Computational Statistics II

Unit C.2: Data augmentation for probit and logit models

Tommaso Rigon

University of Milano-Bicocca

Ph.D. in Economics, Statistics and Data Science

Unit C. 2

Main concepts

- Albert \& Chib data augmentation for probit models;
- Pólya-gamma data augmentation for logit models;
- EM and MM algorithms for logit models.
- Associated \mathbf{R} code is available on the website of the course
- Additional R code (EM tutorial): https://github.com/tommasorigon/logisticVB

Main references

- Albert, J. H., \& Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. JASA, 88(422), 669-679.
- Durante, D., \& Rigon, T. (2019). Conditionally conjugate mean-field variational Bayes for logistic models. Statistical Science, 34(3), 472-485.
- Polson, N. G., Scott, J. G., \& Windle, J. (2013). Bayesian inference for logistic models using Pólya-Gamma latent variables. JASA, 108(504), 1339-1349.

Probit and logit regression models (recap)

■ One of the first data augmentation success stories within the Bayesian framework is the highly influential Albert \& Chib (1993) paper for probit regression.

■ Although this approach is nowadays sub-optimal in several contexts, it is worth recalling it for historical purposes.

■ Let $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ be a vector of the observed binary responses.

- Let \mathbf{X} be the corresponding design matrix whose generic row is $\mathbf{x}_{i}=\left(1, x_{i 2}, \ldots, x_{i p}\right)^{\top}$, for $i=1, \ldots, n$.
- We consider a generalized linear model such that

$$
\left(y_{i} \mid \pi_{i}\right) \stackrel{\text { ind }}{\sim} \operatorname{Bern}\left(\pi_{i}\right), \quad \pi_{i}=g\left(\eta_{i}\right), \quad \eta_{i}=\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}=\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}
$$

where $g(\cdot)$ is either the inverse logit transform or the cdf of a standard normal $\Phi(\cdot)$.

Probit data-augmentation

- The likelihood function of a probit regression model is the following

$$
\begin{aligned}
\pi(\boldsymbol{y} \mid \boldsymbol{\beta}) & =\prod_{i=1}^{n} \Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{y_{i}}\left\{1-\Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right\}^{1-y_{i}} \\
& =\prod_{i=1}^{n}\left[\mathbb{1}\left(y_{i}=1\right) \Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)+\mathbb{1}\left(y_{i}=0\right)\left\{1-\Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right\}\right] .
\end{aligned}
$$

■ Let us assume a multivariate Gaussian prior $\pi(\beta)$, leading to the posterior

$$
\pi(\boldsymbol{\beta} \mid \boldsymbol{y})=\frac{\pi(\boldsymbol{\beta}) \prod_{i=1}^{n} \Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{y_{i}}\left\{1-\Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right\}^{1-y_{i}}}{\int_{\mathbb{R}^{d}} \pi(\boldsymbol{\beta}) \prod_{i=1}^{n} \Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{y_{i}}\left\{1-\Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right\}^{1-y_{i}} \mathrm{~d} \boldsymbol{\beta}},
$$

whose normalizing constant is often (but not always!) hard to approximate.
■ Whenever computations of the normalizing constant are numerically unstable, we may seek a suitable data augmentation strategy that enables Gibbs sampling and EM.

Probit data-augmentation

- We introduce a vector of latent variables $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)^{\top}$ taking values $z_{i} \in \mathbb{R}$.

■ Let us consider the following generative mechanism:

$$
z_{i}=\boldsymbol{x}_{i}^{\top} \beta+\epsilon_{i}, \quad \epsilon_{i} \stackrel{\mathrm{iid}}{\sim} \mathrm{~N}(0,1), \quad i=1, \ldots, n .
$$

and transform the scores into binary variables $y_{i}=\mathbb{1}\left(z_{i}>0\right)$, for $i=1, \ldots, n$.

