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This unit will cover the following topics:

One-parameter and multiparameter exponential families

Likelihood, inference, sufficiency and completeness

The prime role of exponential families in the theory of statistical
inference was first emphasized by Fisher ( ).

Most well-known distributions—such as Gaussian, Poisson,
Binomial, and Gamma—are instances of exponential families.

Exponential families are the distributions typically considered when
presenting the usual “regularity conditions”.

With a few minor exceptions, this presentation will closely follow Chapters 5 and 6 of Pace and
Salvan ( ).
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Overview

Figure 1 of Efron ( ). Three level of statistical modeling.2023
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One-parameter exponential families
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Exponential tilting

Let  be a non-degenerate random variable with support  and density  with respect to

a dominating measure .

We aim at building a parametric family  with common support  such

that  is a special case, namely .

A strategy for doing this is called exponential tilting, namely we could set

Thus, if  is generated via exponential tilting, then .

Let us define the mapping 

If  is finite in a neighborhood of the origin, it is the moment generating function of .

Moreover, we define the set  as the set of all  such that  is finite, i.e.

Y Y ⊆ R f ​(y)0

ν(dy)

F = {f(; θ) : θ ∈ Θ ⊆ R} Y

f ​0 f ​ ∈0 F

f(y; θ) ∝ e f ​(y).θy
0

f(y; θ) f(y; 0) = e f ​(y) =0
0 f ​(y)0

M ​ :0 R → (0, ∞]

M ​(θ) :=0 ​ e f ​(y)ν(dy), θ ∈∫
Y

θy
0 R.

M ​(θ)0 Y

⊆Θ~ R θ M ​(θ)0

=Θ
~

{θ ∈ R : M ​(θ) <0 ∞}.

Home page

5 / 61

https://tommasorigon.github.io/InferentialStat


Natural exponential family of order one

The mapping  is the cumulant generating function of . It is finite if

and only if  is finite.

The parametric family generated via exponential tilting of 

is called a natural exponential family of order one, and  is the natural
parameter space.

The natural parameter space  is the widest possible and must be an interval; see exercises. The
family  is said to be full, whereas a subfamily of  with  is non-full.

By definition, all the densities  have the same support.

A natural exponential family of order one, , is said to be regular if  is open.

K(θ) = K ​(θ) =0 logM ​(θ)0 f ​0

M ​(θ)0

f ​0

F ​ =ne
1 f(y; θ) = = f ​(y) exp{θy − K(θ)}, y ∈ Y, θ ∈ ,{

M ​(θ)0

e f ​(y)θy
0

0 Θ~ }

=Θ
~

{θ ∈ R : K(θ) < ∞}

Θ
~

F ​ne
1 F ​ne

1 Θ ⊆ Θ
~

f(y; θ) ∈ F ​ne
1

F ​ne
1 Θ

~
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Moment generating function

In regular problems, the functions  and  associated to a r.v.  with density  are finite
in a neighbor of the origin. A sufficient condition is that  is an open set (regular ).

Suppose  for any  and for some . Then a standard result of probability

theory (e.g. Billingsley ( ), Section 21) implies:

The random variable  has finite moments of all orders, i.e.   for all .

The moments  and moment generating function  uniquely characterize the law
of  and . Moreover,  admits a Taylor expansion around the origin:

The moments  equal the th derivative of  evaluated at the origin:

M ​(θ)0 K ​(θ)0 Y f ​0

Θ~ F ​en
1

M ​(t) <0 ∞ ∣t∣ < t ​0 t ​ >0 0
1995

Y μ ​ =k E(Y ) <k ∞ k ≥ 1

(μ ​) ​k k≥1 M ​(t)0

Y f ​0 M ​(t)0

M ​(t) =0 1 + μ ​t +1 μ ​ ​ +2 2!
t2

μ ​ ​ +3 3!
t3

⋯ = ​ ​μ ​, ∣t∣ <
k=0

∑
∞

k!
tk

k t ​.0

μ ​k k M ​(t)0

μ ​ =k E ​(Y ) =θ
k

​M ​(t) ​ ​, k ≥
∂tk
∂k

0
t=0

1.
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Cumulant generating function

Suppose  for any  and for some . Then:

 uniquely characterizes the law of  and it admits a Taylor expansion

where the coefficients  are the cumulants of .

The cumulants  equal the th derivative of  evaluated at the origin

Moreover, it can be shown the following moment relationships hold:

Refer to Pace and Salvan ( ), Section 3.2.5 for detailed derivations. Standardized cumulants 

and  are the skewness and the (excess of) kurtosis of .

K ​(t) =0 logM ​(t) <0 ∞ ∣t∣ < t ​0 t ​ >0 0

K ​0 Y

K ​(t) =0 κ ​t +1 κ ​ ​ +2 2!
t2

κ ​ ​ +3 3!
t3

⋯ = ​ ​κ ​, ∣t∣ <
k=1

∑
∞

k!
tk

k t ​,0

(κ ​) ​k k≥1 Y

κ ​k k K ​(t)0

κ ​ =k ​K ​(t) ​ ​, k ≥
∂tk
∂k

0
t=0

1.

κ ​ =1 E ​(Y ), κ ​ =θ 2 var ​(Y ), κ ​ =θ 3 E ​{(Y −θ μ ​) }, κ ​ =1
3

4 E ​{(Y −θ μ ​) } −1
4 3var ​(Y ) .θ

2

1997 κ ​/κ ​3 2
3/2

κ ​/κ ​4 2
2 Y
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Example: uniform distribution 📖

Let  so that  for . The exponential tilting of  gives

The normalizing constant, that is, the moment generating function, is

with . Note that  is continuous since .

Consequently, we have  for all  and the natural parameter space is , which

is an open set. The resulting density is

where .

It  that  whenever  has bounded support; thus, the family is regular.

Y ∼ Unif(0, 1) f ​(y) =0 1 y ∈ [0, 1] f ​0

f(y; θ) ∝ e f ​(y) =θy
0 e , y ∈θy [0, 1], θ ∈ R.

M ​(θ) =0 E(e ) =θY
​ e dy =∫

0

1
θy

​ ​ ​ =
θ

eθ

0

1
​ , θ =

θ

e − 1θ

 0.

M ​(0) =0 1 M ​0 lim ​(e −θ→0
θ 1)/θ = 1

M ​(θ) <0 ∞ θ ∈ R =Θ
~ R

f(y; θ) = ​ =
eθ−1

θeθy
exp{θy − K(θ)}, y ∈ [0, 1],

K(θ) = log{(e −θ 1)/θ}

holds in general =Θ
~ R f ​0
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Example: Poisson distribution 📖

Let  so that  for . The exponential tilting of  gives

The normalizing constant, that is, the moment generating function, is

Consequently, we have  for all  and the natural parameter space is , which

is an open set. The resulting density is

so that  and having defined .

