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® This unit will cover the following
®m Methods of finding estimators
®m Methods of evaluating estimators
® Unbiasedness
— ® Asymptotic evaluations

® Robustness and model misspecification

® The rationale behind point estimation is quite simple:

m When sampling is from a described by a pdf or a pmf f(-;6), knowledge of € yields
knowledge of the entire population.

® Hence, it is natural to seek a method of finding a good estimator of the unknown point 6.
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Methods of finding estimators
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Estimator

A point estimator 0 is any function of the random sample Y1,...,Y,, namely

0(Y)=0(Y1,...,Y,).
That is, any is a point estimator.
® To streamline the presentation, we consider estimators that target the 0
rather than an arbitrary (non-one-to-one) transformation g(0).

= Most theoretical results to the general case g(0).
= An estimator é(Yh ...,Yy) is a function of the sample Y1,...,Y, and is a random variable.
= An é(yl, ..., Ypn) is a function of the realized values yy,...,y, and is a

= We will write § to denote both estimators and estimates whenever its meaning is clear from the
context.
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Method of moments

® The method of moments is, perhaps, the oldest method of finding point estimators, dating back at
least to Karl Pearson in the late 1800s.

m letY,...,Y, be an iid sample from f(-;6), 8 = (64,...,6,), and © C RP. Moreover, define
1 n
= - Y'", A(0) = p(601,...,0,) =Eg(Y"), =1,...,p.
me= SV 0= O 0) <BoY), T

corresponding to the population moment p,(64,...,6,) and the m,.

® The method of moments estimator @ is obtained by solving the following system of equations for

(01, “e ,Hp)i

,up(Hl, .o ,Hp) = My.

® |n general, it is that a solution exists nor its uniqueness.
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Asymptotic evaluation of the MM

® Moments estimators are not necessarily the best estimators, but under reasonable conditions they
are , they have converge rate /n, and they are

m Suppose (Y,Y?,...,YP) has covariance ¥, then the multivariate implies

that as n — o
Jalm — w0} -5 Z,  Z~Ny(0,%),

where m = (mq,...,myp) and p(0) = (u1(0), - - ., up(0)).

m Suppose also that u(6) is a one-to-one mapping and let g(u) be the inverse of (), thatis g = pu~
. We assume that g has differentiable components g,(-) forr =1,...,p.

1

= The moments estimator can be written as 8 = g(m) and 8 = g(u(8)). Then, as a consequence of the

, the following general result holds:

A

Jn -0 -z,  Z~N,(0,DSDT),

where D = [d,/] is a p X p matrix whose entries are the derivatives d,, = 0g,(u)/O,.

Refer to van der Vaart (1998), Theorem 4.1, pag. 35-36.
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Example: beta distribution [__|

m Let Y],...,Y, be an iid random sample from a beta distribution of parameters a, 5 > 0 with density
Pa+B) o -1
flysa,B) = ————=y* '(1—-y)’', O<y<Ll
= The moment estimator for (a, ) is the ( ) solution of the system of equations
e a(a+1)
my = , my = .
' atp " (a+B)a+p+1)
m After some algebra we obtain the following relationship, which is a and function of
(mq, ma):
N mip —ma A mip —ma
&=m———:, ﬂ:(l—ml)—2.
mo — M3 mo — My
where 62 = my — m% is the sample variance. . is it possible that m; < m»?
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Example: beta distribution (food expenditure)

® \We consider data on spent on food for a random sample of 38 households in
a large US city.

Low income level (n = 17)

[1] 0.07431 0.13548 0.08825 0.13728 0.09629 0.09160 0.13882 0.09670 0.10866
[10] 0.11629 0.18067 0.14539 0.15869 0.14910 0.09550 0.23066 0.14751

Here m; = 0.129 and my = 0.018, giving the & =97and B =657

income level (n = 21)

[1] 0.15998 0.16652 0.21741 0.10481 0.23256 0.17976 0.14161 0.14184 0.19604
[10] 0.21141 0.17446 0.14005 0.18831 0.07641 0.21604 0.28980 0.10882 0.18561
[19] 0.19192 0.25918 0.28833

Here my = 0.184 and my = 0.037, giving the : & =9 and B = 39.9.
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beta distribution (food expenditure)

Example:
Income — Low High
9
2\6
‘B
c
[}
()
3
0
TRTT IRT T !
0.1 0.2 0.3 0.4
Food expenditure (proportion)
o f(y; &, B) for each income level, showing a reasonable fit in both cases.
;IEI][H:%
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Example: binomial with unknown trials MM [_|

m et Yy,...,Y, beiid Bin(V,p) and we assume that N and p are unknown.

® This is a somewhat unusual application of the binomial model, which can be used e.g. to estimate
crime rates for crimes that are known to have many unreported occurrences.

m Equating the first two moments yields the system of equations
m; = Np,  my = Np(1 — p) + N*p’.
= After some algebra we obtain the moment estimator for (IV, p), which is and

function of (m1,m2):

2

~ ml ~ ml
b= —=, N = T a9
N m; — 0
h A2_ . 2 . h | .
where 6° = mgy — m7 is the sample variance.
= : what if m; < 27

This problem is described in Example 7.2.2 Casella and Berger (2002), pag. 313.
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Maximum likelihood estimator

® The method of is, by far, the most popular technique for deriving estimators,
developed by Ronald A. Fisher in Fisher (1922; 1925).

m Recall that L(0) = L(6;y) is the likelihood function and £(0) = log L(0) is the log-likelihood.

Given a likelihood function L(f) of 8 € ©, a of 6 is an element § ¢

A

© which attains the maximum value of L(#) in ©, i.e. such that L(#) > L(0) or equivalently

L() = max L(0).

The maximum likelihood estimator (MLE) of the parameter @ based on a sample Y is 6(Y).

® |ntuitively, the MLE is a reasonable choice: it is the parameter point for which the observed sample is
most likely.

= Clearly, the MLE is also the maximizer of the log-likelihood: £(8) = maxgcg £(6).
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Properties and remarks about the MLE [

® Remark I: the MLE may and is necessarily . On the other hand, if ® C RP
and [(0) is differentiable, then it can be found as the solution of the score equations:
0
*(0) = —4(6) =0.
(6) = 554(6)

= Remark Il: often 6 cannot be written explicitly as a function of the sample values, i.e. in general the
MLE has but it must be found using

® Remark Ill: the likelihood function has to be maximized in the set space © specified by the
statistical model, not over the set of the mathematically admissible values of 6.

Theorem (Invariance, Casella and Berger 2002, Theorem 7.2.10)

Let ¥(-) be 1 that is, a reparametrization, from the set © onto the set ¥. Then the
MLE of ¢ = 9(8) is ¢ = 1(#) where § denotes the MLE of 6.

1. It generalizes to any g(-). If § is the MLE, then g(é) is the “MLE" of an “induced likelihood".
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Example: Poisson with unknown mean [__|

m et Y],...,Y, beaiid random sample from a Poisson distribution of mean parameter A > 0, with

) =[[% A

|
P

m Therefore the log-likelihood, up to an additive constant ¢ not depending on A, is

L(A) = Zyilog)\—n)\—kc.

1=1

® The ) is found by maximizing £(A). In this regular problem, this can
be done by studying the first derivative:

* 1 -
() = XZyz—n
i=1
= We solve £*(\) = 0, obtaining A = §. This is indeed a maximizer of £(\) (why?).
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Example: binomial with unknown trials MLE

m letY),...,Y, beiid Bin(V,p), and suppose N is , while p is considered known. This
constitutes a non-regular problem because N is discrete.

® The likelihood function is

L(N) = f[ (Jy\:)pyi(l -p)V Y,

i=1
where the maximum be obtained through ,as N € N.

= Naturally, we require that N > max; y;, since L(N) =0 for any N < max; y;. The ML is therefore
an integer N > max; y; such that

~ ~

L(N)>L(N—-1), L(N+1)<L(N).

1

® This value must be found . However, it can be shown~ that there exists exactly one such

N, meaning the MLE is unique.

1. This problem is described in Example 7.2.9 of Casella and Berger (2002), pag. 318. See also Example
7.2.13: such estimate has a large variance in practice.
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Example: binomial with unknown trials MLE
m | et us consider the following data, in which both N and p are unknown. These are simulated data
and the were N = 75 and p = 0.32.

[1] 16 18 22 25 27

" The estimator gives Ny = 102 (rounded to the closest integer) and Py =
0.21. The maximum likelihood, instead, gives Ny, = 99 and py, = 0.22.

log-likelihood

N

m |f we replace 27 with a 28, we obtain drastically different estimates, namely NMM =195 and NML =
191, demonstrating a amount of
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M-estimators

® M- and Z- estimators are broad class of estimators that encompass the maximum likelihood (iid

observations) and other popular methods as special cases. -
An M-estimator is the over O of a function M(0) : © — R of the type:
M) = m(e:¥),
i=1
where m(6;Y;) are known real-valued functions.
0 : when m(6;y) = log f(Y;;0) this coincides with the MLE of a model with iid observations.

1. A detailed discussion is offered in van der Vaart (1998), Chap. 5.
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Z-estimators

A Z-estimator is the over © of a system of equations function Q(6) = 0 of the type:

n

Q) =Q(6;Y) = > q(6;Y;) =0,

=1

where q(6) = q(6;y) are known vector-valued maps. These are called estimating equations.

= When § = (64,...,60,), Q and g typically have p coordinate functions, namely we consider:
Q(0) =) ¢(6;Y)=0, r=1,...,p.
i=1

= |n many examples ¢,(y;0) are the partial derivatives of a function m(6;y), that is

Q) = - M(6).

An example is the score function £*(6). However, this is
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Huber estimators |

®m The of a r.v. Y is a vague term that can be made precise by defining it as the expectation
E(Y'), a quantile, or the center of symmetry, as in the following example.

m et Y),...,Y, be aiid sample of real-valued random variables belonging to family of distributions F
defined as

F={f(y—90):0 6 CR},

for some unknown density f(y) symmetric around 0. The parameter 6 is the

m (Classical M- estimators for 6 are the mean and the , maximizing:
— Z(Y; —6)?, (Mean) — Z Y; — 6|, (Median)
i=1 i=1

or alternatively (Z- estimator forms) solving the equations

n

> (Y;—0)=0, (Mean) ) sign(Y; —60) =0, (Median).

1=1 1=1
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Huber estimators ||

® Huber estimators can be regarded as a compromise between the mean and the median, maximizing
the following function:

= a2 if |y| < k
M(O) = — Y; — 6), _ 2Y I Y| >
(0) ;m( ) m(y) {k|y1 1 ity > k

where £ > 0 is a parameter. The function m(y) is continuous and differentiablel. The choice

k — 0 leads to the median, whereas for kK — oo we get the mean.

® Equivalently, we can consider the solution of the following estimating equation:

Q) => qYi-0)=0, qly)=1y if [y| <k
=1 k if y>k

® Unfortunately, there is no closed-form expression and the equation must be solved numerically.