■ The augmented likelihood, therefore, is given by

$$
\pi(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{\beta})=\prod_{i=1}^{n} \phi\left(z_{i} \mid \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}, 1\right)\left\{\mathbb{1}\left(z_{i}>0\right) \mathbb{1}\left(y_{i}=1\right)+\mathbb{1}\left(z_{i} \leq 0\right) \mathbb{1}\left(y_{i}=0\right)\right\}
$$

■ Exercise. Prove that the marginal distribution of $\pi(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{\beta})$ coincides with $\pi(\boldsymbol{y} \mid \boldsymbol{\beta})$.

Gibbs sampling for probit models

- It is easy to show (try that as an exercise) that the full conditional distribution can be obtained in closed form, and they can be easily simulated.

■ The full conditional distribution of $\boldsymbol{\beta}$ is conjugate under a Gaussian prior $\boldsymbol{\beta} \sim \mathrm{N}(\boldsymbol{b}, \boldsymbol{B})$, so that

$$
(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{z}) \sim \mathrm{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \boldsymbol{\mu}=\boldsymbol{\Sigma}\left(\boldsymbol{X}^{\top} \boldsymbol{z}+\boldsymbol{B}^{-1} \boldsymbol{b}\right), \quad \boldsymbol{\Sigma}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\boldsymbol{B}^{-1}\right)^{-1}
$$

- The elements of the full conditional distribution $(\boldsymbol{z} \mid \boldsymbol{y}, \boldsymbol{\beta})$ are independent and having density

$$
\pi\left(z_{i} \mid y_{i}=1, \beta\right) \propto \phi\left(z_{i} \mid x_{i}^{\top} \beta, 1\right) \mathbb{1}\left(z_{i}>0\right)
$$

and

$$
\pi\left(z_{i} \mid y_{i}=0, \beta\right) \propto \phi\left(z_{i} \mid \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}, 1\right) \mathbb{1}\left(z_{i} \leq 0\right)
$$

In other words, the z_{i} 's follow a truncated normal distribution.
■ Homework 2. Implement this Gibbs sampling using the Pima Indian dataset.

Yes, but what about skew-normals?

■ Recently, it has been recognized that the "intractable" posterior density

$$
\pi(\boldsymbol{\beta} \mid \boldsymbol{y})=\frac{\pi(\boldsymbol{\beta}) \prod_{i=1}^{n} \Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{y_{i}}\left\{1-\Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right\}^{1-y_{i}}}{\int_{\mathbb{R}^{d}} \pi(\boldsymbol{\beta}) \prod_{i=1}^{n} \Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{y_{i}}\left\{1-\Phi\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right\}^{1-y_{i} \mathrm{~d} \boldsymbol{\beta}}},
$$

is actually a known distribution!

■ Indeed, the distribution of $(\boldsymbol{\beta} \mid \boldsymbol{y})$ is a unified skew normal (SUN).

■ Do we still need data-augmentation steps? Depending on the context, iid sampling from a SUN distribution is relatively easy (large p) or problematic (large n).

Reference

- Durante, D. (2019). Conjugate Bayes for probit regression via unified skew-normal distributions. Biometrika, 106(4), 765-779.

The logit regression model

- The logit regression model is often termed the canonical choice for binary regression; see, e.g., the classic monograph by McCullagh and Nelder (1986).
- The first key reason is its improved interpretability, as the regression coefficients β can be nicely interpreted as log-odds ratios.
- The second reason is its analytical tractability since the logit case is an exponential family of distributions.

■ The latter property has many implications, both within the frequentist and Bayesian framework; see, e.g., the classic paper by Diaconis and Ylvisaker (1979).

- The likelihood function of a logit regression model is the following

$$
\pi(\boldsymbol{y} \mid \boldsymbol{\beta})=\prod_{i=1}^{n} \frac{\exp \left(y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)}{1+\exp \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)}
$$

The Pólya-gamma distribution

■ In a relatively recent paper, Polson et al. (2013) described a data-augmentation scheme for logistic regression based on the Pólya-gamma distribution.

