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This unit will cover the following topics:

Methods of finding estimators

Methods of evaluating estimators

Unbiasedness

Asymptotic evaluations

Robustness and model misspecification

The rationale behind point estimation is quite simple:

When sampling is from a population described by a pdf or a pmf , knowledge of  yields

knowledge of the entire population.

Hence, it is natural to seek a method of finding a good estimator of the unknown point .
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Methods of finding estimators
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Estimator

A point estimator  is any function of the random sample , namely

That is, any statistic is a point estimator.

To streamline the presentation, we consider estimators that target the unknown parameter 
rather than an arbitrary (non-one-to-one) transformation .

Most theoretical results extend naturally to the general case .

An estimator  is a function of the sample  and is a random variable.

An estimate  is a function of the realized values  and is a number.

We will write  to denote both estimators and estimates whenever its meaning is clear from the
context.

θ̂ Y ​, … ,Y ​1 n

(Y ) =θ̂ (Y ​, … ,Y ​).θ̂ 1 n

θ

g(θ)

g(θ)

(Y ​, … ,Y ​)θ̂ 1 n Y ​, … ,Y ​1 n

(y ​, … , y ​)θ̂ 1 n y ​, … , y ​1 n

θ̂
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Method of moments

The method of moments is, perhaps, the oldest method of finding point estimators, dating back at
least to Karl Pearson in the late 1800s.

Let  be an iid sample from , , and . Moreover, define

corresponding to the population moment  and the sample moment .

The method of moments estimator  is obtained by solving the following system of equations for
:

In general, it is not guaranteed that a solution exists nor its uniqueness.

Y ​, … ,Y ​1 n f(⋅; θ) θ = (θ ​, … , θ ​)1 p Θ ⊆ Rp

m ​ =r ​ ​Y ​, μ ​(θ) =
n

1

i=1

∑
n

i
r

r μ ​(θ ​, … , θ ​) =r 1 p E ​(Y ), r =θ
r 1, … , p.

μ ​(θ ​, … , θ ​)r 1 p m ​r

θ̂

(θ ​, … , θ ​)1 p

​ ​

μ ​(θ ​, … , θ ​)1 1 p

μ ​(θ ​, … , θ ​)2 1 p

μ ​(θ ​, … , θ ​)p 1 p

= m ​,1

= m ​,2

⋮

= m ​.p
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Asymptotic evaluation of the MM

Moments estimators are not necessarily the best estimators, but under reasonable conditions they
are consistent, they have converge rate , and they are asymptotically normal.

Suppose  has covariance , then the multivariate central limit theorem implies

that as 

where  and .

Suppose also that  is a one-to-one mapping and let  be the inverse of , that is 

. We assume that  has differentiable components  for .

The moments estimator can be written as  and . Then, as a consequence of the

delta method, the following general result holds:

where  is a  matrix whose entries are the derivatives .

Refer to van der Vaart ( ), Theorem 4.1, pag. 35-36.

​n

(Y ,Y , … ,Y )2 p Σ
n → ∞

​{m −n μ(θ)} ​⟶
d

Z, Z ∼ N ​(0, Σ),p

m = (m ​, … ,m ​)1 p μ(θ) = (μ ​(θ), … ,μ ​(θ))1 p

μ(θ) g(μ) μ(θ) g = μ−1

g g ​(⋅)r r = 1, … , p

=θ̂ g(m) θ = g(μ(θ))

​( −n θ̂ θ) ​⟶
d

Z, Z ∼ N ​ 0,DΣD ,p ( T )

D = [d ​]rr′ p × p d ​ =rr′ ∂g ​(μ)/∂μ ​r r′

1998
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Example: beta distribution 📖

Let  be an iid random sample from a beta distribution of parameters  with density

The moment estimator for  is the (explicitly available) solution of the system of equations

After some algebra we obtain the following relationship, which is a smooth and regular function of
:

where  is the sample variance. Remark: is it possible that ?

Y ​, … ,Y ​1 n α,β > 0

f(y;α,β) = ​y (1 −
Γ(α)Γ(β)
Γ(α + β) α−1 y) , 0 <β−1 y < 1.

(α,β)

m ​ =1 ​ , m ​ =
α + β

α
2 ​ .

(α + β)(α + β + 1)
α(α + 1)

(m ​,m ​)1 2

=α̂ m ​ ​ , ​ =1
m ​ − m ​2 1

2
m ​ − m ​1 2

β̂ (1 − m ​) ​ .1
m − m ​2 1

2
m − m ​1 2

=σ̂2 m ​ −2 m ​1
2 m ​ <1 m ​2
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Example: beta distribution (food expenditure)

We consider data on proportion of income spent on food for a random sample of  households in
a large US city.

Low income level (  = 17)

Here  = 0.129 and  = 0.018, giving the MM estimates:  = 9.7 and  = 65.7.

High income level (  = 21)

Here  = 0.184 and  = 0.037, giving the MM estimates:  = 9 and  = 39.9.

38

n

 [1] 0.07431 0.13548 0.08825 0.13728 0.09629 0.09160 0.13882 0.09670 0.10866
[10] 0.11629 0.18067 0.14539 0.15869 0.14910 0.09550 0.23066 0.14751

m ​1 m ​2 α̂ ​β̂

n

 [1] 0.15998 0.16652 0.21741 0.10481 0.23256 0.17976 0.14161 0.14184 0.19604
[10] 0.21141 0.17446 0.14005 0.18831 0.07641 0.21604 0.28980 0.10882 0.18561
[19] 0.19192 0.25918 0.28833

m ​1 m ​2 α̂ ​β̂
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Example: beta distribution (food expenditure)

Estimated densities  for each income level, showing a reasonable fit in both cases.f(y; , ​)α̂ β̂

Home page

9 / 128

https://tommasorigon.github.io/InferentialStat


Example: binomial with unknown trials MM 📖

Let  be iid  and we assume that both  and  are unknown.

This is a somewhat unusual application of the binomial model, which can be used e.g. to estimate
crime rates for crimes that are known to have many unreported occurrences.

Equating the first two moments yields the system of equations

After some algebra we obtain the moment estimator for , which is smooth and regular
function of :

where  is the sample variance.

Remark: what if ?

This problem is described in Example 7.2.2 Casella and Berger ( ), pag. 313.

Y ​, … ,Y ​1 n Bin(N , p) N p

m ​ =1 Np, m ​ =2 Np(1 − p) + N p .2 2

(N , p)
(m ​,m ​)1 2

​ =p̂ ​ , =
N̂

m ​1
N̂ ​ ,

m ​ −1 σ̂2

m ​1
2

=σ̂2 m ​ −2 m ​1
2

m ​ <1 σ̂2

2002
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Maximum likelihood estimator

The method of maximum likelihood is, by far, the most popular technique for deriving estimators,
developed by Ronald A. Fisher in Fisher (1922; 1925).

Recall that  is the likelihood function and  is the log-likelihood.

Given a likelihood function  of , a maximum likelihood estimate of  is an element 

 which attains the maximum value of  in , i.e. such that  or equivalently

The maximum likelihood estimator (MLE) of the parameter  based on a sample  is .

Intuitively, the MLE is a reasonable choice: it is the parameter point for which the observed sample is
most likely.

Clearly, the MLE is also the maximizer of the log-likelihood: .

L(θ) = L(θ;y) ℓ(θ) = logL(θ)

L(θ) θ ∈ Θ θ ∈θ̂
Θ L(θ) Θ L( ) ≥θ̂ L(θ)

L( ) =θ̂ ​L(θ).
θ∈Θ

max

θ Y (Y )θ̂

ℓ( ) =θ̂ max ​ ℓ(θ)θ∈Θ
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Properties and remarks about the MLE 📖

Remark I: the MLE may not exists and is not necessarily unique. On the other hand, if 
and  is differentiable, then it can be found as the solution of the score equations:

Remark II: often  cannot be written explicitly as a function of the sample values, i.e. in general the
MLE has no closed-form expression but it must be found using numerical procedures.

Remark III: the likelihood function has to be maximized in the set space  specified by the
statistical model, not over the set of the mathematically admissible values of .

Let  be one-to-one1, that is, a reparametrization, from the set  onto the set . Then the

MLE of  is  where  denotes the MLE of .

1. It generalizes to any . If  is the MLE, then  is the “MLE” of an “induced likelihood”.

Θ ⊆ Rp

l(θ)

ℓ (θ) =∗
​ ℓ(θ) =

∂θ
∂

0.

θ̂

Θ
θ

Theorem (Invariance, , Theorem 7.2.10)Casella and Berger 2002

ψ(⋅) Θ Ψ
ψ = ψ(θ) ​ =ψ̂ ψ( )θ̂ θ̂ θ

g(⋅) θ̂ g( )θ̂
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Example: Poisson with unknown mean 📖

Let  be a iid random sample from a Poisson distribution of mean parameter , with

likelihood function

Therefore the log-likelihood, up to an additive constant  not depending on , is

The maximum likelihood estimator  is found by maximizing . In this regular problem, this can

be done by studying the first derivative:

We solve , obtaining . This is indeed a maximizer of  (why?).

Y ​, … ,Y ​1 n λ > 0

L(λ) = ​ ​ .
i=1

∏
n

y ​!i

e λ−λ y ​i

c λ

ℓ(λ) = ​y ​ log λ −
i=1

∑
n

i nλ + c.

λ̂ ℓ(λ)

ℓ (λ) =∗
​ ​y ​ −

λ

1

i=1

∑
n

i n.

ℓ (λ) =∗ 0 =λ̂ ​ȳ ℓ(λ)
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Example: binomial with unknown trials MLE

Let  be iid , and suppose  is unknown, while  is considered known. This

constitutes a non-regular problem because  is discrete.

The likelihood function is

where the maximum cannot be obtained through differentiation, as .

Naturally, we require that , since  for any . The ML is therefore

an integer  such that

This value must be found numerically. However, it can be shown1 that there exists exactly one such
, meaning the MLE is unique.

1. This problem is described in Example 7.2.9 of Casella and Berger ( ), pag. 318. See also Example
7.2.13: such estimate has a large variance in practice.

Y ​, … ,Y ​1 n Bin(N , p) N p

N

L(N) = ​ ​ p (1 −
i=1

∏
n

(
y ​i

N
) y ​i p) ,N−y ​i

N ∈ N

≥N̂ max ​ y ​i i L(N) = 0 N < max ​ y ​i i

≥N̂ max ​ y ​i i

L( ) ≥N̂ L( −N̂ 1), L( +N̂ 1) < L( ).N̂

N̂

2002
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Example: binomial with unknown trials MLE

Let us consider the following data, in which both  and  are unknown. These are simulated data
and the true values were  and .

The method of moments estimator gives  = 102 (rounded to the closest integer) and  =
0.21. The maximum likelihood, instead, gives  = 99 and  = 0.22.

If we replace  with a , we obtain drastically different estimates, namely  and 
, demonstrating a large amount of variability.

N p

N = 75 p = 0.32

[1] 16 18 22 25 27

​N̂MM ​ ​p̂MM

​N̂ML ​ ​p̂ML

27 28 ​ =N̂MM 195 ​ =N̂ML

191
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M-estimators

M- and Z- estimators are broad class of estimators that encompass the maximum likelihood (iid

observations) and other popular methods as special cases. 1

An M-estimator is the maximizer over  of a function  of the type:

where  are known real-valued functions.

Remark: when  this coincides with the MLE of a model with iid observations.

1. A detailed discussion is offered in van der Vaart ( ), Chap. 5.

Θ M(θ) : Θ → R

M(θ) = ​m(θ;Y ​),
i=1

∑
n

i

m(θ;Y ​)i

m(θ; y) = log f(Y ​; θ)i

1998
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Z-estimators

A Z-estimator is the solution over  of a system of equations function  of the type:

where  are known vector-valued maps. These are called estimating equations.

When ,  and  typically have  coordinate functions, namely we consider:

In many examples  are the partial derivatives of a function , that is

An example is the score function . However, this is not always the case.

Θ Q(θ) = 0

Q(θ) = Q(θ;Y ) = ​q(θ;Y ​) =
i=1

∑
n

i 0,

q(θ) = q(θ; y)

θ = (θ ​, … , θ ​)1 p Q q p

Q ​(θ) =r ​q ​(θ;Y ​) =
i=1

∑
n

r i 0, r = 1, … , p.

q ​(y; θ)r m(θ; y)

Q(θ) = M(θ).
∂θ
∂

ℓ (θ)∗
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Huber estimators I

The location of a r.v.  is a vague term that can be made precise by defining it as the expectation

, a quantile, or the center of symmetry, as in the following example.

Let  be a iid sample of real-valued random variables belonging to family of distributions 

defined as

for some unknown density  symmetric around . The parameter  is the location.

Classical M- estimators for  are the mean and the median, maximizing:

or alternatively (Z- estimator forms) solving the equations

Y

E(Y )

Y ​, … ,Y ​1 n F

F = {f(y − θ) : θ ∈ Θ ⊆ R},

f(y) 0 θ

θ

− ​(Y ​ −
i=1

∑
n

i θ) , (Mean) −2
​ ∣Y ​ −

i=1

∑
n

i θ∣, (Median)

​(Y ​ −
i=1

∑
n

i θ) = 0, (Mean) ​ sign(Y ​ −
i=1

∑
n

i θ) = 0, (Median).
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Huber estimators II

Huber estimators can be regarded as a compromise between the mean and the median, maximizing
the following function:

where  is a tuning parameter. The function  is continuous and differentiable1. The choice

 leads to the median, whereas for  we get the mean.

Equivalently, we can consider the solution of the following estimating equation:

Unfortunately, there is no closed-form expression and the equation must be solved numerically.

