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® This unit will cover the following topics:

® One-parameter and multiparameter exponential families
m |ikelihood, inference, sufficiency and completeness

® The prime role of exponential families in the theory of statistical
inference was first emphasized by Fisher (1934).

® Most well-known distributions—such as Gaussian, Poisson,
Binomial, and Gamma—are instances of exponential families.

m Exponential families are the distributions typically considered when
presenting the usual “regularity conditions”.

® With a few minor exceptions, this presentation will closely follow Chapters 5 and 6 of Pace and
Salvan (1997).
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Overview

" Figure 1

* GENERAL THEORY
. (asymptotics)

-~ -~
e ~

* / EXPONENTIAL FAMILIES
(partly exact)

* NORMAL THEORY
° (exact calculations)

of Efron (2023). Three level of statistical modeling.
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One-parameter exponential families
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Exponential tilting

m |letY bea random variable with support Y C R and fo(y) with respect to
a dominating measure v(dy).

= We aim at building a parametric family F = {f(;0) : § € ® C R} with common support Y such
that fy is a special case, namely f, € F.

® A strategy for doing this is called , namely we could set

f(y36) o ™ fo(y).

Thus, if f(y;0) is generated via exponential tilting, then f(y;0) = €°fo(y) = fo(v).
m | et us define the mapping My : R — (0, co]

Mo(6) = /y o (w(dy), BER

If My(0) is in a neighborhood of the origin, it is the moment generating function of Y.

= Moreover, we define the set © C R as the set of all # such that M;(0) is finite, i.e.
O ={0eR: M) < o}
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Natural exponential family of order one

= The mapping K(0) = K((60) = log My(0) is the cumulant generating function of fj. It is if
and only if My(0) is finite.

The parametric family generated via of fo
Oy
2 -
Foe = {f(y; 0) = folw) _ foly) exp{fy — K(0)}, yel,0¢c @} :

My (6)
is called a of order one, and © = {# € R: K(#) < oo} is the natural
parameter space.

® The natural parameter space O is the and must be an ; see exercises. The

family FL is said to be full, whereas a subfamily of FL with © C © is non-full.

= By definition, all the densities f(y;0) € F., have the same support.

A natural exponential family of order one, F2., is said to be if © is open.

ne’
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Moment generating function

® |n regular problems, the functions My(#) and K;(0) associated to a r.v. Y with density f; are
in a neighbor of the origin. A sufficient condition is that © is an open set (regular FL).

Suppose M(t) < oo for any |t| < ty and for some ty > 0. Then a standard result of probability
theory (e.g. Billingsley (1995), Section 21) implies:

= The random variable Y has finite moments of all orders, i.e. u; = E(Y*) < oo for all k > 1.

= The moments (ug)r>1 and moment generating function M;(t) the
of Y and fy. Moreover, My(t) admits a around the origin:
2 t3 o0 tk
M()_1—|—,u1t—|—,u22'—|—,u33'—|— “:ZHM"” ] < to.
k=0

= The moments uy equal the kth derivative of Mj(t) evaluated at the origin:

ak

=Eo(Y") = otk

2 My(t )|t:0, k> 1.
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Cumulant generating function

Suppose K(t) = log My(t) < oo for any |t| < ty and for some ¢y > 0. Then:

m K, the law of Y and it admits a
2 t3 = th
Ko(t):K1t+l‘62a+ﬁl3§+“°:;ﬁﬂk, ] < 2o,

where the coefficients (kx)r>1 are the cumulants of Y.

® The cumulants ki equal the kth derivative of Ky(t) evaluated at the origin

Moreover, it can be shown the following moment relationships hold:

k1 =Eo(Y), ky=varg(Y), r3=FEe{(Y — 1)}, ky=FEp{(Y — p1)*} — 3vary(Y)>.

Refer to Pace and Salvan (1997), Section 3.2.5 for detailed derivations. Standardized cumulants /4;3//4,3/2
and k4 /K3 are the skewness and the (excess of ) kurtosis of Y.
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Example: uniform distribution [

® let Y ~ Unif(0,1) so that fo(y) =1 for y € [0,1]. The of fo gives
Fly;0) x e fo(y) =¥, yel0,1], 6cR.

® The normalizing constant, that is, the moment generating function, is

1 01 0 1
My(6) = E(e™) = / iy =" =52, 040
0 6 lo 60
with My(0) = 1. Note that My is continuous since limg_,o(e’ —1)/0 = 1.
= Consequently, we have Mj(6) < oo for all 8 € R and the is © = R, which

is an open set. The resulting density is

0ev
f(y;:0) = 7 =expify — K(0)},  y€[0,1],

where K (0) = log{(e’ —1)/6}.

® |t holds in general that O = R whenever fo has bounded support; thus, the family is
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Example: Poisson distribution [_|

m Let Y ~ Poisson(1) so that fy(y) = e !/y! for y € N. The of fy gives
el
. Oy —
f(y;0) < e” fo(y) = A yeN, 6ecR.

® The normalizing constant, that is, the moment generating function, is

© gk
My(0) =E()=e 'Y "~ —exp{! ~1}, HeR

k!

k=0

= Consequently, we have Mj(0) < oo for all # € R and the is © = R which
is an open set. The resulting density is
eMele el 0 Vet
f(ya 0) — y| e—1 — y| exp{Hy o (6 o 1)} — y| ) yE Na

so that K (6) = €’ — 1 and having defined A = ¢€’.
= |n other words, the tilted density is again a Poisson distribution with mean e?.
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Example: exponential family generated by a Gaussian [

" Let Y ~ N(0,1) so that fo(y) = 1/(v2m)e ¥ /2 for y € R. The of fo gives
1 2
:0) o e = eV /2, ,0 € R.

® The normalizing constant, that is, the moment generating function, is

My(0) = E(eY) = \/% /Reeyy2/2dy =2, 0 € R.

= Consequently, we have Mj(6) < oo for all € R and the is © = R, which
is an open set. The resulting density is
1 2 2 eV /2 1 1 2
0) = ——eMe V26702 = = exp{ly — 6?/2} = ——e 2070 € R,
f(y;0) T N p{fy — 6°/2} o y

so that K (6) = 62/2.

