: Missing data problems, Gibbs sampling and the ${\rm EM}$ algorithm

Tommaso Rigon

University of Milano-Bicocca

Ph.D. in Economics, Statistics and Data Science

Unit C.1

Main concepts

- Missing data problems;
- Data augmentation and Gibbs sampling;
- The EM algorithm and generalizations;
- Minorize maximize (MM) algorithms.

Main references

- Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Chapter 9. Springer.
- Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. JRSS-B, 39(1), 1–38.
- Hunter, D. R., and Lange, K. (2004). A Tutorial on MM Algorithms. The American Statistician, 58(1), 30–37.
- McLachlan, G. J. and Krishnan, T. (1998). The EM Algorithm and Extensions. Wiley.
- Robert, C. P., and Casella, G. (2009). Introducing Monte Carlo methods with R. Springer.

- In this unit, we will take advantage of specific structures of the model to facilitate both frequentist and Bayesian computations via the EM and Gibbs sampling.
- In most cases, this will involve the introduction of hidden features of the model, sometimes called latent variables.
- Depending on the context, these latent quantities will have a precise meaning, or they will be regarded as purely abstract objects.
- An obvious example of latent components with a precise interpretation is the case of missing or censored observations.
- Key idea. If the complete data were available, computations would be easier. Besides, imputing the missing values could be interesting on its own.

• Let $\mathbf{z} = (z_1, \ldots, z_n)^{\mathsf{T}}$ be iid exponential random variables with rate parameter $\theta > 0$.

If the prior $\theta \sim Ga(a, b)$, then thanks to conjugacy we get the following posterior

$$(heta \mid oldsymbol{z}) \sim \mathsf{Ga}\left(oldsymbol{a} + oldsymbol{n}, oldsymbol{b} + \sum_{i=1}^n z_i
ight).$$

• However, in many cases observations are censored, as in Unit A.1. In fact, we observe the values $\mathbf{t} = (t_1, \ldots, t_n)^{\mathsf{T}}$ which are either complete $(t_i = z_i)$ or censored $(t_i \le z_i)$.

- If the observations were all complete, then inference would be straightforward.
- Intuitively, we aim at sampling or imputing the missing information from the appropriate conditional distribution to make inference about θ .

- Let X be the observed data, following some distribution $\pi(X \mid \theta)$, i.e. the likelihood, with $\theta \in \Theta \subseteq \mathbb{R}^{\rho}$ being an unknown set of parameters.
- Let $\pi(\theta)$ be the prior distribution associated to θ and let $\pi(\theta \mid X)$ be the posterior.
- Let $z \in \mathcal{Z} \subseteq \mathbb{R}^q$ be a vector of latent variables, which are not observed.
- We assume that the likelihood function $\pi(\mathbf{X} \mid \boldsymbol{\theta})$ can be written as the marginal distribution of a complete likelihood, namely

$$\pi(\boldsymbol{X} \mid \boldsymbol{\theta}) = \int_{\mathcal{Z}} \pi(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta}) \mathrm{d} \boldsymbol{z}.$$

 <u>Remark</u>. We focus on continuous densities w.r.t. the Lebesgue measure for notational simplicity, but these ideas apply in general.

- The quantity $\pi(\mathbf{X}, \mathbf{z} \mid \boldsymbol{\theta})$ is the complete or augmented likelihood.
- Within the Bayesian framework, we treat the latent variables z as if they were an additional set of unknown parameters, leading to the augmented posterior

$$\pi(\theta, \boldsymbol{z} \mid \boldsymbol{X}) \propto \pi(\boldsymbol{X}, \boldsymbol{z} \mid \theta) \pi(\theta).$$

- In other words, we aim at sampling $(\theta^{(r)}, z^{(r)})$ using MCMC from the joint posterior $\pi(\theta, z \mid X)$, which can be performed using any of the strategies we have described.
- If one is interested only in the original parameters θ or in the latent dimensions z, then it suffices to ignore the other set of parameters.
- We sample from $\pi(\theta, z \mid X)$ and then discard z rather than directly targeting $\pi(\theta \mid X)$ because the augmented likelihood is typically more tractable than the original one.

- Unfortunately, there are no general recipes for finding useful data augmentation schemes. We will see proposals in the probit and logit case in unit C.2.
- In principle, whenever the likelihood can be expressed in an integral form, this leads to a potential data augmentation mechanism.
- The resulting augmented likelihood must be tractable, otherwise the whole procedure is of little practical utility.
- Mixture models greatly benefit from data-augmentation schemes, but we do not discuss them here because they would deserve an entire course on their own.