In other words, the tilted density is again a Poisson distribution with mean .

Y ∼ Poisson(1) f ​(y) =0 e /y!−1 y ∈ N f ​0

f(y; θ) ∝ e f ​(y) =θy
0 ​ , y ∈

y!
e eθy −1

N, θ ∈ R.

M ​(θ) =0 E(e ) =θY e ​ ​ =−1

k=0

∑
∞

k!
eθk

exp{e −θ 1}, θ ∈ R.

M ​(θ) <0 ∞ θ ∈ R =Θ
~ R

f(y; θ) = ​ ​ =
y!

e eθy −1

e−1

e−eθ

​ exp{θy −
y!
e−1

(e −θ 1)} = ​ , y ∈
y!
λ ey λ

N,

K(θ) = e −θ 1 λ = eθ

eθ
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Example: exponential family generated by a Gaussian 📖

Let  so that  for . The exponential tilting of  gives

The normalizing constant, that is, the moment generating function, is

Consequently, we have  for all  and the natural parameter space is , which

is an open set. The resulting density is

so that .

In other words, the tilted density is again a Gaussian distribution with mean .

Y ∼ N(0, 1) f ​(y) =0 1/( ​)e2π −y /22
y ∈ R f ​0

f(y; θ) ∝ e f ​(y) =θy
0 ​e , y, θ ∈

​2π

1 θy−y /22
R.

M ​(θ) =0 E(e ) =θY
​ ​ e dy =
​2π

1
∫

R

θy−y /22
e , θ ∈θ /22

R.

M ​(θ) <0 ∞ θ ∈ R =Θ~ R

f(y; θ) = ​e e e =
​2π

1 θy −y /22 −θ /22
​ exp{θy −

​2π

e−y /22

θ /2} =2
​e , y ∈
​2π

1 − ​ (y−θ)2
1 2

R,

K(θ) = θ /22

θ
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Closure under exponential tilting 📖

Let  be an exponential family with parameter  and natural parameter space , with density

. The exponential tilting of  gives

and the normalizing constant of  is therefore

Thus, for any  and  such that , the corresponding density is

which is again a member of the exponential family , with updated parameter .

Exponential families are closed under exponential tilting, and  can be thought of as being
generated by any of its members.

F ​ne
1 ψ Ψ

~

f(y;ψ) = f ​(y) exp{ψy −0 K(ψ)} f(y;ψ)

f(y; θ,ψ) ∝ e f(y;ψ) ∝θy f ​(y) exp{(θ +0 ψ)y},

f ​(y) exp{(θ +0 ψ)y}

​ f ​(y) exp{(θ +∫
Y

0 ψ)y} ν(dy) = M ​(θ +0 ψ).

θ ψ M ​(θ +0 ψ) < ∞

f(y; θ,ψ) = f ​(y) exp{(θ +0 ψ)y − K(θ + ψ)},

F ​ne
1 θ + ψ

F ​ne
1
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Moments and cumulants

The functions  and  of a , refer to the baseline density . Indeed, for

any fixed , the moment generating function of  is

Consequently, the cumulant generating function of  relates to  as follows:

If  is a regular family, then  is an open set, and , meaning that  is always an inner
point of . Therefore, there exists a  such that  for all  implying that both 

and  are well-defined.

If  is not regular, then for  and  to be well-defined, we require that  is not a
boundary point; that is, , meaning it belongs to the interior of .

Textbooks sometimes suppress additive constants in defining , e.g. using  instead of .

This is inconsequential (constants cancel in ) but somewhat misleading.

M ​(θ)0 K(θ) = K ​(θ)0 F ​en
1 f ​(y)0

θ f(y; θ) ∈ F ​en
1

M ​(t) :=θ ​ e f(y; θ) ν(dy) =∫
Y

ty
​ ​ e f ​(y) ν(dy) =

M ​(θ)0

1
∫

Y

(t+θ)y
0 ​ , t +

M ​(θ)0

M ​(t + θ)0
θ ∈ .Θ~

f(y; θ) K ​0

K (t) =θ logM ​(t) =θ K ​(t +0 θ) − K ​(θ), t +0 θ ∈ .Θ~

F ​en
1 Θ

~
=Θ

~
int Θ

~
θ

Θ
~

t ​0 t + θ ∈ Θ
~

∣t∣ < t ​0 M ​θ

K ​θ

F ​en
1 M ​(t)θ K ​(t)θ θ

θ ∈ int Θ
~

Θ
~

K ​(θ)0 eθ e −θ 1
K ​(t)θ
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Mean value mapping I

Moments and cumulants exist for every . In particular, the cumulants are

Let , with . The first two moments of  are obtained as:

We call  the mean value mapping.

If  is non-degenerate, then , implying that  is a convex function, and  is a

smooth and monotone increasing, namely is a one-to-one map.

Thus, if  is a regular exponential family, then  and  is a reparametrization.

θ ∈ int Θ
~

κ ​ =k ​K ​(t) ​ ​ =
∂tk
∂k

θ
t=0

​ K(t + θ) − K(θ) ​ ​ =
∂tk
∂k

[ ]
t=0

​K(θ), k ≥
∂θk
∂k

1.

Y ∼ f(y; θ) f(y; θ) ∈ F ​en
1 Y

μ(θ) := E ​(Y ) =θ ​K(θ), var (Y ) =
∂θ
∂

θ ​μ(θ) =
∂θ
∂

​K(θ),
∂θ2

∂2

μ : int →Θ~ R

f ​0 var ​(Y ) >θ 0 K(θ) μ(θ)

F ​en
1 =Θ~ int Θ~ μ(θ)
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Mean value mapping II

The mean value mapping has range . The set  is called

mean space or expectation space.

Let  be the closed convex hull of the sample space , which is the smallest closed

convex set  containing , namely:

Hence, if , then . If , then . If , then .

Because of the properties of expectations,  for all , namely

Indeed,  is an open interval whose extremes are the infimum and supremum of .

Both definitions naturally generalize to the multivariate case when , for .

M = Range(μ) = {μ(θ) : θ ∈ int }Θ
~

M ⊆ R

C = C(Y) Y

C ⊆ R Y

C(Y) = {y ∈ R : y = λy ​ +1 (1 − λ)y ​, 0 ≤2 λ ≤ 1, y ​, y ​ ∈1 2 Y}.