1. See Exercise 10.28 of Casella and Berger (2002).
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Example: Newcomb’s speed of light

® Data yi,...,Ys represent Simon Newcomb's measurements (1882) of the . The data

are recordes as deviations from 24,800 nanoseconds.

[1] 28
[20] 19
[39] 30
[68] 25

B There are

26
24
22
32

33
20
36
25

24
36
23
29

34 -44
32 36
27 27
27 28

27
28
28
29

16
25
27
16

40 -2 29 22 24 21 265 30 23 29 31
21 28 29 37 26 28 26 30 32 36 26
31 27 26 33 26 32 32 24 39 28 24
23

(-44 and -2) which could influence the analysis.

m \We see that as k increases, the Huber estimate varies between the median (27) and the mean

(26.21), so we interpret increasing k as decreasing to outliers.

® The suggested default for k is roughly k ~ 4.5, that is kK = 1.5 x MAD.

k 0

5

10

20

30 40 50 60 70

Est. 27

27.37

27.417

27.125

® Based on recent measurements, the
Huber estimate for reasonable values of k is closer than both median and mean.

26.831 26.677 26.523 26.369 26.215

of the speed of light, expressed in this scale, is 33.
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Bayesian estimators

m Bayesian estimators are obtained following a than the one considered
here, but they also exhibit appealing frequentist properties.

m | et L(0;y) denote the likelihood function, and let 7(0) represent the distribution. Bayesian
inference is based on the posterior distribution, defined as:

_ w(0)L(6;y)
(6 |y) = Jo 7(0)L(6; y)do

® Under certain hypotheses, which will be clarified later, the posterior mean serves as an

~ Jo0m(0)L(6;Y)do
- Jom(0)L(6;Y)do

OBayes = E(0 | Y)

However, this estimator is not always available in closed form.

® QOther “optimal” Bayesian estimators include, for instance, the posterior median.
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Example: binomial Bayes estimator

m et Y),...,Y, beiid Bernoulli random variables with probability p, and let the prior p ~ Beta(a,b).
Moreover, let ny = > | y; be the number of successes out of n trials.

m Standard calculations in Bayesian statistics yield the ( ) posterior (p | Y1,...,Y,) ~
Beta(a + ny1,b+ n — ny). Hence, the posterior mean is

a -+ ny

»=FE(p|Yy,.... V)= — "1
p (p’ 1y Y ) a+b—|—n

® Note that we can rewrite p in the following way:

. n - a-+b a
P= a+b+n J a+b+n a+b)’

that is, as a of the prior mean and the sample mean, with weights determined by
1

a,b, and n.

1. This is not a coincidence, and it essentially holds for general exponential families; see the elegant
paper by Diaconis and Ylvisaker (1979).
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Methods of evaluating estimators
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Comparing estimators

m \We study the performance of estimators, aiming to determine when an estimator 6 can be considered
or optimal.

® This requires for evaluation, often provided by decision theory, which relies on a
Z. The function Z(0,0) quantifies the loss incurred when estimating 6 by 6.

® Typically, we assume

~

Z(0,0) = 0 (no loss for the correct estimate), Z(0,0) > 0,

for all @ and .

Since O(Y") is random, we need a way to summarize the loss. A common criterion is the (frequentist)
, namely the average loss, defined as the expectation

R(9;0) = Eo{-2(6,6(Y))}.
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Optimal estimators

® An oracle estimator 0,.., which never makes errors, satisfies
R(ea Ooracle) — 07

for all 8 € ©. Clearly, such an estimator

= An optimal estimator éopt uniformly minimizes the risk, meaning
R(6; 6upt) < R(6;6),

for all @ € © and estimators 6. Except for trivial cases, such an estimator unless one
restricts the class of estimators considered 1.

® |n fact, the constant estimator éconst(Y) — 07 has zero risk when 8 = 6, but positive risk otherwise.
Thus, éopt would need R(6; éopt) = 0 for all 8 € ©, making it identical to the oracle.

A

1. A common restriction is unbiasedness, namely the requirement [E9(f) = 0. An alternative restriction is

equivariance.
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Admissible estimators

An estimator 8 is if no other estimator 6 exists such that
R(6;6) < R(6;6), forall§ € ©,

with strict inequality for at least one value of 6.

® Broadly speaking, an admissible estimator 0 will perform better than an alternative 6 for some
values of # and worse for others.

® |n principle, disregarding any practical implications, an estimator should not be used, as
it is by a better alternative.

® The admissibility criterion is interesting due to its selective nature, eliminating dominated estimators.

= However, admissibility alone is . for instance, the constant estimator éconst =40 is

admissible but clearly unsatisfactory.
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The choice of the loss function

® The choice of the loss function has its roots in decision theory. The loss function .Z is a

nonnegative function that generally increases as the distance between 0 and 6 increases.

m Let § € RP. Two loss functions are
2(6,6) = |0 — 0||1, (Absolute error loss),
and
2£(6,0) = (|6 — 9|2, (Quadratic loss).

® The quadratic loss is the de facto standard in many contexts, leading to the
and the well-known bias-variance decomposition. Let ® C R, then

R(6;0) = Eo{(0 — 0)*} = biasy(6)? + var,(6), (Mean squared error).

®m Both these losses are convex, and the quadratic loss is . Convexity will be crucial in
the subsequent theoretical developments.
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Other loss functions

® |n principle, the choice of the loss should be based on its properties rather than mathematical
convenience. Here we present some less common examples.

m Weighted quadratic loss, a variant of the quadratic loss, accounting for weights. Let 6 € RP
£00,0) = (0—0)TA®6 - 0),
where A € RP*P is a positive definite matrix. This loss is strictly convex.

» Stein Loss L. Let 6 > 0, such as the population variance of a model. Stein loss is defined as:

0 6

Z(0,0) = - —1—1log —.

A criticism of quadratic loss for variance estimation is that underestimation has finite penalty, while
overestimation as infinite penalty. Instead, Stein loss £ (6,6) — co as § — 0 and 8 — oo.

m QOther examples are Huber losses (see Lehmann and Casella 1998,pp. 51-52) and intrinsic losses
(see Robert 1994,p. 2.5.4), such as the entropy distance.

1. See Examples 7.3.26 and 7.3.27 in Casella and Berger (2002) for a comparison in the estimation of
the population variance o2 under the quadratic loss and the Stein loss.
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Example: MSE of binomial estimators | [__|

m et Y,...,Y, beiid Bernoulli random variables with probability p. Moreover, let ny = Z?Zl y; be

the number of successes out of n trials.
® The proportion p = g = n1/n is the maximum likelihood (and method of moments) estimator.
Simple calculations yield

p(l—p)

R(p; p) = Ep{(p — p)*} = var,(p) = —=—

m |et us consider a Bayesian estimator for p under a beta prior with parameters a = b = 0.5y/n,
yielding

~ ny + O5ﬁ . R 9 n
minimax — ’ y Pminimax ) — E minimax — — .
b n—I—\/ﬁ R(p p ) P{(p p) } 4(7’L—|—\/ﬁ)2

This Bayesian estimator has constant risk, that is, R(pP; Pminimax) does not depend on p.l

1. Some subjective Bayesians may criticize this estimator for not being “truly Bayesian” as the
hyperparameters depend on the sample size n, making the prior data-dependent. However, here we

are evaluating Ppayes from a frequentist perspective.
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Example: MSE of binomial estimators |l

Estimator — Maximum likelihood —— Minimax

Sample size (n) = 4 Sample size (n) = 4000

0.06 - 6e-05 - T
0.04 - 46-05 - \
0.50 0.75 1.00

MSE

0.02 - 2e-05 -

0.00 0e+00
0.00 0.25 0.50 0.75 1.00 0.00 0.25
Y
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Example: MSE of binomial estimators Il

® Neither p dominates Pyinimax NOr Vvice versa. In fact, both estimators are admissible.

® For small values of n, Pminimax 1S the unless one believes that p is very close to one of
the extremes 0 or 1.

® Conversely, for large values of n, the maximum likelihood estimator p is the better choice unless one

strongly believes that p is very close to 0.5.

® This information, combined with the knowledge of the problem at hand, can lead to choosing the
better estimator for the situation.

m \We will get back to this example, as both p and Ppinimax are optimal in some sense.

® |n fact, p is the (uniform minimum variance unbiased estimator), and Puinimax
is the estimator.

Home page

BICOCCA


https://tommasorigon.github.io/InferentialStat

32 /128

James-Stein estimator |

® letY = (Y3,...,Y,) be a Gaussian random vector, Y ~ N, (u, I,,), with unknown means p =

(1, - .., Hp) and fixed variance. That is,
ind .
}/}NN(Mjal)a leaap

m \We are interested in the L.

® |ntuitively, the most “natural” approach is the maximum likelihood / method of moments
estimator, which in this case with n =1 is simply

A=Y,  j=1...,p.

B This estimator is “optimal” in the sense that it is the UMVUE, as we shall see in the next sections.
Moreover, its under a squared loss is

R(p; p) =E,(|a — ull3) = p,

because ||~ pll3 = ¥ — ullf ~ x
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James-Stein estimator |l

m By the early 1950s, three proofs had emerged to show that [i is admissible for squared error loss
when p = 1.

® Nevertheless, Stein (1956)1 stunned the statistical world when he proved that although f is
admissible for squared error loss when p = 2, it is inadmissible when p > 3.

® |n fact, James and Stein (1961)2 showed that the estimator

. p—2
frjs = (1 — )Y
( 1Y|]5

strictly dominates fi.
1. Stein (1956), Inadmissibility of the usual estimator of the mean of a multivariate normal distribution,
Proc. Third Berkeley Symposium, 1, 197-206, Univ. California Press.