® |n other words, the tilted density is again a Gaussian distribution with mean 6.
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Closure under exponential tilting [

~

m |et FL be an exponential family with parameter ¢ and ¥, with density
ne

fly;¥) = foy) exp{py — K(¢)}. The of f(y;1) gives
Fy;0,9) o< ™ fy; ) o fo(y) exp{(6 + )y},

and the normalizing constant of fy(y) exp{(0 + ¥)y} is therefore
| 5w expt(6 + v () = Mo(@ + ),

m Thus, for any 8 and v such that My(0 + ¥) < oo, the corresponding density is
F(y;0,9) = foly) exp{(0 + ¢)y — K(0 + )},

which is again a member of the FL . with updated parameter 6 + 1.

Exponential families are closed under , and F.. can be thought of as being
generated by any of its members.
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Moments and cumulants

m The functions My(0) and K(8) = Ky(0) of a FL, refer to the baseline density fy(y). Indeed, for
any fixed 6, the moment generating function of f(y;0) € FL is

My(t) == /y e f(y;0) v(dy) = Mol(g) /y O (y) (dy) = % t4+0c6.

= Consequently, the cumulant generating function of f(y;0) relates to K as follows:

Ky(t) = log My(t) = Ko(t +60) — Ko(f), t+6¢c0O.

If .Feln is a regular family, then © is an open set, and © = int (:) meaning that 6 is always an inner

point of ©. Therefore, there exists a to such thatt 4+ 0 € O for all t| < to implying that both My
and Ky are well-defined.

If FL is not regular, then for Mp(t) and Ky(t) to be well-defined, we require that 6 is not a
boundary point; that is, 8 € int (:) meaning it belongs to the interior of O.

Textbooks sometimes suppress additive constants in defining Ky(#), e.g. using €’ instead of €’ — 1.

This is inconsequential (constants cancel in Kggg)) but somewhat misleading.
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Mean value mapping |

" Moments and exist for every 6 € int ®. In particular, the cumulants are
8k (9k ak
wo= o Kolt)| =2 [K(E+0) - KO)]| =2 K0O),

Let Y ~ f(y;0), with f(y;0) € F. . The first two moments of Y are obtained as:

1(6) = Eg(Y) = %K(O), varg(Y) = %ﬂ(e) — %K(()),

We call i : int © — R the

m |f fy is non-degenerate, then vary(Y') > 0, implying that K(0) is a convex function, and u(0) is a

and , namely is a one-to-one map.

m Thus, if FL is a exponential family, then © = int © and u(f) is a reparametrization.
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Mean value mapping |I

The mean value mapping has range M = Range(u) = {u(6) : 6 € int ©}. The set M C R is called
mean space or

Let C' = C()) be the closed convex hull of the sample space ), which is the smallest closed
convex set C C R Y, namely:

CO)={yeR:y=2Ayi +(1 =Ny, 0<A<1L, y,y2 €V}

m Hence, if Y = {0,1,...,N}, then C = [0, N]. If Y =N, then C =R*. If Y =R, then C = R.

= Because of the properties of expectations, u(6) € int C(Y) for all 6 € int ©, namely

M Cint C(Y).

Indeed, int C'()) is an whose extremes are the infimum and supremum of Y.
Both definitions naturally generalize to the multivariate case when C,Y C R?, for p > 1.
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Mean value mapping Il [_|

® |n a regular exponential family, the mean value mapping u(6) is a reparametrization, meaning that
for each 6 € ©, there exists a unique mean p € M such that p = ().

= Moreover, in regular families, a much stronger result holds: for each value of y € int C()), there
exists a unique 6 € O such that () = y.

Theorem (Pace and Salvan (1997), Theorem 5.1)
If FL is regular, then © = int © =0 and M =intC.

en

® This establishes a duality between the expectation space M and the sample space. Any value in
int C' can be “reached”, that is, there exists a distribution f(y;8) with that mean.

® This correspondence is crucial in maximum likelihood estimation and inference.

This theorem can actually be strengthened: a necessary and sufficient condition for M = int C' is that

the family F. is steep (a regular family is also steep); see Pace and Salvan (1997).
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A non regular and non steep exponential family

1

m | et us a consider an exponential family F_, generated by the density

€

el
fo(y) :CW, y € R.
for some normalizing constant ¢ > 0. The of fy gives
e~ lyl+0y -
Fy;0) o< €% fo(y) o T YER d¢€6.
= The function M;(6) is unavailable in closed form, however ©® = [—1, 1] since

My(0) < 0, 0 c[—1,1].

= Since © is a closed set, the exponential family is (and is not steep either). In fact, one
can show that limgy_,; u(6) = a < oo, implying that

M = (—a,a), whereas int C = R.

® |n other words, there are no values of 6 such that u(6) = y for any y > a, which implies, for
instance, that the method of moments will encounter difficulties in estimating 6.
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Variance function | [__|

Let Y ~ f(y;0), with f(y;0) € F. and let 8(u) be the of u(@). The variance of Y
can be expressed as a function of u:
82
V(p) = varg,) (Y) = WK(H) .
The function V : M — R is called the of the exponential family F_. .

® The importance of the variance function V' (u) is related to the following characterization result due
to Morris (1982).

Theorem (Pace and Salvan (1997), Theorem 5.2)

If Y has a density that belongs to a F., then the (M, V(1)) uniquely determine the natural
parameter space © and the cumulant generating function K (6), and hence also f(y;8).

Home page Eu:ucn%


https://tommasorigon.github.io/InferentialStat

19 / 61

Variance function Il [__|

® The characterization theorem of Morris (1982) is constructive in nature, as its provides a
practical way of determining K (0) from (M, V (u)). In particular, the function K (-) must satisfy

([ i) g

where pg is an arbitrary point in M.

For example, let M = (0,00) and V(u) = u?. Then, choosing g = 1 gives

1
K (1— —) = log u,
L

and therefore O(p) =1 — 1/p, giving © = (—o00,1) and () = (1 — 8)~'. Hence we obtain K (6) =
—log(1 — 6), which corresponds to the exponential density fy(y) = e~ ¥, for y > 0.

In order to identify FL M and V(i) must be known.
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Well-known exponential families

Notation N(¢,1) Poisson(¢) Bin(NV, ) Gamma(v,v),v > 0
y R N {0,1,...,N} (0, 0)

0() (0 log ¢ log{t/(1 =)} —9

fo(y) (V2m)lemiv e l/y! WION y e v /T(v)

K(9) 62 /2 e —1 Nlog(l+¢€’) — Nlog2 —vlog(l—#)

) R R R (—o0,0)

Mean param

©(0) 6 e’ Ne? /(1 + €% —v/6

M R (0, 00) (0, N) (0, 00)

V() 1 T p(1—p/N) v
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Quadratic variance functions

® There is more in Morris (1982)'s paper. Specifically, he focused on a subclass of variance
functions, which can be written as

V(p) = a+bu+ cu?,

for some known constants a, b, and c.