1. See Exercise 10.28 of Casella and Berger ( ).

M(θ) = − ​m(Y ​ −
i=1

∑
n

i θ), m(y) = ​ ​{
​y2

1 2

k∣y∣ − ​k2
1 2

 if ∣y∣ ≤ k

 if ∣y∣ ≥ k

k > 0 m(y)
k → 0 k → ∞

Q(θ) = ​q(Y ​
−

i=1

∑
n

i θ) = 0, q(y) = ​ ​ ​

⎩
⎨

⎧−k
y

k

 if  y ≤ −k
 if  ∣y∣ ≤ k

 if  y ≥ k

2002
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Example: Newcomb’s speed of light

Data  represent Simon Newcomb’s measurements (1882) of the speed of light. The data

are recordes as deviations from 24,800 nanoseconds.

There are two outliers (-44 and -2) which could influence the analysis.

We see that as  increases, the Huber estimate varies between the median (27) and the mean

(26.21), so we interpret increasing  as decreasing robustness to outliers.

The suggested default for  is roughly , that is .

0 5 10 20 30 40 50 60 70

Est. 27 27.37 27.417 27.125 26.831 26.677 26.523 26.369 26.215

Based on recent measurements, the true value of the speed of light, expressed in this scale, is 33.
Huber estimate for reasonable values of  is closer than both median and mean.

y ​, … , y ​1 66

 [1]  28  26  33  24  34 -44  27  16  40  -2  29  22  24  21  25  30  23  29  31
[20]  19  24  20  36  32  36  28  25  21  28  29  37  25  28  26  30  32  36  26

[39]  30  22  36  23  27  27  28  27  31  27  26  33  26  32  32  24  39  28  24
[58]  25  32  25  29  27  28  29  16  23

k

k

k k ≈ 4.5 k = 1.5 × MAD

k

k

Home page

20 / 128

https://tommasorigon.github.io/InferentialStat


Bayesian estimators

Bayesian estimators are obtained following a different inferential paradigm than the one considered
here, but they also exhibit appealing frequentist properties.

Let  denote the likelihood function, and let  represent the prior distribution. Bayesian

inference is based on the posterior distribution, defined as:

Under certain hypotheses, which will be clarified later, the posterior mean serves as an optimal
Bayesian estimator:

However, this estimator is not always available in closed form.

Other “optimal” Bayesian estimators include, for instance, the posterior median.

L(θ;y) π(θ)

π(θ ∣ y) = ​ .
​ π(θ)L(θ;y)dθ∫Θ

π(θ)L(θ;y)

​ =θ̂Bayes E(θ ∣ Y ) = ​ .
​ π(θ)L(θ;Y )dθ∫Θ

​ θ π(θ)L(θ;Y )dθ∫Θ
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Example: binomial Bayes estimator

Let  be iid Bernoulli random variables with probability , and let the prior .

Moreover, let  be the number of successes out of  trials.

Standard calculations in Bayesian statistics yield the (conjugate) posterior 

. Hence, the posterior mean is

Note that we can rewrite  in the following way:

that is, as a linear combination of the prior mean and the sample mean, with weights determined by

, and .1

1. This is not a coincidence, and it essentially holds for general exponential families; see the elegant
paper by Diaconis and Ylvisaker ( ).

Y ​, … ,Y ​1 n p p ∼ Beta(a, b)
n ​ =1 ​ y ​∑

i=1
n

i n

(p ∣ Y ​, … ,Y ​) ∼1 n

Beta(a + n ​, b +1 n − n ​)1

​ =p̂ E(p ∣ Y ​, … ,Y ​) =1 n ​ .
a + b + n

a + n ​1

​p̂

​ =p̂ ​ ​ +(
a + b + n

n
) ȳ ​ ​ ,(

a + b + n

a + b
) (

a + b

a
)

a, b n

1979
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Methods of evaluating estimators
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Comparing estimators

We study the performance of estimators, aiming to determine when an estimator  can be considered
good or optimal.

This requires criteria for evaluation, often provided by decision theory, which relies on a loss
function . The function  quantifies the loss incurred when estimating  by .

Typically, we assume

for all  and .

Since  is random, we need a way to summarize the loss. A common criterion is the (frequentist)
risk function, namely the average loss, defined as the expectation

θ̂

L L (θ, )θ̂ θ θ̂

L (θ, θ) = 0 (no loss for the correct estimate), L (θ, ) ≥θ̂ 0,

θ θ̂

(Y )θ̂

R(θ; ) =θ̂ E ​{L (θ, (Y ))}.θ θ̂
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Optimal estimators

An oracle estimator , which never makes errors, satisfies

for all . Clearly, such an estimator does not exist.

An optimal estimator  uniformly minimizes the risk, meaning

for all  and estimators . Except for trivial cases, such an estimator does not exist unless one

restricts the class of estimators considered 1.

In fact, the constant estimator  has zero risk when  but positive risk otherwise.

Thus,  would need  for all , making it identical to the oracle.

1. A common restriction is unbiasedness, namely the requirement . An alternative restriction is

equivariance.

​θ̂oracle

R(θ;
​
) =θ̂oracle 0,

θ ∈ Θ

​θ̂opt

R(θ;
​
) ≤θ̂opt R(θ; ),θ

~

θ ∈ Θ θ
~

​(Y ) =θ̂const θ ​1 θ = θ ​1

​θ̂opt R(θ; ​) =θ̂opt 0 θ ∈ Θ

E ​( ) =θ θ̂ θ
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Admissible estimators

An estimator  is admissible if no other estimator  exists such that

with strict inequality for at least one value of .

Broadly speaking, an admissible estimator  will perform better than an alternative  for some
values of  and worse for others.

In principle, disregarding any practical implications, an inadmissible estimator should not be used, as
it is dominated by a better alternative.

The admissibility criterion is interesting due to its selective nature, eliminating dominated estimators.

However, admissibility alone is not enough: for instance, the constant estimator  is

admissible but clearly unsatisfactory.

θ̂ θ
~

R(θ; ) ≤θ
~

R(θ; ),  for all θ ∈θ̂ Θ,

θ

θ̂ θ
~

θ

​
=θ̂const θ ​1
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The choice of the loss function

The choice of the loss function has its roots in decision theory. The loss function  is a

nonnegative function that generally increases as the distance between  and  increases.

Let . Two commonly used loss functions are

and

The quadratic loss is the de facto standard in many contexts, leading to the mean squared error
and the well-known bias-variance decomposition. Let , then

Both these losses are convex, and the quadratic loss is strictly convex. Convexity will be crucial in
the subsequent theoretical developments.

L

θ̂ θ

θ ∈ Rp

L (θ, ) =θ̂ ∣∣ −θ̂ θ∣∣ ​, (Absolute error loss),1

L (θ, ) =θ̂ ∣∣ −θ̂ θ∣∣ ​, (Quadratic loss).2
2

Θ ⊆ R

R(θ; ) =θ̂ E ​
{( −θ θ̂ θ) } =2 bias

​
( ) +θ θ̂

2 var
​
( ), (Mean squared error).θ θ̂
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Other loss functions

In principle, the choice of the loss should be based on its properties rather than mathematical
convenience. Here we present some less common examples.

Weighted quadratic loss, a variant of the quadratic loss, accounting for weights. Let 

where  is a positive definite matrix. This loss is strictly convex.

Stein Loss 1. Let , such as the population variance of a model. Stein loss is defined as:

A criticism of quadratic loss for variance estimation is that underestimation has finite penalty, while
overestimation as infinite penalty. Instead, Stein loss  as  and .

Other examples are Huber losses (see ) and intrinsic losses
(see ), such as the entropy distance.

1. See Examples 7.3.26 and 7.3.27 in Casella and Berger ( ) for a comparison in the estimation of
the population variance  under the quadratic loss and the Stein loss.

θ ∈ Rp

L (θ, ) =θ̂ (θ − ) A(θ −θ̂ T ),θ̂

A ∈ Rp×p

θ > 0

L (θ, ) =θ̂ ​ −
θ

θ̂
1 − log ​ .

θ

θ̂

L (θ, ) →θ̂ ∞ →θ̂ 0 →θ̂ ∞

Lehmann and Casella 1998,pp. 51–52
Robert 1994,p. 2.5.4

2002
σ2
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Example: MSE of binomial estimators I 📖

Let  be iid Bernoulli random variables with probability . Moreover, let  be

the number of successes out of  trials.

The proportion  is the maximum likelihood (and method of moments) estimator.

Simple calculations yield

Let us consider a Bayesian estimator for  under a beta prior with parameters ,

yielding

This Bayesian estimator has constant risk, that is,  does not depend on .1

1. Some subjective Bayesians may criticize this estimator for not being “truly Bayesian” as the
hyperparameters depend on the sample size , making the prior data-dependent. However, here we

are evaluating  from a frequentist perspective.

Y ​, … ,Y ​1 n p n ​ =1 ​ y ​∑
i=1
n

i

n

​ =p̂ ​ =ȳ n ​/n1

R(p; ​) =p̂ E ​{( ​ −p p̂ p) } =2 var ​( ​) =p p̂ ​ .
n

p(1 − p)

p a = b = 0.5 ​n

​ ​ =p̂minimax ​ , R(p; ​ ​) =
n + ​n

n ​ + 0.5 ​1 n
p̂minimax E ​{( ​ ​ −p p̂minimax p) } =2 .

4(n + ​)n 2

n

R(p; ​ ​)p̂minimax p

n

​ ​p̂Bayes
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Example: MSE of binomial estimators II
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Example: MSE of binomial estimators III

Neither  dominates  nor vice versa. In fact, both estimators are admissible.

For small values of ,  is the better choice unless one believes that  is very close to one of

the extremes  or .

Conversely, for large values of , the maximum likelihood estimator  is the better choice unless one

strongly believes that  is very close to .

This information, combined with the knowledge of the problem at hand, can lead to choosing the
better estimator for the situation.

We will get back to this example, as both  and  are optimal in some sense.

In fact,  is the UMVU estimator (uniform minimum variance unbiased estimator), and 
is the minimax estimator.

​p̂ ​ ​p̂minimax

n ​ ​p̂minimax p

0 1

n ​p̂

p 0.5

​p̂ ​ ​p̂minimax

​p̂ ​ ​p̂minimax
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James-Stein estimator I

Let  be a Gaussian random vector, , with unknown means 

 and fixed variance. That is,

We are interested in estimating the means .

Intuitively, the most “natural” approach is the maximum likelihood / method of moments
estimator, which in this case with  is simply

This estimator is “optimal” in the sense that it is the UMVUE, as we shall see in the next sections.
Moreover, its frequentist risk under a squared loss is

because .

Y = (Y ​, … ,Y ​)1 p Y ∼ N ​(μ, I ​)p p μ =
(μ ​, … ,μ ​)1 p

Y ​j ∼ind N(μ ​, 1), j =j 1, … , p.

μ

n = 1

​ ​ =μ̂j Y ​, j =j 1, … , p.

R(μ; ​) =μ̂ E ​(∣∣ ​ −μ μ̂ μ∣∣ ​) =2
2 p,

∣∣ ​ −μ̂ μ∣∣ ​ =2
2 ∣∣Y − μ∣∣ ​ ∼2

2 χ ​p
2
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James-Stein estimator II

By the early 1950s, three proofs had emerged to show that  is admissible for squared error loss
when .

Nevertheless, Stein ( )1 stunned the statistical world when he proved that although  is
admissible for squared error loss when , it is inadmissible when .

In fact, James and Stein ( )2 showed that the estimator

strictly dominates .

1. Stein ( ), Inadmissibility of the usual estimator of the mean of a multivariate normal distribution,
Proc. Third Berkeley Symposium, 1, 197–206, Univ. California Press.

2. James and Stein ( ), Estimation with quadratic loss, Proc. Fourth Berkeley Symposium, 1, 361–
380, Univ. California Press.

​μ̂

p = 1

1956 ​μ̂

p = 2 p ≥ 3

1961

​ ​ =μ̂JS 1 − ​ Y(
∣∣Y ∣∣ ​2

2
p − 2

)

​μ̂

1956

1961
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James-Stein estimator III 📖

Let . The frequentist risk of the James-Stein estimator  under quadratic loss is

Thus,  strictly dominates , meaning that . Moreover,

Geometrically, the James-Stein estimator shrinks each component of  towards the origin.

The biggest improvement occurs when  is close to zero. For , we have  for all

. As , the risk approaches .

Theorem (James-Stein, 1961)

Y ∼ N ​(μ, I ​)p p ​ ​μ̂JS

R(μ; ​ ​) =μ̂JS E ​(∣∣ ​ ​ −μ μ̂JS μ∣∣ ​) =2
2 p − (p − 2) E ​ ​ .2

μ (
∣∣Y ∣∣ ​2

2
1

)

​ ​μ̂JS ​μ̂ R(μ; ​ ​) <μ̂JS R(μ; ​) =μ̂ p

R(μ; ​ ​) ≤μ̂JS p − ​
.

p − 2 + ∣∣μ∣∣ ​2
2

(p − 2)2

Y

μ μ = 0 R(0; ​) =μ̂JS 2
p ≥ 2 ∣∣μ∣∣ ​ →2

2 ∞ R(μ; ​ ​) →μ̂JS p
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James-Stein estimator IV

A useful generalization of the James-Stein estimator consists in shrinking the mean towards a
common value  rather than , giving

It holds that , therefore  dominates .

Even better, if we estimate  with the arithmetic mean of , that is , we can

obtain the following shrinkage estimator:

Intuitively,  is the appropriate constant as an additional parameter is estimated. Moreover, in

Efron and Morris ( ) it is proved that

with , again dominating the maximum likelihood .

m ∈ R 0

​ (m) =μ̂JS m + 1 − ​ (Y −(
∣∣Y − m∣∣ ​2

2
p − 2

) m).