2. James and Stein (1961), Estimation with quadratic loss, Proc. Fourth Berkeley Symposium, 1, 361-
380, Univ. California Press.
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James-Stein estimator 11 [

Theorem (James-Stein, 1961)

Let Y ~ Np(u,Ip). The frequentist risk of the James-Stein estimator jijs under quadratic loss is

. . 1
R(s; fuss) = Ep (s — ull2) = p— (p — 2)7E, (HYP) .
2

Thus, fis strictly dominates fi, meaning that R(u; fiys) < R(u; i) = p. Moreover,

. (p —2)*
R(p; frs) < p — :
p—2+||plf3
® Geometrically, the James-Stein estimator each component of Y towards the origin.

m The biggest improvement occurs when p is close to zero. For u = 0, we have R(0; i55) = 2 for all
p > 2. As ||p||3 — oo, the risk approaches R(u; fizs) — p.
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James-Stein estimator IV

m A useful of the James-Stein estimator consists in the mean towards a
common value m € R rather than 0, giving

fustm) = m (1 (P2 ) O )

It holds that R(u; fiys(m)) <p— (p—2)*/(p — 2 + || — m||3), therefore jizs(m) dominates f.

m Even better, if we m with the arithmetic mean of Y, that is Y = (1/p) 2;:1 Y;, we can

obtain the following

- > p—3 _
Hshrink = Y + (1 — — ) (Y — Y)
Y - Y3

Intuitively, p — 3 is the appropriate constant as an additional parameter is estimated. Moreover, in
Efron and Morris (1975) it is proved that

- (p-3)
p—3+|lp— @l

R(,ua /lshrink) S D

with i = (1/p) >_%_; pj, again dominating the maximum likelihood f.
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James-Stein estimator V

The James-Stein estimator is an empirical Bayes estimator in disguise. Let Y ~ Ny(u, I,) and
consider the p ~ N,(m,7?L,). Then the is

1
1+ 72

)& —m)

laBayes = m + (]— -

James-Stein is an empirical Bayes approach: the quantity 1/(1 + 72) is

® |n particular, under the Bayesian model

p

1Y —mll3 =) (Y; —m)*~ (1+7")x;
=1
and therefore (p — 2)/(||Y — m||3) is an an for 1/(1 + 72). In fact:

D p—2 1
1Y —ml[3) 1+7%

= Alternative estimates for 1/(1 + 72) leads to refined James-Stein estimators.
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Efron and Morris (1975)

Data Analysis Using Stein’s Estimator

BRADLEY EFRON and CARL MORRIS*

and lts Generalizations

1n 1961, James and Stein exhibited an estimator of the mean of a multi-
variate 1 distri jing unif

than the sample mean. This estimator is reviewed briefly in an
empirical Bayes context. Stein's rule and its generalizations are then
applied J
rates, and to estimate the exact size of Pearson’s chi-square test with
results from a computer simulation. In each of these examples, the
mean square error of these rules is less than half that of the sample
mean.

1. INTRODUCTION
Charles Stein [15] showed that it is possible to make a

uniform imp on the hood esti-
mator (MLE) in terms of total squared error risk when
imating several from independent normal

observations. Later James and Stein [13] presented a
particularly simple estimator for which the improvement
was quite substantial near the origin, if- there are more

than two parameters. This achievement leads immedi-

rewards of procedures like Stein’s. They have the added
advantage of having the true parameter values available
for comparison of methods. The examples chosen are the
first and only ones considered for this report, and the
favorable results typify our previous experience.

To review the James-Stein estimator in the simplest
setting, suppose that for given 6;

X6 N N@, 1), i=1,, k23, (11

meaning the (X} are independent and normally distrib-
uted with mean Eq,X: = 6, and variance Var, (X) = 1.
The example (1.1) typically occurs as a reduction to this
canonical form from more complicated situations, as
when X, is a sample mean with known variance that is
taken to be unity through an appropriate scale trans-
formation. The unknown vector of means 8 = (9y, - - -, 01)
is to be estimated with loss being the sum of squared

ately to a uniform,, ivi: p over the

least squares (Gauss-Markov) estimators for the param-

eters in the usual formulation of the linear model. One
might expect a rush of applications of this powerful new
statistical weapon, but such has not been the case.

Resistance has formed along several lines:

1. Mistrust of the statistical interpretation of the mathematical
formulation leading to Stein’s result, in particular the sum
of squared errors loss function;

. Difficulties in adapting the James-Stein estimator to the
many special cases that invariably arise in practice;

. Long familiarity with the generally good performance of the
MLE in applied problems;

. A feeling that any gains possible from & “complicated” pro-
cedure like Stein's could not be worth the extra trouble.
(J.W. Tukey at the 1972 American Statistical Association
meetings in Montreal stated that savings would not be more
than ten percent in practical situations.)

We have written a series of articles [5, 6, 7, 8, 9, 10, 11]
that cover Points 1 and 2. Our purpose here, and in a
lengthier version of this report [12], is to illustrate the
methods suggested in these articles on three applied
problems and in that way deals with Points 3 and 4.
Only one of the three problems, the toxoplasmosis data,
is ‘“real” in the sense of being generated outside the
statistical world. The other two problems are contrived
to illustrate in a realistic way the genuine difficulties and

®

w

»

*Bradley Efron is professor, Department of Statistics, Stanford University,
Stanford, Calif. 94305. Carl Morris is statistician, Department of Economics, The
RAND Corporation, Santa Monica, Calif. 90406.

€rrors
.
Lo, &) = ¥ (6: — 0)?, 12
-

where 8 = (9, -+, 8) is the estimate of 6. The MLE,
which is also the sample mean, 8°(X) = X = (X,, - -+, Xs)
has constant risk k,

R(6,3°) = Es Zki Xi—0): =k, (1.3)
o1
E, indicati ion over the distribution (1.1).

James and Stein [13] introduced the estimator & (X)
= (:(X), -+, (X)) for k 2 3,

WX =pit+ 1=k =2/ —w)
i

1,k (14)
with w = (s, ---, we)’ any initial guess at 6 and
§ =¥ (X; — uj)* This estimator has risk

x
R(6,3") = B T (3(X) — 6)* (1.5)
im0
(k —2)?

—_—— <k r
<k Fo2 4 B 0= a0 8

being less than k for all 0, and if 6; = u; for all  the risk
is two, comparing very favorably to k for the MLE.

© Journal of the American Statistical Association
June 1975, Volume 70, Number 350
Applications Section

mn

Efron and Morris (1975, JASA) is a classical paper on the
of James-Stein’s estimator.

This approach was used in to predict the

batting averages of 18 major league players in 1970.

As expected, shrinkage estimators significantly improve upon
the maximum likelihood estimator.

Stein’'s estimator was 3.50 times than the MLE in

this case.

It also showcases a useful practical demonstration of
transformations:

® The original data are proportions, i.e. arguably not
Gaussians.

m After a suitable transformations they can be approximately
regarded as normal.
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Name At Bats n; Hits z; Mean p; James-Stein Rem. mean
Clemente 45 18 0.400 0.290 0.346
Robinson 45 17 0.378 0.286 0.298
Howard 45 16 0.356 0.282 0.276
Johnstone 45 15 0.333 0.277 0.222
Williams 45 10 0.222 0.254 0.330
Campaneris 45 9 0.200 0.249 0.285
Munson 45 8 0.178 0.244 0.316
Alvis 45 7 0.156 0.239 0.200
® The batting averages p; out of n; trials for n = 18 players have been via y; =
n; arcsin(2p; — 1). The James-Stein estimator is applied to y; and then transformed back.
® The is evident and provides a better estimate of the remaining batting average

for the season.
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James-Stein estimator VI

®  James-Stein estimators were initially seen with suspicion:

® How come that deliberately introducing improves the estimates?

® How come that points can modify and even improve the

individual estimates?
® These ideas are nowadays well established:
= Modern shrinkage estimators such as and are widely used.
® The notion of borrowing of information is at the heart of random effects models.

® The James-Stein theorem rigorously confirms the theoretical relevance of indirect information.
Remarkably, this is based on rather than Bayesian ones.

m A simple proof of the James-Stein theorem can be found in Efron (2010); see also Efron and Hastie
(2016) for a modern and accessible perspective or this divulgative article.
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Criticism to the risk function approach

m Some authors, such as Robert (1994), have the risk function approach for comparing
estimators. The main arguments are the following:

® The frequentist paradigm evaluates estimators based on their long-run performance, without
accounting for the given observations Y. A client may wish for optimal results for the observed

data, and

® The risk function approach implicitly assumes the repeatability of the experiment, which has
sparked controversy, especially among Bayesian statisticians.

® For instance, if new observations come to the statistician, she should make use of them,
potentially modifying the way the experiment is conducted, as in medical trials.

® The risk function depends on 6, preventing a total ordering of the estimators. Comparisons are
difficult unless a uniformly optimal procedure exists, which is
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Integrated risk

m | et us begin by finding a criterion that induces among estimators. A potential
solution is taking the average risk function over values of 6.

Let R(0,0) = E¢{.£(6,8)} be the , and let w(d#) be a probability measure
the relevance of each 6. Then

A

r(m,0) = /@ R(6;6)(d8),

is called integrated risk or

_Q:n

m Thus, an estimator 8 is preferable over another 0 if r(w,é) < r(w,é). Moreover, if 6
that is if 0 is , then r(, é) < r(m,0) for any choice of weights.
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Example: integrated risk of binomial estimators |__|

® | et us consider the estimation of the probability p from a binomial experiment using the maximum
likelihood p = n1/n and the Bayesian Pminimax = (n1 + 0.54/n)/(n + 1/n) estimators.

® \We previously computed the for both estimators. Let us now compute the
integrated risk, assuming uniform weights 7(dp) = dp, i.e., a of the MSE.
® The integrated risk of the estimator is
! 1 [ 1
rmd) = [ B G- pMp = [ 90— pdp— -
® The integrated risk of the coincides with the risk function, the latter being
over p:

n n

1 1
) Aminimax — E Aminimax — p)? dp = / dp = .
7 D) /0 A PRI | A vap® T dn s vy

® Depending on the sample size n, one estimator may be preferable over the other.

Home page

BICOCCA


https://tommasorigon.github.io/InferentialStat

43 / 128

Example: integrated risk of binomial estimators

Estimator — Maximum likelihood —— Minimax

0.05

0.04

0.03

0.02

Integrated risk (Bayes risk)

0.01

= According to the integrated risk and using constant weights 7(dp) = dp one should D over
Pminimax When > 20 and viceversa.
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Bayesian estimators minimize the integrated risk [

® The integrated risk is a sensible criterion for comparing estimators, provided a suitable set of weights
7 is selected. Hence, we may wish to find its

® There is a surprisingly simple and elegant answer to this apparently difficult question.

Theorem (Lehmann and Casella (1998), Theorem 1.1 in Chap. 4)

Let (d6) be the for 6. The of the posterior expected loss, if a
unique solution exists, is called Bayes estimator. Moreover:

éBayes( = arg mm/ £(60,0(Y))r(df | Y) = argminr(r,0(Y)),
0cO 0cO

which means éBayeS coincides with minimizer of the , provided r(ﬂ,éBayeS) < 0.

m This fundamental theorem provides a decision-theoretic justification to Bayesian estimators as well
as a practical recipe for finding them.
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Decision-theoretic justification of the posterior mean [

Corollary (Robert (1994), Proposition 2.5.1)
Let ® C RP, then the Bayes estimator associated with prior distribution 7 and quadratic loss
£(0,6) = [|6 — 6]|2 is the

OBayes(Y) = argmm/ 16(Y) —0|]27(d0 | Y) =E(0 | Y).
0cO

If the posterior mean exists, the Bayes estimator is unique.
® Hence, the is optimal in the sense that minimizes the posterior expected loss and
therefore also the integrated risk.