Data augmentation and Gibbs sampling

- Although in principle any MCMC strategy could be used to target $\pi(\theta, z \mid X)$, the Gibbs sampling is a natural choice in this setting.
- In fact, it is often the case that the following full conditional distributions are available in closed form. Moreover, they also have a nice interpretation.
- **Step 1**. Sample from the "posterior" of θ based on the complete likelihood, namely

$$\pi(\theta \mid \mathbf{X}, \mathbf{z}) \propto \pi(\mathbf{X}, \mathbf{z} \mid \theta) \pi(\theta).$$

Step 2. Impute the missing observations z by sampling from the full conditional

$$\pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}) \propto \pi(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta}).$$

• Obviously, we are allowed to split θ and z into blocks of parameters if this facilitates the Gibbs sampling.

Example: survival analysis with an exponential model

Recall the exponential model example with censored data t and censorship indicators $d = (d_1, \ldots, d_n)^{\mathsf{T}}$. The original likelihood is therefore equal to

$$\pi(\boldsymbol{t}, \boldsymbol{d} \mid \theta) = \theta^{n_c} \exp\left\{-\theta \sum_{i=1}^n t_i\right\}, \qquad n_c = \sum_{i=1}^n d_i.$$

- <u>Remark</u>. This is a toy example. Indeed, under a Gamma prior, the posterior distribution of θ, based on the original likelihood, is known.
- In this setting, the latent variables z represent the complete survival times having exponential distribution so that the complete likelihood is

$$\pi(\boldsymbol{z} \mid \theta) = \theta^n \exp\left\{-\theta \sum_{i=1}^n z_i\right\}.$$

• The Gibbs sampling alternates between the Gamma full conditional $\pi(\theta \mid z)$ and a sampling step from $\pi(z \mid t, \theta)$. Note that $(z_i - t_i \mid t_i, d_i, \theta) \stackrel{\text{ind}}{\sim} \text{Exp}(\theta)$ when $d_i = 0$.

- A Gibbs sampling based on data augmentation strategies is strongly connected with the so-called expectation-maximization (EM) algorithm.
- The EM is a deterministic algorithm that aims at maximizing the likelihood (MLE) or the posterior distribution (MAP), namely at finding

$$rg\max_{oldsymbol{ heta}\in\Theta} \pi(oldsymbol{ heta}\midoldsymbol{X}) = rg\max_{oldsymbol{ heta}\in\Theta} \pi(oldsymbol{X}\midoldsymbol{ heta})\pi(oldsymbol{ heta}).$$

- The EM is widely used within the frequentist and the Bayesian framework. The MLE case is recovered whenever $\pi(\theta) \propto 1$.
- Compared to other gradient-based maximizers, it leads to a monotonic sequence. The target function always increases during the procedure, thus being more stable.
- On the other hand, the EM requires a (tractable) augmented likelihood. Moreover, the EM could be slower than other algorithms to reach convergence.

The EM algorithm

- The EM algorithm alternates between the following steps, which are reminiscent of those of the Gibbs sampling, as they involve similar quantities.
- Initialize the algorithm at a reasonable $\theta^{(0)}$. The generic iteration proceeds as follows.
- **Step 1 (Expectation)**. Let $\theta^{(r)}$ be the current value of the maximization procedure, then obtain the function

$$\mathcal{Q}(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(r)}) = \mathbb{E}\{\log \pi(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta})\},\$$

where the expectation is taken with respect to the conditional law $\pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)})$.

Step 2 (Maximization). The new value of the procedure $\theta^{(r+1)}$ is obtained by maximizing the function

$$\arg \max_{\boldsymbol{\theta} \in \Theta} \mathcal{Q}(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(r)}) + \log \pi(\boldsymbol{\theta}).$$

In many cases, the E-step amounts at calculating $\mathbb{E}(z)$ and then plugging-in this quantity in the augmented log-likelihood. Indeed, log $\pi(X, z \mid \theta)$ is often linear in z.