Y = {0, 1, … ,N} C = [0,N ] Y = N C = R+ Y = R C = R

μ(θ) ∈ int C(Y) θ ∈ int Θ
~

M ⊆ int C(Y).

int C(Y) Y

C,Y ⊆ Rp p > 1
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Mean value mapping III 📖

In a regular exponential family, the mean value mapping  is a reparametrization, meaning that

for each , there exists a unique mean  such that .

Moreover, in regular families, a much stronger result holds: for each value of , there

exists a unique  such that .

If  is regular, then  and 

This establishes a duality between the expectation space  and the sample space. Any value in
 can be “reached”, that is, there exists a distribution  with that mean.

This correspondence is crucial in maximum likelihood estimation and inference.

This theorem can actually be strengthened: a necessary and sufficient condition for  is that

the family  is steep (a regular family is also steep); see Pace and Salvan ( ).

μ(θ)
θ ∈ Θ~ μ ∈ M μ = μ(θ)

y ∈ int C(Y)
θ ∈ Θ~ μ(θ) = y

Theorem (Pace and Salvan ( ), Theorem 5.1)1997

F ​en
1 Θ = int =Θ~ Θ~ M = int C.

M

int C f(y; θ)

M = int C
F ​en

1 1997
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A non regular and non steep exponential family

Let us a consider an exponential family  generated by the density

for some normalizing constant . The exponential tilting of  gives

The function  is unavailable in closed form, however  since

Since  is a closed set, the exponential family is not regular (and is not steep either). In fact, one
can show that , implying that

In other words, there are no values of  such that  for any , which implies, for

instance, that the method of moments will encounter difficulties in estimating .

F ​en
1

f ​(y) =0 c ​ , y ∈
1 + y4

e−∣y∣

R.

c > 0 f0

f(y; θ) ∝ e f ​(y) ∝θy
0 ​ , y ∈

1 + y4

e−∣y∣+θy

R, θ ∈ .Θ
~

M ​(θ)0 =Θ~ [−1, 1]

M ​(θ) <0 ∞, θ ∈ [−1, 1].

Θ~

lim ​ μ(θ) =θ→1 a < ∞

M = (−a, a),  whereas  int C = R.

θ μ(θ) = y y > a

θ
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Variance function I 📖

Let , with  and let  be the inverse map of . The variance of 

can be expressed as a function of :

The function  is called the variance function of the exponential family .

The importance of the variance function  is related to the following characterization result due

to Morris ( ).

If  has a density that belongs to a , then the pair  uniquely determine the natural

parameter space  and the cumulant generating function , and hence also .

Y ∼ f(y; θ) f(y; θ) ∈ F ​en
1 θ(μ) μ(θ) Y

μ

V (μ) := var ​(Y ) =θ(μ) ​K(θ) ​ ​.
∂θ2

∂2

θ=θ(μ)

V : M → R+ F ​en
1

V (μ)
1982

Theorem (Pace and Salvan ( ), Theorem 5.2)1997

Y F ​en
1 (M,V (μ))

Θ~ K(θ) f(y; θ)
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Variance function II 📖

The characterization theorem of Morris ( ) is constructive in nature, as its proof provides a
practical way of determining  from . In particular, the function  must satisfy

where  is an arbitrary point in .

For example, let  and . Then, choosing  gives

and therefore , giving  and . Hence we obtain 

, which corresponds to the exponential density , for .

In order to identify  both  and  must be known.

1982
K(θ) (M,V (μ)) K(⋅)

K ​ ​ dm =(∫
μ0

μ

V (m)
1

) ​ ​ dm,∫
μ ​0

μ

V (m)
m

μ ​0 M

M = (0, ∞) V (μ) = μ2 μ ​ =0 1

K 1 − ​
=(

μ

1
) logμ,

θ(μ) = 1 − 1/μ =Θ
~

(−∞, 1) μ(θ) = (1 − θ)−1 K(θ) =
− log(1 − θ) f ​(y) =0 e−y y > 0

F ​en
1 M V (μ)
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Well-known exponential families

Notation

Natural param.

Mean param.

N(ψ, 1) Poisson(ψ) Bin(N ,ψ) Gamma(ν,ψ), ν > 0

Y R N {0, 1, … ,N} (0, ∞)

θ(ψ) ψ logψ log{ψ/(1 − ψ)} −ψ

f ​(y)0 ( ​) e2π −1 − ​y2
1 2

e /y!−1
​(

y
N) ( 2

1 )
N

y e /Γ(ν)ν−1 −y

K(θ) θ /22 e −θ 1 N log(1 + e ) −θ N log 2 −ν log(1 − θ)

Θ
~ R R R (−∞, 0)

μ(θ) θ eθ Ne /(1 +θ e )θ −ν/θ

M R (0, ∞) (0,N) (0, ∞)

V (μ) 1 μ μ(1 − μ/N) μ /ν2
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Quadratic variance functions

There is more in Morris ( )’s paper. Specifically, he focused on a subclass of quadratic variance
functions, which can be written as

for some known constants , , and .

Morris ( ) showed that, up to transformations such as convolution, there exist only six families
within  that possess a quadratic variance function. These are: (i) the normal, (ii) the Poisson,
(iii) the gamma, (iv) the binomial, (v) the negative binomial, and (vi) a sixth family.

The sixth (less known) distribution is called the generalized hyperbolic secant, and it has density

with mean function  and variance function , and . It is

also a regular exponential family.

1982

V (μ) = a + bμ + cμ ,2

a b c

1982
F ​en

1

f(y; θ) = ​ , y ∈
2 cosh(πy/2)

exp θy − log cos θ{ }
R, θ ∈ (−π/2,π/2),

μ(θ) = tan θ V (μ) = csc (θ) =2 1 + μ2 M = R
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A general definition of exponential families I

Let , , be real-valued functions not depending on  and let  be real-valued

functions not depending on . The parametric family

is called a exponential family of order one, where the normalizing constant is

The family is full if the parameter space  is the widest possible .

Suppose . Then, the function  must be a one-to-one mapping, that is, a

reparametrization, otherwise, the model would not be identifiable. Hence, we can write:

for some function  such that .

h(y) > 0 s(y) ψ θ(ψ),G(ψ)
y

F ​ =e
1 f(y;ψ) = h(y) exp{θ(ψ)s(y) − G(ψ)}, y ∈ Y ⊆ R, ψ ∈ Ψ ,{ }

expG(ψ) = ​ h(y) exp{θ(ψ)s(y)}ν(dy).∫
Y

Ψ =Ψ
~

{ψ ⊆ R : G(ψ) < ∞}

f(y;ψ) ∈ F ​e
1 θ(ψ)

f(y;ψ) = h(y) exp{θ(ψ)s(y) − (θ(ψ))},G
~

(⋅)G
~

G(ψ) = (θ(ψ))G
~
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A general definition of exponential families II

When  is an arbitrary function of , then  is broader than .