■ Definition (Pólya-gamma). A positive random variable Z has a Pólya-gamma distribution with parameters $\alpha>0$ and $\gamma \in \mathbb{R}$ denoted as $Z \sim \operatorname{PG}(\alpha, \gamma)$, if

$$
Z \stackrel{d}{=} \frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} \frac{G_{k}}{(k-1 / 2)^{2}+\gamma^{2} /\left(4 \pi^{2}\right)}
$$

where $G_{k} \sim \operatorname{GA}(\alpha, 1)$ are independent random variables.
■ Remark. The density $\pi(z \mid \alpha, \gamma)$ of a Pólya-gamma random variable $Z \sim \operatorname{PG}(\alpha, \gamma)$ is expressed in terms of an infinite summation, but it can be easily simulated.

■ In \mathbf{R} this can be done using the rpg. devroye function of the BayesLogit \mathbf{R} package.

Technical results about the Pólya-gamma distribution

- Technical lemma 1. The Laplace transform characterizing the law of $V \sim \operatorname{PG}(\alpha, 0)$ for any $\lambda>0$ is readily available as

$$
\mathbb{E}\{\exp (-\lambda V)\}=\prod_{k=1}^{\infty}\left(1+\frac{\lambda}{2 \pi^{2}(k-1 / 2)^{2}}\right)^{-\alpha}=\cosh (\sqrt{\lambda / 2})^{-\alpha}
$$

- Technical lemma 2. The general family of distributions $Z \sim \operatorname{PG}(\alpha, \gamma)$ is generated through the exponential tilting of $V \sim \operatorname{PG}(\alpha, 0)$, since

$$
\pi(z \mid \alpha, \gamma)=\frac{e^{-z \gamma^{2} / 2} \pi(z \mid \alpha, 0)}{\mathbb{E}\left\{\exp \left(-\gamma^{2} / 2 V\right)\right\}}=\cosh (\gamma / 2)^{\alpha} e^{-z \gamma^{2} / 2} \pi(z \mid \alpha, 0)
$$

This can be again proved using the Laplace transform and appealing to the Weierstrass factorization theorem.

■ Intriguing idea? The Pólya-gamma is also infinitely divisible \Longrightarrow CRM / NRMI can be constructed. The characterizing Lévy-intensity is available as an infinite series.

The data augmentation

■ Let $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)^{\top}$ be a vector of latent iid random variables following a $\mathrm{PG}(1,0)$.

- Then, we define the following augmented likelihood

$$
\pi(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{\beta})=\prod_{i=1}^{n} \frac{1}{2} \pi\left(z_{i} \mid 1,0\right) \exp \left\{\left(y_{i}-1 / 2\right) \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}-z_{i}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2} / 2\right\}
$$

■ Thanks to the technical lemma 1, we immediately recognize that this is a valid data augmentation since

$$
\pi(\boldsymbol{y} \mid \boldsymbol{\beta})=\int_{\mathbb{R}^{n}} \pi(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{\beta}) \mathrm{d} \boldsymbol{z}
$$

- The augmented log-likelihood is quadratic in β, as in the probit case, facilitating posterior computations.

Gibbs sampling for logit models

- The full conditional distribution of β is conjugate under a Gaussian prior $\beta \sim N(\boldsymbol{b}, \boldsymbol{B})$, so that

$$
(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{z}) \sim \mathrm{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \boldsymbol{\mu}=\boldsymbol{\Sigma}\left\{\boldsymbol{X}^{\top}(\boldsymbol{y}-1 / 2)+\boldsymbol{B}^{-1} \boldsymbol{b}\right\}, \quad \boldsymbol{\Sigma}=\left(\boldsymbol{X}^{\top} \boldsymbol{Z} \boldsymbol{X}+\boldsymbol{B}^{-1}\right)^{-1}
$$

where $\boldsymbol{Z}=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$.
■ Using the technical lemma 2, we recognize that the elements of the full conditional distribution $(\boldsymbol{z} \mid \boldsymbol{y}, \boldsymbol{\beta})$ are independent and such that

$$
\left(z_{i} \mid \boldsymbol{y}, \boldsymbol{\beta}\right) \sim \operatorname{PG}\left(1, \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right), \quad i=1, \ldots, n
$$

Note that z_{i} is independent on \boldsymbol{y} given $\boldsymbol{\beta}$.