R(μ; ​ ​(m)) ≤μ̂JS p − (p − 2) /(p −2 2 + ∣∣μ − m∣∣ ​)2
2

​ ​(m)μ̂JS ​μ̂

m Y =Ȳ (1/p) ​ Y ​∑j=1
p

j

​ ​ =μ̂shrink +Ȳ 1 − ​ (Y −(
∣∣Y − ∣∣ ​Ȳ 2

2
p − 3

) ).Ȳ

p − 3
1975

R(μ; ​ ​) ≤μ̂shrink p − ​ ,
p − 3 + ∣∣μ − ​∣∣ ​μ̄ 2

2
(p − 3)2

​ =μ̄ (1/p) ​ μ ​∑j=1
p

j ​μ̂
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James-Stein estimator V

The James-Stein estimator is an empirical Bayes estimator in disguise. Let  and

consider the prior . Then the posterior mean is

James-Stein is an empirical Bayes approach: the quantity  is estimated.

In particular, under the Bayesian model

and therefore  is an an unbiased estimate for . In fact:

Alternative estimates for  leads to refined James-Stein estimators.

Y ∼ N ​(μ, I ​)p p

μ ∼ N ​(m, τ I ​)p
2
p

​ ​ =μ̂Bayes m + 1 − ​ (Y −(
1 + τ 2

1
) m).

1/(1 + τ )2

∣∣Y − m∣∣ ​ =2
2

​(Y ​ −
j=1

∑
p

j m) ∼2 (1 + τ )χ ​

2
p
2

(p − 2)/(∣∣Y − m∣∣ ​)2
2 1/(1 + τ )2

E ​ =(
∣∣Y − m∣∣ ​2

2
p − 2

) ​ .
1 + τ 2

1

1/(1 + τ )2
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Efron and Morris (1975)

Efron and Morris ( , JASA) is a classical paper on the
practical relevance of James-Stein’s estimator.

This approach was used in sports analytics to predict the
batting averages of 18 major league players in 1970.

As expected, shrinkage estimators significantly improve upon
the maximum likelihood estimator.

Stein’s estimator was  times more efficient than the MLE in
this case.

It also showcases a useful practical demonstration of variance-
stabilizing transformations:

The original data are proportions, i.e. arguably not
Gaussians.

After a suitable transformations they can be approximately
regarded as normal.

1975

3.50
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Efron and Morris (1975)

Name At Bats Hits Mean James-Stein Rem. mean

Clemente 45 18 0.400 0.290 0.346

Robinson 45 17 0.378 0.286 0.298

Howard 45 16 0.356 0.282 0.276

Johnstone 45 15 0.333 0.277 0.222

…

Williams 45 10 0.222 0.254 0.330

Campaneris 45 9 0.200 0.249 0.285

Munson 45 8 0.178 0.244 0.316

Alvis 45 7 0.156 0.239 0.200

The batting averages  out of  trials for  players have been transformed via 

. The James-Stein estimator is applied to  and then transformed back.

The shrinkage effect is evident and provides a better estimate of the remaining batting average
for the season.

n ​i x ​i ​p ​î

​ ​p̂i n ​i n = 18 y ​ =i
​ arcsin(2p ​ −n ​i i 1) y ​i
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James-Stein estimator VI

James-Stein estimators were initially seen with suspicion:

How come that deliberately introducing bias improves the estimates?

How come that learning from the experience of other points can modify and even improve the
individual estimates?

These ideas are nowadays well established:

Modern shrinkage estimators such as ridge regression and lasso are widely used.

The notion of borrowing of information is at the heart of random effects models.

The James-Stein theorem rigorously confirms the theoretical relevance of indirect information.
Remarkably, this is based on frequentist criteria rather than Bayesian ones.

A simple proof of the James-Stein theorem can be found in Efron ( ); see also Efron and Hastie
( ) for a modern and accessible perspective or .

2010
2016 this divulgative article
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Criticism to the risk function approach

Some authors, such as Robert ( ), have criticized the risk function approach for comparing
estimators. The main arguments are the following:

The frequentist paradigm evaluates estimators based on their long-run performance, without
accounting for the given observations . A client may wish for optimal results for the observed
data, and not someone else’s data.

The risk function approach implicitly assumes the repeatability of the experiment, which has
sparked controversy, especially among Bayesian statisticians.

For instance, if new observations come to the statistician, she should make use of them,
potentially modifying the way the experiment is conducted, as in medical trials.

The risk function depends on , preventing a total ordering of the estimators. Comparisons are

difficult unless a uniformly optimal procedure exists, which is rare.

1994

Y

θ
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Integrated risk

Let us begin by finding a criterion that induces total ordering among estimators. A potential
solution is taking the average risk function over values of .

Let  be the risk function, and let  be a probability measure weighting

the relevance of each . Then

is called integrated risk or Bayes risk.

Thus, an estimator  is preferable over another  if . Moreover, if  dominates ,

that is if  is inadmissible, then  for any choice of weights.

θ

R(θ, ) =θ̂ E ​{L (θ, )}θ θ̂ π(dθ)
θ

r(π, ) =θ̂ ​ R(θ; )π(dθ),∫
Θ

θ̂

θ̂ θ
~

r(π, ) <θ̂ r(π, )θ
~

θ̂ θ
~

θ
~

r(π, ) <θ̂ r(π, )θ
~
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Example: integrated risk of binomial estimators 📖

Let us consider the estimation of the probability  from a binomial experiment using the maximum

likelihood  and the Bayesian  estimators.

We previously computed the mean squared error for both estimators. Let us now compute the
integrated risk, assuming uniform weights , i.e., a simple average of the MSE.

The integrated risk of the maximum likelihood estimator is

The integrated risk of the Bayes estimator coincides with the risk function, the latter being
constant over :

Depending on the sample size , one estimator may be preferable over the other.

p

​ =p̂ n ​/n1 ​ ​ =p̂minimax (n ​ +1 0.5 ​)/(n +n ​)n

π(dp) = dp

r(π, ​) =p̂ ​ E ​{( ​ −∫
0

1

p p̂ p) }dp =2
​ ​ p(1 −

n

1
∫

0

1

p)dp = ​ .
6n
1

p

r(π, ​ ​) =p̂minimax ​ E ​{( ​ ​ −∫
0

1

p p̂minimax p) }dp =2
​ ​ dp =∫

0

1

4(n + ​)n 2

n
​ .

4(n + ​)n 2

n

n
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Example: integrated risk of binomial estimators

According to the integrated risk and using constant weights  one should prefer  over

 when  and viceversa.

π(dp) = dp ​p̂

​ ​p̂minimax n ≥ 20
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Bayesian estimators minimize the integrated risk 📖

The integrated risk is a sensible criterion for comparing estimators, provided a suitable set of weights
 is selected. Hence, we may wish to find its minimizer.

There is a surprisingly simple and elegant answer to this apparently difficult question.

Let  be the prior distribution for . The minimizer of the posterior expected loss, if a
unique solution exists, is called Bayes estimator. Moreover:

which means  coincides with minimizer of the integrated risk, provided .

This fundamental theorem provides a decision-theoretic justification to Bayesian estimators as well
as a practical recipe for finding them.

π

Theorem (Lehmann and Casella ( ), Theorem 1.1 in Chap. 4)1998

π(dθ) θ

​
(Y ) =θ̂Bayes arg ​ ​ L (θ, (Y ))π(dθ ∣

∈Θθ
~min ∫

Θ
θ
~

Y ) = arg ​r(π, (Y )),
∈Θθ

~min θ
~

​θ̂Bayes r(π, ​) <θ̂Bayes ∞
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Decision-theoretic justification of the posterior mean 📖

Let , then the Bayes estimator associated with prior distribution  and quadratic loss

 is the posterior mean:

If the posterior mean exists, the Bayes estimator is unique.

Hence, the posterior mean is optimal in the sense that minimizes the posterior expected loss and
therefore also the integrated risk.

This theorem extends to various loss functions. For instance if  then the Bayes

estimator is the posterior median.

Corollary (Robert ( ), Proposition 2.5.1)1994

Θ ⊆ Rp π

L (θ, ) =θ̂ ∣∣ −θ̂ θ∣∣ ​2
2

​(Y ) =θ̂Bayes arg ​ ​ ∣∣ (Y ) −
∈Θθ

~min ∫
Θ

θ
~

θ∣∣ ​π(dθ ∣2
2 Y ) = E(θ ∣ Y ).

L (θ, ) =θ̂ ∣∣ −θ̂ θ∣∣ ​1
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Example: integrated risk of binomial estimators 📖

We previously considered the estimators  and .

Assuming uniform weights, neither  nor  minimizes the integrated risk.

In fact, theoretical results indicate that the unique minimizer is the posterior mean of  for a

binomial model under a uniform prior . The optimal estimator is:

After some simple but tedious calculations, we obtain the associated mean squared error:

Integrating with respect to the uniform prior distribution, we obtain the integrated risk:

which is indeed smaller than  and .

​ =p̂ n ​/n1 ​ ​ =p̂minimax (n ​ +1 0.5 ​)/(n +n ​)n
​p̂ ​ ​p̂minimax

p

π(dp) = dp

p ∣ Y ∼ Beta(n ​ +1 1,n − n ​ +1 1) ⟹ ​ ​ =p̂Bayes E(p ∣ Y ) = ​ .
n + 2
n ​ + 11

R(p; ​ ​) =p̂Bayes ​ (1/2 −(
n + 2

2
)

2

p) +2
​ ​ .(

n + 2
n

)
2

n

p(1 − p)

r(π, ​ ​) =p̂Bayes ​ R(p; ​ ​)dp =∫
0

1

p̂Bayes ​ ,
6(n + 2)

1

r(π, ​)p̂ r(π, ​ ​)p̂minimax
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Example: integrated risk of binomial estimators
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Admissibility of Bayesian estimators 📖

The next theorem provides a strong frequentist justification for Bayesian estimators.

Any unique Bayesian estimator is admissible.

The uniqueness assumption is a technical condition often satisfied in practice. Under squared loss, or
any other strictly convex loss, this holds automatically, provided the estimator exists.

If the loss is strictly convex, such as the squared error loss, and the integrated risk is finite, this
theorem remains valid even when using improper priors (Robert ( ), Proposition 2.4.25).

Admissibility is a minimum requirement: even constant estimators are admissible.

Nonetheless, the risk function approach dictates that inadmissible estimators should be discarded.
This is non-trivial in practice, as evidenced by the James-Stein saga.

Theorem (Lehmann and Casella ( ), Theorem 2.4 in Chap. 5)1998

1994
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Minimax estimators

The minimax criterion is an alternative to the integrated risk for discriminating among (admissible)
estimators. It comes from game theory, where two adversaries are competing.

Instead of considering the “average” risk over  (integrated risk), the minimax criterion evaluates the

risk function of estimators in the worst-case scenario.

An estimator  which minimizes the maximum risk, that is, which satisfies

is called minimax estimator. The quantity  is called minimax risk.

In general, finding minimax estimators is difficult. Moreover, the resulting estimators are not
necessarily very appealing in practice.

θ

​θ̂minimax

​R(θ; ​) =
θ∈Θ
sup θ̂minimax ​ ​R(θ; ),

θ̂

inf
θ∈Θ
sup θ̂

sup ​ R(θ; ​)θ θ̂minimax

Home page

49 / 128

https://tommasorigon.github.io/InferentialStat


Example: MSE of binomial estimators (minimax)

We will show that  is indeed the minimax estimator. However,

this is a very conservative choice.

One could argue that the maximum likelihood  is the preferred choice in practice, especially

when  is large enough, even though it has slightly higher risk when .

​ ​ =p̂minimax (n ​ +1 0.5 ​)/(n +n ​)n

​ =p̂ n ​/n1

n p ≈ 1/2
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Minimax and Bayesian estimators 📖

Let  be a prior distribution and  be the unique Bayes estimator. If it holds

then:

the Bayes estimator  is also the unique minimax estimator.

the prior  is least favorable, meaning that  for any other prior

 and Bayes estimator .

Remark. The above condition states the average of  is equal to its maximum. This will

be the case when the risk function constant over .

More generally, if an admissible estimator has constant risk, is the unique minimax estimator
(Robert ( ), Proposition 2.4.21).

Theorem (Lehmann and Casella ( ), Theorem 1.4, Chap. 5)1998

π(dθ) ​θ̂Bayes

r(π, ​) =θ̂Bayes ​R(θ; ​),
θ

sup θ̂Bayes

​θ̂Bayes

π(dθ) r(π, ​) ≥θ̂Bayes r( , ​)π~ θ
~

Bayes

(dθ)π~ ​θ
~

Bayes

R(θ; ​)θ̂Bayes

θ

1994
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Unbiasedness
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Unbiased estimators

An estimator  is unbiased for  if , that is, if  for all .

We often teach that unbiasedness is a natural and appealing property of an estimator. If  and
under squared error loss, unbiasedness implies that

There are two main reasons for emphasizing unbiasedness:

It is often possible to find the uniformly “best” unbiased estimator, e.g., the one with the lowest
variance (UMVU estimator).

For an estimator to be consistent, it must be at least asymptotically unbiased.

Unbiasedness is not a negative property per se. However, one may overlook better estimators by
focusing too narrowly on this special class. Indeed, the UMVUE can even be inadmissible.

θ̂ θ E ​
( ) =θ θ̂ θ bias

​
( ) =θ θ̂ E ​

( −θ θ̂ θ) = 0 θ ∈ Θ

Θ ⊆ R

R(θ; ) =θ̂ E ​{( −θ θ̂ θ) } =2 var ​( ).θ θ̂
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Nonexistence of unbiased estimators

Certain quantities do not admit unbiased estimators, even though they can be accurately estimated
using slightly biased estimators.