Without loss of generality, we can focus on the natural parametrization  and a density baseline

, meaning that  can be written as

because the general case would be a reparametrization of this one.

Let , with . Then, the random variable  has density

for some baseline density , namely . If in addition  is a one-to-one invertible

mapping, this means  is just a transformation of an .

A full exponential family  is, technically, a broader definition, but in practice it leads to a
reparametrization of a natural exponential family  in a transformed space .

s(y) y F ​e
1 F ​en

1

θ ∈ Θ
h(y) = f ​(y)0 f(y; θ) ∈ F ​e

1

f(y; θ) = f ​(y) exp{θs(y) −0 K(θ)},

Y ∼ f(y; θ) f(y; θ) ∈ F ​e
1 S = s(Y )

f ​(s;ψ) =S ​ ​(s) exp{θs −f
~
0 K(θ)},

​ ​(s)f
~
0 f ​(s;ψ) ∈S Fen

1 s(y)
Y = s (S)−1 F ​en

1

F ​e
1

F ​en
1 s(Y )
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Multiparameter exponential families
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Natural exponential families of order 

Let  be a non-degenerate random variable with support  and density  with respect

to a dominating measure .

Let us define the mapping 

The parametric family generated via exponential tilting of a density 

is called a natural exponential family of order one,  and 

 is the natural parameter space.

The family  is said to be full, whereas a subfamily of  with  is non-full. Moreover, the
family  is said to be regular if  is an open set.

p

Y Y ⊆ Rp f ​(y)0

ν(dy)

M ​ :0 R →p (0, ∞]

M ​(θ) :=0 ​ e f ​(y)ν(dy), θ ∈∫
Y

θ yT

0 R .p

f ​0

F ​ =ne
p f(y; θ) = ​ = f ​(y) exp{θ y − K(θ)}, y ∈ Y ⊆ R , θ ∈ ,{

M ​(θ)0

e f ​(y)θ yT
0

0
T p Θ~ }

K(θ) = logM ​(θ)0 =Θ
~

{θ ∈ R :p K(θ) <
∞}

F ​ne
p F ​ne

p Θ ⊆ Θ
~

F ​ne
p Θ~
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Example: multinomial distribution I 📖

Let  be a multinomial random vector with

uniform probabilities, so that its density  is

where , having set .

The exponential tilting of  yields

As a consequence of the multinomial theorem, the normalizing constant, that is, the moment
generating function, is

Thus  for all  and the natural parameter space is the open set .

Y = (Y ​, … ,Y ​) ∼1 p−1 Multinom(N ; 1/p, … , 1/p)
f ​0

f ​(y) =0 ​ ​ , y =
y ​! ⋯ y ​!1 p

N !
(
p

1
)
N

(y ​, … , y ​) ∈1 p−1 Y ⊆ R ,p−1

Y = {(y ​, … , y ​) ∈1 p−1 {0, … ,N} :p−1
​ y ​ ≤∑

j=1
p−1

j N} y ​ :=p N − ​ y ​∑
j=1
p−1

j

f ​0

f(y; θ) ∝ f ​(y)e =0
θ yT

​ ​ e , y ∈
y ​! ⋯ y ​!1 p

N !
(
p

1
)
N

θ ​y ​+⋯+θ ​y ​1 1 p−1 p−1 Y, θ ∈ R .p−1

M ​(θ) =0 E e =( θ YT ) ​ (1 +(
p

1
)
N

e +θ ​1 ⋯ + e ) .θ ​p−1 N

M ​(θ) <0 ∞ θ ∈ Rp−1 =Θ
~ Rp−1
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Example: multinomial distribution II 📖

The resulting tilted density is

where .

In other words, the tilted density is again a multinomial distribution with parameters  and

probabilities . In fact, we can write:

where we defined , so that , recalling that .

The tilted density belongs to a regular natural exponential family  of order .

f(y; θ) = f ​(y)e =0
θ y−K(θ)T

​ ​ ,
y ​! ⋯ y ​!1 p

N !
(1 + e + ⋯ + e )θ ​1 θ ​p−1 N

eθ ​y ​+⋯+θ ​y ​1 1 p−1 p−1

K(θ) = logM ​(θ) =0 N log(1 + e +θ ​1 ⋯ + e ) −θ ​p−1 N log p

N

π ​ =j e /(1 +θ ​j e +θ ​1 ⋯ + e )θ ​p−1

​ ​

f(y; θ) = ​ = ​ ​ ​

y ​! ⋯ y ​!1 p

N !
( ​ e ) ⋯ ( ​ e )∑

j=1
p θ ​j y ​1 ∑

j=1
p θ ​j y ​p

e ⋯ eθ ​y ​1 1 θ ​y ​p p

y ​! ⋯ y ​!1 p

N !

j=1

∏
p

(
​ e∑

k=1
p θ ​k

eθ ​j

)
y ​j

= ​π ​.
y ​! ⋯ y ​!1 p

N !

j=1

∏
p

j

y ​j

θ ​ :=p 0 ​ e =∑j=1
p θ ​j 1 + e +θ ​1 ⋯ + eθ ​p−1

​ y ​ =∑j=1
p

j N

F ​en
p−1 p − 1
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Example: independent exponential families 📖

Let  be a random vector of independent random variables, each belonging to a full

natural exponential family  of order 1, with density

Let . Because of independence, the joint distribution of  is

where , , and the natural parameter space is

Thus,  is an , in which  is a separable function.

Y = (Y ​, … ,Y ​)1 p

F ​en
1

f(y ​; θ ​) =j j f ​(y ​) exp{θ ​y ​ −j j j j K ​(θ ​)}, θ ​ ∈j j j ​.Θ
~
j

θ = (θ ​, … , θ ​)1 p Y

​ ​

f(y; θ) = ​f(y ​; θ ​) = ​f ​(y ​) exp{θ ​y ​ − K ​(θ ​)}
j=1

∏
p

j j

j=1

∏
p

j j j j j j

= ​f ​(y ​) exp ​θ ​y ​ − ​K ​(θ ​)[
j=1

∏
p

j j ] {
j=1

∑
p

j j

j=1

∑
p

j j }

= f ​(y) exp{θ y − K(θ)},0
T

f ​(y) =0 ​ f ​(y ​)∏j=1
p

j j K(θ) = ​ K ​(θ ​)∑j=1
p

j j

=Θ~ ​ ×Θ~ 1 ⋯ × ​.Θ~ p

f(y; θ) F ​en
p K(θ)
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Mean value mapping and other properties

Let , with . The cumulant generating function is

In particular, the first two moments of  are obtained as:

If  is non-degenerate, then the covariance matrix  is positive definite, implying that

 is a convex function, and  is a smooth one-to-one map.