Example: survival analysis with an exponential model

- Recall that in the exponential model example, we have that $(z_i t_i | t_i, d_i, \theta) \stackrel{\text{ind}}{\sim} \text{Exp}(\theta)$ when $d_i = 0$ and the augmented likelihood is $\pi(z | \theta) = \theta^n \exp\{-\theta \sum_{i=1}^n z_i\}$.
- Let us focus on the maximum likelihood so that $\pi(\theta) \propto 1$.
- **Step 1** (Expectation). Let $\theta^{(r)}$ be the current value of the procedure, then

$$\mathcal{Q}(\theta \mid \theta^{(r)}) = n \log \theta - \theta \sum_{i=1}^{n} \mathbb{E}(z_i) = n \log \theta - \theta \sum_{i=1}^{n} \left\{ t_i + \frac{(1-d_i)}{\theta^{(r)}} \right\},$$

where the expectation is taken with respect to the conditional law $\pi(\mathbf{z} \mid \mathbf{t}, \mathbf{d}, \theta^{(r)})$.

Step 2 (Maximization). The new value of the procedure $\theta^{(r+1)}$ is obtained by considering the maximum of $Q(\theta \mid \theta^{(r)})$, thus obtaining

$$\theta^{(r+1)} = \left(\frac{1}{n}\sum_{i=1}^n t_i + \frac{n-n_c}{n}\frac{1}{\theta^{(r)}}\right)^{-1}$$

Theorem (monotonic EM sequence)

The ${\rm EM}$ sequence for finding the ${\rm MLE}$ satisfies the following inequality

$$\pi(\boldsymbol{X} \mid \boldsymbol{\theta}^{(r+1)}) \geq \pi(\boldsymbol{X} \mid \boldsymbol{\theta}^{(r)}).$$

Similarly, the EM sequence for finding the MAP satisfies the following inequality

$$\pi(\boldsymbol{\theta}^{(r+1)} \mid \boldsymbol{X}) \geq \pi(\boldsymbol{\theta}^{(r)} \mid \boldsymbol{X}).$$

- With some further continuity assumptions w.r.t. θ , this theorem implies that the EM is guaranteed to reach a stationary point.
- If the posterior / likelihood function is concave, the stationary point will also be the global maximum.
- In general, as in any maximization procedure, it is recommended to initialize the algorithm at different starting points.

Sketch of the proof

In the first place, recognize that the following identity holds (do it as an exercise!)

$$\log \pi(\boldsymbol{\theta} \mid \boldsymbol{X}) = \log \pi(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{\theta}) + \log \pi(\boldsymbol{\theta}) - \log \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}) - \log \pi(\boldsymbol{X}),$$

Consequently, one gets the following identity

$$\log \pi(\boldsymbol{\theta} \mid \boldsymbol{X}) = \mathcal{Q}(\boldsymbol{\theta} \mid \boldsymbol{\theta}') + \log \pi(\boldsymbol{\theta}) - \mathbb{E}\{\log \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})\} - \log \pi(\boldsymbol{X})$$

after taking the expectation w.r.t. $\pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}')$.

• Let $\theta^{(r)}$ and $\theta^{(r+1)}$ be subsequent steps in the EM procedure. Then, it necessarily holds that

$$\mathcal{Q}(\boldsymbol{\theta}^{(r+1)} \mid \boldsymbol{\theta}^{(r)}) + \log \pi(\boldsymbol{\theta}^{(r+1)}) \geq \mathcal{Q}(\boldsymbol{\theta}^{(r)} \mid \boldsymbol{\theta}^{(r)}) + \log \pi(\boldsymbol{\theta}^{(r)}),$$

as the value $\theta^{(r+1)}$ is indeed maximizing the left-hand-side. Furthermore, note that because of Jensen's inequality, we get

$$\mathbb{E}\left\{\log\frac{\pi(\boldsymbol{z}\mid\boldsymbol{X},\boldsymbol{\theta}^{(r+1)})}{\pi(\boldsymbol{z}\mid\boldsymbol{X},\boldsymbol{\theta}^{(r)})}\right\} \leq \log\mathbb{E}\left\{\frac{\pi(\boldsymbol{z}\mid\boldsymbol{X},\boldsymbol{\theta}^{(r+1)})}{\pi(\boldsymbol{z}\mid\boldsymbol{X},\boldsymbol{\theta}^{(r)})}\right\} = 0,$$

expectations being taken w.r.t. to $\pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)})$. This implies that

$$-\mathbb{E}\{\log \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r+1)})\} \geq -\mathbb{E}\{\log \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)})\}.$$