- This enables a straightforward Gibbs sampling strategy, provided we can efficiently sample the Pólya-gamma random variables.

■ Improved strategies can be devised if $y_{i} \sim \operatorname{Bin}\left(n_{i}, \pi_{i}\right)$.

R implementation

```
logit_Gibbs <- function(R, burn_in, y, X, B, b) {
    p <- ncol(X); n <- nrow(X)
    out <- matrix(0, R, p) # Initialize an empty matrix to store the values
    P <- solve(B) # Prior precision matrix
    Pb <- P %*% b; Xy <- crossprod(X, y - 1 / 2) # Terms appearing in the Gibbs sampling
    beta <- rep(0, p) # Initialization
    # Gibbs sampling
    for (r in 1:(R + burn_in)) {
        eta <- c(X %*% beta)
        omega <- rpg.devroye(num = n, h = 1, z = eta) # Sampling the Pólya-gamma latent variables
        eig <- eigen(crossprod(X * sqrt(omega)) + P, symmetric = TRUE)
        Sigma <- crossprod(t(eig$vectors) / sqrt(eig$values))
        mu <- Sigma %*% (Xy + Pb)
        A1 <- t(eig$vectors) / sqrt(eig$values)
        beta <- mu + c(matrix(rnorm(1 * p), 1, p) %*% A1) # Sampling beta
        if (r > burn_in) {
        out[r - burn_in, ] <- beta # Store the values after the burn-in period
        }
    }
    out
}
```


The Pima Indian dataset

- We consider once again the Pima Indian dataset example of unit B.2.
- The Pólya-gamma Gibbs sampler has excellent mixing and it requires no tuning.

```
# Running the MCMC (R=30000, burn_in = 5000)
fit_MCMC <- as.mcmc(logit_Gibbs(R, burn_in, y, X, B, b))
summary(effectiveSize(fit_MCMC)) # Effective sample size (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 10018 13592 15411 15182 17369 18900
summary(R / effectiveSize(fit_MCMC)) # Integrated autocorrelation time (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 1.587
summary(1 - rejectionRate(fit_MCMC)) # Acceptance rate (beta)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 1rrrllll
```


The Newton-Raphson algorithm (recap)

- The Pólya-gamma data augmentation is also useful also for maximization purposes.
- For the sake of clarity, let us focus on the MLE, which is defined as

$$
\hat{\boldsymbol{\beta}}=\arg \max _{\boldsymbol{\beta} \in \mathbb{R}^{p}}\left[\sum_{i=1}^{n} y_{i}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)-\log \left\{1+\exp \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right\}\right] .
$$

■ Extensions to the MAP case (penalized MLE) is often straightforward.
■ The textbook approach for this problem is the Newton-Raphson method, which gives

$$
\beta^{(r+1)}=\boldsymbol{\beta}^{(r)}+\left(\boldsymbol{X}^{\top} \boldsymbol{H}^{(r)} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}\left(\boldsymbol{y}-\boldsymbol{\pi}^{(r)}\right)
$$

with $\boldsymbol{H}^{(r)}=\operatorname{diag}\left\{\pi_{1}^{(r)}\left(1-\pi_{1}^{(r)}\right), \ldots, \pi_{n}^{(r)}\left(1-\pi_{n}^{(r)}\right)\right\}$.

Potential pitfalls

- The Newton-Raphson iterative scheme does not guarantee a monotonic sequence, implying that the algorithm could fail.

```
y <- c(rep (0,50), 1, rep (0,50), 0, rep(0, 5), rep(1, 10)) # Binary outcomes
X <- cbind(1, c(rep (0, 50), 0, rep(0.001, 50), 100, rep(-1, 15))) # Design matrix
```

- The MLE is $\hat{\boldsymbol{\beta}}=(-4.603,-5.296)$ and $\log \pi(\boldsymbol{y} \mid \hat{\boldsymbol{\beta}})=-15.156$.