The definitions of mean value mapping , its range , the convex hull  of the sample

space, and the variance function  also naturally extend to the multi-parameter setting.

Refer to Jorgensen ( ) for an extension of the results of Morris ( ) about .

If  is regular, then 

Y ∼ f(y; θ) f(y; θ) ∈ F ​en
p

K ​(t) =θ logM (t) =θ K ​(t +0 θ) − K ​(θ), t +0 θ ∈ .Θ~

Y

μ(θ) := E ​(Y ) =θ ​K(θ), var ​(Y ) =
∂θ
∂

θ μ(θ) =
∂θ⊤

∂
​K(θ),

∂θ∂θ⊤

∂2

f ​0 var ​(Y )θ

K(θ) μ(θ)

μ(θ) M C(Y)
V (μ)

1987 1982 V (μ)

Theorem (Pace and Salvan ( ), Theorem 5.3)1997

F ​en
p M = int C.
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Independence of the components

If the natural observations of an  are independent for some , then this is also true for

every .

This theorem essentially establishes that if the baseline density  has independent components,

then the exponential tilting preserves independence.

If, for every , the natural observations of a regular  are uncorrelated, then they are also

independent.

This generalizes a well-known fact about multivariate Gaussians, which are in fact an .

In practice, if the Hessian matrix of  is diagonal, then the natural observations are

independent. This occurs whenever  is separable.

Theorem (Pace and Salvan ( ), Theorem 5.4)1997

F ​en
p θ ​ ∈0 Θ

~

θ ∈ Θ
~

f ​(⋅)0

Theorem (Pace and Salvan ( ), Theorem 5.5)1997

θ ∈ Θ
~

F ​en
p

F ​en
p

K(θ)
K(θ)
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Marginal and conditional distributions

Consider a  family, so that .

Let  be a partition of the natural observations , where  has  components and  has 

 components. Let us partition  accordingly, so that  and

i. The family of marginal distributions of  is an  for every fixed value of  and

ii. The family of conditional distributions of  given  is an  and the conditional densities

do not depend on , that is

F ​en
p f(y; θ) = f ​(y) exp{θ y −0

T K(θ)}

y = (t,u) y t k u p −
k θ θ = (τ , ζ)

f(y; τ , ζ) = f ​(y) exp{τ t +0
T ζ u −T K(τ , ζ)}, (τ , ζ) ∈ .Θ~

Theorem (Pace and Salvan ( ), Theorem 5.6)1997

U F ​en
p−k τ

f ​(u; τ , ζ) =U h ​(u) exp{ζ u −τ
T K ​(ζ)}.τ

T U = u F ​en
k

ζ

f ​(t;u, τ) =T ∣U=u h ​(t) exp{τ t −u
T K ​(τ)}, expK ​(τ) =u u E ​ e ∣ U = u .0 ( τ TT )
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Conditional likelihoods

The former result on marginal and conditional laws is not just an elegant probabilistic fact. Indeed, it
has meaningful inferential applications.

Often, we can split the parameter vector  into a parameter of interest  and a nuisance
parameter . We are not interested in learning .

The main idea relies on noticing that  does not involve 

and therefore we could define a conditional likelihood based on .

A practical drawback of this approach is that the conditional cumulant generating function  is

not always available in closed form, albeit with notable exceptions.

The approach is valid, in the sense that a likelihood based on  is a genuine likelihood. On the

other hand, note that the full likelihood would be based on

and thus the conditional likelihood is discarding information, that is, it neglects .

θ τ

ζ ζ

f ​(t;u, τ) =T ∣U=u h ​(t) exp{τ t −u
T K ​(τ)}u ζ

f ​T ∣U=u

K ​(τ)u

f ​T ∣U=u

f(y; τ , ζ) = f ​(u; τ , ζ) f ​(t;u, τ),U T ∣U=u

f ​(u; τ , ζ)U
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A general definition of exponential families I

Let  and  be real-valued functions not depending on the parameter , and

let ,  be real-valued functions not depending on . The family

is called an exponential family of order , where the normalizing constant is

The notation  is understood to indicate a minimal representation, i.e., such that there is no
linear dependence between  or, equivalently, between .

If , then  is not identifiable and this possibility should be discarded.

If , then  must be a one-to-one mapping, i.e., a reparametrization, otherwise the model is

again not identifiable.

If , we have a -curved exponential family, which corresponds to a restriction of the

natural parameter space.

s ​(y), … , s ​(y)1 p h(y) > 0 ψ

θ ​(ψ), … , θ ​(ψ)1 p G(ψ) y

F ​ =e
p f(y;ψ) = h(y) exp{θ(ψ) s(y) − G(ψ)}, y ∈ Y ⊆ R , ψ ∈ Ψ ⊆ R ,{ T p q}

p

expG(ψ) = ​ h(y) exp{θ(ψ) s(y)}ν(dy).∫
Y

T

F ​e
p

1, s ​(y), … , s ​(y)1 p 1, θ ​(ψ), … , θ ​(ψ)1 p

q > p ψ

q = p θ(ψ)

q < p (p, q)
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Curved exponential families

Figure 4.1 of Efron ( ), Chapter 4. Three levels of statistical modeling, now with a fourth level
added representing curved exponential families.

2023
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A general definition of exponential families II

We refer to Efron ( ), Chapter 4, for a detailed discussion on curved exponential families. From
now on, we will focus on the  case.

Without loss of generality, we can focus on the natural parametrization  and baseline

density , meaning that  can be written as

because the general case would be a reparametrization of this one.

Let , with . Then, the random vector  has

density

for some baseline density , namely . If in addition  is a one-to-one invertible

mapping, this means  is just a transformation of an .

As in the single parameter case, a full exponential family  with  in practice leads to a

reparametrization of a natural exponential family  in a transformed space .