The proof follows by combining the above results, after noting that

$$\begin{split} \log \pi(\boldsymbol{\theta}^{(r+1)} \mid \boldsymbol{X}) &= \mathcal{Q}(\boldsymbol{\theta}^{(r+1)} \mid \boldsymbol{\theta}^{(r)}) + \log \pi(\boldsymbol{\theta}^{(r+1)}) - \mathbb{E}\{\log \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r+1)})\} - \log \pi(\boldsymbol{X}) \geq \\ &\geq \mathcal{Q}(\boldsymbol{\theta}^{(r)} \mid \boldsymbol{\theta}^{(r)}) + \log \pi(\boldsymbol{\theta}^{(r)}) - \mathbb{E}\{\log \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)})\} - \log \pi(\boldsymbol{X}) = \log \pi(\boldsymbol{\theta}^{(r)} \mid \boldsymbol{X}). \end{split}$$

- There exists an alternative derivation of the EM purely based on maximization.
- Albeit less common, this way of thinking leads to a more elegant proof and puts the basis for variational Bayes (VB) procedures unit D.1.
- Let $q(z) \in \mathbb{Q}$ be a generic density of the latent variables z and define

$$\mathcal{L}\{q(\boldsymbol{z}) \mid \boldsymbol{X}, \boldsymbol{ heta}\} = \mathbb{E}_q\left(\log rac{\pi(\boldsymbol{X}, \boldsymbol{z} \mid \boldsymbol{ heta})}{q(\boldsymbol{z})}
ight),$$

where the expectations are taken w.r.t. q(z).

Moreover, define the Kullback-Leibler divergence

$$\operatorname{KL}\{q(\boldsymbol{z}) \mid\mid \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{ heta})\} = -\mathbb{E}_q\left(\log rac{\pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{ heta})}{q(\boldsymbol{z})}
ight).$$

A maximization / maximization procedure

- Let us focus on the MLE case for notational simplicity. The MAP case is recovered with minor adjustments (do it as an exercise!)
- For any $q \in \mathbb{Q}$ the following identity holds true

$$\log \pi(\boldsymbol{X} \mid \boldsymbol{\theta}) = \mathcal{L}\{q(\boldsymbol{z}) \mid \boldsymbol{X}, \boldsymbol{\theta}\} + \mathrm{KL}\{q(\boldsymbol{z}) \mid\mid \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})\}.$$

Since the Kullback-Leibler divergence $\operatorname{KL}\{q(z) \mid \mid \pi(z \mid X, \theta)\} \ge 0$, then we will have $\mathcal{L}\{q(z) \mid X, \theta\} < \log \pi(X \mid \theta),$

meaning that $\mathcal{L}\{q(z) \mid \theta, X\}$ is the lower bound of the log-likelihood.

This suggests that the MLE can be found maximizing the lower bound, since

$$\arg\max_{\boldsymbol{\theta}\in\Theta}\log\pi(\boldsymbol{X}\mid\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}\in\Theta}\max_{q\in\mathbb{Q}}\mathcal{L}\{q(\boldsymbol{z})\mid\boldsymbol{X},\boldsymbol{\theta}\}.$$

Indeed, the value $q(z) = \pi(z \mid X, \theta)$ is the maximum of $\mathcal{L}\{q(z) \mid X, \theta\}$, because

$$\mathcal{L}\{q(\boldsymbol{z}) \mid \boldsymbol{X}, \boldsymbol{\theta}\} = \log \pi(\boldsymbol{X} \mid \boldsymbol{\theta}) - \underbrace{\operatorname{KL}\{q(\boldsymbol{z}) \mid\mid \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta})\}}_{=0} = \log \pi(\boldsymbol{X} \mid \boldsymbol{\theta}).$$

A maximization / maximization procedure

- Consequently, the MLE can be obtained by iteratively maximizing $\mathcal{L}\{q(z) \mid \theta, X\}$ over q(z) for a given value of θ and then over θ for a given q(z).
- Let $\theta^{(r)}$ be the current value of the procedure.
- **Step 1** (Maximization over q). Given the fixed value $\theta^{(r)}$, obtain

$$\pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)}) = \arg \max_{q \in \mathbb{Q}} \mathcal{L}\{q(\boldsymbol{z}) \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)}\} = \arg \min_{q \in \mathbb{Q}} \operatorname{KL}\{q(\boldsymbol{z}) \mid \mid \pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)})\}.$$