® Morris (1982) showed that, up to transformations such as convolution, there exist only six families
within FL that possess a function. These are: (i) the normal, (ii) the Poisson,

(iii) the gamma, (iv) the binomial, (v) the negative binomial, and (vi) a sixth family.

m The sixth (less known) distribution is called the generalized hyperbolic secant, and it has density

exp {0y — log cos 0}

;0) = R —/2,m/2
flus) = RN yer, o€ (n/anp),
with function w(f) = tan® and variance function V(u) = csc®*(8) =1+ p?, and M =R. It is
also a exponential family.
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A general definition of exponential families |

Let A(y) > 0, s(y), be real-valued functions not depending on v and let 8(v), G(¢) be real-valued
functions not depending on y. The parametric family

Fe ={f(y;9) = h(y) exp{6(¥)s(y) — G(¥)}, y€VCR, p €T},

is called a of order one, where the normalizing constant is

exp G(4) = / h(y) exp{0()s(y)}v(dy).

y

The family is full if the parameter space ¥ is the widest possible ¥ = {1 C R : G(¢)) < oo}

Suppose f(y;) € FL. Then, the function 6(1)) must be a one-to-one mapping, that is, a
- otherwise, the model would be . Hence, we can write:

fys9) = h(y) exp{0(4)s(y) — G(O())},
for some function G(-) such that G(v) = G(8(%)).
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A general definition of exponential families ||

When s(y) is an arbitrary function of y, then F! is broader than F. .

Without loss of generality, we can focus on the natural parametrization 8 € © and a density baseline
h(y) = fo(y), meaning that f(y;6) € F. can be written as

f(y;0) = fo(y) exp{fs(y) — K(0)},

because the general case would be a of this one.

Let Y ~ f(y;60), with f(y;0) € F.. Then, the random variable S = s(Y) has density
fs(s;9) = fo(s) exp{0s — K(6)},

for some baseline density fo(s), namely fs(s;9) € FL. If in addition s(y) is a invertible
mapping, this means Y = s71(S) is just a transformation of an F. .

A full exponential family F. is, technically, a broader definition, but in practice it leads to a

of a natural exponential family F2 in a transformed space s(Y).
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Multiparameter exponential families
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Natural exponential families of order p

m letY bea random variable with support ) C R? and fo(y) with respect
to a dominating measure v(dy).

m | et us define the mapping My : R? — (0, o]

My(8) == /y &V (y(dy), B ER.

The parametric family generated via of a density f
€9Tyf0(y) T =
Fre = f(y:0) = ——= = fo(y)exp{6"y — K(0)}, ycYCR, 0O,
M, ()
is called a of order one, K (6) = log My(6) and © = {6 € R? : K(6) <
oo} is the natural parameter space.

® The family FP, is said to be full, whereas a subfamily of F? with © C © is non-full. Moreover, the
family FP, is said to be if @ is an open set.
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Example: multinomial distribution | [

" letY = (Y3,...,Y,1) ~ Multinom(N;1/p,...,1/p) be a random vector with
uniform probabilities, so that its density fj is
N! 1\"
oy)=—F——(=] = (y1,---,Yp-1) EY C R,
fo(y) oy (p) y=(y Yp—1)

where Y = {(y1,-.-,Yp-1) € {0,...,N}P~1: Z?;i y; < N}, having set y, := N — Zz;i Y.
® The of fo yields

0"y N! )" b1yt 46, 1Yy 1 p-1
f(y;0) o< fo(y)e” ¥ = ~] e p1Yp-1 ye), R,
yil-- gl \p

® As a consequence of the , the normalizing constant, that is, the moment
generating function, is

Thus My(6) < oo for all # € RP~! and the is the open set ©® = R,
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Example: multinomial distribution Il [_|

® The resulting density is
N! 691y1+' 0y 1Yp1

.0 — 0Ty—K(0) _
f(y,e) fO(y)e y1!-~yp! (1—|—e‘91 _|_..._|_69p—1)N

where K (6) = log My(0) = Nlog(1+e% + --- +e%1) — Nlogp.

® |n other words, the tilted density is again a multinomial distribution with parameters IV and
m;=¢e%/(1+e% +---+e%1). In fact, we can write:

N! 913/1 .. eepyp p ; Yj
f(y;e):ylg...yp!(zl; e@)yl,, (Zp_leg) — H( - eak)

N' & oo

. J

— il |H7TJ"
Yi- Yp- =1

where we defined 6, := 0, so that Z§:1 eli=1+eh ... 4 e, recalling that Z§:1 yj = N.

= The tilted density belongs to a regular natural exponential family F2 ! of p— 1.
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Example: independent exponential families [

m letY = (Y3,...,Y,) be a random vector of independent random variables, each belonging to a
FL of order 1, with density

f(y;;05) = fi(y;) exp{0;y; — K;(0;)}, 0; € (:)j'

= Let @ =(64,...,60,). Because of independence, the joint distribution of Y is
_p p-
F;0) = || £ 65) = || £i(ws) exp{85u; — K;(6;)}
j=1 j=1
[ P ( p
— Hf](yj) exp 1 Zojy] ZKJ }
[ j=1

= fo(y) exp{0'y — K (9)},
where fo(y) = [Ij_; fi(y;), K(0) = >_%_; K;(0;), and the is
©=0;x-x 6,
® Thus, f(y;6) is an F2, in which K(0) is a separable function.
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Mean value mapping and other properties

m let Y ~ f(y;0), with f(y;0) € FP,. The cumulant generating function is
Kg(t) :logMg(t) :Kg(t+9) —KO(H), t+0c @

In particular, the first two moments of Y are obtained as:

0 0 O*
m |f fy is non-degenerate, then the covariance matrix vary(Y) is , implying that
K (0) is a convex function, and u(0) is a one-to-one map.

® The definitions of mean value mapping u(8), its range M, the convex hull C(Y) of the sample
space, and the variance function V(u) also naturally extend to the multi-parameter setting.

m Refer to Jorgensen (1987) for an extension of the results of Morris (1982) about V().

Theorem (Pace and Salvan (1997), Theorem 5.3)
If F2

en

is regular, then M = int C.
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Independence of the components

Theorem (Pace and Salvan (1997), Theorem 5.4)

If the natural observations of an F2 are independent for some 6y € é then this is also true for
every 0 € ©.

m This theorem essentially establishes that if the baseline density fy(-) has independent components,

then the exponential tilting preserves independence.

