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Unit D.2

Main concepts
Laplace approximation for the logit model;

Variational Bayes for logit models, Jaakkola and Jordan (2000) lower bound;

Examples and comparisons on the Pima Indian dataset.

Associated R code is available on the website of the course

Additional R code (vb tutorial): https://github.com/tommasorigon/logisticVB

Main references
Chopin, N. and Ridgway, J. (2017). Leave Pima Indians alone: binary regression as a
benchmark for Bayesian computation. Statistical Science, 32(1), 64–87.
Durante, D. and Rigon, T. (2019). Conditionally conjugate mean-field variational Bayes for
logistic models. Statistical Science, 34(3), 472–485.
Jaakkola, T. S., and Jordan, M. I. (2000). Bayesian parameter estimation via variational
methods. Statistics and Computing, 10(1), 25–37.
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The logit model (recap)

In this unit, we will focus exclusively on the logit model, although similar strategies
(Laplace, vb and ep) can be applied in the probit case as well.

Let us recall once again that y = (y1, . . . , yn)ᵀ is a vector of the observed binary
responses.

Let X be the corresponding design matrix whose generic row is xi = (1, xi2, . . . , xip)ᵀ,
for i = 1, . . . , n.

In this unit, we consider a logistic model such that

(yi | πi )
ind∼ Bern(πi ), πi = eηi

1 + eηi
, ηi = xᵀ

i β = β1xi1 + · · ·+ βpxip .

As before, we assume a Gaussian prior π(β) = Np(β | b,B).
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EM algorithm and Laplace approximation
The Laplace approximation relies on the map estimate β̂map and on the negative
Hessian matrix M̂, which in the logistic model case is

M̂ = XᵀĤX + B−1,

where the vector Ĥ = diag{π̂1(1− π̂1), . . . , π̂n(1− π̂n)} is evaluated at the map.

We consider here an EM algorithm for finding β̂map using the Pólya-gamma data
augmentation, extending the approach we have described in unit C.2 for the mle.

Exercise. Prove that the EM algorithm for logistic regression leads to the following
iterative scheme:

β(r+1) = (XᵀẐ (r)X + B−1)−1{Xᵀ(y − 1/2) + B−1b},

where Ẑ (r) = diag(ẑ (r)
1 , . . . , ẑ (r)

n ), having defined

ẑ (r)
i = tanh(xᵀ

i β(r)/2)
2xᵀ

i β(r) , i = 1, . . . , n.

The Laplace approximation then is q(β) = Np(β | β̂map, M̂−1).
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Laplace approximation: implementation in R

logit_Laplace <- function(y, X, B, b, tol = 1e-16, maxiter = 10000) {
# Initialization
P <- solve(B) # Prior precision matrix
Pb <- P %*% b # Term appearing in the EM algorithm
logpost <- numeric(maxiter)
Xy <- crossprod(X, y - 0.5)
beta <- solve(crossprod(X / 4, X) + P, Xy + Pb)
eta <- c(X %*% beta)
w <- tanh(eta / 2) / (2 * eta); w[is.nan(w)] <- 0.25
logpost[1] <- sum(y * eta - log(1 + exp(eta))) - 0.5 * t(beta) %*% P %*% beta

# Iterative procedure
for (t in 2:maxiter) {

beta <- solve(qr(crossprod(X * w, X) + P), Xy + Pb)
eta <- c(X %*% beta)
w <- tanh(eta / 2) / (2 * eta); w[is.nan(w)] <- 0.25
logpost[t] <- sum(y * eta - log(1 + exp(eta))) - 0.5 * t(beta) %*% P %*% beta

if (logpost[t] - logpost[t - 1] < tol) { # Have we reached convergence?
prob <- plogis(eta)
return(list(

mu = c(beta), Sigma = solve(crossprod(X * prob * (1 - prob), X) + P),
Convergence = cbind(Iteration = (1:t) - 1, logpost = logpost[1:t])

))
}

}
stop("The algorithm has not reached convergence")

}

Tommaso Rigon (Milano-Bicocca) 5 / 14



Laplace approximation: results
Using the Pima Indian dataset again, we compare the performance of the Laplace
approximation with the smoothed density obtained via mcmc (gold standard).

Obtaining the Laplace approximation took 0.119 seconds.

In the picture are shown the marginal densities of β1 and β2 using mcmc (dotted
lines) and the Laplace approximation (solid lines).
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Variational Bayes

The logistic regression case has often been presented as an example in which mean-field
variational Bayes can not be applied; see, for example, Section 10.5 of Bishop (2006).

The main “variational” alternative for a couple of decades was the Jaakkola and Jordan
(2000) lower bound, which leads to a Gaussian approximation for logistic models.

The jj lower bound was introduced and motivated solely by convexity arguments.

Remark. The jj lower bound approach actually coincides with a genuine mean-field
approximation based on the Pólya-gamma data augmentation. It is not a local method.