2023
p = q

θ ∈ Θ ⊆ Rp

h(y) = f ​(y)0 f(y; θ) ∈ F ​e
p

f(y; θ) = f ​(y) exp{θ s(y) −0
T K(θ)},

Y ∼ f(y; θ) f(y; θ) ∈ F ​e
p S = s(Y ) = (s ​(Y ), … , s ​(Y ))1 p

f ​(s; θ) =S ​ ​(s) exp{θ s −f
~
0

T K(θ)},

​ ​(s)f
~
0 f ​(s; θ) ∈S F ​en

p s(y)
Y = s (S)−1 F ​en

p

F ​e
p p = q

F ​en
p s(Y )
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Example: gamma distribution 📖

The family  with  is an . In fact, its density is

where , the sufficient statistic , whereas the natural

parameters and the cumulant generating function are

having set .

As previously shown, this implies that the family

is a regular natural exponential family of order 2, with some function .

Gamma(ν,λ) ν,λ > 0 F ​e
2

​ ​

f(y; ν,λ) = ​y e = ​ exp{ν log y − λy − log Γ(ν) + ν log λ}
Γ(ν)
λν ν−1 −λy

y

1

= h(y) exp{θ(ψ) s(y) − G(ψ)}.T

h(y) = y−1 s(y) = (s ​(y), s ​(y)) =1 2 (log y, y)

θ(ψ) = (θ ​(ψ), θ ​(ψ)) =1 2 (ν, −λ), G(ψ) = log Γ(ν) − ν log λ,

ψ = (ν,λ)

f(s; θ) = (s) exp{θ s −h
~ T log Γ(θ ​) +1 θ ​ log(−θ ​)}, θ ∈1 2 ,Θ~

(s)h
~
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Example: von Mises distribution I

Let  be a random variable describing an angle, so that , and let us consider the

uniform density on the circle, namely

We define a tilted density  by considering , i.e., the cartesian
coordinates of . This choice of  ensures the appealing property .

More precisely, let  and define the parametric family of densities

where . The normalizing constant has a “closed form”

where  is known as the modified Bessel function of the first kind and order .

It is easy to check that  for all values of ; therefore, . This completes the

definition of what is known as the von Mises distribution.

Y Y = (0, 2π)

f ​(y) =0 ​ , y ∈
2π
1

(0, 2π).

f(y; θ) ∈ F ​e
2 s(y) = (cos y, sin y)

y s(y) f(y; θ) = f(y + 2kπ; θ)

θ = (θ ​, θ ​)1 2

f(y; θ) = f ​(y) exp{θ s(y) −0
T K(θ)}, θ ∈ ,Θ

~

h(y) = 1/2π

expK(θ) = ​ ​ exp{θ ​ cos(y) +
2π
1

∫
0

2π

1 θ ​ sin(y)}dy =2 A ​(∣∣θ∣∣ ​),0 2

A ​(⋅)ν ν

K(θ) < ∞ θ ∈ R2 =Θ
~ R2
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Example: von Mises distribution II

Instead of the natural parametrization, it is often convenient to consider a reparametrization 

, defined through the one-to-one mapping

Using this parametrization, thanks to well-known trigonometric relationships, we obtain the more
familiar formulation of the von Mises distribution, which is

so that  can be interpreted as the location and  as the precision.

We also note that the distribution of  is a regular natural exponential family of order 2, with

density

clarifying that  is a random vector taking values on a circle with unit radius.

ψ =
(τ , γ)

θ(ψ) = (τ cos γ, τ sin γ), ψ ∈ =Ψ
~

(0, ∞) × (0, 2π).

f(y;ψ) = h(y) exp{θ(ψ)s(y) − G(ψ)} = ​e , y ∈
2πA ​(τ)0

1 τ cos(y−γ) (0, 2π),

γ ∈ (0, 2π) τ > 0

s(Y )

f ​(s; θ) =S ​ exp{θ s −
2π
1 T log A ​(∣∣θ∣∣ ​)}, s ∈0 2 S = {(s ​, s ​) ∈1 2 R :2 s ​ +1

2 s ​ =2
2 1},

S = s(Y )
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Example: wind direction in Venice I

The von Mises distribution is sometimes regarded as the “Gaussian distribution for circular data”. To
provide a concrete example, let us consider the wind directions measured from the 

, in Venice.

Measurements are recorded every 5 minutes, from 14-04-2025 to 18-04-2025, for a total of 

. The variable wind_dir is recorded in degrees, i.e., between 0 and 360.

The dataset is available . The original source is the .

San Giorgio
meteorological station

n =
1153

# A tibble: 10 × 3
   date                wind_dir `Wind speed`

   <dttm>                 <dbl>        <dbl>
 1 2025-04-14 00:00:00      148          4.6
 2 2025-04-14 00:05:00      148          4.4

 3 2025-04-14 00:10:00      152          4.1
 4 2025-04-14 00:15:00      150          4.1

 5 2025-04-14 00:20:00      150          4  
 6 2025-04-14 00:25:00      148          3.8
 7 2025-04-14 00:30:00      151          3.3

 8 2025-04-14 00:35:00      145          3  
 9 2025-04-14 00:40:00      148          3.5

10 2025-04-14 00:45:00      150          2.9

here webpage of Venice municipality
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Example: wind direction in Venice II

This is a somewhat misleading graphical representation of wind directions evolving over time.
Indeed, the “spikes” are not real: the angles 1 and 359 are, in fact, very close.
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Example: wind direction in Venice III

A better graphical representation of wind directions and wind speed, using Cartesian coordinates.
From this wind rose, it is clear the winds were coming mostly from the east.
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Inference
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Independent sampling, sufficiency and completeness

Let  be iid random vectors with density , where  and, without loss of

generality, we let . The likelihood function is

from which we see that  is the minimal sufficient
statistic as long as , which has fixed dimension  whatever the sample size.

Inference can therefore be based on the random vector , whose distribution is

with  and for some density . In other words, .

A sufficient statistic  with distribution  is complete, provided that .

Y ​, … ,Y ​1 n f(y; θ) f(y; θ) ∈ Fe
p

f(y; θ) = f ​(y) exp{θ s(y) −0
T K(θ)}

L(θ;y) = ​ exp θ s(y ​) − K(θ) =
i=1

∏
n

{ T
i } exp θ ​s(y ​) − nK(θ) ,{ T

i=1

∑
n

i }

s = ​ s(y ​) =∑i=1
n

i ​ s ​(y ​), … , ​ s ​(y ​)(∑i=1
n

1 i ∑i=1
n

p i )
n ≥ p p

S = ​ s(Y ​)∑
i=1
n

i

f ​(s; θ) =S ​ ​(s) exp{θ s −f
~
0

T (θ)},K
~

(θ) =K
~

nK(θ) ​ ​(s)f
~
0 f ​(s; θ) ∈S F ​en

p

Theorem (Pace and Salvan ( ), Theorem 5.7)1997

S F ​en
p int =Θ

~
 ∅
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Sufficiency and completeness

Thus, the log-likelihood function, after a reduction via sufficiency, is

with  being distributed as a  with cumulant generating function , whereas

each  is distributed as a  with cumulant generating function .