Theorem (Pace and Salvan (1997), Theorem 5.5)

If, for every 0 € C:) the natural observations of a regular F£ are uncorrelated, then they are also

® This generalizes a well-known fact about multivariate Gaussians, which are in fact an F2 .

® |n practice, if the Hessian matrix of K(0) is diagonal, then the natural observations are
. This occurs whenever K(0) is
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Marginal and conditional distributions

= Consider a F2, family, so that f(y;0) = fo(y) exp{0Ty — K(6)}.

m |et y = (t,u) be a partition of the natural observations y, where ¢t has k& components and u has p —
k components. Let us partition 8 accordingly, so that 8 = (7, () and

f(y;7,¢) = foly) exp{r’t + (Tu — K(1,0)}, (1,¢) € 6.

Theorem (Pace and Salvan (1997), Theorem 5.6)
i. The family of marginal distributions of U is an FP2* for every fixed value of 7 and
fu(w;T,¢) = he(u) exp{¢"u — K-(¢)}.

ii. The family of distributions of T' given U = u is an F* and the conditional densities
do not depend on (, that is

friv=u(t; u, T) = hy(t) exp{tlt — K,(17)}, expK,(r)=E, (eTTT U = u) .
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Conditional likelihoods

® The former result on marginal and conditional laws is not just an elegant probabilistic fact. Indeed, it
has meaningful inferential applications.

m Often, we can split the parameter vector € into a parameter of interest 7 and a
(. We are not interested in learning (.

The main idea relies on noticing that frp_,(t;u, ) = hy(t) exp{7"t — K,(7)} does not involve ¢
and therefore we could define a based on fry—,.

= A practical drawback of this approach is that the conditional cumulant generating function K, (7) is
not always available in closed form, albeit with notable exceptions.

= The approach is valid, in the sense that a likelihood based on fr|;;—, is a genuine likelihood. On the
other hand, note that the full likelihood would be based on

f(ya T, C) — fU(u; T, C) fT|U:u(t; u, T)a

and thus the conditional likelihood is , that is, it neglects fy(u;T,().
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A general definition of exponential families |

Let s1(y),...,sp(y) and h(y) > 0 be real-valued functions not depending on the parameter 1, and
let 01(¢),...,0,(¢), G(v) be real-valued functions not depending on y. The family

F2={f(y:9) = h(y) exp{0(s) " s(y) —G(¥)}, yeYCR’, ¢ ¥R,

is called an of order p, where the normalizing constant is
xpG(v) = [ hly) explo(w)" s ().

The notation F? is understood to indicate a minimal representation, i.e., such that there is
between 1, s1(y), ..., s,(y) or, equivalently, between 1,6, (%), ..., 0,(¢).

m |fqg>p, then ¥ is and this possibility should be discarded.

= |f g = p, then B(1)) must be a one-to-one mapping, i.e., a reparametrization, otherwise the model is
again

m |f ¢ < p, we have a (p, q)-curved exponential family, which corresponds to a of the

natural parameter space.
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Curved exponential families

..o..

GENERAL THEORY
(asymptotics)

CURVED EXPONENTIAL
FAMILIES

EXPONENTIAL FAMILIES
(partly exact)

NORMAL THEORY
(exact calculations)

. .
.....

m Figure 4.1 of Efron (2023), Chapter 4. Three levels of statistical modeling, now with a fourth level
added representing curved exponential families.
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A general definition of exponential families ||

m \We refer to Efron (2023), Chapter 4, for a detailed discussion on curved exponential families. From
now on, we will focus on the p = ¢q case.

® Without loss of generality, we can focus on the natural parametrization 8 € ® C R? and baseline
density h(y) = fo(y), meaning that f(y;0) € FP can be written as

F(y;0) = fo(y) exp{67s(y) — K(9)},

because the general case would be a of this one.

m letY ~ f(y;0), with f(y;0) € FP. Then, the random vector § = s5(Y) = (51(Y),...,5,(Y)) has
density

fs(s;0) = fo(s) exp{6"s — K()},

for some baseline density fo(s), namely fs(s;8) € F2.. If in addition s(y) is a invertible
mapping, this means Y = s71(S) is just a transformation of an FZ,.

As in the single parameter case, a full exponential family F? with p = g in practice leads to a
of a natural exponential family F2 in a transformed space s(Y).
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Example: gamma distribution |__

The family Gamma(v, A) with v, A > 0 is an F2. In fact, its density is

fly;v,A) = P)(\Z) y' e

= h(y) exp{0(¢)" s(y) — G(¥)}.

1

M = Zexp{vlogy — Ay — log'(v) + vlog A}
Yy

where h(y) = y1, the sufficient statistic s(y) = (s1(y), s2(y)) = (logy,y), whereas the
and the cumulant generating function are

() = (0.(¥),0:(¥)) = (v, =A),  G(¢) =log'(v) —vlog A,
having set ¥ = (v, A).

m As previously shown, this implies that the family

~

F(s;0) = h(s) exp{6¥s — logT'(6;) + 6, log(—6;)}, 6 € O,

is a regular of order 2, with some function A(s).
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Example: von Mises distribution |

m |et Y be a random variable describing an angle, so that Y = (0,27), and let us consider the
on the circle, namely

foly) = — y € (0,2m).

m We define a tilted density f(y;0) € F2 by considering s(y) = (cosy,siny), i.e., the
of y. This choice of s(y) ensures the appealing property f(y;0) = f(y + 2km;0).

= More precisely, let 8 = (61,62) and define the parametric family of densities

~

f(y;0) = fo(y) exp{6s(y) — K(0)}, 0¢€86,

where h(y) = 1/27w. The normalizing constant has a “closed form”

1

exp K(6) = 3= [ exp{bycos(y) + 6 sin(y)}y = A6]1)

where A, (-) is known as the of the first kind and order v.

m |t is easy to check that K (6) < oo for all values of § € R?; therefore, ® = R2. This completes the

definition of what is known as the von Mises distribution.
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Example: von Mises distribution |l

® |nstead of the , it is often convenient to consider a reparametrization ¢ =

(7,7), defined through the one-to-one mapping
6(v) = (1 cos~y, Tsinvy), Y €W =(0,00) x (0,27).

m Using this parametrization, thanks to well-known trigonometric relationships, we obtain the more

familiar formulation of the von Mises distribution, which is
1 COS\yY—
f(y;¢) = h(y) exp{0(¢)s(y) — G(¥) } = WGT W=y e (0,2nm),

so that v € (0, 27) can be interpreted as the and 7 > 0 as the precision.