= This theorem extends to various loss functions. For instance if .£(6, ) = ||§ — 6]|; then the Bayes

estimator is the
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Example: integrated risk of binomial estimators |__|

m We previously considered the estimators p = ny/n and Puinimax = (n1 + 0.54/1)/(n + /n).
Assuming uniform weights, neither p nor Puinimax Minimizes the integrated risk.

m |n fact, theoretical results indicate that the unique minimizer is the of p for a
binomial model under a m(dp) = dp. The optimal estimator is:
~ ny -+ 1
p|Y ~Beta(n; +1,n—n1+1) = Ppayes =E(p|Y) = SR

m After some simple but tedious calculations, we obtain the associated

R(p;ﬁBayes)z( & )2(1/2_p)2+< n )2p(1—p).

n + 2 n -+ 2 n

® |ntegrating with respect to the uniform prior distribution, we obtain the

1

1
rﬂ-aAaes: R;Aaesd:—a
(7, PBayes) /0 (; PBayes)dp 6(n 1 2)

which is indeed than r(m,p) and 7(7, Puinimax)-
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Example: integrated risk of binomial estimators

Estimator — Bayes —— Maximum likelihood Minimax

0.05

o
o
e

Integrated risk (Bayes risk)
o o
N a

0.01

10 20 30 40 50
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Admissibility of Bayesian estimators [_|

® The next theorem provides a strong for Bayesian estimators.

Theorem (Lehmann and Casella (1998), Theorem 2.4 in Chap. 5)

Any unique Bayesian estimator is admissible.

® The uniqueness assumption is a technical condition often satisfied in practice. Under squared loss, or
any other strictly convex loss, this holds automatically, provided the

m |f the loss is strictly convex, such as the squared error loss, and the integrated risk is finite, this
theorem remains valid even when using (Robert (1994), Proposition 2.4.25).

®  Admissibility is a . even constant estimators are admissible.

® Nonetheless, the risk function approach dictates that inadmissible estimators should be discarded.
This is non-trivial in practice, as evidenced by the James-Stein saga.

Home page én:ucn%


https://tommasorigon.github.io/InferentialStat

49 / 128

Minimax estimators

® The minimax criterion is an alternative to the integrated risk for among (admissible)
estimators. |t comes from game theory, where two adversaries are competing.

® |nstead of considering the “average” risk over 6 (integrated risk), the minimax criterion evaluates the
risk function of estimators in the

An estimator éminimax which minimizes the risk, that is, which satisfies

sup R(07 éminimax) — H}f sup R(H) é)a
0cO 6 0cO

is called . The quantity supy R(6; éminimax) is called minimax risk.

® |n general, estimators is . Moreover, the resulting estimators are not
necessarily very appealing in practice.
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Example: MSE of binomial estimators (minimax)

Estimator — Maximum likelihood — Minimax
0.0025 /—\ 2.5e-05
0.0020 2.0e-05
0.0015 1.5e-05
Ll
w
=
0.0010 1.0e-05
0.0005 5.0e-06
0.0000 0.0e+00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
p
= We will show that Prinimax = (n1 + 0.54/n)/(n + 4/n) is indeed the . However,

this is a very conservative choice.

® One could argue that the maximum likelihood p = ny/n is the preferred choice in practice, especially
when n is large enough, even though it has slightly higher risk when p ~ 1/2.
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Minimax and Bayesian estimators [

Theorem (Lehmann and Casella (1998), Theorem 1.4, Chap. 5)

Let 7m(d#) be a prior distribution and éBayes be the unique Bayes estimator. If it holds

’I"(’]T, éBayes) — Sl;-p R(e’ éBayes)a

then:

® the Bayes estimator éBayeS is also the estimator.

m the prior w(d6) is least favorable, meaning that ’I"(T(',éBayes) > r(ﬁ,éBayeS) for any other prior

7(df) and Bayes estimator éBayes.

. . The above condition states the average of R(6; éBayeS) is equal to its maximum. This will
be the case when the risk function over 6.
® More generally, if an admissible estimator has , is the unique estimator

(Robert (1994), Proposition 2.4.21).
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Unbiasedness
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Unbiased estimators

An estimator 6 is unbiased for 6 if Eg(6) = 6, that is, if biasg(f) = Eg(0 — 6) =0 for all 6 € ©.

®m \We often teach that is a natural and appealing property of an estimator. If ® C R and
under squared error loss, unbiasedness implies that

R(8;0) = E¢{(6 — 6)?} = vary(6).

®m There are two main reasons for emphasizing unbiasedness:

® |t is often possible to find the uniformly “best” unbiased estimator, e.g., the one with the lowest
variance ( ).

® For an estimator to be , it must be at least asymptotically unbiased.

Unbiasedness is not a negative property per se. However, one may overlook better estimators by
focusing too narrowly on this special class. Indeed, the UMVUE can even be
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Nonexistence of unbiased estimators

m Certain quantities estimators, even though they can be accurately estimated
using slightly biased estimators.

A

m let Y ~ Bin(n,p) and suppose we wish to find an estimator ¥(Y") for the reparametrization ¢ =
1/p. Then unbiasedness of an estimator %(Y) would require

Som(p)rta-pt=1 pe@.
k=0

Such an estimator !

® |ndeed, the left hand side of this equation is a polynomial p with degree at most n. However, 1/p
cannot be written as a polynomial.

A

= Nonetheless, the slightly biased estimator 1 = n/n; will be close to 1/p with high probability as n
Increases.
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Bayesian estimators and unbiasedness |__|

Theorem (Lehmann and Casella (1998), Theorem 2.3, Chap. 4)
Let ® C R? and éBayeS(Y) be the unique Bayes estimator with prior m under a

|f éBayeS is unbiased then its integrated risk is

r(m, éBayes) = 0.

® The above theorem is a formal way of saying that, apart from trivial cases, posterior means are
estimators.

® However, the comes with a reduced variance, therefore the trade-off could be favorable. This is
guaranteed to occur because Bayesian estimators are admissible.

® Moreover, under mild regularity conditions, Bayesian estimators are asymptotically unbiased.
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Example: Poisson unbiased estimation

" LetYj,...,Y, beiid. Poisson(\), andlet Y =n"1Y" Y;and S2=(n—1)"1Y" (¥;—Y)? be

the sample mean and , respectively.

1

® [t can be shown™ that both estimators are , meaning

E(Y)=E(S?) =\, forall\

m To determine which estimator, Y or S2, is preferable, we should compare their variances. It is also

well known that var,(Y') = A/n, whereas computing var)(S?) can be
= |t holds that var,(Y) < var,(S?) for all . This implies that S2 is

® However, we can construct infinitely many unbiased estimators of A:
Ae=aY +(1-0a)8? 0<a<l.
Is there a value of a such that Var,\(j\a) < var,(Y)? What about other unbiased estimators?

1. These are basic and well-known results: see Theorem 5.2.6 in Casella and Berger (2002).
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UMVU estimators

In this subsection on , we will often assume that ® C R. All the results presented here
extend to the vector case, though at the cost of heavier notation.

Let © C R. An estimator @ is a best unbiased estimator of 8 if it satisfies Eg(f) = 6 for all 6

(unbiasdness) and, for any estimator 6, we have

varg(0) < vary(h), for all 6 € ©.

The estimator 6 is also called (UMVUE) of 6.
= The UMVUE . If it does, finding it is not easy. And even if a unique
UMVUE exists, it could still be —recall the James-Stein saga.

® The success of UMVUE estimators is tied to two illuminating and elegant theorems: Cramér-Rao
and , which connect likelihood theory, sufficiency, and unbiasedness.
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Cramér-Rao inequality [

® The Cramér-Rao theorem establishes a lower bound for the variance of an estimator. Thus, if the
variance of an unbiased estimator @ attains the lower bound for all 8, then @ is

Theorem (Cramér-Rao, Theorem 7.3.9 in Casella and Berger (2002))

Let Y1,...,Y, be a sample from a joint probability measure f(y | )v(dy) and let © C R.
Moreover, let §(Y") be an estimator of # satisfying

o [ - d -
14 6'(0) i= 5 [ 6w)1(y | Ov(dy) = [ 550w f(w | 6)v(dy).
and with finite variance vary(6(Y)) < co. Then
o LB
Varg(e(Y)) > ]Eg(ﬁ*(0)2) )
Moreover, if 6 is an estimator for 6, then b*(8) = 0 and var(§(Y)) > 1/Eq(1*(6)?) .
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Cramér-Rao: considerations

® The interchange of the derivative under the integral sign is an important , not merely a
technical artifact of the proof.

® For example, if the sample space of i.i.d. random variables Y; depends on 6, such condition is

violated, and the Cramér-Rao lower bound may not hold.!

® The Cramér-Rao inequality is sometimes called . In fact I(0) defined as:
1(6) :=Eo(£"(6)°),

is called Fisher information or information number. This reflects the fact that as more information
become available, the bound on the variance gets smaller.

If W(Y) is an unbiased estimator of a transformation g(6), then the Cramér-Rao theorem holds as
stated, but the term %EQ(W(Y)) = 1+ b*(0) is not related to the "bias”.

1. See Example 7.3.13 in Casella and Berger (2002), for a simple and illuminating example.
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Bartlett identities | [__|

First Bartlett identity

Let Y37,...,Y, be a sample from a joint probability measure f(y | 8)v(dy) and let ® C R. If we can
interchange derivation and integration, namely

%/f(y | 0)v(dy) =/%f(y | 0)v(dy), (C.1)

then

Eg(¢*(0)) =0,  implying  I(6) = Eq(¢"(6)") = vare(£*(9)).

® Thus, the regularity condition of Cramér-Rao implies that the score function £*(0) is un unbiased

estimating equation.
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Bartlett identities Il ||

Second Bartlett identity

Let Y3,...,Y,, be a sample from a joint probability measure f(y | 8)v(dy) and let ® C R. If we can

interchange derivation and integration, namely
o [ fwiomay) = [ 2 i) owian) (€.1)
90 Yy Yy) = 90 Yy Y), .
0?2 0?
57 | fw 1 0waw) = [ 5ot oy, (C2)
then
62
1(6) = Bt (6)") = vara(¢'(9)) = Bo - 55560 )
® Both conditions are true in families. This also clarifies that, in regular models,

Fisher information relates to the curvature of the log-likelihood.
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Cramér-Rao: iid and regular case

Theorem (Cramér-Rao, simplified)

Let Y7,...,Y, be an iid sample from f(y | 8)dy satisfying conditions C.1 and C.2, and let ® C R.

~

Moreover, let 8(Y") be an estimator of @ with finite variance var(6(Y')) < oo. Then

varg(6(Y)) > nit@)’ i(0) = —/ [% log f(y | «9)} f(y | 0)dy.

= The Fisher information is the sum of individual contributions I(0) =i(6) + --- + i(0) = ni().
= |t can be shownl that attainment, that is the equality var((Y)) = 1/ni(6), occurs if and only if

f(y | 0) is the density of an

1. See Theorem 5.12, Chap.2, Lehmann and Casella (1998).
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Example: Poisson unbiased estimation [_|

® letY;,...,Y, bei.id. Poisson()\). The sample mean Y is for X and var,(Y) = \/n.