Let  and suppose we wish to find an estimator  for the reparametrization 

. Then unbiasedness of an estimator  would require

Such an estimator does not exist!

Indeed, the left hand side of this equation is a polynomial  with degree at most . However, 

cannot be written as a polynomial.

Nonetheless, the slightly biased estimator  will be close to  with high probability as 

increases.

Y ∼ Bin(n, p) ​(Y )ψ̂ ψ =
1/p ​(Y )ψ̂

​ ​(k) ​ p (1 −
k=0

∑
n

ψ̂ (
k

n
) k p) =n−k

​ , p ∈
p

1
(0, 1).

p n 1/p

​ =ψ̂ n/n ​1 1/p n
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Bayesian estimators and unbiasedness 📖

Let  and  be the unique Bayes estimator with prior  under a squared error loss.
If  is unbiased then its integrated risk is

The above theorem is a formal way of saying that, apart from trivial cases, posterior means are never
unbiased estimators.

However, the bias comes with a reduced variance, therefore the trade-off could be favorable. This is
guaranteed to occur because Bayesian estimators are admissible.

Moreover, under mild regularity conditions, Bayesian estimators are asymptotically unbiased.

Theorem (Lehmann and Casella ( ), Theorem 2.3, Chap. 4)1998

Θ ⊆ Rp
​
(Y )θ̂Bayes π

​θ̂Bayes

r(π, ​) =θ̂Bayes 0.
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Example: Poisson unbiased estimation

Let  be i.i.d. , and let  and  be

the sample mean and sample variance, respectively.

It can be shown1 that both estimators are unbiased, meaning

To determine which estimator,  or , is preferable, we should compare their variances. It is also

well known that , whereas computing  can be lengthy.

It holds that  for all . This implies that  is inadmissible.

However, we can construct infinitely many unbiased estimators of :

Is there a value of  such that ? What about other unbiased estimators?

1. These are basic and well-known results: see Theorem 5.2.6 in Casella and Berger ( ).

Y ​, … ,Y ​1 n Poisson(λ) =Ȳ n ​ Y ​

−1 ∑
i=1
n

i S =2 (n − 1) ​(Y ​ −−1 ∑
i=1
n

i )Ȳ 2

E( ) =Ȳ E(S ) =2 λ, for all λ.

Ȳ S2

var ​( ) =λ Ȳ λ/n var ​(S )λ
2

var ​( ) <λ Ȳ var ​(S )λ
2 λ S2

λ

​ =λ̂a a +Ȳ (1 − a)S , 0 <2 a < 1.

a var ​( ​) ≤λ λ̂a var ​( )λ Ȳ

2002

Home page

56 / 128

https://tommasorigon.github.io/InferentialStat


UMVU estimators

In this subsection on unbiasedness, we will often assume that . All the results presented here
extend to the vector case, though at the cost of heavier notation.

Let . An estimator  is a best unbiased estimator of  if it satisfies  for all 

(unbiasdness) and, for any other unbiased estimator , we have

The estimator  is also called uniform minimum variance unbiased estimator (UMVUE) of .

The UMVUE does not necessarily exist. If it does, finding it is not easy. And even if a unique
UMVUE exists, it could still be inadmissible–recall the James-Stein saga.

The success of UMVUE estimators is tied to two illuminating and elegant theorems: Cramér-Rao
and Rao-Blackwell, which connect likelihood theory, sufficiency, and unbiasedness.

Θ ⊆ R

Θ ⊆ R θ̂ θ E ​( ) =θ θ̂ θ θ

θ
~

var ​( ) ≤θ θ̂ var ​( ), for all θ ∈θ θ
~

Θ.

θ̂ θ
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Cramér-Rao inequality 📖

The Cramér-Rao theorem establishes a lower bound for the variance of an estimator. Thus, if the
variance of an unbiased estimator  attains the lower bound for all , then  is UMVUE.

Let  be a sample from a joint probability measure  and let .

Moreover, let  be an estimator of  satisfying

and with finite variance . Then

Moreover, if  is an unbiased estimator for , then  and  .

θ̂ θ θ̂

Theorem (Cramér-Rao, Theorem 7.3.9 in Casella and Berger ( ))2002

Y ​, … ,Y ​1 n f(y ∣ θ)ν(dy) Θ ⊆ R
(Y )θ̂ θ

1 + b (θ) :=∗
​ (y)f(y ∣

∂θ
∂

∫ θ̂ θ)ν(dy) = ​ (y)f(y ∣∫
∂θ
∂
θ̂ θ)ν(dy),

var ​( (Y )) <θ θ̂ ∞

var
​
( (Y )) ≥θ θ̂ ​

.
E (ℓ (θ) )θ

∗ 2

[1 + b (θ)]∗ 2

θ̂ θ b (θ) =∗ 0 var( (Y )) ≥θ̂ 1/E ​(l (θ) )θ
∗ 2
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Cramér-Rao: considerations

The interchange of the derivative under the integral sign is an important condition, not merely a
technical artifact of the proof.

For example, if the sample space of i.i.d. random variables  depends on , such condition is

violated, and the Cramér-Rao lower bound may not hold.1

The Cramér-Rao inequality is sometimes called information inequality. In fact  defined as:

is called Fisher information or information number. This reflects the fact that as more information
become available, the bound on the variance gets smaller.

If  is an unbiased estimator of a transformation , then the Cramér-Rao theorem holds as

stated, but the term  is not related to the “bias”.

1. See Example 7.3.13 in Casella and Berger ( ), for a simple and illuminating example.

Y ​i θ

I(θ)

I(θ) := E ​(ℓ (θ) ),θ
∗ 2

W (Y ) g(θ)
​ E ​(W (Y )) =∂θ

∂
θ 1 + b (θ)∗

2002
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Bartlett identities I 📖

Let  be a sample from a joint probability measure  and let . If we can

interchange derivation and integration, namely

then

Thus, the regularity condition of Cramér-Rao implies that the score function  is un unbiased

estimating equation.

First Bartlett identity

Y ​, … ,Y ​1 n f(y ∣ θ)ν(dy) Θ ⊆ R

​ f(y ∣
∂θ
∂

∫ θ)ν(dy) = ​f(y ∣∫
∂θ
∂

θ)ν(dy), (C.1)

E ​(ℓ (θ)) =θ
∗ 0, implying I(θ) = E ​(ℓ (θ) ) =θ

∗ 2 var ​(ℓ (θ)).θ
∗

ℓ (θ)∗
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Bartlett identities II 📖

Let  be a sample from a joint probability measure  and let . If we can

interchange twice derivation and integration, namely

then

Both conditions are true in regular exponential families. This also clarifies that, in regular models,
Fisher information relates to the curvature of the log-likelihood.

Second Bartlett identity

Y ​, … ,Y ​1 n f(y ∣ θ)ν(dy) Θ ⊆ R

​ f(y ∣
∂θ
∂

∫ θ)ν(dy) = ​f(y ∣∫
∂θ
∂

θ)ν(dy), (C.1)

​ f(y ∣
∂ θ2

∂2
∫ θ)ν(dy) = ​f(y ∣∫

∂ θ2

∂2
θ)ν(dy), (C.2)

I(θ) = E ​(ℓ (θ) ) =θ
∗ 2 var ​(ℓ (θ)) =θ

∗ E ​ − ​ ℓ(θ) .θ (
∂ θ2

∂2

)
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Cramér-Rao: iid and regular case

Let  be an iid sample from  satisfying conditions C.1 and C.2, and let .

Moreover, let  be an unbiased estimator of  with finite variance . Then

The Fisher information is the sum of individual contributions .

It can be shown1 that attainment, that is the equality , occurs if and only if

 is the density of an exponential family.

1. See Theorem 5.12, Chap.2, Lehmann and Casella ( ).

Theorem (Cramér-Rao, simplified)

Y ​, … ,Y ​1 n f(y ∣ θ)dy Θ ⊆ R
(Y )θ̂ θ var( (Y )) <θ̂ ∞

var ​( (Y )) ≥θ θ̂ ​ , i(θ) =
ni(θ)

1
− ​ log f(y ∣ θ) f(y ∣∫ [

∂ θ2

∂2
] θ)dy.

I(θ) = i(θ) + ⋯ + i(θ) = ni(θ)

var( (Y )) =θ̂ 1/ni(θ)
f(y ∣ θ)

1998
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Example: Poisson unbiased estimation 📖

Let  be i.i.d. . The sample mean  is unbiased for  and .

We can use Cramér-Rao to show this estimator is a UMVUE. The regularity conditions are satisfied
and therefore, after some calculus

Hence, Cramér-Rao theorem states that for any unbiased estimator 

implying that  is a UMVUE because .

Cramér-Rao theorem does not imply that  is the unique UMVUE.

However, this is guaranteed by Theorem 7.3.19 in Casella and Berger ( ): if a UMVUE exists,
it is unique.

Y ​, … ,Y ​1 n Poisson(λ) Ȳ λ var ​( ) =λ Ȳ λ/n

i(λ) = −E ​ ​ log f(y ∣ λ) =λ (
∂λ2

∂
) E ​ ​ =λ (

λ2

Y
) ​ .

λ

1

(Y )λ̂

var ​( ) ≥λ λ̂ ​ ,
n

λ

Ȳ var ​( ) =λ Ȳ λ/n

Ȳ

2002
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Cramér-Rao, multiparameter case

The Cramér-Rao theorem naturally extends to the vector case, that is, when .

The regularity conditions C.1 and C.2 extend to the vector case, leading to the multiparameter
Bartlett identities:

where  is called the Fisher information matrix, which is positive definite.

Let  be an iid sample from  satisfying the above regularity conditions. Moreover,

let  be an unbiased estimator of  with a finite covariance matrix. Then,

corresponding to the multiparameter Cramér-Rao theorem.

Refer to Theorem 6.6, Chap. 2 in Lehmann and Casella ( ) for a proof.

Θ ⊆ Rp

E ​(ℓ (θ)) =θ
∗ 0, I(θ) = E ​(ℓ (θ)ℓ (θ) ) =θ

∗ ∗ T E − ​ ℓ(θ) ,θ (
∂θ∂θT

∂2

)

I(θ)

Y ​, … ,Y ​1 n f(y ∣ θ)dy
(Y )θ̂ θ

var ​( (Y )) ≥θ θ̂ I(θ) , I(θ) =−1 ni(θ), i(θ) = − ​ log f(y ∣∫
∂θ∂θT

∂2
θ)dy,

1998
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Rao-Blackwell 📖

The Rao-Blackwell theorem is contructive strategy for improving estimators that emphasizes the
pivotal role of sufficiency in finding UMVU estimators.

Let  and  be an unbiased estimator of . Moreover, let  be a sufficient
statistic for  and . Then  is an estimator such that  and

That is,  is a uniformly better unbiased estimator of .

As we shall see later, Rao-Blackwell holds for any convex loss function; see Lehmann and Casella
( ), Theorem 7.8, Chap. 1. Note that unbiasedness will not play any role.

This means that conditioning of a sufficient statistic reduces the mean squared error of a biased
estimator , albeit the resulting  would also be biased.

Theorem (Rao-Blackwell, Casella and Berger ( ), Theorem 7.3.17)2002

Θ ⊆ R (Y )θ
~

θ S = s(Y )
θ =θ̂ E ​( (Y ) ∣θ θ

~
S) θ̂ E ​

( ) =θ θ̂ θ

var ​( ) ≤θ θ̂ var ​( ).θ θ
~

θ̂ θ

1998

θ
~

θ̂
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En route to finding unique UMVUE I 📖

In looking for UMVUE we should only consider those based on a sufficient statistic . However, if

both  and  are unbiased and based on , how do we know if  is best unbiased?

The next theorem is a partial answer, which is useful if  attains the Cramér-Rao lower bound.

Let . If  is a best unbiased estimator of , then  is unique.

Let  be iid sample from a . Then the estimator

is unbiased for  and is based on a sufficient statistic . However, Cramér-

Rao cannot be applied because the regularity conditions are not met. Is  UMVUE?

S

θ̂ θ
~

S θ̂

θ̂

Theorem (Casella and Berger ( ), Theorem 7.3.19)2002

Θ ⊆ R θ̂ θ θ̂

Example (Example 7.3.13 in Casella and Berger ( ))2002

Y ​, … ,Y ​1 n Uniform(0, θ)

=θ̂ ​ max{Y ​, … ,Y ​}
n

n + 1
1 n

θ S = max{Y ​, … ,Y ​}1 n

θ̂
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En route to finding unique UMVUE II 📖

Suppose we wish to improve on an unbiased estimator . Then, we could consider  such

that , i.e.   is an unbiased estimator or 0, and let

Clearly,  is also unbiased and its variance is

If  for some , then choosing  gives a better
estimator for , implying that  is not UMVUE. This actually characterizes UMVU estimators.

Let  and  be an unbiased estimator of . Then  is UMVUE if and only if  is uncorrelated

with all unbiased estimators of , that is

θ̂ U = U(Y )
E ​(U) =θ 0 U

=θ
~

+θ̂ aU , a ∈ R.

θ
~

var ​( ) =θ θ
~

var ​( ) +θ θ̂ 2acov ​( ,U) +θ θ̂ a var ​(U).2
θ

cov ​( ,U) <θ θ̂ 0 θ a ∈ (0, −2cov ​( ,U)/var ​(U))θ θ̂ θ

θ θ̂

Theorem (Casella and Berger ( ), Theorem 7.3.20)2002

Θ ⊆ R θ̂ θ θ̂ θ̂

0

cov ( ,U) =θ θ̂ 0,  for all  U = U(Y )  such that  E ​(U) =θ 0.
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Completeness

Proving that an estimator  is uncorrelated with all unbiased estimators of 0 is very hard, limitating
the practical usefulness of the former theorem.