■ However, the glm R command, which uses Newton-Raphson, does not reach the correct value and raises a warning.

```
coef(glm(y ~ X[, -1], family = "binomial")) # Estimation using Newton-Raphson.
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## (Intercept) X[, -1]
## -3.372166e+15 -2.085057e+13
```


The EM algorithm for logistic regression

- An EM strategy automatically leads to much higher numerical stability due to the monotonic property.
- Expectation step. In the first place, note that

$$
\mathcal{Q}\left(\beta \mid \boldsymbol{\beta}^{(r)}\right)=\sum_{i=1}^{n}\left(y_{i}-1 / 2\right) \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}-\frac{1}{2} \mathbb{E}\left(z_{i}\right)\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}+\text { const },
$$

where the expectation is taken w.r.t. Pólya-gamma density, $\pi\left(z_{i} \mid \boldsymbol{y}, \boldsymbol{\beta}^{(r)}\right)$ whose expectation is known:

$$
\mathbb{E}\left(z_{i}\right)=\hat{z}_{i}^{(r)}=\frac{\tanh \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}^{(r)} / 2\right)}{2 \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}^{(r)}}
$$

- Maximization step. Hence, we aim at maximizing $\mathcal{Q}\left(\boldsymbol{\beta} \mid \boldsymbol{\beta}^{(r)}\right)$, obtaining

$$
\boldsymbol{\beta}^{(r+1)}=\arg \max _{\boldsymbol{\beta} \in \mathbb{R}^{p}} \mathcal{Q}\left(\boldsymbol{\beta} \mid \boldsymbol{\beta}^{(r)}\right)=\left(\boldsymbol{X}^{\top} \hat{\boldsymbol{Z}}^{(r)} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}(\boldsymbol{y}-1 / 2)
$$

where $\hat{\boldsymbol{Z}}^{(r)}=\operatorname{diag}\left(\hat{\mathbf{z}}_{1}^{(r)}, \ldots, \hat{\mathbf{z}}_{n}^{(r)}\right)$.

The EM for logistic regression

■ It turns out that the Pólya-gamma data augmentation not only leads to a stable algorithm but also has a sharp connection with the Newthon-Rapson method.

■ With some algebraic manipulation, we can show that

$$
\boldsymbol{\beta}^{(r+1)}=\left(\boldsymbol{X}^{\top} \hat{\boldsymbol{Z}}^{(r)} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}(\boldsymbol{y}-1 / 2)=\boldsymbol{\beta}^{(r)}+\left(\boldsymbol{X}^{\top} \hat{\boldsymbol{Z}}^{(r)} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}\left(\boldsymbol{y}-\boldsymbol{\pi}^{(r)}\right)
$$

■ In other terms, the Pólya-gamma EM coincides with a Newton-Rapshon step, having replaced the diagonal matrix $\boldsymbol{H}^{(r)}$ with $\hat{\boldsymbol{Z}}^{(r)}$.

■ Interestingly, the following inequalities hold true

$$
\pi_{i}^{(r)}\left(1-\pi_{i}^{(r)}\right) \leq \frac{\tanh \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}^{(r)} / 2\right)}{2 \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}^{(r)}} \leq \frac{1}{4}
$$

■ The first inequality implies that the EM will perform smaller but safer steps compared to the Newton-Rapshon algorithm.