® \We can use Cramér-Rao to show this estimator is a UMVUE. The regularity conditions are satisfied
and therefore, after some calculus

i) =5 (yzloe s 0) =B (57) = 5

= Hence, theorem states that for any unbiased estimator A\(Y")

S I>

vary ()\) >

implying that Y is a UMVUE because var)(Y) = \/n.

m Cramér-Rao theorem does not imply that Y is the UMVUE.
m However, this is guaranteed by Theorem 7.3.19 in Casella and Berger (2002): if a UMVUE exists,
it is
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Cramér-Rao, multiparameter case

® The Cramér-Rao theorem naturally extends to the . that is, when © C RP.

® The C.1 and C.2 extend to the vector case, leading to the multiparameter
Bartlett identities:

BC(0) =0, 10) = Ea(e 0 O)) = o (~ 5nt00))

where 1(0) is called the Fisher information matrix, which is

m let Yy,...,Y, be aniid sample from f(y | 8)dy satisfying the above regularity conditions. Moreover,

let (Y be an estimator of 6 with a finite covariance matrix. Then,
5 1 . . 0
varg(0(¥)) > 1(6) ", 1(6) =ni(6), i(6) =~ [ 5> o f(y | 6)dy,

corresponding to the multiparameter Cramér-Rao theorem.

m Refer to Theorem 6.6, Chap. 2 in Lehmann and Casella (1998) for a proof.
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Rao-Blackwell [__|

® The Rao-Blackwell theorem is for improving estimators that emphasizes the
pivotal role of in finding UMVU estimators.

Theorem (Rao-Blackwell, Casella and Berger (2002), Theorem 7.3.17)

Let © C R and (Y) be an estimator of 6. Moreover, let S = s(Y') be a sufficient
statistic for § and § = E4(6(Y) | S). Then @ is an estimator such that E4(6) = 6 and

A ~

varg(0) < vary(0).

That is, 0 is a uniformly better unbiased estimator of 6.

® As we shall see later, Rao-Blackwell holds for any convex loss function; see Lehmann and Casella
(1998), Theorem 7.8, Chap. 1. Note that will not play any role.

® This means that conditioning of a sufficient statistic the of a biased
estimator 6, albeit the resulting 8 would also be biased.
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En route to finding unique UMVUE | [

both § and 6 are unbiased and based on S, how do we know if @ is best unbiased?

The next theorem is a - which is useful if @ attains the Cramér-Rao lower bound.

Theorem (Casella and Berger (2002), Theorem 7.3.19)

Let ©® C R. If  is a best unbiased estimator of 6, then 8 is unique.

Example (Example 7.3.13 in Casella and Berger (2002))

Let Y7,...,Y, beiid sample from a Uniform(0, #). Then the estimator
A 1
0 = i1r1r1ax{Y1,...,Yn}
n
is for 6 and is based on a sufficient statistic S = max{Y7,...,Y,}. However, Cramér-

Rao cannot be applied because the regularity conditions are not met. Is 6 UMVUE?
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En route to finding unique UMVUE Il [_|

= Suppose we wish to improve on an unbiased estimator 8. Then, we could consider U = U(Y) such
that Eg(U) = 0, i.e. U is an unbiased estimator or 0, and let

ézé—l—aU, a € R.

Clearly, 8 is also and its is

~ A

varg(0) = varg(9) + 2acovy (6, U) + a’varg(U).

If covg(B,U) < 0 for some 6, then choosing a € (0, —2covy(, U) /varg(U)) gives a better
estimator for 8, implying that 6 is not UMVUE. This actually UMVU estimators.

Theorem (Casella and Berger (2002), Theorem 7.3.20)

Let ® C R and 0 be an unbiased estimator of 8. Then # is UMVUE 0 is uncorrelated
with all unbiased estimators of 0, that is

covg(f,U) =0, forall U=U(Y) suchthat Ey4(U)=0.
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Completeness

® Proving that an estimator 6 is uncorrelated with all unbiased estimators of 0 is very hard, limitating
the practical usefulness of the former theorem.

® However, if we assume S is , we can finally see the light at the end of the tunnel.

A sufficient statistic S = s(Y) for a statistical model F = {f(dy | 0) : € O} is said to be
complete if function g(-) of S is , that is,

Eg(g(S)) =c forall® implies ¢(S)=rc a.s.

In other words, any non-trivial transformation of S conveys information about # in expectation.

= Because of Rao-Blackwell, the UMVUE 6 = é(S) must be a function of a sufficient statistic .S.

m |fSis , then (using ¢ = 0), there exists no estimator U = U(.S) such that Ey(U(S)) = 0,
with the only exception of U = 0, which is uncorrelated with é(S)
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Lehmann-Scheffé theorem

® We summarise these finding into a single statement, which is arguably the most relevant result of the
Rao-Blackwell saga.

Theorem (Lehmann-Scheffé-Rao-Blackwell, Casella and Berger (2002), Theorem 7.3.23)

Let ® C R and S be a sufficient statistic for a parameter 6, and let 0 be an unbiased
estimator of @ based only on S. Then,  is unique best unbiased estimator (UMVUE) of 6.

® The Lehmann-Scheffé theorem is implicitly contained in the previous results. Its
is: “unbiased estimators based on complete sufficient statistics are unique.”

B The Lehmann-Scheffé theorem represents a major achievement in mathematical statistics, tying
together , and uniqueness.
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Example: binomial best unbiased estimation [__|

m et Y),...,Y, beiid Bin(/V,p) and we assume that N is known and p is . We are

interested in estimating the
Y =P(Y; =1) = Np(1 - p)" .

= We know that § = Y7 | Y; ~ Bin(nN,p) is a and sufficient statisticl

obvious unbiased estimator based on S is immediately available.

. However, no

m Let us begin noting that ¢ = I(Y; = 1) is an estimator of 1, where I is the indicator

~

function. In fact: E(¢) = E(I(Y1 =1)) =P(Y; = 1) = 9.

® The Lehmann-Scheffé-Rao-Blackwell theorem then implies that the unique and best unbiased

estimator (UMVUE) is
. - Nn—N Nn
=218 =-n5("g 1))

which can be obtained after simple calculations.

1. See Example 6.2.22 of Casella and Berger (2002). This is also follows from general result of
exponential families.
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Rao-Blackwell, multiparameter case

® Generalizations of Rao-Blakwell theory to the multiparameter case ® C RP are possible.

= |f one is interested in estimating ¥ = g(#) for some function g : R? — R, then the previously

developed . with minor modifications to the statements.

= Note that a special case of the above is g(6) = 6;, meaning that the developed theory can be

applied to each coordinate of 6.

Theorem (Rao-Blackwell, Lehmann and Casella (1998), Theorem 7.8, Chap. 1)

Let © C R?, and let §(Y") be an estimator of 8 with finite risk R(6;6) under a
function. Moreover, let S = s(Y') be a sufficient statistic for 6, and set 8 = Eo(6(Y) | S). Then,

A ~

R(0;0) < R(0;96),

unless 8 = 6 with probability 1.
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Alternative notions of optimality
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Unbiased estimating equations |

m A Z-estimator is the over © of a system of equations function Q(6) = 0 of the type:

n

Q(6) =) q(6;Y;) =0,

1=1

where ¢(0) = q(0;y) are known vector-valued maps. These are called estimating equations.

The estimating equations Q(0) = >_7" , q(0;Y;) are if they satisfy

Eg(Q(0)) = 0, for all 6 c0O.

= Under iid sampling, the can be written as £*(6) = > | 2 log f(y;;0) and therefore
is a Z-estimator. Moreover, under regularity conditions, it is : Eq(€*(6)) = 0.
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Unbiased estimating equations ||

m Remarkably, the unbiasedness of Q(#), combined with a few regularity conditions, is often enough to

prove of the resulting estimator §asn— oo L

= Unbiasedness of Q(6) does not imply that the solution 8 is an unbiased estimator of 6, unless Q(8) is
a linear function.

® The unbiasedness of Q(#) holds for any ¥ = 1(0). Moreover, Z-estimators, by
construction, satisfy equivariance, meaning that 1; = ¢(é)

Having defined the class of unbiased estimating functions, the question naturally arises which of
them we should use.

1. Refer to Davison (2003), Section 7.2, for an intuitive argument and van der Vaart (1998), Chap. 5
for a rigorous proof.
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Asymptotic behavior of unbiased estimating equations

m Guidance on the choice of Q(8) can be found by investigating its asymptotic behavior. We provide
an for 6 € ©® C R.

m Under iid sampling and further , implying that Ey(q(0;Y;)) = 0, a Taylor
series expansion of Q(0) gives

n

0=0Q(0) ~ > alB:;Ys) +(0-0) %q(e;m

i=1
® Thus, re-arranging, the following approximations hold

g YLa0Y) Q)
~ n p) ~ ) .
— 21 5949(0;Y:) By (—5Q(0))

® This suggests Z-estimators are asymptotically unbiased and the of 8 is

var(é)% var(Q(0)) 2 _ var(q(6)) 5
Eg (—5Q(6)) Eg (—4(0))
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Godambe information

Let Y be a sample from a statistical model with parameter § € © C R. Let Q(6) be an
. We define the sensitivity as

H(0) :=Eo (—%Q(H; Y)) :

and the as
J(0) := varg(Q(6;Y)).

Then, the Godambe information is defined as

® An estimating equation Q(6#) which has H(0) = J(0) is called information unbiased.
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Godambe efficiency

Let Q(6) and Q(6) be two with Godambe information V() and V' (6). Then
Q(6) is uniformly more efficient than Q(9) if

V() >V(®)  forall HecO®CR.

® This criterion is appropriate because the of the Godambe information V(0)~!, under
regularity conditions, coincides with the of 0.

= Moreover, although the variance J(6) is a natural basis for comparing estimating functions, Q(G) =
aQ(#;Y) is also unbiased with variance J(8) = a?J(0).

® Hence, a fair comparison is possible only after removing this . Indeed, Godambe
information is invariant to scaling of Q(6).
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Godambe information of the score function

® et Y be a sample from a statistical model with parameter # € ® C R and with score function
*(0).
= |f the first Bartlett identity holds, the score function £*(0) is an

m Moreover, if the second Bartlett identity holds, £*(0) is information unbiased, that is

H(9) = Ey (—%e*(e)) — vary(£(8)) = J(9).

This implies that

that is, the Godambe information of £*(0) coincides with the usual

® Hence, Godambe information is a generalization of Fisher information.
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Godambe efficiency

Theorem (Godambe (1960))

Let Y1,...,Y, be a sample from a joint probability measure f(y | 8)v(dy) and let ©® C R.

Moreover, let Q(6) be an unbiased estimating equation with Godambe information V(60). Then
under C.1 and C.2:

® This result is the equivalent of the Cramér-Rao theorem for unbiased estimating equations.

® |t implies that the score functions are (Godambe efficient) among unbiased estimating
equations. However, Z-estimators may have appealing properties.

