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Unit D.1

Main concepts
Laplace approximation;

Variational Bayes;

Expectation propagation.

Main references
Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Chapters 9-10). Springer.
Blei, D. M., Kucukelbirb A., and McAuliffe, J. D. (2017). Variational inference: a review for
statisticians. JASA, 112(518), 859–877.
Tierney, L. and Kadane, J. (1987). Accurate approximations for posterior moments and
marginal densities. JASA, 81(393), 82–86.
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Motivations

mcmc methods could be expensive to compute, especially for large sample sizes n.

Moreover, many mcmc algorithms require a rough estimate of some key posterior
quantities, such as the posterior variance. Recall, e.g., the mala example of unit B.2.

These issues motivate the development of deterministic approximations of the
posterior distribution.

Compared to mcmc methods, the accuracy of this class of approximations can not be
reduced by running the algorithm longer.

On the other hand, deterministic approximations are typically very fast to compute
and sufficiently reliable in several applied contexts.
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The Laplace approximation

Let π(θ | X) be a continuous and differentiable posterior density in Θ ⊆ Rp .

The Laplace approximation is one of the first approximation methods that has been
proposed. It was known even before the advent of mcmc.

The key idea is approximating the log-posterior density log π(θ | X) using a Taylor
expansion around the mode θ̂map, yielding

log π(θ | X) ≈ log π(θ̂map | X)− 1
2 (θ − θ̂map)ᵀM̂(θ − θ̂map) + const,

where M̂ is the negative Hessian of log π(θ | X) evaluated at θ̂map, that is

M̂ = − ∂2

∂θ∂θᵀ
log π(θ | X)

∣∣∣∣
θ=θ̂map

.

Hence, the above quadratic expansion leads to the following multivariate Gaussian
approximate posterior

π(θ | X) ≈ Np
(
θ | θ̂map, M̂−1) .

Tommaso Rigon (Milano-Bicocca) 4 / 22



Bernstein–von Mises theorem (a rough intuition)
A fairly strong asymptotic justification of the Laplace approximation is based on the
Bernstein–von Mises theorem.

Suppose the data X1, . . . ,Xn are iid from a “true” model Pθ0 .

Very roughly speaking, under suitable regularity and sampling conditions

||π(θ | X)− Np
(
θ | θ̂map, M̂−1) || Pθ0−→ 0, n→∞,

meaning that the total variation distance between the posterior and the Laplace
approximation weakly converges to 0 w.r.t. to the law of the sampling process Pθ0 .

Here we are also assuming that θ̂map and nM̂−1 are consistent estimators for the
“true” parameter value θ0 and for the inverse Fisher information matrix, respectively.

Hence, in several cases and for n large enough, the law π(θ | X) is roughly a Gaussian
centered at the mode and with variance depending on the Fisher information.

Main reference
van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.
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Laplace approximation: considerations

The Laplace approximation is an old and simple method with appealing asymptotic
guarantees. Moreover, it only requires the computation of the Hessian and the map.

Refined higher order improvements of expected posterior functionals can be obtained
as in Tierney and Kadane (1987).

On the other hand, especially when the sample size n is relatively small, the quadratic
approximation of log π(θ | X) may perform poorly.

For example, if the posterior is not symmetric and unimodal, the map is not a good
estimate for the posterior mean, thus leading to inaccurate Gaussian approximations.

Furthermore, if the parameter space Θ is bounded, a Gaussian approximation could
be quite problematic =⇒ a reparametrization should be considered.

Finally, it is unclear how to handle discrete parameter spaces.
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Approximation methods I

Let π(θ | X) be the intractable posterior distribution and let q(θ) be a density
belonging to Q, where Q is a general class of tractable densities.

An optimal approximation q̂(θ) ∈ Q of the posterior distribution is defined as

q̂(θ) = arg min
q∈Q
D{q(θ), π(θ | X)},

where D(·, ·) is some divergence or metric over the space of probability distributions.

An example is the Kullback-Leibler divergence D(·, ·) = kl(· || ·).

Depending on the choice of the divergence D(·, ·) and of the space of approximating
densities Q, the problem could be computationally feasible or not.

Clearly, the posterior π(θ | X) should not be included in the space of tractable densities
Q, otherwise we would get q̂(θ) = π(θ | X) for any reasonable divergence D(·, ·).
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Approximation methods II

As for the choice of D(·, ·), it would be theoretically appealing to consider metrics such
as the Hellinger distance, the total variation distance, or the Wasserstein distance.

Unfortunately, even when we let Q be the space of multivariate Gaussians, finding the
optimal density q̂(θ) could be problematic.

A basic requirement is that the optimization procedure should not depend on the
intractable normalizing constant of the posterior.

We will consider two different though quite related divergences.

The kl{q(θ) || π(θ | X)} divergence, leading to the variational Bayes method.