The completeness of  in exponential families is a classical result that enables the usage of the Rao-

Blackwell-Lehmann-Scheffé theorem for finding the UMVUE.

Moreover, the existence of a minimal sufficient statistic that performs a non-trivial dimensionality
reduction, from  to  and with , is a major simplification.

This only occurs in exponential families, except for non-regular cases.

Under iid sampling, if a parametric family whose support does not depend on the parameter is
such that there exists a sufficient statistic of constant dimension , then the family is .

ℓ(θ) = ℓ(θ; s) = θ s −T nK(θ), θ ∈ ,Θ~

S = ​ s(Y ​)∑i=1
n

i F ​en
p nK(θ)

s(Y ​)i F ​en
p K(θ)

S

n p p ≤ n

Theorem (Koopman-Pitman-Darmois, Robert ( ), Theorem 3.3.3)1994

p F ​e
p
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Likelihood quantities

After a sufficiency reduction, we get . Thus, the score function is

where  is the mean value mapping of each  and .

By direct calculation, we show that the first Bartlett identity holds, namely

The Fisher information is straightforward to compute, being equal to

Moreover, the observed information is

which proves the second Bartlett identity as an implication of the remarkable identity 

, stronger than the usual . In fact,  is non-stochastic.

ℓ(θ) = θ s −T nK(θ)

ℓ (θ) =∗ s − n ​K(θ) =
∂θ
∂

s − nμ(θ),

μ(θ) = E ​(s(Y ​))θ 1 s(Y ​)i nμ(θ) = E(S)

E ​(ℓ (θ;S)) =θ
∗ E ​(S) −θ nμ(θ) = nμ(θ) − nμ(θ) = 0.

I(θ) = E ​(ℓ (θ)ℓ (θ) ) =θ
∗ ∗ T E ​{(S −θ nμ(θ))(S − nμ(θ)) } =T var (S) =θ n var ​(s(Y ​)).θ 1

I(θ) = −
​
ℓ(θ) =

∂θ∂θT
∂2

(θ) =
∂θ∂θT

∂2

K
~

n
​K(θ) =

∂θ∂θT
∂2

n var ​(s(Y ​)),θ 1

I(θ) = I(θ)
I(θ) = E ​(I(θ))θ I(θ)
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Existence of the maximum likelihood

The maximum likelihood estimate , if it exists, is the unique solution of the score equation

It is unique because  is concave in , namely its second derivative is

If  is regular, then the maximum likelihood estimate  exists and is the unique solution of
 if and only if , where  is the closed convex hull of the support of .

As a corollary, if  is regular, the MLE exists and is unique with probability one if and only if the
boundary of  has probability . This is often violated when  is discrete.

θ̂

s − nμ(θ) = 0, so that =θ̂ μ ​ =−1 (
n

s
) μ ​ ​s(y ​) .−1 (

n

1

i=1

∑
n

i )

ℓ(θ) θ

​ ℓ(θ) =
∂θ∂θT

∂2

−var ​(S) <θ 0, θ ∈ .Θ
~

Theorem (Pace and Salvan ( ), Theorem 5.8)1997

F ​en
p θ̂

ℓ (θ) =∗ 0 s ∈ int C(S) C(S) S

F ​en
p

C = C(S) 0 S
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Likelihood quantities: mean parametrization 📖

Let us consider the mean parametrization , whose inverse is . The

log-likelihood is:

Hence, using the chain rule of differentiation, we obtain the score

where the last step follows from the properties of the derivatives of inverse functions.

Thus, the observed information matrix for the mean parametrization is

whereas the Fisher information matrix for  is

μ = μ(θ) = E ​(s(Y ​))θ 1 θ = θ(μ)

ℓ(μ) = ℓ(θ(μ)) = θ(μ) s −T nK(θ(μ)), μ ∈ M.

ℓ (μ) =∗
​θ(μ) (s −(

∂μ
∂

) nμ) = var ​(s(Y ​)) (s −μ 1
−1 nμ),

I ​(μ) =μ − ​ ℓ(μ) =
∂μ∂μT

∂2

− ​θ(μ) (s −(
∂μ∂μT

∂2
) nμ) + n var ​(s(Y ​)) ,μ 1

−1

μ

I ​(μ) =μ E ​(I ​(μ)) =μ μ n var ​(s(Y ​)) =μ 1
−1 nV (μ) .−1
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Maximum likelihood: mean parametrization

Thus, the maximum likelihood estimate of the mean parametrization  is

This means  is both the maximum likelihood and the method of moments estimate of .

It is also an unbiased estimator, because by definition

Furthermore  is the UMVUE of . Indeed, we could first notice that  is a function of , which is

a complete sufficient statistic Alternatively, we could note that the variance of  is

which corresponds to the Cramer-Rao lower bound.

​ =μ̂ μ( )θ̂

​ =μ̂ ​ =
n

s
​ ​s(y ​).

n

1

i=1

∑
n

i

​μ̂ μ

E( ​) =μ̂ ​ ​ E ​(s(Y ​)) =
n

1

i=1

∑
n

μ i E ​(s(Y ​)) =θ 1 μ.

​μ̂ μ ​μ̂ S

​μ̂

var ​( ​) =μ μ̂ ​ var ​(s(Y ​)) =
n

1
μ 1 ​V (μ) =

n

1
I ​(μ) ,μ

−1
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Example: binomial distribution 📖

Let  be iid Bernoulli random variables with mean , that is . Then,

the log-likelihood function is

with  being the minimal sufficient statistic and the natural parametrization is

. Note that .

The variance function is , so that the score function becomes

leading to the well-known UMVUE maximum likelihood estimator .