= We also note that the distribution of s(Y) is a regular of order 2, with
density
1
fs(s:60) = o—exp{'s —log A(|[0]])}, s €S ={(s1,5) € R*: 5]+ 53 =1},

clarifying that S = s(Y) is a random vector taking values on a with unit radius.
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Example: wind direction in Venice |

® The von Mises distribution is sometimes regarded as the “Gaussian distribution for circular data”. To
provide a concrete example, let us consider the
meteorological station, in Venice.

® Measurements are recorded every

measured from the San Giorgio

. from 14-04-2025 to 18-04-2025, for a total of n =

1153. The variable wind_dir is recorded in degrees, i.e., between 0 and 360.

# A tibble: 10 x 3

date
<dttm>
2025-04-14
2025-04-14
2025-04-14
2025-04-14
2025-04-14
2025-04-14
2025-04-14
2025-04-14
2025-04-14
2025-04-14

©O© 0 N O O & W N =

=
(@]

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
05:
10:
15:
20:
25:
30:
35:
40:
45:

00
00
00
00
00
00
00
00
00
00

wind_dir "Wind speed”
<dbl>

<dbl>
148
148
152
150
150
148
151
145
148
150

4

4
.1
1

N W W W WA DN

.6

The dataset is available here. The original source is the webpage of Venice municipality.
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Example: wind direction in Venice ||

300 ~
B .
D Wind speed
(@)
<
~ 200 + 12
c
.0
o 8
o
© 4
o
< 100 - 0
=
0 -
Apr 14 Apr 15 Apr 16 Apr 17 Apr 18

Date

® This is a somewhat misleading graphical representation of wind directions evolving over time.
Indeed, the “spikes” are not real: the angles 1 and 359 are, in fact, very close.
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Example: wind direction in Venice Il

16% -
12% -

8% -
Wind Speed
[0,3.18]

(3.18,6.36]
0%- W E
(6.36,9.54]

4% -

m A better graphical representation of wind directions and , using Cartesian coordinates.
From this wind rose, it is clear the winds were coming mostly from the east.
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Inference
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Independent sampling, sufficiency and completeness

m et Yy,...,Y, beiid random vectors with density f(y;#), where f(y;6) € FP and, without loss of
generality, we let f(y;0) = fo(y) exp{6Ts(y) — K(0)}. The likelihood function is

L(6;y) = H exp {6 s(y;) — K(0)} = exp {0T Z s(yi) — nK(H)} ,

from which we see that s = >0 s(y;) = O 81(¥i)s- -+ orq Sp(ys)) is the
as long as n > p, which has fixed dimension p whatever the sample size.

" Inference can therefore be based on the random vector S = »"" | s(Y;), whose distribution is
fs(s;6) = fo(s) exp{67s — K(6)},

with K(0) = nK(6) and for some density fo(s). In other words, fs(s;8) € FZ..

Theorem (Pace and Salvan (1997), Theorem 5.7)
A sufficient statistic .S with distribution 2 is complete, provided that int © +#0.
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Sufficiency and completeness

® Thus, the log-likelihood function, after a reduction via sufficiency, is
£0) =£(0;s) =0"s —nK (), 6c0,
with § = Y7 | s(Y;) being distributed as a FZ, with cumulant generating function nK (6), whereas
each s(Y;) is distributed as a F? with cumulant generating function K ().

® The of S in exponential families is a classical result that enables the usage of the Rao-
Blackwell-Lehmann-Scheffé theorem for finding the UMVUE.

® Moreover, the existence of a minimal sufficient statistic that performs a dimensionality
reduction, from n to p and with p < n, is a major simplification.

® This only occurs in exponential families, except for non-regular cases.

Theorem (Koopman-Pitman-Darmois, Robert (1994), Theorem 3.3.3)

Under iid sampling, if a parametric family whose does on the is
such that there exists a sufficient statistic of constant dimension p, then the family is FP.
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Likelihood quantities

= After a sufficiency reduction, we get £(0) = 67s — nK (). Thus, the score function is

r(0) =s— n%K(@) = s — nu(0),

where p(60) = Eq(s(Y1)) is the of each s(Y;) and nu(0) = E(S5).

m By direct calculation, we show that the first Bartlett identity holds, namely
Eq(£7(6;5)) = Eg(S) — nu(8) = nu(6) — nu(6) = 0.
The is straightforward to compute, being equal to
1(0) = Eo(£"(0)"(0)") = Eo{(S — nu(6))(S — npu(6))" } = varg(S) = nvarg(s(Y1)).

® Moreover, the observed information is

o* 0* - d*
() = — 00) = ——K(8) = K(6) = Y,
(0) 80801" (9) 80801‘ (0) naeaeT (0) nvarG(S( 1))7
which proves the second Bartlett identity as an implication of the identity Z(0) = 1(6)

, stronger than the usual I(0) = E4¢(Z(0)). In fact, Z(6) is non-stochastic.
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Existence of the maximum likelihood

B The maximum likelihood estimate é if it exists, is the solution of the score equation
s—nu@) =0 so that 9=yt (i) =t ! z”: s(yi)
’ n n S
It is unique because £(6) is in 8, namely its second derivative is
0? ~

soagr{(0) = —vary(S) <0, 0 ¢€6.

Theorem (Pace and Salvan (1997), Theorem 5.8)

If FP is regular, then the maximum likelihood estimate § exists and is the unique solution of

¢*(6) = 0 if and only if s € int C(S), where C(S) is the closed convex hull of the support of S.

m As a corollary, if FE is regular, the MLE exists and is unique with probability one if and only if the
boundary of C' = C(S) has probability 0. This is often violated when S is
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Likelihood quantities: mean parametrization [

m | et us consider the mean parametrization p = u(6) = Ey(s(Y7)), whose inverse is 8 = 6(u). The

log-likelihood is:
U(p) = £0(1) = 0(n)"'s —nK(6(w), peM.
® Hence, using the of differentiation, we obtain the score
) 0 -
£ = 5-000) ) (s = ) = v, (s(11)) s ).

where the last step follows from the properties of the derivatives of inverse functions.