The kl{π(θ | X) || q(θ)} divergence, leading to the expectation propagation method.
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The evidence lower bound (elbo)

In the first place, let us note that the following decomposition hold

log π(X) = kl{q(θ) || π(θ | X)}+ elbo{q(θ)},

Recall that the Kullback-Leibler divergence is

kl{q(θ) || π(θ | X)} = −
∫

Θ
q(θ) log π(θ | X)

q(θ) dθ.

The evidence lower bound elbo{q(θ)} is instead defined as

elbo{q(θ)} =
∫

Θ
q(θ) log π(θ,X)

q(θ) dθ.

Key property. Since log π(X) does not depend on θ, we obtain that

q̂(θ) = arg min
q∈Q

kl{q(θ) || π(θ | X)} = arg max
q∈Q

elbo{q(θ)},

therefore the optimization does not depend on the intractable normalizing constant.

Tommaso Rigon (Milano-Bicocca) 9 / 22



Evidence lower bound (elbo)

The elbo is indeed a lower bound of the marginal likelihood, because the divergence
kl{q(θ) || π(θ | X)} ≥ 0, implying that

elbo{q(θ)} ≤ log π(X).

This property of the elbo has led to using the variational bound as a model selection
criterion, assuming that the elbo is a good approximation of the marginal.

Remark. Even when the optimal distribution q̂(θ) can found, there is no guarantee
that the minimized kl

kl{q̂(θ) || π(θ | X)} ≥ 0

will be small in absolute terms.

Moreover, quantifying the value of kl{q̂(θ) || π(θ | X)} = log π(X)− elbo{q(θ)}
would require the knowledge of the normalizing constant, which is intractable.

Essentially, it is currently hard to assess the quality of the obtained approximation
without comparing it with some “gold standard” such as mcmc.
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Mean-field approximation

The vb optimization problem is ill-posed if we do not specify a tractable class Q.

For reasons that will become clear later on, a convenient assumption is restricting the
focus on the class Q of mean-field approximations, in which we assume

q(θ) =
B∏

b=1

q(θb),

implying that we are forcing independence among B groups of parameters.

It is important to notice that dependence is preserved within each block of parameters.

Moreover, note that we are not forcing q(θ) to belong to any known parametric family
of distributions. The only assumption we are making is independence.

Tommaso Rigon (Milano-Bicocca) 11 / 22



Derivation of the cavi algorithm

Under the mean-field assumption, the optimization of the elbo can be written as

elbo{q(θ)} =
∫

Θ

B∏
b=1

{q(θb) log π(θ,X)}dθ −
∫

Θ

B∏
b=1

{q(θb) log q(θb)} dθ.

We aim at maximizing the bth component q(θb), keeping the others fixed. Thus, we
express the elbo isolating the term q(θb), obtaining∫

q(θb)

{∫
log π(θ,X)

∏
j 6=b

q(θj )dθ−b

}
dθb −

∫
q(θb) log q(θb)dθb + cb,

where cb denotes a term not depending on θb.

Defining the density log π̃(θb,X) = E−b{log π(θ,X)}+ const and re-arranging the
terms, we get

elbo{q(θ)} =
∫

q(θb) log π̃(θb,X)
q(θb) dθb + c̃b = −kl{q(θb) || π̃(θb,X)}+ c̃b.
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Derivation of the cavi

The above previous chain of equations implies that the local maximization of the
elbo(q(θ) with respect to the bth term of q(θb) is obtained by setting

q̂(θb) ∝ exp
[
E−b{log π(θ,X)}

]
,

for any b = 1, . . . ,B.

In practice, the above expectation is often straightforward to compute, and some
known kernel can usually be recognized (as in the Gibbs sampling).

In the cavi algorithm, we iteratively update the factors q(θb) by using the locally
maximized terms given the others.

By construction, this produces a monotonic sequence that convergences to a local
optimum of the elbo.
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Properties and convergence

The cavi is an appealing algorithm for maximizing the elbo under the mean-field
assumption, but in principle, one could use any other optimizer.

The necessary computations and expectations are usually doable if the full conditional
distributions belong to some exponential family.

The algorithm stops whenever the elbo sequence has converged.

Moreover, checking that the elbo is indeed monotone is a good practice to verify the
correctness of the implementation.

Although not shown here, a common application of the cavi algorithm is the case of
Bayesian mixture models.
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The cavi for a Gaussian example

As in unit A.2, let us assume the observations (x1, . . . , xn) are draws from

(xi | µ, τ) iid∼ N(µ, τ−1), i = 1, . . . , n,

with independent priors µ ∼ N(µµ, σ
2
µ) and τ ∼ Ga(aτ , bτ ).

Assuming a mean-field approximation q(µ, τ) = q(µ)q(τ), the cavi algorithm iterates
between the following steps simple steps.

Update q(µ). The locally optimal variational distribution for q(µ) is

q(µ) = N(µ | µn, σ
2
n), µn = σ2

n

(
µµ

σ2
µ

+Eq(τ)
n∑

i=1

xi

)
, σ2

n =
(

n Eq(τ) + 1
σ2

µ

)−1

.