Finally, the observed information and the Fisher information equal, respectively

Y ​, … ,Y ​1 n μ ∈ (0, 1) pr(Y =i 1) = μ

ℓ(μ) = ​[y ​ logμ +
i=1

∑
n

i (1 − y ​) log (1 − μ)] =i s logμ + (n − s) log (1 − μ),

S = ​ Y ​∑i=1
n

i

θ(μ) = logμ/(1 − μ) S ∼ Binom(n,μ)

V (μ) = var ​(Y ​) =μ i μ(1 − μ)

ℓ (μ) =∗
​ −

μ

s
​ =

1 − μ

n − s
​ (s −

V (μ)
1

nμ),

​ =μ̂ s/n

I ​(μ) =μ ​ −
μ2

s
​ , I ​(μ) =

(1 − μ)2

n − s
μ E ​(I ​(μ)) =μ μ =

μ(1 − μ)
n

​ .
V (μ)
n
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Example: von Mises distribution III 📖

Let  be iid random variables from a Von-Mises distribution with density 

, with , therefore the log-likelihood is

The Jacobian of the log-likelihood is

Thus, the maximum likelihood estimate  is the solution of the following equations

The estimate for  can be obtained numerically e.g. using the circular::A1inv function.

Y ​, … ,Y ​1 n f(y;ψ) =
(2πA ​(τ)) exp{τ cos(y −0

−1 γ)} y ∈ (0, 2π)

ℓ(ψ) = τ ​ cos(y ​ −
i=1

∑
n

i γ) − n log A ​(τ).0

​ ℓ(ψ) =
∂γ
∂

τ ​ sin(y ​ −
i=1

∑
n

i γ), ​ ℓ(ψ) =
∂τ
∂

​ cos (y ​ − γ) −
i=1

∑
n

i n ​ .
A ​(τ)0

A ​(τ)1

( ​, )γ̂ τ̂

tan( ​) =γ̂ ​ , ​ ​ cos (y ​ − ​) =
​ cos y ​∑i=1

n
i

​ sin y ​∑i=1
n

i

n

1

i=1

∑
n

i γ̂ ​ .
A ​( )0 τ̂

A ​( )1 τ̂

τ
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Example: wind direction in Venice IV

The estimated values are  (corresponding to about 79 degrees) and .​ =γ̂ 1.375 =τ̂ 2.51
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Example: wind direction in Venice V
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Asymptotic theory: remarks

Let us consider an iid sample from a model such that the minimal sufficient statistic belongs to a
regular exponential family , with natural parameter .

It is straightforward to verify that the regularity conditions A1–A6 from  are all satisfied.
Thus, Theorem 5.1 of Lehmann and Casella ( ) applies directly.

We also proved that, if the score function has a root, then the maximum likelihood estimate  exists
and is the unique solution of , where .

The maximum likelihood estimate may fail to exist if  lies on the boundary of . However, as

, the probability that  lies on the boundary of  tends to zero.

Indeed, by the law of large numbers,  converges almost surely to , implying

that a unique root of the score function eventually exists with probability one.

If the observations are iid from a regular exponential family, the maximum likelihood estimator  is
consistent and asymptotically normal for . By the continuous mapping theorem, this implies that

, or any other smooth reparametrization, is a consistent estimator of .

F ​en
p θ ∈ Θ

~

Unit A
1998

θ̂

ℓ (θ) =∗ 0 ℓ (θ) =∗ s − nμ(θ)

s C(S)
n → ∞ s C(S)

S/n μ(θ) ∈ M = int C(S)

θ̂

θ

​ =μ̂ μ( )θ̂ μ
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Wald inequality: a direct proof 📖

Let us recall that Wald inequality states that

and the proof relies on the Kullback-Leibler divergence.

Let us focus on the univariate case . It is instructive to provide a direct proof for exponential
families, recalling that .

In the first place, note that

implying that Wald inequality holds true if and only if

This is indeed the case, the above being a  of convexity for , which we

previously show having  for all . Moreover, recall that .

E ​ ℓ(θ;Y ) <θ ​0 ( ) E ​ ℓ(θ ​;Y ) , θ =θ ​0 ( 0 )  θ ​,0

Θ ⊆ R
ℓ(θ ​Y ) =0 θS − nK(θ)

E ​(ℓ(θ;Y )) =θ ​0 n θμ(θ ​) − K(θ) ,[ 0 ]

μ(θ ​) θ ​ − θ >0 ( 0 ) K(θ ​) −0 K(θ), θ = θ .0

characterization K(⋅)
∂ /∂θ K(θ) >2 2 0 θ ∈ Θ

~
μ(θ) = ∂/∂θK(θ)
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References and study material
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Main references

Pace and Salvan ( )

Chapter 5 (Exponential families)

Chapter 6 (Exponential dispersion families)

Davison ( )

Chapter 5 (Models)

Efron and Hastie ( )

Chapter 5 (Parametric models and exponential families)

Efron ( )

Chapter 1 (One-parameter exponential families)

Chapter 2 (Multiparameter exponential families)

1997

2003

2016

2023
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Morris ( )

Morris ( , AoS) is a seminal paper in the field of
exponential families.

It is a must-read, as it encompasses and overviews many of
the results discussed in this unit.

It also shows that exponential families with quadratic
variance are infinitely divisible, provided that .

The paper covers several advanced topics, including:

orthogonal polynomials;

limiting results;

large deviations;

…and more.

1982

1982

c ≥ 0
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Jorgensen ( )

Jorgensen ( , JRSSB) is another seminal paper in the
field of exponential dispersion families.

It studies a multivariate extension of exponential dispersion
models of Nelder and Wedderburn ( ).

It characterizes the entire class in terms of variance
function, extending Morris ( ).

It also describes a notion of asymptotic normality called
small sample asymptotics.

It is a read paper and among the discussants we find, J.A.
Nelder, A.C. Davison, C.N. Morris.

1987

1987

1972

1982
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Diaconis and Ylvisaker ( )

Bayesian statistics also greatly benefits from the use of
exponential families.

Diaconis and Ylvisaker ( , AoS) is a seminal paper on
the topic of conjugate priors.

Broadly speaking, conjugate priors always exist for
exponential families.

These are known as the Diaconis–Ylvisaker conjugate priors.

Classical priors such as beta–Bernoulli and Poisson–gamma
are special cases.

The posterior expectation under the mean parametrization
is a linear combination of the data and the prior mean.

1979

1979
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Consonni and Veronese ( )

Consonni and Veronese ( , JASA) is another Bayesian
contribution which refines the results of Diaconis and
Ylvisaker ( ).

It investigates when a conjugate prior specified on the
mean parameter  of a natural exponential family leads to

a linear posterior expectation of .

The main result shows that this posterior linearity holds if
and only if the variance function is quadratic.

The paper also explores the monotonicity of the posterior
variance of  with respect to both the sample size and the

prior sample size.

1992

1992

1979

μ

μ

μ
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