® Thus, the observed information matrix for the mean parametrization is

0? 0?
Z.(p) = — = — 0 - Y1)
,U(lu’) 8M8MT£(M) (8,U/8,U/T (M)) (8 nlu’) + nva’r/ub(s( 1)) 9
whereas the matrix for p is

Lu(n) = Eu(Zu(w) = nvaru(s(¥1)) " = nV(u) .
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Maximum likelihood: mean parametrization

® Thus, the maximum likelihood estimate of the f=p(d)is
R S 1 —
B = n Elzz;s(yi)-
This means ji is both the and the method of moments estimate of pu.

® |t is also an unbiased estimator, because by definition

B(3) = 3 B(5(¥) = Bo(s(1)) = .

® Furthermore [ is the of u. Indeed, we could first notice that fi is a function of S, which is
a sufficient statistic Alternatively, we could note that the variance of i is
. 1 1 _q
var, (i) = ﬁvaru(s(Yl)) = EV(N) =Z,(1) ",

which corresponds to the Cramer-Rao lower bound.
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Example: binomial distribution [

m letY,...,Y, beiid Bernoulli random variables with mean u € (0, 1), that is pr(Y; = 1) = u. Then,

the log-likelihood function is

n

Up) = Z[y log i+ (1 — yi)log (1 — p)] = slogp + (n — s) log (1 — p),

with S = Z?:l Y, being the statistic and the natural parametrization is
O(p) =logpu/(1 — w). Note that S ~ Binom(n, u).

= The variance function is V' (u) = var,(Y;) = u(1 — p), so that the score function becomes

iy S m—s 1 s n

leading to the well-known UMVUE maximum likelihood estimator i = s/n.

= Finally, the and the Fisher information equal, respectively
S n—s n n
I = — — VPEEEETY I N = E I = st .
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Example: von Mises distribution 111 [

m let Yy,...,Y, beiid random variables from a Von-Mises distribution with density f(y; ) =
(2w Ao(7)) exp{T cos(y — )}, with y € (0, 27), therefore the is

—TZCOS v) — nlog Ay(1).

®m The Jacobian of the log-likelihood is

0 - g o
af@ﬁ) =T z_: sin(y; — v), —f — Z cos ( nAOETi .

® Thus, the maximum likelihood estimate (,7) is the solution of the following equations

o i siny; IBS o A7)
tan(y) = =+ : — E cos(y; —7) = —,
() > i1 COSY; n 4 (% =4) Ao (7)
The estimate for 7 can be obtained e.g. using the circular: :Alinv function.
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Example: wind direction in Venice IV

25

Density
0.5 1.0 1.5 2.0

0.0

® The

i T i 11 Hl i i ||

0

50 100 150 200 250 300 350

Degrees

values are 4 = 1.375 (corresponding to about 79 degrees) and 7 = 2.51.
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Example:

wind direction in Venice V
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Asymptotic theory: remarks

® | et us consider an iid sample from a model such that the minimal sufficient statistic belongs to a
FP ., with natural parameter 6 € ©.

m |t is straightforward to verify that the regularity conditions A1-A6 from Unit A are all satisfied.
Thus, Theorem 5.1 of Lehmann and Casella (1998) applies directly.

®m \We also proved that, if the score function has a root, then the maximum likelihood estimate 0 exists
and is the unique solution of £*(0) = 0, where £*(0) = s — nu(0).
® The maximum likelihood estimate may fail to exist if s lies on the boundary of C'(S). However, as

n — 00, the probability that s lies on the boundary of C(S) tends to zero.

® |ndeed, by the law of large numbers, S/n converges almost surely to u(0) € M = int C(.S), implying
that a unique root of the score function eventually exists with probability one.

If the observations are iid from a exponential family, the maximum likelihood estimator 6 is
consistent and asymptotically normal for 6. By the continuous mapping theorem, this implies that
fi = p(P), or any other , is a consistent estimator of .
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Wald inequality: a direct proof [__|

m | et us recall that Wald inequality states that
Eo, (E(H, Y)) < Kq, (6(007 Y)) J 6 # 0,

and the proof relies on the Kullback-Leibler divergence.

® | et us focus on the case ® C R. It is instructive to provide a for exponential
families, recalling that £(6,Y) = 0S — nK(0).

® |n the first place, note that
Eg,(£(6;Y")) = n [0u(60) — K(0)],
implying that Wald inequality holds true if and only if

p(6o) (60 — 0) > K(6p) — K(0), 6 # 6.

® This is indeed the case, the above being a characterization of for K(-), which we
previously show having 8%/80%K (6) > 0 for all # € ©. Moreover, recall that ;(0) = /90K (6).

Home page én:ucn%


https://en.wikipedia.org/wiki/Convex_function
https://tommasorigon.github.io/InferentialStat

55 /61

References and study material

Home page Bicaceh


https://tommasorigon.github.io/InferentialStat

56 /61

Main references

® Pace and Salvan (1997)
0 (Exponential families)
0 (Exponential dispersion families)
= Davison (2003)
® Chapter 5 (Models)
m Efron and Hastie (2016)
m (Parametric models and exponential families)
= Efron (2023)
D (One-parameter exponential families)

0 (Multiparameter exponential families)

Home page sn:ucl:%


https://tommasorigon.github.io/InferentialStat

57 /61

Morris (1982)

= Morris (1982, AoS) is a seminal paper in the field of

The Annals of Statistics
1982, Vol. 10, No. 1, 65-80

NATURAL EXPONENTIAL FAMILIES WITH QUADRATIC
VARIANCE FUNCTIONS!

By Cart, N. Morms ® |t is a must-read, as it encompasses and overviews many of

University of Texas, Austin

the results discussed in this unit.

The normal, Poisson, gamma, binomial, and negative binomial distribu-
tions are univariate natural exponential families with quadratic variance
functions (the variance is at most a quadratic function of the mean). Only one

other such family exists. Much theory is unified for these six natural exponen- [ ] It a |SO Sh OWS t h at eXpon ent i a | fa m i | ies Wit h q u a d ratic

tial families by appeal to their quadratic variance property, including infinite
divisibility, cumulants, orthogonal polynomials, large deviations, and limits in

dbusion ‘ variance are infinitely divisible, provided that ¢ > 0.

1. Introduction. The normal, Poisson, gamma, binomial, and negative binomial
distributions enjoy wide application and many useful mathematical properties. What
makes them so special? This paper says two things: (i) they are natural exponential n
families (NEFs); and (i) they have quadratic variance functions (QVF), i.e., the variance
V(u) is, at most, a quadratic function of the mean p for each of these distributions.