Update q(τ). The locally optimal variational distribution for q(τ) is

q(τ) = Ga (τ | an, bn) , an = aτ + n/2, bn = bτ + 1
2

n∑
i=1

Eq{(xi − µ)2}.
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Underestimation of the variability

As previously mentioned, the combination of mean-field assumption + vb approach
typically leads to a sensible underestimation of the variability.

In the first place, this is a consequence of the insufficient flexibility of the mean-field
class of approximating densities.

Indeed, if the densities in Q were arbitrarily close to the posterior, this phenomenon
would be negligible.

In second place, this is a consequence of the chosen divergence. Indeed, the quantity

kl{q(θ) || π(θ | X)} = −
∫

Θ
q(θ) log π(θ | X)

q(θ) , dθ

favors the choice of densities q(θ) which are included in the support of π(θ | X).

Indeed, there is a large positive contribution to the above kl for those values of θ such
that π(θ | X) ≈ 0, unless q(θ) ≈ 0 as well.
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Expectation propagation (ep)

The Expectation Propagation algorithm (ep) has been proposed by Minka (2001).

The ep approach aims at minimizing the divergence kl{π(θ | X) || q(θ)}, which is the
reversed situation compared to the vb.

At least in principle, the ep is expected to overestimate the posterior variability, but
this is not a big concern in practice.

Indeed, the ep does not rely on the mean-field approximation for Q. In contrast, the
class Q will be some parametric exponential family of distributions.

The ep is essentially a heuristic method for minimizing kl{π(θ | X) || q(θ)}, as there
are little theoretical guarantees that this is indeed occurring.

On the other hand, in specific contexts, the ep approach outperforms other approaches.
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ep and exponential families

Let us assume Q is an exponential family of distributions, with natural parameters
η ∈ Rp , so that

q(θ | η) = h(θ) exp {θᵀη − K(η)} .

Then, it can be shown that the minimum of the kl divergence is such that

min
q∈Q

kl{π(θ | X) || q(θ | η)} = min
η∈Rp

kl{π(θ | X) || q(θ | η)},

where the optimal set of parameters η̂ minimizing the divergence is such that

Eq(θ) = E(θ | X).

In words, the optimal parameter η̂ is the one matching the true posterior mean of the
natural parameter E(θ | X), with the mean Eq(θ) under the variational distribution.

In the multivariate Gaussian case, this implies that the mean and the variance are
matched.
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The ep procedure

The moment-matching procedure we just described is not directly applicable because
the posterior mean of the natural parameter θ is unknown.

The ep seeks for an heuristic procedure that iteratively minimize the kl using the
principle of moment-matching local components.

In the first place, let us assume that the joint likelihood factorizes as follows

π(θ,X) =
n∏

i=0

πi (θ,X),

the first term corresponds to the prior, so that π0(θ,X) = π(θ).

This is a common modeling assumption, which is satisfied, for example, if the data
are conditionally independent (i.e., regression).
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The ep procedure

In second place, note that the exponential family assumption for Q guarantees that
there exists a decomposition of the form

q(θ | η) = 1
K

n∏
i=0

qi (θ | ηi ),

with η =
∑n

i=0 ηi and K being the normalizing constant, and where the qi (θ | ηi ) is
proportional to an exponential family of distributions.

For example, if we consider a Gaussian kernel

qi (β | ri ,Mi ) = exp
{
−1

2 βᵀMiβ + βᵀri

}
=⇒ q(θ | η) ∝ exp

{
−1

2 βᵀMβ + βᵀr
}
,

with r =
∑n

i=0 ri and M =
∑n

i=0 Mi .
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The ep procedure

Recall that the goal is obtaining the value η̂ minimizing the following kl

min
η∈Rp

kl{π(θ | X) || q(θ | η)} = min
η∈Rp

kl

{
1

π(X)

n∏
i=0

πi (θ,X) || 1
K

n∏
i=0

qi (θ | ηi )

}
.

Unfortunately, this is unfeasible, so we proceed by iteratively updating each factor
qj (θ | ηi ), for j = 0, . . . , n, keeping the other fixed.

Hence, we iteratively update only the jth factor qj (θ | ηi ) so that

min
ηj∈Rp

kl

{
1
Kj
πj (θ,X)

∏
i 6=j

qi (θ | ηi ) ||
1
K qj (θ | ηi )

∏
i 6=j

qi (θ | ηi )

}
,

where Kj is the normalizing constant.

The minimizer η̂j of the above kl is indeed solved by moment-matching, possibly
leveraging on a well-behaved numerical integration step.
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The ep procedure

The minimization of the previously considered local kl takes advantage of several
recursive formulas, speeding up computations.

There is no guarantee this algorithm will converge, especially if the target density is
not log-concave.

Moreover, the moment-matching step often involves numerical integration, which
could be computationally delicate.

Finally, the ep approach requires a particular likelihood structure and only works using
exponential families.

That said, when considering well-behaved posteriors (such as logistic regression), the
ep strategy is very effective and often numerically stable.
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