Godambe information generalizes to the vector case § € ® C R? and is defined as V(0) =

H(6)J(0) 'H(H), sometimes called matrix. Optimality results generalize as well.
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Linear estimating equations |

m letY,...,Y, beindependent random variables with E(Y;) = u;(0) and var(Y;)
Vi(u), depending on a scalar parameter 6 € ® C R.

m Suppose the unbiased estimating equation Q(#) has a linear form:

=D _a(6:Y;) = sz )(Y: — pi(6)),

for some set of positive w;(0). Can we find the optimal set of weights, according to the

Godambe information?

= The sensitivity H(f) and the J(0) of Q(0) are readily available:

_ Zwi(e)@(e), J(9) = Zw?(H)V 0

Therefore, the optimal weights are those that the Godambe information:

(5, wi()wi(6))"
> i wi (0)Vi(6)
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Linear estimating equations |I

m Using Lagrange multipliers, it can be shownl that the are
p; () \ 0 .
7 0 ! y (0) = — (6 3 - ]., N A2
w;(6) o Vi (6) wi(0) = 2on0), i n
which means the following unbiased estimating equation is Godambe efficient:

Q) = Y ) (v o))

® This optimality property holds for a special class of linear unbiased estimating equations but does
make of the distribution of Y; other than u;(8) and V;(0).

Let Y3,...,Y, be independent random variables such that p;(0) = Ae; and V;(0) = Ae;, where e; are
e.g. representing exposure. Then the optimal weights are w;(f) =1 and § = Y /&.

Note the Y; is not necessarily Poisson.

1. See Davison (2003), Section 7.2.2, for a proof.
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BLUE estimators |

Theorem (Gauss-Markov, Agresti (2015), Section 2.7.1)

Let Y € R" be a random vector satisfying E(Y) = X3 and var(Y) = 02I,, where X isan n X p
known matrix with , B € RP is an unknown vector, and o2 > 0 is an unknown parameter.
Then the best linear unbiased estimator (BLUE) of 3 is

B=(XTX)1Xx"Y.

meaning that 3 is and has the minimum variance among all unbiased linear estimators of

B.

® The Gauss-Markov theorem does not make specific assumptions on the distribution of Y, only on the
and

= |f we strengthen the assumptions to Y ~ N,(X 3, 021,), then B is the UMVUE of 8 among all
estimators, including non-linear ones; see Lehmann and Casella (1998), Chap. 3, Sec. 4.

® As a special case of Gauss-Markov, if Y; are iid with mean u and variance o, then Y is BLUE.
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BLUE estimators ||

Theorem (Aitken, Agresti (2015), Section 2.7.1)

Let Y € R™ be random vector satisfying E(Y') = X8 and var(Y') = X, where X is n x p known
matrix with , B € RP an unknown vector, and X an covariance matrix. Then the

best linear unbiased estimator (BLUE) of g is
B=(XTeXx)XTn 1y,

corresponding to the estimator.

® This interesting generalization of Gauss-Markov is often not applicable in practice, because the
covariance matrix X is typically

When ¥ = diag(c?,...,02) is , i.e. in presence of heteroschedasticity, the Aitken estimator
reduces to the weighted least squares estimator.

Moreover, if Y; are independent random variables with mean @ and variance 02.2, then the
p=>" wY:/ Z?:1 wj is BLUE, where w; = (1/0?).
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BLUE estimators and unbiased estimating equations |

m \We discuss here between the BLUE estimators and the
, aimed at providing a of these concepts.

® Under the same assumptions of Gauss-Markov theorem, let us consider:
Q(B) = AT(Y - Xp),

for some n x p matrix A having full rank. This is a estimating equation, and the

optimal choice of A maximizes the

® Solving this estimating equation we obtain to a linear unbiased estimator, which is
B=(ATX)'ATY, EB)=ATX)'ATXB=35.

= The sensitivity and matrices of Q(8) are

J(8) = var(Q(8) = *ATA,  H(B)—E (—%Q(ﬂ)) _ (ATX)T.

Consequently, the Godambe information is V(8) = 0 2(AT X)T(ATA) 1 (AT X)T.
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BLUE estimators and unbiased estimating equations ||

® The choice of A equivalently minimizes the inverse of the Godambe information, which

after a few algebraic manipulation is equal to
V(g =o [(ATX )—1AT] [(ATX)—lAT]T.
® The key remark is the following: a direct calculation shows that the variance ofﬁ is
var(8) = o [(ATX)—1AT} [(ATX)_1AT}T — V()

that is, the ofB coincides with the inverse of the Godambe information. This is a
consequence of the linearity of Q(8), otherwise the property holds only asymptotically.

® Thus, the same proof of Gauss-Markov theorem can be used to show that the BLUE estimator is
and the optimal matrix is A = X, giving

b= (XTX)'XTY, V()= XTX.

o2

= Moreover, if Y ~ N,(X3,0%I,), then V(B) also coincides with the Fisher information I(3).
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Asymptotic evaluations
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Asymptotic evaluations: preliminaries

m  Asymptotic evaluations of estimators are taught in basic courses of inferential statistics. We focus on
two main properties: consistency and

® An estimator 6,, is if it converges in probability to the true value 6, as the sample size

. . p . .. . .
increases, i.e., 8, — 0y as n — 00. Classical sufficient conditions are given below.

Theorem (Casella and Berger (2002), Theorem 10.1.3)

Let ® C R and én be a sequence of estimators such that the and variance are
zero, that is for every 0 € ©

lim biasg(f,) = 0, lim varg(6,) = 0.

n—oo n—oo

Then én is a consistent estimator of 0.

® Checking this condition case-by-case is difficult. Instead, we seek general sufficient conditions to
establish the consistency of broad estimator classes, including
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Asymptotic evaluations: preliminaries

®m The of an estimator én is a stronger property than consistency, implying that
the estimator is normally distributed around the true value 6, for large n.

" Let © C R and let 6, be a sequence of estimators. Under “regularity conditions”:
A d
Vvn(8, — 8y) — N(0,v(6y) 1), n — 0o,

where v(6p) ! is the so-called asymptotic variance.

= If §, is the , then under regularity conditions nv(6) equals the

I() = ni(#) and the asymptotic variance is i(6y) .

In regular problems, the maximum likelihood estimator én is that is, for n
large enough, its variance attains the Cramér-Rao lower bound. Informally,

0, <~ N(6o, 1(60)7").

u : there exist infinitely many asymptotically efficient estimators.
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Example: Poisson with unknown mean

m et Y,...,Y, beaiid random sample from a distribution of mean parameter A > 0. The

maximum likelihood estimator S\n is the sample mean
A, =Y.
~ a.s.
m One could invoke the strong law of large numbers to show that \,, — \. Alternatively:

A

Ex(A) =2},  vary(\) =2 =TI\,
n
which implies bias)\(jxn) = 0 and lim,,_, var)\(j\n) = 0, from which follows.
® Moreover, as a direct application of the , we also obtain that
A d 1
vn(A, — ) — N(0, )), i(A) = X

= |n order to construct confidence intervals, one typically estimate the asymptotic variance i(\)~! with
a consistent estimator 7(\,)”' = \,. Then Slutsky theorem ensures that

Vi)Y (0, — A) —5 N(0, 1).
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The classical “regularity conditions”

We observe an iid sample Yi,...,Y, from a density f(y;60) with true value 8y € © C RP,

)
A2) The model is identifiable, that is, the densities f(-;6) and f(-;6") are different for 6 # 6.
A3) The distributions f(y;68) have

)

A4) The parameter space © contains an of which 6y is an interior point.

We will sometimes need the additional conditions:

(A5) There is a neighbourhood N of the true value 6y within which the first of
£(0) exist a.s., and there exist functions m,.(y) such that |0°f(y;0)/96,00,00;| < m,s(y) and
Eo(M,st(Y)) < oo for r,s,t =1,...,pand 0 € N.

(A6) The Fisher information matrix is finite and , and

o [ t®@)] =0, 1) = —5a [ 57 w)] [ ZO

forr,s =1,...,p, that this, the and second Bartlett identities.
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Wald inequality [

Theorem (Wald inequality, Lehmann and Casella (1998), Theorem 3.2, Chap. 6)
Under assumptions (A1)-(A3), by the strong law of large numbers:

1 1 1 < f(Yi;0) as.

—0(0:Y) — —4(0,:Y) = — 1 > —KL(f(-;60 ) —

’I’Lg( ) ) nf( 0y ) n Zzzl og f(Yz,QO) (f( ) 0) ’ f( ) ))7 n o0,
where KL is the Kullback-Leibler divergence, which is for 8 £ 6y. Thus:

U0, Y) — £(6,;Y) — —oc.
Moreover, by the properties of the KL, or using Jensen’s inequality, we deduce:
E90 (£(07 Y)) < Eﬂo (£(007 Y)) ) 0 7é 907

which is commonly known as
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Consistency for the MLE

m \Wald inequality is the main workhorse for proving consistency of the

® Broadly speaking, on average, the likelihood is at the true value 6y, and this holds
almost surely for large n, suggesting that én — 6y almost surely as n — oo.

= \We may be tempted to conclude that conditions (A1)-(A3) are enough to prove consistency.
Unfortunately, there are on general spaces ©. An exception is given below:

Theorem (Lehmann and Casella (1998), Cor. 3.5, Chap. 6)

Under assumptions (Al1)-(A3) and if © = (6o, 61,...,60k) is , then @, exists, is unique and is a
consistent estimator of 6.

.Let A;,, = {€(6p) > £(0;)} for 5 =1,...,k. It holds P(4,,) — 1 as n — co. Hence:

k

P(£(6p) > £(6;) forall j = 1,...,k) =P(Nh_14;,) > 1 - ZIP’(A]Cn) —1, n— oo

j=1
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What could go wrong?

m et Y],...,Y, bean iid sample from the following univariate density1

1 1 o /p2
fy;0) = 50(y;0,1) + 5oy 0,¢7),  O€ER,
where ¢(x; u, 0?) is the . The density f(y; @) satisfies conditions (A1)-(A4).
Moreover £(6) is differentiable.

® However, the log-likelihood present spykes in correspondence of the observed data and the maximum
likelihood concentrates around O rather than 6y, i.e 6, is

® |ndeed, there are multiple roots of the score equation £*(0), corresponding to the spykes. The
“correct” solution close 6y is among them, but is not identified by the data even for large n.

Note this example does not contradict Wald inequality, because the spykes occur on a
. Indeed for any fixed 6 the probability of observing Y; = 0 is zero.

1. This example is taken from a blogpost of Radford Neal.
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What could go wrong?
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® These are simulated data when the true value is 6, = 0.6.

the log-likelihood £(0) for n = 10, 30, 100.
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What else could go wrong?