However, if we assume  is complete, we can finally see the light at the end of the tunnel.

A sufficient statistic  for a statistical model  is said to be

complete if no nonconstant function  of  is first-order ancillary, that is,

In other words, any non-trivial transformation of  conveys information about  in expectation.

Because of Rao-Blackwell, the UMVUE  must be a function of a sufficient statistic .

If  is complete, then (using ), there exists no estimator  such that ,

with the only exception of , which is uncorrelated with .

θ̂

S

S = s(Y ) F = {f(dy ∣ θ) : θ ∈ Θ}
g(⋅) S

E ​(g(S)) =θ c for all θ implies g(S) = c  a.s.

S θ

=θ̂ (S)θ̂ S

S c = 0 U = U(S) E ​(U(S)) =θ 0
U = 0 (S)θ̂
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Lehmann-Scheffé theorem

We summarise these finding into a single statement, which is arguably the most relevant result of the
Rao-Blackwell saga.

Let  and  be a complete sufficient statistic for a parameter , and let  be an unbiased

estimator of  based only on . Then,  is unique best unbiased estimator (UMVUE) of .

The Lehmann-Scheffé theorem is implicitly contained in the previous results. Its original
formulation is: “unbiased estimators based on complete sufficient statistics are unique.”

The Lehmann-Scheffé theorem represents a major achievement in mathematical statistics, tying
together sufficiency, completeness and uniqueness.

Theorem (Lehmann-Scheffé-Rao-Blackwell, Casella and Berger ( ), Theorem 7.3.23)2002

Θ ⊆ R S θ θ̂

θ S θ̂ θ
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Example: binomial best unbiased estimation 📖

Let  be iid  and we assume that  is known and  is unknown. We are

interested in estimating the reparametrization:

We know that  is a complete and sufficient statistic1. However, no

obvious unbiased estimator based on  is immediately available.

Let us begin noting that  is an unbiased estimator of , where  is the indicator
function. In fact: .

The Lehmann-Scheffé-Rao-Blackwell theorem then implies that the unique and best unbiased
estimator (UMVUE) is

which can be obtained after simple calculations.

1. See Example 6.2.22 of Casella and Berger ( ). This is also follows from general result of
exponential families.

Y ​, … ,Y ​1 n Bin(N , p) N p

ψ = P(Y ​ =i 1) = Np(1 − p) .N−1

S = ​ Y ​ ∼∑
i=1
n

i Bin(nN , p)
S

​ =ψ
~ I(Y ​ =1 1) ψ I

E( ​) =ψ
~ E(I(Y ​ =1 1)) = P(Y ​ =1 1) = ψ

​ =ψ̂ E( ​ ∣ψ
~

S) = N ​ / ​ .(
S − 1

Nn − N
) (

S

Nn
)

2002
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Rao-Blackwell, multiparameter case

Generalizations of Rao-Blakwell theory to the multiparameter case  are possible.

If one is interested in estimating  for some function , then the previously

developed theory applies almost directly, with minor modifications to the statements.

Note that a special case of the above is , meaning that the developed theory can be

separately applied to each coordinate of .

Let , and let  be an estimator of  with finite risk  under a strictly convex loss
function. Moreover, let  be a sufficient statistic for , and set . Then,

unless  with probability 1.

Θ ⊆ Rp

ψ = g(θ) g : R →p R

g(θ) = θ ​j

θ

Theorem (Rao-Blackwell, Lehmann and Casella ( ), Theorem 7.8, Chap. 1)1998

Θ ⊆ Rp (Y )θ
~

θ R(θ; )θ
~

S = s(Y ) θ =θ̂ E ​( (Y ) ∣θ θ
~

S)

R(θ; ) ≤θ̂ R(θ; ),θ
~

=θ
~

θ̂
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Alternative notions of optimality
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Unbiased estimating equations I

A Z-estimator is the solution over  of a system of equations function  of the type:

where  are known vector-valued maps. These are called estimating equations.

The estimating equations  are unbiased if they satisfy

Under iid sampling, the score function can be written as  and therefore

is a Z-estimator. Moreover, under regularity conditions, it is unbiased: .

Θ Q(θ) = 0

Q(θ) = ​q(θ;Y ​) =
i=1

∑
n

i 0,

q(θ) = q(θ; y)

Q(θ) = ​ q(θ;Y ​)∑i=1
n

i

E ​(Q(θ)) =θ 0,  for all  θ ∈ Θ.

ℓ (θ) =∗
​ ​ log f(y ​; θ)∑

i=1
n

∂θ
∂

i

E ​(ℓ (θ)) =θ
∗ 0
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Unbiased estimating equations II

Remarkably, the unbiasedness of , combined with a few regularity conditions, is often enough to

prove consistency of the resulting estimator  as . 1

Unbiasedness of  does not imply that the solution  is an unbiased estimator of , unless  is

a linear function.

The unbiasedness of  holds for any reparametrization . Moreover, Z-estimators, by

construction, satisfy equivariance, meaning that .

Having defined the class of unbiased estimating functions, the question naturally arises which of
them we should use.

1. Refer to Davison ( ), Section 7.2, for an intuitive argument and van der Vaart ( ), Chap. 5
for a rigorous proof.

Q(θ)

θ̂ n → ∞

Q(θ) θ̂ θ Q(θ)

Q(θ) ψ = ψ(θ)
​ =ψ̂ ψ( )θ̂

2003 1998
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Asymptotic behavior of unbiased estimating equations

Guidance on the choice of  can be found by investigating its asymptotic behavior. We provide

an informal argument for .

Under iid sampling and further regularity conditions, implying that , a Taylor

series expansion of  gives

Thus, re-arranging, the following approximations hold for large :

This suggests Z-estimators are asymptotically unbiased and the asymptotic variance of  is

Q(θ)
θ ∈ Θ ⊆ R

E ​(q(θ;Y ​)) =θ i 0
Q(θ)

0 = Q( ) ≈θ̂ ​q(θ;Y ​) +
i=1

∑
n

i ( −θ̂ θ) ​ ​q(θ;Y ​).
i=1

∑
n

∂θ
∂

i

n

−θ̂ θ ≈ ​ ≈
− ​ ​q(θ;Y ​)∑i=1

n

∂θ
∂

i

​ q(θ;Y ​)∑
i=1
n

i
​ .

E ​ − ​Q(θ)θ ( ∂θ
∂ )

Q(θ)

θ̂

var( ) ≈θ̂ ​ =
E ​ − ​Q(θ)θ ( ∂θ

∂ )
2

var(Q(θ))
n ​ .−1

E ​ − ​q(θ)θ ( ∂θ
∂ )

2
var(q(θ))
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Godambe information

Let  be a sample from a statistical model with parameter . Let  be an unbiased
estimating equation. We define the sensitivity as

and the variability as

Then, the Godambe information is defined as

An estimating equation  which has  is called information unbiased.

Y θ ∈ Θ ⊆ R Q(θ)

H(θ) := E ​ − ​Q(θ;Y ) ,θ (
∂θ
∂

)

J(θ) := var ​(Q(θ;Y )).θ

V (θ) := ​ .
J(θ)
H(θ)2

Q(θ) H(θ) = J(θ)
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Godambe efficiency

Let  and  be two estimating equations with Godambe information  and . Then

 is uniformly more efficient than  if

This criterion is appropriate because the inverse of the Godambe information , under

regularity conditions, coincides with the asymptotic variance of .

Moreover, although the variance  is a natural basis for comparing estimating functions, 

 is also unbiased with variance .

Hence, a fair comparison is possible only after removing this arbitrary scaling. Indeed, Godambe
information is invariant to scaling of .

Q(θ) ​(θ)Q
~

V (θ) (θ)V
~

Q(θ) ​(θ)Q
~

V (θ) ≥ (θ)  for all  θ ∈V
~

Θ ⊆ R.

V (θ)−1

θ̂

J(θ) ​(θ) =Q
~

aQ(θ;Y ) (θ) =J
~

a J(θ)2

Q(θ)
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Godambe information of the score function

Let  be a sample from a statistical model with parameter  and with score function
.

If the first Bartlett identity holds, the score function  is an unbiased estimating equation.

Moreover, if the second Bartlett identity holds,  is information unbiased, that is

This implies that

that is, the Godambe information of  coincides with the usual Fisher information.

Hence, Godambe information is a generalization of Fisher information.

Y θ ∈ Θ ⊆ R
ℓ (θ)∗

ℓ (θ)∗

ℓ (θ)∗

H(θ) = E ​ − ​ ℓ (θ) =θ (
∂θ
∂ ∗ ) var ​(ℓ (θ)) =θ

∗ J(θ).

V (θ) = I(θ),

ℓ (θ)∗
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Godambe efficiency

Let  be a sample from a joint probability measure  and let .

Moreover, let  be an unbiased estimating equation with Godambe information . Then

under regularity conditions C.1 and C.2:

This result is the equivalent of the Cramér-Rao theorem for unbiased estimating equations.

It implies that the score functions are optimal (Godambe efficient) among unbiased estimating
equations. However, Z-estimators may have appealing robustness properties.

Godambe information generalizes to the vector case  and is defined as 

, sometimes called sandwich matrix. Optimality results generalize as well.

Theorem (Godambe ( ))1960

Y ​, … ,Y ​1 n f(y ∣ θ)ν(dy) Θ ⊆ R
Q(θ) V (θ)

​ ≥
V (θ)

1
​ .

I(θ)
1

θ ∈ Θ ⊆ Rp V (θ) =
H(θ)J(θ) H(θ)−1
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Linear estimating equations I

Let  be independent random variables with mean  and variance 
, depending on a scalar parameter .

Suppose the unbiased estimating equation  has a linear form:

for some set of positive weights . Can we find the optimal set of weights, according to the

Godambe information?

The sensitivity  and the variability  of  are readily available:

Therefore, the optimal weights are those that maximize the Godambe information:

Y ​, … ,Y ​1 n E(Y ​) =i μ ​(θ)i var(Y ​) =i

V ​(μ)i θ ∈ Θ ⊆ R

Q(θ)

Q(θ) = ​q(θ;Y ​
) =

i=1

∑
n

i ​w ​
(θ)(Y ​

−
i=1

∑
n

i i μ ​(θ)),i

w ​(θ)i

H(θ) J(θ) Q(θ)

H(θ) = ​w ​(θ)μ ​(θ), J(θ) =
i=1

∑
n

i i
∗

​w ​(θ)V ​(θ).
i=1

∑
n

i
2

i

V (θ) = ​ .
​ w ​(θ)V ​(θ)∑i=1

n
i
2

i

​ w (θ)μ ​(θ)(∑i=1
n

i i )2
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Linear estimating equations II

Using Lagrange multipliers, it can be shown1 that the optimal weights are

which means the following unbiased linear estimating equation is Godambe efficient:

This optimality property holds for a special class of linear unbiased estimating equations but does
not make assumptions of the distribution of  other than  and .

Let  be independent random variables such that  and , where  are

known constants e.g. representing exposure. Then the optimal weights are  and .

Note the  is not necessarily Poisson.

1. See Davison ( ), Section 7.2.2, for a proof.

w ​(θ) ∝i ​ , μ ​(θ) =
V ​(θ)i

μ ​(θ)i
∗

i
∗

​μ(θ), i =
∂θ
∂

1, … ,n,

Q(θ) = ​ ​
(Y ​

−
i=1

∑
n

V ​(θ)i

μ ​(θ)i
∗

i μ ​(θ)).i

Y ​i μ ​(θ)i V ​(θ)i

Y ​, … ,Y ​1 n μ ​(θ) =i λe ​i V ​(θ) =i λe ​i e ​i

w ​(θ) =i 1 =θ̂ /Ȳ ē

Y ​i

2003
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BLUE estimators I

Let  be a random vector satisfying  and , where  is an 

known matrix with full rank,  is an unknown vector, and  is an unknown parameter.

Then the best linear unbiased estimator (BLUE) of  is

meaning that  is unbiased and has the minimum variance among all unbiased linear estimators of
.

The Gauss-Markov theorem does not make specific assumptions on the distribution of , only on the
mean and variance.

If we strengthen the assumptions to , then  is the UMVUE of  among all

estimators, including non-linear ones; see Lehmann and Casella ( ), Chap. 3, Sec. 4.

As a special case of Gauss-Markov, if  are iid with mean  and variance , then  is BLUE.

Theorem (Gauss-Markov, Agresti ( ), Section 2.7.1)2015

Y ∈ Rn E(Y ) = Xβ var(Y ) = σ I ​

2
p X n × p

β ∈ Rp σ >2 0
β

​ =β̂ (X X) X Y .T −1 T

​β̂

β

Y

Y ∼ N ​(Xβ,σ I ​)p
2
p ​β̂ β

1998

Y ​i μ σ Ȳ
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BLUE estimators II

Let  be random vector satisfying  and , where  is  known

matrix with full rank,  an unknown vector, and  an known covariance matrix. Then the

best linear unbiased estimator (BLUE) of  is

corresponding to the generalized least squares estimator.

This interesting generalization of Gauss-Markov is often not applicable in practice, because the
covariance matrix  is typically unknown.

When  is diagonal, i.e. in presence of heteroschedasticity, the Aitken estimator

reduces to the weighted least squares estimator.

Moreover, if  are independent random variables with mean  and variance , then the weighted

mean  is BLUE, where .

