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Main concepts

m Laplace approximation for the logit model;
m Variational Bayes for logit models, Jaakkola and Jordan (2000) lower bound;

m Examples and comparisons on the Pima Indian dataset.

m Associated R code is available on the website of the course

m Additional R code (VB tutorial): https://github.com/tommasorigon/logisticVB
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Main references
m Chopin, N. and Ridgway, J. (2017). Leave Pima Indians alone: binary regression as a
benchmark for Bayesian computation. Statistical Science, 32(1), 64-87.

m Durante, D. and Rigon, T. (2019). Conditionally conjugate mean-field variational Bayes for
logistic models. Statistical Science, 34(3), 472—485.

m Jaakkola, T. S., and Jordan, M. |. (2000). Bayesian parameter estimation via variational
methods. Statistics and Computing, 10(1), 25-37.
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https://github.com/tommasorigon/logisticVB

The logit model (recap)

® In this unit, we will focus exclusively on the , although similar strategies
(Laplace, VB and EP) can be applied in the probit case as well.

m Let us recall once again that y = (y1,...,¥a)" is a vector of the observed
m Let X be the corresponding whose generic row is x; = (1, Xj2, ..., Xip)T,
fori=1,...,n.

m In this unit, we consider a logistic model such that

eni

T 1xen’ ni = x| B = Pixi + -+ BpXpp.

(vi | 7) % Bern(m;),

m As before, we assume a Gaussian prior 7(8) = N,(8 | b, B).
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EM algorithm and Laplace approximation

m The Laplace approximation relies on the MAP estimate BAMAP and on the
matrix M, which in the logistic model case is

M=XHX+B,
where the vector H = diag{#1(1 — #1),...,#s(1 — #,)} is evaluated at the MAP.

m We consider here an for finding BMAP using the Pdélya-gamma data
augmentation, extending the approach we have described in unit C.2 for the MLE.

[ . Prove that the EM algorithm for logistic regression leads to the following
iterative scheme:

U = (XTZVX + BT X (y — 1/2) + B 'b},

where Z() = diag(2{", ..., 2{"), having defined

a0 _ tanh(I02)
! 2x‘.Tﬁ(’)
m The then is q(8) = Np(B | Buar, M7Y).

Tommaso Rigon (Milano-Bicocca) 4/14



Laplace approximation: implementation in R

logit_Laplace <- function(y, X, B, b, tol = le-16, maxiter = 10000) {

P <- solve(B)

Pb <- P %*% b

logpost <- numeric(maxiter)

Xy <- crossprod(X, y - 0.5)

beta <- solve(crossprod(X / 4, X) + P, Xy + Pb)

eta <- c(X %*% beta)

w <- tanh(eta / 2) / (2 * eta); wlis.nan(w)] <- 0.25

logpost[1] <- sum(y * eta - log(i + exp(eta))) - 0.5 * t(beta) %*% P %xJ beta

for (t in 2:maxiter) {
beta <- solve(gr(crossprod(X * w, X) + P), Xy + Pb)
eta <- c(X %*% beta)
w <- tanh(eta / 2) / (2 * eta); wlis.nan(w)] <- 0.25
logpost[t] <- sum(y * eta - log(l + exp(eta))) - 0.5 * t(beta) %*% P %*% beta

if (logpost[t] - logpost[t - 1] < tol) {
prob <- plogis(eta)
return(list(
mu = c(beta), Sigma = solve(crossprod(X * prob * (1 - prob), X) + P),
Convergence = cbind(Iteration = (1:t) - 1, logpost = logpost[1:t])
)
}
}

stop("The algorithm has not reached convergence")
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Laplace approximation: results

m Using the Pima Indian dataset again, we compare the performance of the Laplace
approximation with the smoothed density obtained via McMc (gold standard).

m Obtaining the Laplace approximation took

m In the picture are shown the marginal densities of 81 and 3, using MCMC (
) and the Laplace approximation ( ).
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Variational Bayes

m The logistic regression case has often been presented as an example in which mean-field
variational Bayes can not be applied; see, for example, Section 10.5 of Bishop (2006).

m The main “variational” alternative for a couple of decades was the Jaakkola and Jordan
(2000) , which leads to a Gaussian approximation for logistic models.

m The JJ lower bound was introduced and motivated solely by convexity arguments.

[ ] . The JJ lower bound approach actually coincides with a genuine mean-field
approximation based on the Pélya-gamma data augmentation. It is not a local method.