0.0
|

-0.5

negative KL
-1.0

-1.5

-2.0

® The picture depict —KL(f(:;60) | f(+-;60)) in another situation. The true value is 6y =
7 /2, but the presence of the asymptote may cause 6, to
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Consistency for the MLE ||

Theorem (Lehmann and Casella (1998), Th. 5.1, Chap. 6)

Under assumptions (A1)-(A6), with probability tending to 1 as n — oo, the equation £*(6) = 0 has

A . A A p
at least one root 6,,, and there exists a sequence of roots 6,, such that 6,, — 6.

m This standard result of the literature requires several regularity conditions and yet it delivers less than

what it seems.1

® The claim is that a clairvoyant statistician, with knowlegde of 6, could choose a consistent

sequence of roots. In reality, it may be impossibile to choose the right solution.

Let us further require that, with probability tending to 1 as n — oo, there is a unique solution to
the score equation. In that case 6, is consistent and is also the global maximizer of £(6).

1. See also van der Vaart (1998), Theorem 5.42, for slightly less stringent conditions and a careful
discussion about the issue of multiple roots.
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Asymptotic normality of the MLE [

Theorem (Lehmann and Casella (1998), Th. 5.1, Chap. 6)

Under assumptions (A1)-(A6), suppose the maximum likelihood estimator 6,, exists and is
for the true value 6y. Then

R d o , 0?
Vi, —00) -5 N0 ), i66) =~ [ (g 085w 19)) £ O
where ni(0) is the Fisher information matrix.
® |nformally, we say that the maximum likelihood estimator is because,

roughly speaking, V&I‘g(én) ~ I(0)~!, the latter being the Cramér-Rao lower bound.

= Rigorously, the above theorem does not establish the convergence of E4(6,,) and varg(6,), nor have
we introduced an asymptotic version of the Cramér-Rao bound.

® Nevertheless, the statement that maximum likelihood estimators are asymptotically efficient is
, as rigorously discussed in Chapter 8 of van der Vaart (1998).
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Observed vs Fisher information

® For the practical construction of , or simply to empirically assess the variance
of an estimator, we need to consider a consistent estimator of I(6) = ni(6).

The negative of the log-likelihood is called observed information and equals:

82
I(0) = — ooz L6 Y).

If the second Bartlett identity holds, the is 1(0) = Eg(Z(0)).

= There are two natural candidates for estimating I(6y) = ni(6g), namely I(6,) and Z(6,,). These two
quantities may coincide, but in general, this is not guaranteed.

® Following Fisher's original work, Efron and Hinkley (1978) suggested using I(én) because it
approximates the conditional variance of én given an appropriate

= Moreover, Z(6,) can be computed numerically via differentiation, whereas I(6,) requires analytical
derivations.
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Consistency for M-estimators |

= We now discuss a broader and modern theory for . Let M,(8) =>"7 , m(6;Y;) be an M-
estimator and recall that the is a special instance, with

M, (0) = ZH:M;YZ-),

® |n order to simplify the subsequent exposition, it is convenient to consider

M(0) = S IAEY) — €60 V0] = D log Fo

where the red terms are ininfluential because the maximizer 8, of M, (6) is the same.

= Under conditions (A1)-(A3) the law of large numbers guarantees that M, (6) = M(0)
for every 6, where M (0) = —KL(f(+;6y) | f(+;0)). However, this was

® On the other hand, we will see that én does not need to maximize M, (). Indeed, it is sufficient that

A~

is nearly maximizes it, in the sense that M, (60,,) > supg.g M (0) — 0,(1).
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Consistency for M-estimators |l [_|

Theorem (van der Vaart (1998), Theorem 5.7)
Let § C RP, M,(6) be random functions and M (0) be a function of 8 such that for every € > 0

sup | My (0) — M ()| 50, (Uniform convergence)
S

sup M(0) < M(6,). (Strong identifiability)
6:1|60—6o||2>€

Then any sequence of estimators 6, with Mn(én) > M,,(6y) — 0,(1) converges in probability to 6
as n — 00.

®m The assumption strengthen the pointwise convergence typically ensured by the
law of large numbers, that is, m(6) should be Glivenko-Cantelli.

= This holds if ©® is compact, m(0) is continuous and dominated by an integrable function.

® The strong identifiability condition, also called ensures that only point close to 6,
are close to the maximum value M(6,), strengthening Wald inequality.
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Consistency for Z-estimators [_|

m The former theorem can be also expressed in terms of Z-estimators Q,,(6), that is, on a set of
. An example is the score function

Qul) =~ > (670,

= \We require 8, to nearly solve Q.(0) = 0 and that lim,, ,,, Q,(6y) = 0. Intuitively, this comes from
the LLN in , in which case Eg (Q,,(6y)) = 0.

Theorem (van der Vaart (1998), Theorem 5.9)

Let § C R?, Q,(6) be random vector-valued functions and Q () be a vector-valued function of 8
such that for every € > 0

sup ||Qn(8) — Q(8)] |, — O, inf  [|Q(8)]]2 > [|Q(6o)]]2 = 0.

06@ 0“9—00“226

Then any sequence of estimators 6,, such that Qn(én) = 0,(1) converges in probability to ;.
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Asymptotic normality of M-estimators |

Theorem (van der Vaart (1998), Theorem 5.21)
Let © C R? and M, (#) be an M-estimator whose vector-valued derivative is @Q,,(6), so that

n

M, (0) = Zm(O;Y}), Qn(60) =D q(6;Y)).

1=1

Let 6, be a sequence of estimators such that Q,(6,) = 0. Under assumptions (A1)-(A2)
and further mild regularity conditions

VB, —00) 5 N(0,0(60) 1), v(8) = h(6)j(6) 'h(6),

where V(0) = nv(0) is the and

) =B (- 5a®) . 3(6) = Eo (a(0)a(0)").
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Asymptotic normality of M-estimators I

m The previous theorem is very powerful as it applies to the broad class of M-estimators. Moreover, its
statement has been substantially compared to van der Vaart (1998).

® The actual statement does not even require Y7,...,Y,, to be independent or identically distributed.

= Moreover, the regularity conditions are much weaker than (A1)-(A6) and essentially ensure that
the involved quantities are well-defined. , note that 6,, must be

® An alternative proof relying on more , €.g. based on bounding third derivatives
as in (A1)-(A6), is given in van der Vaart (1998), Theorem 5.41.

In regular problems, an M-estimator 9n is and asymptotically normal. Moreover, for n
large enough, its variance is the inverse of the Godambe information. Informally,

0, ~ N(8y,V(6)}).
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First-order bias-correction

® |n a regular model with ® C RP and independent samples, the of the
can be as follows:
A b1(0 b2 (6
biasg(6,,) = 1(6) + 2(6) + O(n?).

n n?2

m The quantity biase(én) is often unavailable, but the first-order term b;(0) might be computable,

e.g., in (Pace and Salvan (1997), Chap. 9).
® The is a popular strategy for removing the first-order bias. Alternatively, the first-order
bias-corrected maximum likelihood estimator is obtained via plug-in as
- b0,
b = 6, — 2n).
n

m If 6, is an estimator of A with bias of order O(n~2), then
varg(0,) = varg(fhe) + A%(0) + O(n™?),

where A%(#) > 0, with equality if and only if ébc — 0,,. In this case, ébc is said to be
; see Efron (1975).
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Bias reduction using Firth’s correction |

®m The jackknife and ébs are “corrective” rather than “preventive”. That is, the maximum likelihood 6 is

first calculated, then corrected. A practical requirement is the of 6.
m Motivated by this, Firth (1993) proposed a modified score equation. The idea is that the in 6
can be by introducing a small bias into the score function.

In a regular model with ® C RP?, let £*(0) be the score function, I(0) the Fisher information matrix
and b(0) the of the maximum likelihood @,,. Firth (1993) estimating equation is

Q(6) = £7(0) + A(0),

where A() = A(6;Y) is any vector such that

Clearly, a natural candidate for A(0;Y ) is indeed A(6) = —1(6)b,(0)/n.
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Bias reduction using Firth’s correction |l

u(o)
U*(0)

Fig. 1. Modification of the unbiased score function.
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Bias reduction using Firth’s correction 11 [

Let Y1,...,Y, be an iid sample from a Poisson with parameter A and consider the reparametrization
1 = 1/)\. The score and the Fisher information are

n Y n
f* = - = — I —_ — .
The is 1) = 1/g, with first-order bias by (¥)/n = 92 /n. Thus
. A 1
Q) =) —I[¥)bi(¥)/n = Prum = = :
g+ 1/n
Let Y,...,Y, be an iid sample from a Bernoulli with parameter p and consider the

reparametrization 8 = logp/(1 — p). Application of Firth (1993) method gives

A ny+1/2 A ni
irth — 1 3 h =1 )
Brirth = log (nn1+1/2> whereas [ = log (nm)
which is a well-know correction of the empirical logit.

Home page én:ucn%


https://tommasorigon.github.io/InferentialStat

108 / 128

Robustness
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Robustness: preliminaries

® Thus far, we have assumed that 7 = {f(-;0) : 0 € O} is , that is, there exists a
6y that generates the data (Y3,...,Y,) ~ f(-;6y) and f(-;60y) € F.

® Under this assumption, we have derived estimators that are in some sense. However, if the
underlying model is not correct, everything breaks down.

® The term “ " is intentionally vague, but let us say that any statistical procedure:
a. Should have nearly optimal efficiency if the model is correctly specified
b. Small deviations from the model assumptions should impact the model only slightly
c. Somewhat larger deviations from the model should not cause a catastrophe

® \We also distinguish among two kinds of robustness:

i. robustness with respect to contamination of the data (i.e. y; = 10%% is an )

ii. robustness with respect to , that is, we specify a class of models F but
in reality (Y1,...,Y,) ~ fo(-) and fo(:) ¢ F.

m (Case i. is sometimes called and relies on the notion of influence functions. For instance,
the median is resistent, the mean is not.
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Example: Huber estimators | [__|

®m Recall that a Huber estimator én for the 0, is defined as the solution of
n —k if y<-—-k
Q) =) q¥i-0)=0, qly) =1y if |y <k .
i=1 k if y >k
® \We assume Y fo where fy(y) is a and symmetric density around 6,. Hence, there

exists a density fy symmetric around 0 such that fo(y 6o) = fo(y).

= First of all, provided f; is symmetric, the estimating equation Q(6) is
Eo{Q(0)} = nlEo{q(¥Y1 — bo)} = 0.
Broadly speaking, this means that Huber estimator én is for 6y. Moreover
. d :
Vn(0, — 60) — N(0,v7(60)), v(8)"' = 3(6)/h(6)>.

® Huber estimator is but less efficient than the maximum likelihood. For instance, if f; is a

Gaussian with mean 6y and variance o2, then Y has asymptotic variance o and o2 < v(6p)*
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Example: Huber estimators 1l [__|

m let Z ~ fo, and note such density on 0. After some calculations, we find
j(0) = Eo{a(Y1 — 0)°} = E{Z°I(|Z| < k)} + 2K*P(Z > k),

and

1(6) = 5o (-~ gal¥i —0)) = P(12] < ).

® Remarkably, the asymptotic variance does not depend on 6y therefore its relative efficiency compared
to the is also constant over 6.