Section 2 provides background on general exponential families, making two points. .
First, because of some confusion about the defmiI:;ion of exponential families, the terms u Ort h OgO n a | p O | y n O m | a IS,
“natural exponential families” and “natural observations” are introduced here to specify
those exponential families and random variables whose convolutions comprise one expo-
nential family. Second, the “variance function” V(u) is introduced as a quantity that | B B I .
characterizes the NEF. " ! u | m Itl n g res u tS U

Only six univariate, one-parameter families (and linear functions of them) are natural
exponential families having a QVF. The five famous ones are listed in the initial paragraph. | . .

The sixth is derived in Section 3 as the NEF generated by the hyperbolic secant [ | d .
distribution. Section 4 shows this sixth family contains infinitely divisible, generally a rge eVI atlons’
skewed, continuous distributions, with support (—o, ©).

In Sections 6 through 10, natural exponential families with quadratic variance functions
(NEF-QVF) are examined in a unified way with respect to infinite divisibility, cumulants, n
orthogonal polynomials, large deviations, and limits in distribution. Other insights are
obtained concerning the possible limit laws (Section 10), and the self-generating nature of
infinite divisibility in NEF-QVF distributions.

This paper concentrates on general NEF-QVF development, emphasizing the impor-
tance of the variance function V(u), the new distributions, and the five unified results.

Additional theory for NEF-QVF distributions, e.g., concerning classical estimation theory,
Bayesian estimation theory, and regression structure, will be treated in a sequel to this
paper. Authors who have established certain statistical results for NEF-QVF distributions

The paper covers several , including:

..and more.

< DEGLI STUDI

S UNIVERSITA

Home page

FmONVIIN

ICOCE



https://tommasorigon.github.io/InferentialStat

Jorgensen (1987)

J. R Statist. Soc. B (1987)
49, No. 2, pp. 127-162

Exponential Dispersion Models

By BENT JORGENSENT

Odense University, Denmark

[Read before the the Royal Statistial Society, at a meeting organized by the Research Section on
Wednesday, December 10th, 1986, Professor A. F. M. Smith in the Chair]
SUMMARY

We study general properties of the class of exponential dispersion models, which is the
multivariate generalization of the error distribution of Nelder and Wedderburn’s (1972)
generalized linear models. Since any given moment generating function generates an
exponential dispersion model, there exists a multitude of exponential dispersion models,
and some new examples are introduced. General results on convolution and asymptotic
normality of exponential dispersion models are presented. Asymptotic theory is discussed,
including a new small-dispersion asymptotic framework, which extends the domain of
application of large-sample theory. Procedures for constructing new exponential dispersion
models for correlated data are introduced, including models for longitudinal data and
variance components. The results of the paper unify and generalize standard results for
distributions such as the Poisson, the binomial, the negative binomial, the normal, the
gamma, and the inverse Gaussian distributions.

Keywords: ASYMPTOTIC THEORY; COMBINATIONS; COMPOUND DISTRIBUTIONS; CONVOLUTION;
EXPONENTIAL FAMILIES; GENERALIZED LINEAR MODELS; LONGITUDINAL DATA;
MIXTURES; POWER VARIANCE FUNCTIONS; SMALL-DISPERSION ASYMPTOTICS;
STABLE DISTRIBUTION; VARIANCE COMPONENTS; VARIANCE FUNCTIONS

1. INTRODUCTION

The increasingly powerful computational tools available to the statistician allow him to
handle increasingly complex models. H{owever, there remains a need for models based on
simple, yet general, ideas. Thus, the suc:ess of Nelder and Wedderburn’s (1972) generalized
linear models relies to some extent on the balance they achieve between simplicity and
generality, computationally as well as conceptually, and on the fact that they include some
important standard statistical models as special cases, specifically linear normal models and
log-linear models for contingency tables.

In the present paper we study the error distribution of generalized linear models, which in
its multivariate form is

fy; 4 6) = a2, y)e* 07 O, ye R, (L1)

where a and k are given functions, 0 varies in a subset of R* and A varies in a subset of R .
In order to distinguish between the random and the systematic part of a generalized linear
model we call (1.1) an exponential dispersion model, a terminology that reflects the partly
exponential form of (1.1) and the important role played by the dispersion parameter 6> = 1/A.
A generalized linear model is obtained if y, , ..., y, are independent one-dimensional variables,
such that y; is distributed according to (1.1) with parameters A and 6; = h(n;), where h is called
the link function, and (1, ..., #,)' = XB, where B is a p x 1 vector parameter and X is an
n X p matrix.

Implicitly, the main theme of the paper is thus generalized linear models, but because the
partly linear systematic form employed in generalized linear models is not necessary for the
theory considered here, we emphasize properties and examples of exponential dispersion
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Jorgensen (1987, JRSSB) is another seminal paper in the
field of :

It studies a multivariate extension of exponential dispersion
models of Nelder and Wedderburn (1972).

It characterizes the entire class in terms of variance
function, extending Morris (1982).

It also describes a notion of asymptotic normality called
small sample asymptotics.

It is a paper and among the discussants we find, J.A.
Nelder, A.C. Davison, C.N. Morris.
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Diaconis and Ylvisaker (1979)

The Annals of Statistics
1979, Vol. 7, No. 2, 269-281

CONJUGATE PRIORS FOR EXPONENTIAL FAMILIES

BY PERSI DIACONIS' AND DONALD YLVISAKER?
Stanford University and The University of California, Los Angeles

Let X be a random vector distributed according to an exponential family
with natural parameter § € ©. We characterize conjugate prior measures on ©
through the property of linear posterior expectation of the mean parameter of
X : E{E(X|0)|X = x} = ax + b. We also delineate which hyperparameters
permit such conjugate priors to be proper.

1. Introduction. Modern Bayesian statistics is dominated by the notion of
conjugate priors. The usual definition is that a family of priors is conjugate if it is
closed under sampling (Lindley [1972], pages 22-23 or Raiffa and Schlaifer [1961],
pages 43-57). Consider the following example: let S, be the number of heads in n
independent tosses of a coin with unknown parameter p. The accepted family of
conjugate priors for p is the beta family with densities

> _T@+B) acipy _ 8-1
f(p: a’B)_I‘(a)I‘(,B)p (1 P) ’ (X>0,B > 0.