Theorem (Aitken, Agresti ( ), Section 2.7.1)2015

Y ∈ Rn E(Y ) = Xβ var(Y ) = Σ X n × p

β ∈ Rp Σ
β

​ =β̂ (X ΣX) X Σ Y .T −1 T −1

Σ

Σ = diag(σ ​, … ,σ ​)1
2

n
2

Y ​i μ σ ​i
2

​ =μ̂ ​ w ​Y ​/ ​ w ​∑i=1
n

i i ∑j=1
n

j w =i (1/σ ​)i
2
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BLUE estimators and unbiased estimating equations I

We discuss here connections between the BLUE estimators and the unbiased estimating
equations, aimed at providing a unified view of these concepts.

Under the same assumptions of Gauss-Markov theorem, let us consider:

for some  matrix  having full rank. This is a linear unbiased estimating equation, and the

optimal choice of  maximizes the Godambe information.

Solving this estimating equation we obtain to a linear unbiased estimator, which is

The sensitivity and variability matrices of  are

Consequently, the Godambe information is .

Q(β) = A (Y −T Xβ),

n × p A

A

​ =β̂ (A X) A Y , E( ​) =T −1 T β̂ (A X) A Xβ =T −1 T β.

Q(β)

J(β) = var(Q(β)) = σ A A, H(β) =2 T E − ​Q(β) =(
∂β
∂

) (A X) .T T

V (β) = σ (A X) (A A) (A X)−2 T T T −1 T T
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BLUE estimators and unbiased estimating equations II

The optimal choice of  equivalently minimizes the inverse of the Godambe information, which

after a few algebraic manipulation is equal to

The key remark is the following: a direct calculation shows that the variance of  is

that is, the variance of  coincides with the inverse of the Godambe information. This is a
consequence of the linearity of , otherwise the property holds only asymptotically.

Thus, the same proof of Gauss-Markov theorem can be used to show that the BLUE estimator is
Godambe efficient and the optimal matrix is , giving

Moreover, if , then  also coincides with the Fisher information .

A

V (β) =−1 σ (A X) A (A X) A .2 [ T −1 T ] [ T −1 T ]
T

​β̂

var(β) = σ (A X) A (A X) A =2 [ T −1 T ] [ T −1 T ]
T

V (β) ,−1

β̂

Q(β)

A = X

​
=β̂ (X X) X Y , V (β) =T −1 T

​X X.
σ2

1 T

Y ∼ N ​(Xβ,σ I ​)p
2
p V (β) I(β)
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Asymptotic evaluations
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Asymptotic evaluations: preliminaries

Asymptotic evaluations of estimators are taught in basic courses of inferential statistics. We focus on
two main properties: consistency and asymptotic normality.

An estimator  is consistent if it converges in probability to the true value  as the sample size

increases, i.e.,  as . Classical sufficient conditions are given below.

Let  and  be a sequence of estimators such that the asymptotic bias and variance are

zero, that is for every 

Then  is a consistent estimator of .

Checking this condition case-by-case is difficult. Instead, we seek general sufficient conditions to
establish the consistency of broad estimator classes, including maximum likelihood.

​θ̂n θ ​0

​ ​θ̂n ⟶
p

θ ​0 n → ∞

Theorem (Casella and Berger ( ), Theorem 10.1.3)2002

Θ ⊆ R ​θ̂n

θ ∈ Θ

​ bias ​( ​) =
n→∞
lim θ θ̂n 0, ​ var ​( ​) =

n→∞
lim θ θ̂n 0.

​θ̂n θ ​0
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Asymptotic evaluations: preliminaries

The asymptotic normality of an estimator  is a stronger property than consistency, implying that
the estimator is normally distributed around the true value  for large .

Let  and let  be a sequence of estimators. Under “regularity conditions”:

where  is the so-called asymptotic variance.

If  is the maximum likelihood, then under regularity conditions  equals the Fisher

information  and the asymptotic variance is .

In regular problems, the maximum likelihood estimator  is asymptotically efficient, that is, for 

large enough, its variance attains the Cramér-Rao lower bound. Informally,

Remark: there exist infinitely many asymptotically efficient estimators.

​θ̂n
θ ​0 n

Θ ⊆ R ​θ̂n

​( ​ −n θ̂n θ ​) ​0 ⟶
d

N(0, v(θ ​) ), n →0
−1 ∞,

v(θ ​)0
−1

​θ̂n nv(θ)
I(θ) = ni(θ) i(θ ​)0

−1

​θ̂n n

​
N(θ ​

, I(θ ) ).θ̂n ∼̇ 0 0
−1
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Example: Poisson with unknown mean

Let  be a iid random sample from a Poisson distribution of mean parameter . The

maximum likelihood estimator  is the sample mean

One could invoke the strong law of large numbers to show that . Alternatively:

which implies  and , from which consistency follows.

Moreover, as a direct application of the central limit theorem, we also obtain that

In order to construct confidence intervals, one typically estimate the asymptotic variance  with

a consistent estimator . Then Slutsky theorem ensures that

Y ​, … ,Y ​1 n λ > 0
​λ̂n

​ =λ̂n .Ȳ

​ ​λ̂n ⟶
a.s.

λ

E ​( ) =λ λ̂ λ, var ​( ​) =λ λ̂n ​ =
n

λ
I(λ) ,−1

bias ​( ​) =λ λ̂n 0 lim ​ var ​( ​) =n→∞ λ λ̂n 0

​
(

​
−n λ̂n λ) ​⟶

d
N(0,λ), i(λ) = ​

.
λ

1

i(λ)−1

i(
​
) =λ̂n

−1
​λ̂n

​ i( ​) ( ​ −n λ̂n
1/2 λ̂n λ) ​⟶

d
N(0, 1).
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The classical “regularity conditions”

(A1) We observe an iid sample  from a density  with true value .

(A2) The model is identifiable, that is, the densities  and  are different for .

(A3) The distributions  have common support.

(A4) The parameter space  contains an open set of which  is an interior point.

We will sometimes need the additional conditions:

(A5) There is a neighbourhood  of the true value  within which the first three derivatives of

 exist a.s., and there exist functions  such that  and

 for  and .

(A6) The Fisher information matrix is finite and positive definite, and

for , that this, the first and second Bartlett identities.

Y ​, … ,Y ​1 n f(y; θ ​)0 θ ​ ∈0 Θ ⊆ Rp

f(⋅; θ) f(⋅; θ )′ θ = θ′

f(y; θ)

Θ θ ​0

N θ ​0

ℓ(θ) m ​(y)rst ∣∂ f(y; θ)/∂θ ​∂θ ​∂θ ​∣ ≤3
r s t m ​(y)rst

E ​(M ​(Y )) <θ rst ∞ r, s, t = 1, … , p θ ∈ N

E ​ ​ ℓ(θ) =θ [
∂θ ​r

∂
] 0, [I(θ)] ​ =rs −E ​ ​ ℓ(θ) =θ [

∂θ ∂θ ​r s

∂2

] E ​ ​ ​ ,θ [
∂θ ​r

∂ℓ(θ)
∂θ ​s

∂ℓ(θ)
]

r, s = 1, … , p
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Wald inequality 📖

Under assumptions (A1)-(A3), by the strong law of large numbers:

where  is the Kullback-Leibler divergence, which is strictly positive for . Thus:

Moreover, by the properties of the , or using Jensen’s inequality, we deduce:

which is commonly known as Wald inequality.

Theorem (Wald inequality, Lehmann and Casella ( ), Theorem 3.2, Chap. 6)1998

​ ℓ(θ;Y ) −
n

1
​ ℓ(θ ​;Y ) =

n

1
0 ​ ​ log ​ ​

n

1

i=1

∑
n

f(Y ​; θ ​)i 0

f(Y ​; θ)i ⟶
a.s.

−KL(f(⋅; θ ​) ∣0 f(⋅; θ)), n → ∞,

KL θ = θ ​0

ℓ(θ;Y ) − ℓ(θ ​;Y ) ​0 ⟶
a.s.

−∞.

KL

E ​ ℓ(θ;Y ) <θ ​0 ( ) E ​ ℓ(θ ​;Y ) , θ =θ ​0 ( 0 )  θ ​,0
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Consistency for the MLE

Wald inequality is the main workhorse for proving consistency of the maximum likelihood.

Broadly speaking, on average, the likelihood is maximized at the true value , and this holds

almost surely for large , suggesting that  almost surely as .

We may be tempted to conclude that conditions (A1)-(A3) are enough to prove consistency.
Unfortunately, there are complications on general spaces . An exception is given below:

Under assumptions (A1)-(A3) and if  is finite, then  exists, is unique and is a

consistent estimator of .

Proof. Let  for . It holds  as . Hence:

θ ​0

n ​ →θ̂n θ ​0 n → ∞

Θ

Theorem (Lehmann and Casella ( ), Cor. 3.5, Chap. 6)1998

Θ = (θ ​, θ ​, … , θ ​)0 1 k ​θ̂n

θ ​0

A ​ =j,n {ℓ(θ ​) >0 ℓ(θ ​)}j j = 1, … , k P(A ​) →j,n 1 n → ∞

P(ℓ(θ ​) >0 ℓ(θ ​) for all j =j 1, … , k) = P(∩ ​A ​) ≥j=1
k

j,n 1 − ​ P(A ​) →
j=1

∑
k

j,n
C 1, n → ∞.
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What could go wrong?

Let  be an iid sample from the following univariate density1

where  is the normal density. The density  satisfies conditions (A1)-(A4).

Moreover  is differentiable.

However, the log-likelihood present spykes in correspondence of the observed data and the maximum
likelihood concentrates around  rather than , i.e  is inconsistent.

Indeed, there are multiple roots of the score equation , corresponding to the spykes. The

“correct” solution close  is among them, but is not identified by the data even for large .

Note this example does not contradict Wald inequality, because the spykes occur on a set of
measure zero. Indeed for any fixed  the probability of observing  is zero.

1. This example is taken from a  of Radford Neal.

Y ​, … ,Y ​1 n

f(y; θ) = ​ϕ(y; 0, 1) +
2
1

​ϕ(y; θ, e ), θ ∈
2
1 −2/θ2

R,

ϕ(x;μ,σ )2 f(y; θ)
ℓ(θ)

0 θ ​0 ​θ̂n

ℓ (θ)∗

θ ​0 n

θ Y ​ =i θ

blogpost
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What could go wrong?

These are simulated data when the true value is . We plot the log-density  and

the log-likelihood  for .

θ ​ =0 0.6 log f(y; θ ​)0

ℓ(θ) n = 10, 30, 100
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What else could go wrong?

The picture depict  in another problematic situation. The true value is 

, but the presence of the asymptote may cause  to diverge.
−KL(f(⋅; θ ​) ∣0 f(⋅; θ)) θ ​ =0

π/2 ​θ̂n
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Consistency for the MLE 📖

Under assumptions (A1)-(A6), with probability tending to  as , the equation  has

at least one root , and there exists a sequence of roots  such that .

This standard result of the literature requires several regularity conditions and yet it delivers less than

what it seems.1

The claim is that a clairvoyant statistician, with knowlegde of , could choose a consistent

sequence of roots. In reality, it may be impossibile to choose the right solution.

Let us further require that, with probability tending to 1 as , there is a unique solution to

the score equation. In that case  is consistent and is also the global maximizer of .

1. See also van der Vaart ( ), Theorem 5.42, for slightly less stringent conditions and a careful
discussion about the issue of multiple roots.

Theorem (Lehmann and Casella ( ), Th. 5.1, Chap. 6)1998

1 n → ∞ ℓ (θ) =∗ 0
​θ̂n ​θ̂n ​ ​θ̂n ⟶

p
θ ​0

θ ​0

n → ∞
​θ̂n ℓ(θ)

1998
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Asymptotic normality of the MLE 📖

Under assumptions (A1)-(A6), suppose the maximum likelihood estimator  exists and is
consistent for the true value . Then

where  is the Fisher information matrix.

Informally, we say that the maximum likelihood estimator is asymptotically efficient because,
roughly speaking, , the latter being the Cramér-Rao lower bound.

Rigorously, the above theorem does not establish the convergence of  and , nor have
we introduced an asymptotic version of the Cramér-Rao bound.

Nevertheless, the statement that maximum likelihood estimators are asymptotically efficient is
correct, as rigorously discussed in Chapter 8 of van der Vaart ( ).

Theorem (Lehmann and Casella ( ), Th. 5.1, Chap. 6)1998

​θ̂n

θ ​0

​( ​ −n θ̂n θ ​) ​0 ⟶
d

N(0, i(θ ​) ), i(θ) =0
−1 − ​ log f(y ∣ θ) f(y ∣∫ (

∂θ∂θT
∂2

) θ)dy,

ni(θ)

var ​( ​) ≈θ θ̂n I(θ)−1

E ​( ​)θ θ̂n var ​( ​)θ θ̂n

1998
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Observed vs Fisher information

For the practical construction of confidence intervals, or simply to empirically assess the variance
of an estimator, we need to consider a consistent estimator of .

The negative Hessian matrix of the log-likelihood is called observed information and equals:

If the second Bartlett identity holds, the Fisher information is .

There are two natural candidates for estimating , namely  and . These two

quantities may coincide, but in general, this is not guaranteed.

Following Fisher’s original work, Efron and Hinkley ( ) suggested using  because it
approximates the conditional variance of  given an appropriate ancillary statistic.

Moreover,  can be computed numerically via differentiation, whereas  requires analytical

derivations.

I(θ) = ni(θ)

I(θ) := − ​ ℓ(θ;Y ).
∂θ∂θT

∂2

I(θ) = E ​(I(θ))θ

I(θ ​) =0 ni(θ ​)0 I( ​)θ̂n I( ​)θ̂n

1978 I( ​)θ̂n

​θ̂n

I(
​
)θ̂n I(

​
)θ̂n
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Consistency for M-estimators I

We now discuss a broader and modern theory for consistency. Let  be an M-

estimator and recall that the maximum likelihood is a special instance, with

In order to simplify the subsequent exposition, it is convenient to consider

where the red terms are ininfluential because the maximizer  of  is the same.