Step 2 (Maximization over θ). Given the locally optimal value $q(z) = \pi(z \mid X, \theta^{(r)})$, obtain the new value $\theta^{(r+1)}$ as the maximizer

$$\boldsymbol{\theta}^{(r+1)} = \arg \max_{\boldsymbol{\theta} \in \Theta} \mathcal{L}\{\pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)}) \mid \boldsymbol{X}, \boldsymbol{\theta}\} = \arg \max_{\boldsymbol{\theta} \in \Theta} \mathcal{Q}(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(r)}).$$

- These are the steps of the EM, which therefore has an alternative interpretation.
- Moreover, recalling that $\mathcal{L}\{\pi(\boldsymbol{z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)}) \mid \boldsymbol{X}, \boldsymbol{\theta}^{(r)}\} = \log \pi(\boldsymbol{X} \mid \boldsymbol{\theta}^{(r)})$, the monotonicity property of the EM is obvious.

- Sometimes the maximization of $Q(\theta \mid \theta^{(r)}) + \log \pi(\theta)$, namely the maximization step, could be difficult.
- Thus, an obvious generalization of the EM algorithm that preserves the monotonicity of the procedure is considering some value $\theta^{(r+1)}$ such that

$$\mathcal{Q}(\boldsymbol{\theta}^{(r+1)} \mid \boldsymbol{\theta}^{(r)}) + \log \pi(\boldsymbol{\theta}^{(r+1)}) \geq \mathcal{Q}(\boldsymbol{\theta}^{(r)} \mid \boldsymbol{\theta}^{(r)}) + \log \pi(\boldsymbol{\theta}^{(r)})$$

that is, $\theta^{(r+1)}$ increases the function rather maximizing it.

- An example is the expectation conditional maximization (ECM) of Meng and Rubin (1993), where the parameters are partitioned into sub-groups and iteratively maximized.
- Similar ideas can be applied to generalize the expectation step by doing a "partial" update in the maximization of q.

- We finally consider a large class of optimization methods called minorize maximize (MM) that includes the EM as a special case.
- MM methods do not involve missing data or data augmentations but rather rely on general convexity arguments.
- The MM is used to optimize a $\ell(\theta; X)$ of the parameters θ and the data X, with $f(\cdot)$ being the posterior distribution, the likelihood, or a general loss function.
- Let $\theta^{(r)}$ be the current value of the iterative maximization procedure. We are seeking for a minorization function $g(\theta \mid \theta^{(r)})$, such that

$$g(oldsymbol{ heta} \mid oldsymbol{ heta}^{(r)}) \leq \ell(oldsymbol{ heta};oldsymbol{X}), \qquad ext{for any }oldsymbol{ heta} \in \Theta,$$

and satisfying $g(\theta \mid \theta) = \ell(\theta; X)$.

In MM algorithms we iteratively maximize the lower bound $g(\theta; \theta^{(r)}, X)$, so that

$$oldsymbol{ heta}^{(r+1)} = rg\max_{oldsymbol{ heta}\in \Theta} g(oldsymbol{ heta} \mid oldsymbol{ heta}^{(r)})$$

MM leads to monotonic sequences, since

$$\ell(\boldsymbol{ heta}^{(r+1)}; \boldsymbol{X}) \geq g(\boldsymbol{ heta}^{(r+1)} \mid \boldsymbol{ heta}^{(r)}) \geq g(\boldsymbol{ heta}^{(r)} \mid \boldsymbol{ heta}^{(r)}) = \ell(\boldsymbol{ heta}^{(r)}; \boldsymbol{X}).$$

- This property ensures remarkable numerical stability but does not provide any hint about the actual construction of $g(\theta \mid \theta^{(r)})$.
- The EM is indeed a special case of this framework, recovered in the MLE case by defining

$$g(\theta \mid \theta^{(r)}) = \mathcal{L}\{\pi(\boldsymbol{z} \mid \boldsymbol{X}, \theta^{(r)}) \mid \boldsymbol{X}, \theta\} \leq \log \pi(\boldsymbol{X} \mid \theta).$$

and recalling that $g(\theta \mid \theta^{(r)}) = \mathcal{Q}(\theta \mid \theta^{(r)}) + \text{const}$, and that $g(\theta \mid \theta) = \log \pi(\boldsymbol{X} \mid \theta)$.

• We will see an example in unit C.2 for the logistic regression case.