Implementation in \mathbf{R}

```
logit_EM <- function(X, y, tol = 1e-16, beta_start = NULL, maxiter = 10000) {
    # Initialization
    loglik <- numeric(maxiter)
    Xy <- crossprod(X, y - 0.5)
    eta <- c(X %*% beta)
    w <- tanh(eta / 2) / (2 * eta); w[is.nan(w)] <- 0.25
    loglik[1] <- sum(y * eta - log(1 + exp(eta)))
    # Iterative procedure
    for (t in 2:maxiter) {
        beta <- solve(qr(crossprod(X * w, X)), Xy)
        eta <- c(X %*% beta)
        w <- tanh(eta / 2) / (2 * eta); w[is.nan(w)] <- 0.25
        loglik[t] <- sum(y * eta - log(1 + exp(eta)))
        if (loglik[t] - loglik[t - 1] < tol) {
        return(list(beta = beta, Convergence = cbind(Iteration = (1:t) - 1,
            Loglikelihood = loglik[1:t])))
        }
    }
    stop("The algorithm has not reached convergence")
}
```


Solving the pitfalls of Newton-Raphson

- We compare the value of $\log \pi\left(\boldsymbol{y} \mid \boldsymbol{\beta}^{(r)}\right)$ obtained through the two algorithms and using the previously considered dataset.
- Both the EM and Newton-Raphson are initialized at $\boldsymbol{\beta}^{(0)}=(0,0)$. Moreover, this means that $\pi_{i}^{(0)}\left(1-\pi_{i}^{(0)}\right)=1 / 4$, implying that the first iteration will coincide.

Iteration	0	1	2	3	4	5
Newton-Raphson	-81.098	-38.814	-36.271	-35.433	-26.314	-733.671
EM	-81.098	-38.814	-36.778	-36.332	-36.168	-36.064

■ At the 5th iteration, the Newton-Raphson diverges, leading to a failure. Conversely, the EM slowly yet steadily increases the log-likelihood.

The MM algorithm for logistic regression

- We finally consider a MM algorithm for finding the MLE of a logistic regression, which is based on the following minorize function

$$
g\left(\boldsymbol{\beta} \mid \boldsymbol{\beta}^{(r)}\right)=\log \pi\left(\boldsymbol{y} \mid \boldsymbol{\beta}^{(r)}\right)+\left(\boldsymbol{y}-\boldsymbol{\pi}^{(r)}\right)^{\top} \boldsymbol{X}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{(r)}\right)+\frac{1}{2}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{(r)}\right)^{\top} \boldsymbol{W}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{(r)}\right)
$$

with $\boldsymbol{W}=0.25 \boldsymbol{X}^{\top} \boldsymbol{X}$.

- The minorize function indeed satisfies $g\left(\boldsymbol{\beta} \mid \boldsymbol{\beta}^{(r)}\right) \leq \log \pi(\boldsymbol{y} \mid \boldsymbol{\beta})$.
- The maximization of leads to the following MM monotonic iterative procedure

$$
\boldsymbol{\beta}^{(r+1)}=\boldsymbol{\beta}^{(r)}+4\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}\left(\boldsymbol{y}-\boldsymbol{\pi}^{(r)}\right)
$$

- This leads to an algorithm that makes even smaller steps than the EM, but it has the advantage of not requiring a matrix inversion at every iteration.

Implementation in \mathbf{R}

```
logit_MM <- function(X, y, tol = 1e-16, beta_start = NULL, maxiter = 10000) {
    # Initialization
    loglik <- numeric(maxiter)
    B <- 4 * solve(crossprod(X)) # Bohning and Lindsay matrix
    eta <- c(X %*% beta)
    prob <- 1 / (1 + exp(- eta))
    loglik[1] <- sum(y * eta - log(1 + exp(eta)))
    # Iterative procedure
    for (t in 2:maxiter) {
        beta <- beta + B %*% crossprod(X, y - prob))
        eta <- c(X %*% beta)
        prob <- 1 / (1 + exp(- eta))
        loglik[t] <- sum(y * eta - log(1 + exp(eta)))
        if (loglik[t] - loglik[t - 1] < tol) {
        return(list(beta = beta, Convergence = cbind(Iteration = (1:t) - 1,
            Loglikelihood = loglik[1:t])))
        }
    }
    stop("The algorithm has not reached convergence")
}
```


EM and MM comparison (simulated data)