Let h be any positive bounded measurable function on the unit interval and
observe that a prior density proportional to A(p)f(p; a, B) leads to a posterior
density of p, given S, = x, proportional to A(p)f(p; a + x, B + h — x). Thus, the
family {h(-)f(:; &, B)la > 0, B > 0, h positive, bounded, measurable} with each
member normalized to be a prior density, is closed under sampling. Now beta
priors have the additional property that the posterior expectation of the mean
parameter p is a linear function of S,. That is, there are numbers a,, b, such that

[P (L= p)" " fps 0 Bp _
[ep*(1 = p)""f(p; &, B)dp
holds for k =0,1,2,...,n A principal result of this paper is that, subject to

regularity conditions, the conjugate priors typically used satisfy, and are char-
acterized by, a similar relation of posterior linearity:
(1.1) ) E{E(X|0)|X = x} = ax + b.

The regularity conditions assumed below allow such standard examples as the
normal prior for normal location, the gamma prior for the Poisson, the inverse
Wishart prior for normal covariance, and the beta prior for the negative binomial.

+ b,

n

E[plS, = k] =

Bayesian statistics also greatly benefits from the use of
exponential families.

Diaconis and Ylvisaker (1979, AoS) is a seminal paper on
the topic of

Broadly speaking, conjugate priors always exist for
exponential families.

These are known as the Diaconis—Ylvisaker conjugate priors.

Classical priors such as beta—Bernoulli and Poisson—gamma
are special cases.

The posterior expectation under the mean parametrization
is a linear combination of the data and the prior mean.
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Consonni and Veronese (1992)

Conjugate Priors for Exponential Families
Having Quadratic Variance Functions

GUIDO CONSONNI and PIERO VERONESE*

Consider a natural exponential family parameterized by . It is well known that the standard conjugate prior on 6 is characterized
by a condition of posterior linearity for the expectation of the model mean parameter . Often, however, this family is not parameterized
in terms of 0 but rather in terms of a more usual parameter, such at the mean . The main question we address is: Under what
conditions does a standard conjugate prior on u induce a linear posterior expectation on y itself? We prove that essentially this
happens iff the exponential family has quadratic variance function. A consequence of this result is that the standard conjugate on u
coincides with the prior on e induced by the standard conjugate on 8 iff the variance function is quadratic. The rest of the article
covers more specific issues related to conjugate priors for exponential families. In particular, we analyze the monotonicity of the
expected posterior variance for  with respect to the sample size and the hyperparameter “prior sample size” that appears in the
conjugate distribution. Finally, we consider a situation in which a class of priors on 8, say T\, is specified by some moment conditions.
‘We revisit and extend previous results relating conjugate priors to I'-least favorable distributions and I'-minimax estimators.

KEY WORDS: Bayesian statistics; Least favorable prior; Partial prior information.

A family of distributions on a real parameter having the
structure of the likelihood kernel is usually named conjugate;
see Raiffa and Schlaifer (1961). This family, which we shall
name standard is closed under ing; however,
this property does not characterize such priors. A character-
ization of standard conjugate priors for the parameter  in-
dexing a natural exponential family has been provided by
Diaconis and Ylvisaker (1979) through the condition of lin-
earity of the posterior expectation of the mean parameter .

Often exponential families are indexed in terms of more
usual parameters, such as the mean . Suppose that we assign
a standard conjugate prior on . It is still true that the pos-
terior expectation of u is linear? Alternatively, does such a
prior coincide with that obtained via transformation from
the standard conjugate prior on ? Diaconis and Ylvisaker
(1985, p. 140) remarked that this result holds for the usual
statistical models, but that “we do not know a theorem that
makes this precise.”

We prove such a theorem in Section 1.2, showing that the
result is true if and only if the exponential family has a qua-
dratic variance function (QVF); see Morris (1982, 1983).

The rest of the article contains further results on conjugate
priors for exponential families, highlighting the important
role played by the QVF condition. In particular, Section 2
discusses the role of the hyperparameter “prior sample size”
7o (see also Kadane, Olkin, and Scarsini 1990) and compares
it with the actual sample size » by studying the monotonicity
of E{var(u|X)} with respect to both n and n. Section 3
extends a result by Jackson, O’Donovan, Zimmer, and Deely
(1970) and Morris (1982) relating conjugate priors to I'-least
favorable distributions and I'-minimax estimators. Conjugate
priors for multivariate exponential families give rise to several
difficulties; these are briefly reviewed in Section 4.

* Guido Consonni is Professor, University of Pavia, Via S. Felice S, I-
27100 Pavia, Italy, and Adjunct Professor, L. Bocconi University, Via Sarfatti
25,1-20136 Milan, Italy. Piero Veronese is Assistant Professor, L. Bocconi
University, Via Sarfatti 25, 1-20136 Milan, ltaly. This work was patially
supported by grants from Ministero Pubblica Istruzione, Rome. The authors
thank the referees for very helpful comments.

1. CONJUGATE PRIORS FOR EXPONENTIAL
FAMILIES UNDER ALTERNATIVE PARAMETERIZATIONS

1.1 Natural Exponential Family and
Variance Function

Let » be a o-finite measure on the Borel set of R not con-
centrated at a single point. Let M(0) = log [ ¢™» (dx), and
define® = 0, = {6: M(§) < w0 }.

Definition 1.1. A real random quantity X is distributed
according to a regular natural exponential family (NEF) if
its density with respect to v is

filx) =exp{x— M(0)}, 0€0O, (L.1)

where O is nonempty and open.

Henceforth, we shall confine our attention only to regular
NEF’s. The parameter § appearing in (1.1) is called the nat-
ural parameter.

The following results about (1.1) are useful:

= p(0) = E(X)=M(0);
o* = 67(0) = var,(X) = M"(6),

where M'(+) and M”(+) denote first and second derivatives
of M(-). The function M(-) is convex; that is, M"(f) > 0
for all 6 € O, so that M’(-) is strictly increasing.

Let u(0) be the image set of the mean function 6 = p(0).
This is a bijection between © and p(0), and we shall denote
its inverse function by 6(y). Because of this one-to-one re-
lationship, p provides an alternative parameterization of
(1.1), called the mean ization (Barndorff-Niel:
1978, p. 121).

Let supp(v) denote the support of », and let % = %, be
the interior of the smallest closed interval of R containing
supp(v). For regular NEF’s, u(0) = % (see Barndorff-Nielsen
1978, cor. 9.6).
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Consonni and Veronese (1992, JASA) is another Bayesian
contribution which refines the results of Diaconis and
Ylvisaker (1979).

It investigates when a specified on the

mean parameter p of a natural exponential family leads to
a linear posterior expectation of pu.

The main result shows that this holds if

and only if the is quadratic.

The paper also explores the monotonicity of the
of u with respect to both the sample size and the
prior sample size.
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