Main references

m Durante, D. and Rigon, T. (2019). Conditionally conjugate mean-field variational Bayes for
logistic models. Statistical Science, 34(3), 472—485.

m Jaakkola, T. S., and Jordan, M. |. (2000). Bayesian parameter estimation via variational
methods. Statistics and Computing, 10(1), 25-37.
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VB for logistic models

m Let z=(z1,...,2,)7 be a vector of latent iid random variables following a PG(1,0).

m Then, recall that the for a logistic model is

n

ny, 21 B) =[] 371 | 1,0 exp{(yi — 1/2)x7 8 — z(x 8)*/2},

i=1

as described in unit C.2.

We employ approximation, forcing the independence between and z and 3,
namely

q(B,2z) = q(B)a(2).

m This means we can use the CAVI algorithm discussed in unit D.1.
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The cAvI algorithm for logistic models

m The CAVI algorithm iterates between two simple steps.

] . The locally optimal variational distribution for g(8) is

q(B) x exp [Eq{log n(y, z | B) + log 7(B)}]

x m(B) exp {Z(y; —-1/2)x/B — ;Eq(zf)(xfﬁf} .

i=1
Re-arranging the above equation, we obtain that q(8) = Np(8 | 1, X), with
p=3{X"(y-1/2)+B'b}, = =(X"E(Z)X+B ")},

where Z = diag(zi, ..., z,) and its expectation is taken with respect to g(z).

m Hence, the optimal variational distribution for 3 is . This is an implication of
the mean-field structure and not an assumption.

Tommaso Rigon (Milano-Bicocca) 9/14



The cAvI algorithm for logistic models

m The second CAVI step involves the variational distribution g(z).

= . The locally optimal variational distribution for g(z) is

q(z) o exp [Eq{log 7(y, z | B)}]

I {~ZED}-

i=1

Re-arranging the above equation, we obtain that the following structure
2
a(z) =[] ra{z |1, Eq(ni)} -
i=1

m Hence, the optimal variational distribution for z are Pélya-gamma
distributions. As before, this is an implication and not an assumption.
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Variational Bayes: implementation in R

logit_CAVI <- function(y, X, B, b, tol = le-16, maxiter = 10000) {
lowerbound <- numeric(maxiter)
p <- ncol(X); n <- nrow(X)
P <- solve(B); Pb <- c(P %) b); Pdet <- ldet(P)

for (t in 2:maxiter) {
P_vb <- crossprod(X * omega, X) + P; Sigma_vb <- solve(P_vb)
mu_vb <- Sigma_vb %% (crossprod(X, y - 0.5) + Pb)

eta <- c(X %*% mu_vb)
xi <- sqrt(eta”2 + rowSums(X %*% Sigma_vb * X))
omega <- tanh(xi / 2) / (2 * xi); omegalis.nan(omega)] <- 0.25

lowerbound[t] <- 0.5 * p + 0.5 * ldet(Sigma_vb) + 0.5 * Pdet - 0.5 * t(mu_vb - b) %*% P %*% (mu_vb - b) +
sum((y - 0.5) * eta + log(plogis(xi)) - 0.5 * xi) - 0.5 * sum(diag(P %*% Sigma_vb))

if (abs(lowerbound[t] - lowerbound[t - 1]) < tol) {
return(list(mu = c(mu_vb), Sigma = matrix(Sigma_vb, p, p)))
}
}
stop("The algorithm has not reached convergence")

}
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Variational approximation: results

m Obtaining the variational Bayes approximation took

m In the picture are shown the marginal densities of 31 and 3, using MCMC (

) and the variational approximation ( ).
m The variational approximation is problematic. The is than that
of the true posterior. The look approximately
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Expectation propagation: results

m Obtaining the EP approximation required using the EPGLM package.

m In the picture are shown the marginal densities of 81 and 8 using MCMC (
) and the EP approximation ( ).
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Final comparisons

m We compare the various approximations with the “optimal” Gaussian distribution based
on moment matching.

m The moments are obtained via MCMC, and they are usually unavailable.

m We consider the Kullback-Leibler divergence and the Wasserstein distance, both
available in closed form in the Gaussian-Gaussian case.

m The EP performs best in this example.

Method Kullback-Leibler =~ Wasserstein distance
Laplace approximation 0.029 0.027
Variational Bayes 0.275 0.065
Expectation Propagation 0.032 0.006
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