= Below we show the asymptotic relative efficiency (ARE) of the Huber estimator compared to Y for
different values of k, assuming f, is Gaussian with 0> = 1 and arbitrary 6,

k 0 (Median) 0.5 1 1.5 2
ARE = 02 /v(6y) ! = v(60) 0.637 0.792 0.903 0.964 0.99

» The ARE does not depend on o2 if we use k = ok. This is the default of the huber function of the
MASS R package with k& = 1.5, where o is robustly estimated using the MAD.
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Example: omitted variable in linear regression [_

" |letyy,...,y, be realizations from the model Y; = By + Box; + B32; +€; fori =1,...,n, where z;

: . : iid .
and z; are linearly independent covariates and ¢; ~ N(0, ¢?) is the

® |f we do not include z; in our model, the class F is . The estimate
of By under the misspecified F is:

A

1 n
B2 = ST (2, —7)? i;(mi —Z)(yi — 7)-

J=1

® Thus, the estimator 32, under the true model fy, is distributed as a Gaussian with mean

R 1 -
Eo(B2) = B2 + B3 - (z; — 2)(2 — 2),
ST 8P
and variance 0%/ >0 (z; — %)*.
® |n other words, Bz is and unless £ and z are uncorrelated or, obviously, if the

model is correctly specified, that is if 83 = 0.

Home page

112 / 128

BICOCCA


https://tommasorigon.github.io/InferentialStat

113 / 128

Maximum likelihood under a misspecified model [__

m et fo(-) denote the true probability model, and let 7 = {f(+;0) : 6 € ©} be an
statistical model, such that fy ¢ F.

= Suppose Yi,...,Y, are iid under fy, and define the log-likelihood as £(0) = ", log f(v;6).

m | et Ey(-) denote expectation under the true model fy. If the problem is sufficiently regular, the
estimator én in probability to some value 6, such that

Eo{ﬁ(e)} < Eo{f(@o)}, for all 6 € @, 0 7é 90,

as shown in Huber (1967). That is, f,, converges to a value satisfying

® An alternative formulation of this result is the following:

KL(f(:;60) | fo) <KL(f(50) [ fo), foralldc®, 6 0b,.

In other words, the converges to 6y, which represents the parameter value that
makes f(-;0) as close as possible to the true fy, albeit KL(f(-;6) | fo) > 0.

The maximum likelihood makes our predictions “the best they can be” given the chosen model.
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Example: misspecified exponential model |

m let F = {,u_le_y/“ : u € R*} and suppose the data Y7,...,Y,, are iid from an with
mean py. Then Y is a consistent and estimator for pug.
= However, Y is a estimator, in the sense that if instead Y; fo(-) with fo(-) & F, then Y

remains consistent for the mean py under minimal assumptions on fy (i.e. po must exist).

® On the other hand, the central limit theorem shows that the asymptotic distribution is
_ d
V(Y — ) — N(0,0°).

where o2 is the variance of Y; under fo(+), provided o? < .

m Thus, confidence intervals are robust if o2 is estimated in a way, e.g. using the sample
variance, but if we use the usual & = i(j1)™! = Y2 implied by the exponential specification.

m This example can be read under the lenses of estimating equations. The score function

n

e =3 (% - p)

1=1

is an unbiased estimating equation under fy(-) for a broad class of models beyond F.
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Robustness and unbiased estimating equations

An essential requirement is that estimands must have the same interpretation under all the
potential models. In the former exponential example pg represents the mean of f.

Formally, this means we can write the parameter 6, as a T(-) of fo:
0o = T'(fo)-

For example, we might have 6, = fy yfo(y)v(dy), that is, the mean of fj.

On the other hand, for instance the parameters a and 8 of a Gamma distribution are not robust to

interpretation, because they are meaningless for models other than the Gamma.

= More broadly, if the 0*(0) = >, £*(6;Y;) is unbiased under fy(-), the estimator is
consistent under mild conditions.

® Moreover, even if the maximum likelihood én is consistent, the asymptotic variance is not anymore
the one induced by the Fisher information: are needed.
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Misspecified likelihoods are M-estimators

® The theory of M- and Z-estimators can be directly applied to investigate the asymptotic behavior
the maximum likelihood estimator

m |f F is misspecified then the maximizer of the log-likelihood £(6) = > | log f(y;;6) should be
regarded as an while the score function £*(0) is a Z-estimator.

u and asymptotic normality of the maximum likelihood estimator 0,, for misspecified
models hold under the assumptions in van der Vaart (1998), Theorems 5.7, 5.9, 5.21.

®m Note that under misspecification, Bartlett identity does not hold anymore. However, under the
assumptions of Theorem 5.21 of van der Vaart (1998), the maximum likelihood is such that

Vi(Bn — 00) =5 N(O,v(80) %), v(8) = h(8)§(8) " h(8),

where V(0) = nv(0) is the and

b0 =50 (£ @), 90) = Ea (OF O)).

where expectations are taken over f; and not the misspecified f(-;8), so that h(0) # 5(0).

Home page én:ucn%


https://tommasorigon.github.io/InferentialStat

117 / 128

Sandwich estimators

® |n order to compute and test hypotheses, we need to estimate the asymptotic
variance of the maximum likelihood estimator 6,, under model misspecification.

m |[nformally, recall that for n large enough and under regularity conditions, we have
varg(6,) ~ V(6) .

= |f the model is correctly specified, then typical of the of 6, are Z(6,,) and I(8,).

~

Unfortunately, we cannot use V' (6,,) because it depends on fy, which is unknown!

The sandwich estimator is a popular choice for estimating the of én under
model misspecification. The sandwich estimator for V() is

A

V(8,) = Z(6,) (Z f*(én;yi)f*(én;yi)T> Z(6,),

recalling that Z(6) = —0/00 £*(6; y) is the observed information matrix. If the model is correctly
specified then V'(8,,) = Z(6,) + 0,(1).
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Example: misspecified exponential model I [
model.

m et us consider again Y; s fo(+) with fo(-) ¢ F, where F is a
for u under fy. The score and the observed observation matrix are,

0 .
E(:u):_'ug /.1,3.

m The score function is
n  ny
I(p) = o

respectively
f*(u):i(_l+ﬂ) — 4
—~\ p W poop?

® The inverse of the observed information matrix, evaluated at fi = ¥, is an estimate of the asymptotic

variance the model is correctly specified:

7
varg(f1) = Z(p) ™' = Pt
® |f the model is . then we can use the
TR | o 11 N
=5 -9 =— |- w-9),
i1 Y i=1

varg(ft) ~ Z(2) 2 Y € (s y:)°
1=1

which is the n~1 times the usual method of moments estimator for the variance.
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Example: correlated observations

m let y,...,y, be realizations of random variables from the density f(y;0) with © C RP.
Moreover, let f(y;; ) be the marginal density of y;.

m |f the data are dependent, the log-likelihood £.(0) = >_." , log f(y:;0) is , because it
assumes independence. Indeed, £.(0) is an instance of composite likelihood.

®m Nonetheless, under mild regularity conditions, the is under
the true model f(y;6), thanks to the linearity of the expectation operator:
"0

le(0) =) _ 5508 f(yi:0) = Eoile(0)} = 0.
=1

= Unbiasedness of £%(6) does not guarantee consistency nor asymptotic normality, but both are

recovered under mild assumptions on the dependence structure, relying on ergodic theorems or

. Remarkably, a Godambe-like asymptotic variance is obtained at the limit!.

1. Refer to Section 7.2.3 in Davison (2003) for a discussion on general estimating equations with
dependent data and sufficient conditions for consistency and asymptotic normality.
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Example: the probability of observing a zero [

m et Y],...,Y, bean iid sample from a distribution with pdf f;. We are interested in
estimating the following functional

Yo = P(Y; = 0) = £o(0),

= Under a Poisson model F with mean A, 9 is reparametrization: 1 = e *. Two estimators are:

. _ . 1\
Yy = e Y (maximum likelihood), Y = (n ) ,  (UMVDU).

n
m Both estimators are for 1o under model misspecification, unless under ¥y we have 1y =
e . Indeed, the score equation is , being equal to
n 7 n Ko
A =—(1-— — Eo{¢* (g :—(1— )
) (2 ( —10g¢) 1 o) Yo —log o
A is given by the empirical proportion of zero:

R 1
Y = D Iy = 0).
i—1
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Example: linear models with misspecified variance | [_|

" letY, = a:ZTB + €;, where the €; are random variables distributed according to f;, whereas x;
are known covariates and 8 € R? is a of interest.
- )
m |f we further assume that ¢; ~ N(0, 02), then the B =

(XTX)1 X"y is the least squares estimator. Moreover, the score function is
= 22% i —x; B) ——2XT(?!—X5),
whereas the Fisher/observed is

I(B) = = Z z;xl XTX — varg(f) = (X7 X) !

® Provided that Eq(Y;) = a:fﬂ, that is, as long as the linearity assumption holds under fj, then the

OLS estimator is and unbiased even when ¢; are not Gaussian or

= |f the iid Gaussian model is , e.g. because varg(e;) = o? (heteroskedasticity), then the
OLS estimator is still a good choice but its variance should be adjusted.
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Example: linear models with misspecified variance 1l [

= The variance of 8 under a general model f, in which the random vector (€1,-..,€,) has zero mean
and vary(€) = X, is explicity available

varg(B) = (X' X) ' XTzx(X"Xx) L

This coincides with the inverse Godambe information of the *(B):
A - 1 -
varo(8) = 1(8) "B { L X7 (Y - XB)(Y - XO)X }1(6)

® |n practice, the matrix X is unknown. Thus, we rely on the sandwich estimator:

A ~ A 1

V(B) "t =1(8)" {; > @iy — =] B)(y: — ] f)=] } 1(6)

= (XTX)"'XTR*X(XTX) 1,

where R? = diag(r2,...,72) and r; = y; — ®7 3 are the
® This estimator is known as the White’s correction after White (1980), who also proved it is
consistent if ¥ = diag(c?,...,02) and under technical conditions on X.
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Example: linear models with misspecified variance Il

® C. L ] Py L1
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® |n this example, we fit a linear model (in the parameters!) so that Y = X + € using least squares,
with p = 12. The residuals clearly show
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Example: linear models with misspecified variance 1V

= The standard estimator is 52(X” X)~!. Below we show the first 4 x 4 entries

b1 B2 B3 B4
61 113.11 -4795 17.70 -12.81

B2 -47.95 170.53 -73.32 54.10
B3 17.70 -73.32 87.43 -69.35
By -12.81 54.10 -69.35 217.58

® The estimator is instead (X X) ' X TR’X (X7 X))

b B2 Bs Ba
B 2.82 -973 945  -8.80
By -9.73 42.79 -43.71 40.57
B3 945 -43.71 72.01 -67.22
B4y -8.80 40.57 -67.22 288.72

® \We used the sandwich R package, that impI%ments several sandwich variants.
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