Main references
Durante, D. and Rigon, T. (2019). Conditionally conjugate mean-field variational Bayes for
logistic models. Statistical Science, 34(3), 472–485.
Jaakkola, T. S., and Jordan, M. I. (2000). Bayesian parameter estimation via variational
methods. Statistics and Computing, 10(1), 25–37.
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vb for logistic models

Let z = (z1, . . . , zn)ᵀ be a vector of latent iid random variables following a pg(1, 0).

Then, recall that the Pólya-gamma augmented likelihood for a logistic model is

π(y , z | β) =
n∏

i=1

1
2π(zi | 1, 0) exp{(yi − 1/2)xᵀ

i β − zi (xᵀ
i β)2/2},

as described in unit C.2.

We employ mean-field approximation, forcing the independence between and z and β,
namely

q(β, z) = q(β)q(z).

This means we can use the cavi algorithm discussed in unit D.1.
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The cavi algorithm for logistic models

The cavi algorithm iterates between two simple steps.

Update q(β). The locally optimal variational distribution for q(β) is

q(β) ∝ exp [Eq{log π(y , z | β) + log π(β)}]

∝ π(β) exp

{
n∑

i=1

(yi − 1/2)xᵀ
i β − 1

2Eq(zi )(xᵀ
i β)2

}
.

Re-arranging the above equation, we obtain that q(β) = Np(β | µ,Σ), with

µ = Σ{Xᵀ(y − 1/2) + B−1b}, Σ = (Xᵀ
Eq(Z)X + B−1)−1,

where Z = diag(z1, . . . , zn) and its expectation is taken with respect to q(z).

Hence, the optimal variational distribution for β is Gaussian. This is an implication of
the mean-field structure and not an assumption.
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The cavi algorithm for logistic models

The second cavi step involves the variational distribution q(z).

Update q(z). The locally optimal variational distribution for q(z) is

q(z) ∝ exp [Eq{log π(y , z | β)}]

∝
n∏

i=1

p(zi | 1, 0) exp
{
−zi

2 Eq(η2
i )
}
.

Re-arranging the above equation, we obtain that the following structure

q(z) =
n∏

i=1

pg
{

zi | 1,Eq(η2
i )
}
.

Hence, the optimal variational distribution for z are independent Pólya-gamma
distributions. As before, this is an implication and not an assumption.
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Variational Bayes: implementation in R

logit_CAVI <- function(y, X, B, b, tol = 1e-16, maxiter = 10000) {
lowerbound <- numeric(maxiter)
p <- ncol(X); n <- nrow(X)
P <- solve(B); Pb <- c(P %*% b); Pdet <- ldet(P)

# Initialization
# ...
# [Code omission, refer to the online Markdown D.2 file]

# Iterative procedure
for (t in 2:maxiter) {

P_vb <- crossprod(X * omega, X) + P; Sigma_vb <- solve(P_vb)
mu_vb <- Sigma_vb %*% (crossprod(X, y - 0.5) + Pb)

# Update of xi
eta <- c(X %*% mu_vb)
xi <- sqrt(etaˆ2 + rowSums(X %*% Sigma_vb * X))
omega <- tanh(xi / 2) / (2 * xi); omega[is.nan(omega)] <- 0.25

lowerbound[t] <- 0.5 * p + 0.5 * ldet(Sigma_vb) + 0.5 * Pdet - 0.5 * t(mu_vb - b) %*% P %*% (mu_vb - b) +
sum((y - 0.5) * eta + log(plogis(xi)) - 0.5 * xi) - 0.5 * sum(diag(P %*% Sigma_vb))

if (abs(lowerbound[t] - lowerbound[t - 1]) < tol) {
return(list(mu = c(mu_vb), Sigma = matrix(Sigma_vb, p, p)))

}
}
stop("The algorithm has not reached convergence")

}
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Variational approximation: results
Obtaining the variational Bayes approximation took 0.082 seconds.

In the picture are shown the marginal densities of β1 and β2 using mcmc (dotted
lines) and the variational approximation (solid lines).

The variational approximation is problematic. The variance is much smaller than that
of the true posterior. The posterior means look approximately correct.
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Expectation propagation: results

Obtaining the ep approximation required 0.011 seconds using the EPGLM package.

In the picture are shown the marginal densities of β1 and β2 using mcmc (dotted
lines) and the ep approximation (solid lines).
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Final comparisons

We compare the various approximations with the “optimal” Gaussian distribution based
on moment matching.

The moments are obtained via mcmc, and they are usually unavailable.

We consider the Kullback-Leibler divergence and the Wasserstein distance, both
available in closed form in the Gaussian-Gaussian case.

The ep performs best in this example.

Method Kullback-Leibler Wasserstein distance
Laplace approximation 0.029 0.027
Variational Bayes 0.275 0.065
Expectation Propagation 0.032 0.006
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