Under conditions (A1)-(A3) the law of large numbers guarantees that  pointwise

for every , where . However, this was not enough.

On the other hand, we will see that  does not need to maximize . Indeed, it is sufficient that

is nearly maximizes it, in the sense that .

M ​(θ) =n ​ m(θ;Y ​)∑
i=1
n

i

M ​(θ) =n ​ ℓ(θ;Y ​),
i=1

∑
n

i

M ​(θ) =n ​ ​[ℓ(θ;Y ​) −
n

1

i=1

∑
n

i ℓ(θ ​;Y ​)] =0 i ​ ​ log ​ ,
n

1

i=1

∑
n

f(Y ​; θ ​)i 0

f(Y ​; θ)i

​θ̂n M ​(θ)n

M ​
(θ)

​n ⟶
p

M(θ)
θ M(θ) = −KL(f(⋅; θ ​) ∣0 f(⋅; θ))

​θ̂n M ​(θ)n

M ​( ​) ≥n θ̂n sup ​ M(θ) −θ∈Θ o ​(1)p
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Consistency for M-estimators II 📖

Let ,  be random functions and  be a function of  such that for every 

Then any sequence of estimators  with  converges in probability to 

as .

The uniform convergence assumption strengthen the pointwise convergence typically ensured by the
law of large numbers, that is,  should be Glivenko-Cantelli.

This holds if  is compact,  is continuous and dominated by an integrable function.

The strong identifiability condition, also called well separability ensures that only point close to 

are close to the maximum value , strengthening Wald inequality.

Theorem (van der Vaart ( ), Theorem 5.7)1998

θ ⊆ Rp M ​(θ)n M(θ) θ ϵ > 0

​

​ M ​(θ) − M(θ) ​ 0, (Uniform convergence)
θ∈Θ
sup ∣ n ∣ ⟶

p

​M(θ) < M(θ ​). (Strong identifiability)
θ:∣∣θ−θ ​∣∣ ​≥ϵ0 2

sup 0

​θ̂n M ​( ​) ≥n θ̂n M ​(θ ​) −n 0 o ​(1)p θ ​0

n → ∞

m(θ)

Θ m(θ)

θ ​0

M(θ ​)0
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Consistency for Z-estimators 📖

The former theorem can be also expressed in terms of Z-estimators , that is, on a set of

estimating equations. An example is the score function

We require  to nearly solve  and that . Intuitively, this comes from

the LLN in unbiased estimating equations, in which case .

Let ,  be random vector-valued functions and  be a vector-valued function of 

such that for every 

Then any sequence of estimators  such that  converges in probability to .

Q ​(θ)n

Q ​(θ) =n ​ ​ ℓ (θ;Y ​).
n

1

i=1

∑
n

∗
i

​θ̂n Q ​(θ) =n 0 lim ​ Q ​(θ ​) =n→∞ n 0 0
E ​(Q ​(θ ​)) =θ ​0 n 0 0

Theorem (van der Vaart ( ), Theorem 5.9)1998

θ ⊆ Rp Q ​(θ)n Q(θ) θ

ϵ > 0

​ ∣Q ​(θ) − Q(θ) ∣ ​ ​

θ∈Θ
sup ∣ n ∣ 2 ⟶

p
0, ​ ∣∣Q(θ)∣∣ ​ >

θ:∣∣θ−θ ​∣∣ ​≥ϵ0 2

inf 2 ∣∣Q(θ ​)∣∣ ​ =0 2 0.

​θ̂n Q ( ​) =n θ̂n o ​(1)p θ ​0
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Asymptotic normality of M-estimators I

Let  and  be an M-estimator whose vector-valued derivative is , so that

Let  be a sequence of consistent estimators such that . Under assumptions (A1)-(A2)

and further mild regularity conditions

where  is the Godambe information matrix and

Theorem (van der Vaart ( ), Theorem 5.21)1998

Θ ⊆ Rp M ​(θ)n Q ​(θ)n

M ​(θ) =n ​m(θ;Y ​), Q ​(θ) =
i=1

∑
n

i n ​q(θ;Y ).
i=1

∑
n

i

​θ̂n Q ​( ​) =n θ̂n 0

​( ​ −n θ̂n θ ​) ​0 ⟶
d

N(0, v(θ ​) ), v(θ) =0
−1 h(θ)j(θ) h(θ),−1

V (θ) = nv(θ)

h(θ) = E ​ − ​q(θ) , j(θ) =θ (
∂θ
∂

) E ​ q(θ)q(θ) .θ ( T )
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Asymptotic normality of M-estimators II

The previous theorem is very powerful as it applies to the broad class of M-estimators. Moreover, its
statement has been substantially simplified compared to van der Vaart ( ).

The actual statement does not even require  to be independent or identically distributed.

Moreover, the regularity conditions are much weaker than (A1)-(A6) and essentially ensure that
the involved quantities are well-defined. However, note that  must be consistent.

An alternative proof relying on more classical conditions, e.g. based on bounding third derivatives
as in (A1)-(A6), is given in van der Vaart ( ), Theorem 5.41.

In regular problems, an M-estimator  is consistent and asymptotically normal. Moreover, for 

large enough, its variance is the inverse of the Godambe information. Informally,

1998

Y ​, … ,Y ​1 n

​θ̂n

1998

​θ̂n n

​ N(θ ​,V (θ ​) ).θ̂n ∼̇ 0 0
−1

Home page

103 / 128

https://tommasorigon.github.io/InferentialStat


First-order bias-correction

In a regular model with  and independent samples, the bias of the maximum likelihood
estimator can be expanded as follows:

The quantity  is often unavailable, but the first-order term  might be computable,

e.g., in exponential families (Pace and Salvan ( ), Chap. 9).

The jackknife is a popular strategy for removing the first-order bias. Alternatively, the first-order
bias-corrected maximum likelihood estimator is obtained via plug-in as

If  is an estimator of  with bias of order , then

where , with equality if and only if . In this case,  is said to be second-order
efficient; see Efron ( ).

Θ ⊆ Rp

bias ​( ​) =θ θ̂n ​ +
n

b ​(θ)1
​ +

n2

b ​(θ)2
O(n ).−3

bias ​( ​)θ θ̂n b ​(θ)1

1997

​
=θ̂bc ​

−θ̂n ​ .
n

b ​( ​)1 θ̂n

​θ
~
n θ O(n )−2

var ​( ​) =θ θ
~
n var ​( ​) +θ θ̂bc Δ (θ) +2 O(n ),−3

Δ (θ) ≥2 0 ​
=θ̂bc ​θ

~
n ​θ̂bc

1975
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Bias reduction using Firth’s correction I

The jackknife and  are “corrective” rather than “preventive”. That is, the maximum likelihood  is
first calculated, then corrected. A practical requirement is the existence of .

Motivated by this, Firth ( ) proposed a modified score equation. The idea is that the bias in 
can be reduced by introducing a small bias into the score function.

In a regular model with , let  be the score function,  the Fisher information matrix

and  the bias of the maximum likelihood . Firth ( ) estimating equation is

where  is any vector such that

Clearly, a natural candidate for  is indeed .

​θ̂bs θ̂

θ̂

1993 θ̂

Θ ⊆ Rp ℓ (θ)∗ I(θ)
b(θ) ​θ̂n 1993

Q(θ) = ℓ (θ) +∗ A(θ),

A(θ) = A(θ;Y )

E ​(A(θ)) =θ −I(θ) ​ +
n

b ​(θ)1
O(n ).−1/2

A(θ;Y ) A(θ) = −I(θ)b ​(θ)/n1
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Bias reduction using Firth’s correction II
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Bias reduction using Firth’s correction III 📖

Let  be an iid sample from a Poisson with parameter  and consider the reparametrization

. The score and the Fisher information are

The maximum likelihood is , with first-order bias . Thus

Let  be an iid sample from a Bernoulli with parameter  and consider the

reparametrization . Application of Firth ( ) method gives

which is a well-know bias-reducing correction of the empirical logit.

Y ​, … ,Y ​1 n λ

ψ = 1/λ

ℓ (ψ) =∗
​ −

ψ2

n
​ , I(ψ) =

nψ

​ȳ
​ .

ψ3

n

​ =ψ̂ 1/ ​ȳ b ​(ψ)/n =1 ψ /n2

Q(ψ) = ℓ (ψ) −∗ I(ψ)b ​(ψ)/n ⟹1 ​ ​ =ψ̂Firth ​ .
​ + 1/nȳ

1

Y ​, … ,Y ​1 n p

β = log p/(1 − p) 1993

​ ​ =β̂Firth log ​ , whereas ​ =(
n − n ​ + 1/21

n ​ + 1/21 ) β̂ log ​ ,(
n − n ​1

n ​1 )
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Robustness
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Robustness: preliminaries

Thus far, we have assumed that  is correctly specified, that is, there exists a

 that generates the data  and .

Under this assumption, we have derived estimators that are optimal in some sense. However, if the
underlying model is not correct, everything breaks down.

The term “robustness” is intentionally vague, but let us say that any statistical procedure:

a. Should have nearly optimal efficiency if the model is correctly specified

b. Small deviations from the model assumptions should impact the model only slightly

c. Somewhat larger deviations from the model should not cause a catastrophe

We also distinguish among two kinds of robustness:

i. robustness with respect to contamination of the data (i.e.   is an outlier)

ii. robustness with respect to model misspecification, that is, we specify a class of models  but
in reality  and .

Case i. is sometimes called resistence and relies on the notion of influence functions. For instance,
the median is resistent, the mean is not.

F = {f(⋅; θ) : θ ∈ Θ}
θ ​0 (Y ​, … ,Y ​) ∼1 n f(⋅; θ ​)0 f(⋅; θ ​) ∈0 F

y ​ =i 1032

F

(Y ​, … ,Y ​) ∼1 n f ​(⋅)0 f ​(⋅) ∈0 / F
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Example: Huber estimators I 📖

Recall that a Huber estimator  for the mean  is defined as the solution of

We assume  where  is a continuous and symmetric density around . Hence, there

exists a density  symmetric around  such that .

First of all, provided  is symmetric, the estimating equation  is unbiased

Broadly speaking, this means that Huber estimator  is consistent for . Moreover

Huber estimator is robust but less efficient than the maximum likelihood. For instance, if  is a

Gaussian with mean  and variance , then  has asymptotic variance  and .

​θ̂n θ ​0

Q(θ) = ​q(Y ​ −
i=1

∑
n

i θ) = 0, q(y) = ​ ​ ​ .
⎩
⎨

⎧−k
y

k

 if  y ≤ −k
 if  ∣y∣ ≤ k

 if  y ≥ k

Y ​i ∼iid f ​0 f ​(y)0 θ ​0

​ ​f
~
0 0 ​ ​(y −f

~
0 θ ​) =0 f ​(y)0

f ​0 Q(θ)

E ​{Q(θ)} =0 nE ​{q(Y ​ −0 1 θ ​)} =0 0.

​θ̂n θ ​0

​( ​ −n θ̂n θ ​) ​0 ⟶
d

N(0, v (θ ​)), v(θ) =−1
0

−1 j(θ)/h(θ) .2

f ​0

θ ​0 σ2 Ȳ σ2 σ ≤2 v(θ ​)0
−1
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Example: Huber estimators II 📖

Let , and note such density does not depend on . After some calculations, we find

and

Remarkably, the asymptotic variance does not depend on  therefore its relative efficiency compared

to the normal model is also constant over .

Below we show the asymptotic relative efficiency (ARE) of the Huber estimator compared to  for
different values of , assuming  is Gaussian with  and arbitrary 

0 (Median) 0.5 1 1.5 2

0.637 0.792 0.903 0.964 0.99

The ARE does not depend on  if we use . This is the default of the huber function of the

MASS R package with , where  is robustly estimated using the MAD.

Z ∼ ​ ​f
~
0 θ ​0

j(θ) = E ​{q(Y ​ −0 1 θ) } =2 E{Z I(∣Z∣ <2 k)} + 2k P(Z >2 k),

h(θ) = E ​ − ​q(Y ​ − θ) =0 (
∂θ
∂

1 ) P(∣Z∣ ≤ k).

θ ​0

θ ​0

Ȳ

k f ​0 σ =2 1 θ ​0

k

ARE = σ /v(θ ​) =2
0

−1 v(θ ​)0

σ2 k = σk
~

=k
~

1.5 σ
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Example: omitted variable in linear regression 📖

Let  be realizations from the model  for , where 

and  are linearly independent covariates and  is the error term.

If we do not include  in our model, the class  is misspecified. The maximum likelihood estimate

of  under the misspecified  is:

Thus, the estimator , under the true model , is distributed as a Gaussian with mean

and variance .

In other words,  is biased and inconsistent unless  and  are uncorrelated or, obviously, if the

model is correctly specified, that is if .

y ​, … , y ​1 n Y ​ =i β ​ +1 β ​x ​ +2 i β ​z ​ +3 i ϵ ​i i = 1, … ,n x ​i

z ​i ϵ ​i ∼iid N(0,σ )2

z ​i F

β ​2 F

​ ​ =β̂2 ​(x ​ −
​(x ​ − )∑j=1

n
j x̄ 2

1

i=1

∑
n

i )(y ​ −x̄ i ​).ȳ

​ ​β̂2 f ​0

E ​( ​ ​) =0 β̂2 β ​ +2 β ​ ​ ​(x ​ −3
​(x ​ − )∑j=1

n
j x̄ 2

1

i=1

∑
n

i )(z ​ −x̄ i ),z̄

σ / ​(x ​ −2 ∑
j=1
n

j )x̄ 2

​ ​β̂2 x z

β ​ =3 0
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Maximum likelihood under a misspecified model 📖

Let  denote the true probability model, and let  be an incorrectly
specified statistical model, such that .

Suppose  are iid under , and define the log-likelihood as .

Let  denote expectation under the true model . If the problem is sufficiently regular, the

maximum likelihood estimator  converges in probability to some value  such that

as shown in Huber ( ). That is,  converges to a value satisfying Wald’s inequality.

An alternative formulation of this result is the following:

In other words, the maximum likelihood converges to , which represents the parameter value that

makes  as close as possible to the true , albeit .

The maximum likelihood makes our predictions “the best they can be” given the chosen model.

f ​(⋅)0 F = {f(⋅; θ) : θ ∈ Θ}
f ​ ∈0 / F

Y ​, … ,Y ​1 n f ​0 ℓ(θ) = ​ log f(y ​; θ)∑i=1
n

i

E ​(⋅)0 f ​0

​θ̂n θ ​0

E ​{ℓ(θ)} <0 E ​{ℓ(θ ​)}, for all θ ∈0 0 Θ, θ = θ ​,0

1967 ​θ̂n

KL(f(⋅; θ ​) ∣0 f ​) <0 KL(f(⋅; θ) ∣ f ​), for all θ ∈0 Θ, θ = θ ​.0

θ ​0

f(⋅; θ) f ​0 KL(f(⋅; θ ​) ∣0 f ​) >0 0
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Example: misspecified exponential model I

Let  and suppose the data  are iid from an exponential with

mean . Then  is a consistent and efficient estimator for .

However,  is a robust estimator, in the sense that if instead  with , then 

remains consistent for the mean  under minimal assumptions on  (i.e.   must exist).

On the other hand, the central limit theorem shows that the asymptotic distribution is

where  is the variance of  under , provided .

Thus, confidence intervals are robust if  is estimated in a robust way, e.g. using the sample
variance, but not if we use the usual  implied by the exponential specification.

This example can be read under the lenses of estimating equations. The score function

is an unbiased estimating equation under  for a broad class of models beyond .

F = {μ e :−1 −y/μ μ ∈ R }+ Y ​, … ,Y ​1 n

μ ​0 Ȳ μ ​0

Ȳ Y ​i ∼iid f ​(⋅)0 f ​(⋅) ∈0 / F Ȳ

μ ​0 f ​0 μ ​0

​( −n Ȳ μ) ​⟶
d

N(0,σ ).2

σ2 Y ​i f ​(⋅)0 σ <2 ∞

σ2

=σ̂ i( ​) =μ̂ −1 Ȳ 2

ℓ (μ) =∗
​(Y ​ −

i=1

∑
n

i μ)

f ​(⋅)0 F
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Robustness and unbiased estimating equations

An essential requirement is that estimands must have the same interpretation under all the
potential models. In the former exponential example  represents the mean of .

Formally, this means we can write the parameter  as a functional of interest  of :

For example, we might have , that is, the mean of .

On the other hand, for instance the parameters  and  of a Gamma distribution are not robust to

interpretation, because they are meaningless for models other than the Gamma.

More broadly, if the score function  is unbiased under , the estimator is

consistent under mild conditions.

Moreover, even if the maximum likelihood  is consistent, the asymptotic variance is not anymore
the one induced by the Fisher information: adjustments are needed.

μ ​0 f ​0

θ ​0 T (⋅) f ​0

θ ​ =0 T (f ​).0

θ ​ =0 ​ yf ​(y)ν(dy)∫
Y 0 f ​0

α β

ℓ (θ) =∗
​ ℓ (θ;Y ​)∑i=1

n ∗
i f ​(⋅)0

θ̂n
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Misspecified likelihoods are M-estimators

The theory of M- and Z-estimators can be directly applied to investigate the asymptotic behavior
the maximum likelihood estimator under model misspecification.

If  is misspecified then the maximizer of the log-likelihood  should be

regarded as an M-estimator while the score function  is a Z-estimator.

Consistency and asymptotic normality of the maximum likelihood estimator  for misspecified
models hold under the assumptions in van der Vaart ( ), Theorems 5.7, 5.9, 5.21.

Note that under misspecification, Bartlett identity does not hold anymore. However, under the
assumptions of Theorem 5.21 of van der Vaart ( ), the maximum likelihood is such that

where  is the Godambe information matrix and

where expectations are taken over  and not the misspecified , so that .

F ℓ(θ) = ​ log f(y ​; θ)∑
i=1
n

i

ℓ (θ)∗

​θ̂n

1998

1998

​
(

​
−n θ̂n θ ​) ​0 ⟶

d
N(0, v(θ ​) ), v(θ) =0

−1 h(θ)j(θ) h(θ),−1

V (θ) = nv(θ)

h(θ) = E ​ − ​ ℓ (θ) , j(θ) =0 (
∂θ
∂ ∗ ) E ​ ℓ (θ)ℓ (θ) .0 ( ∗ ∗ T )

f ​0 f(⋅; θ) h(θ) = j(θ)
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Sandwich estimators

In order to compute confidence intervals and test hypotheses, we need to estimate the asymptotic
variance of the maximum likelihood estimator  under model misspecification.

Informally, recall that for  large enough and under regularity conditions, we have

If the model is correctly specified, then typical estimators of the variance of  are  and .

Unfortunately, we cannot use  because it depends on , which is unknown!

The sandwich estimator is a popular choice for estimating the asymptotic variance of  under
model misspecification. The sandwich estimator for  is

recalling that  is the observed information matrix. If the model is correctly

specified then .

​θ̂n

n

var
​
(

​
) ≈0 θ̂n V (θ ​) .0

−1

​θ̂n I( ​)θ̂n I( ​)θ̂n

V ( ​)θ̂n f ​0

​θ̂n

V (θ)

( ​) =V̂ θ̂n I( ​) ​ ℓ ( ​; y ​)ℓ ( ​; y ​) I( ​),θ̂n (
i=1

∑
n

∗ θ̂n i
∗ θ̂n i

T)

−1

θ̂n

I(θ) = −∂/∂θ ℓ (θ;y)∗

( ​) =V̂ θ̂n I( ​) +θ̂n o ​(1)p
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Example: misspecified exponential model II 📖

Let us consider again  with , where  is a misspecified exponential model.

The score function is unbiased for  under . The score and the observed observation matrix are,

respectively

The inverse of the observed information matrix, evaluated at , is an estimate of the asymptotic
variance assuming the model is correctly specified:

If the model is misspecified, then we can use the sandwich estimator:

which is the  times the usual method of moments estimator for the variance.

Y ​i ∼iid f ​(⋅)0 f ​(⋅) ∈0 / F F

μ f ​0

ℓ (μ) =∗
​ − ​ + ​ =

i=1

∑
n

(
μ

1
μ2

y ​i ) − ​ +
μ

n
, I(μ) =

μ2

nȳ
− ​ ℓ (μ) =

∂μ
∂ ∗ − ​ +

μ2

n
​ .

μ3

2n ​ȳ

​ =μ̂ ​ȳ

var ​( ​) ≈θ μ̂ I( ​) =μ̂ −1
​ .

n

​ȳ2

var ​( ​) ≈0 μ̂ I( ​) ​ ℓ ( ​; y ​) =μ̂ −2

i=1

∑
n

∗ μ̂ i
2

​ ​ ​ (y ​ −
n2

​ȳ4

i=1

∑
n

​ȳ4

1
i ​) =ȳ 2

​ ​ ​(y ​ − ​) ,
n

1
(
n

1

i=1

∑
n

i ȳ 2)

n−1

Home page

118 / 128

https://tommasorigon.github.io/InferentialStat


Example: correlated observations

Let  be realizations of dependent random variables from the density  with .

Moreover, let  be the marginal density of .

If the data are dependent, the log-likelihood  is misspecified, because it

assumes independence. Indeed,  is an instance of composite likelihood.

Nonetheless, under mild regularity conditions, the misspecified score function is unbiased under
the true model , thanks to the linearity of the expectation operator:

Unbiasedness of  does not guarantee consistency nor asymptotic normality, but both are

recovered under mild assumptions on the dependence structure, relying on ergodic theorems or

martingales. Remarkably, a Godambe-like asymptotic variance is obtained at the limit1.

1. Refer to Section 7.2.3 in Davison ( ) for a discussion on general estimating equations with
dependent data and sufficient conditions for consistency and asymptotic normality.

y ​, … , y ​1 n f(y; θ) Θ ⊆ Rp

f(y ​; θ)i y ​i

ℓ ​(θ) =c ​ log f(y ​; θ)∑i=1
n

i

ℓ ​(θ)c

f(y; θ)

ℓ ​(θ) =c
∗

​ ​ log f(y ​; θ) ⟹
i=1

∑
n

∂θ
∂

i E ​{ℓ ​(θ)} =0 c
∗ 0.

ℓ ​(θ)c
∗

2003
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Example: the probability of observing a zero 📖

Let  be an iid sample from a discrete distribution with pdf . We are interested in

estimating the following functional

Under a Poisson model  with mean ,  is reparametrization: . Two estimators are:

Both estimators are not robust for  under model misspecification, unless under  we have 

. Indeed, the score equation is biased, being equal to

A robust alternative is given by the empirical proportion of zero:

Y ​, … ,Y ​1 n f ​0

ψ ​ =0 P(Y ​ =i 0) = f ​(0),0

F λ ψ ψ = e−λ

​ ​ =ψ̂ML e (maximum likelihood), ​ =− ​ȳ ψ̂ ​ , (UMVU).(
n

n − 1
)
n ​ȳ

ψ ​0 ψ ​0 ψ =0

e−μ ​0

ℓ (ψ) =∗
​ 1 − ​

⟹
ψ

n
(

− logψ
​ȳ

) E ​{ℓ (ψ ​)} =0
∗

0 ​ 1 − ​
.

ψ ​0

n
(

− logψ ​0

μ ​0 )

​ ​
=ψ̂MM ​ ​

I(y ​
=

n

1

i=1

∑
n

i 0).
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Example: linear models with misspecified variance I 📖

Let , where the errors  are random variables distributed according to , whereas 

are known covariates and  is a parameter of interest.

If we further assume that , then the maximum likelihood estimator 
 is the least squares estimator. Moreover, the score function is

whereas the Fisher/observed information matrix is

Provided that , that is, as long as the linearity assumption holds under , then the

OLS estimator is robust and unbiased even when  are not Gaussian or not iid.

If the iid Gaussian model is misspecified, e.g. because  (heteroskedasticity), then the

OLS estimator is still a good choice but its variance should be adjusted.

Y ​ =i x ​β +i
T ϵ ​i ϵ ​i f ​0 x ​i

β ∈ Rp

ϵ ​i ∼iid N(0,σ )2
​ =β̂

(X X) X yT −1 T

ℓ (β) =∗
​ ​x ​(y ​ −

σ2

1

i=1

∑
n

i i x ​β) =i
T

​X (y −
σ2

1 T Xβ),

I(β) = I(β) = ​ ​x ​x ​ =
σ2

1

i=1

∑
n

i i
T

​X X ⟹
σ2

1 T var ​( ​) =β β̂ σ (X X) .2 T −1

E ​(Y ​) =0 i x ​βi
T f ​0

ϵ ​i

var ​(ϵ ​) =0 i σ ​i
2
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Example: linear models with misspecified variance II 📖

The variance of  under a general model  in which the random vector  has zero mean

and , is explicity available

This coincides with the inverse Godambe information of the estimating equation :

In practice, the matrix  is unknown. Thus, we rely on the sandwich estimator:

where  and  are the residuals.

This robust estimator is known as the White’s correction after White ( ), who also proved it is
consistent if  and under technical conditions on .

​β̂ f ​0 (ϵ ​, … , ϵ ​)1 n

var ​(ϵ) =0 Σ

var ​( ​) =0 β̂ (X X) X ΣX(X X) .T −1 T T −1

ℓ (β)∗

var ​( ​) =0 β̂ I(β) E ​ ​X (Y −Xβ)(Y −Xβ)X I(β)−1
0 {

σ4

1 T } −1

Σ

​ ​

( ​)V̂ β̂ −1 = I( ​) ​ ​x ​(y ​ − x ​ ​)(y ​ − x ​ ​)x ​ I( ​)β̂ −1 {
σ4

1

i=1

∑
n

i i i
T β̂ i i

T β̂ i
T} β̂ −1

= (X X) X R X(X X) ,T −1 T 2 T −1

R =2 diag(r ​, … , r ​)1
2

n
2 r ​ =i y ​ −i x ​ ​i

T β̂

1980
Σ = diag(σ ​, … ,σ ​)1

2
n
2 X
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Example: linear models with misspecified variance III

In this example, we fit a linear model (in the parameters!) so that  using least squares,
with . The residuals clearly show heteroskedasticity.

Y =Xβ + ϵ

p = 12
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Example: linear models with misspecified variance IV

The standard estimator is . Below we show the first  entries

113.11 -47.95 17.70 -12.81

-47.95 170.53 -73.32 54.10

17.70 -73.32 87.43 -69.35

-12.81 54.10 -69.35 217.58

The sandwhich (White) estimator is instead :

2.82 -9.73 9.45 -8.80

-9.73 42.79 -43.71 40.57

9.45 -43.71 72.01 -67.22

-8.80 40.57 -67.22 288.72

We used the sandwich R package, that implements several sandwich variants.

(X X)σ̂2 T −1 4 × 4

β ​1 β ​2 β ​3 β ​4

β ​1

β ​2

β ​3

β ​4

(X X) X R X(X X)T −1 T 2 T −1

β ​1 β ​2 β ​3 β ​4

β ​1

β ​2

β ​3

β ​4
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