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Sample Quantiles in Statistical Packages

Rob J. HyNnDMAN and Yanan FAN

There are a large number of different definitions used for
sample quantiles in statistical computer packages. Often
within the same package one definition will be used to
compute a quantile explicitly, while other definitions may
be used when producing a boxplot, a probability plot, or
a QQ plot. We compare the most commonly implemented
sample quantile definitions by writing them in a common
notation and investigating their motivation and some of
their properties. We argue that there is a need to adopt a
standard definition for sample quantiles so that the same
answers are produced by different packages and within
each package. We conclude by recommending that the
median-unbiased estimator be used because it has most of
the desirable properties of a quantile estimator and can
be defined independently of the underlying distribution.

KEY WORDS: Percentiles; Quartiles; Sample quantiles;
Statistical computer packages.

1. INTRODUCTION
The quantile of a distribution is defined as

Q(p) = F~'(p) = inf{z: F(z) > p},

where F'(z) is the distribution function. Sample quan-
tiles provide nonparametric estimators of their population
counterparts based on a set of independent observations
{X1,..., Xy} from the distribution F. Let {X 1), ..., X(n)}
denote the order statistics of {X,...,X,}, and let 0; (p)
denote the ith sample quantile definition.

One difficulty in comparing quantile definitions is that
there is a number of equivalent ways of defining them.
However, the sample quantiles that are used in statistical
packages are all based on one or two order statistics, and
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can be written as
Qi(p) = 01— VXg) +7X(+1)

. . 1
J—m <] m + (

n

where <p 1)

for some m € Rand 0 <+ < 1. The value of ~ is a function
of j = |pn+m] and g = pn+m — j. Here, |u] denotes the
largest integer not greater than u; later we shall use [u] to
denote the smallest integer not less than w.

We consider estimators of the form (1), including some
that are not found in statistical packages. There have been
several other nonparametric quantile estimators proposed
that are not of the form (1) (e.g., Harrell and Davis 1982;
Sheather and Marron 1990), but these are not implemented
in widely available packages and so are not considered here.
We also exclude sample quantiles that are not defined for
all p including hinges and other letter values (Hoaglin 1983)
and related methods (Freund and Perles 1987).

A closely related problem is the selection of plotting posi-
tion in a quantile plot in which X4 is plotted against pj, or
in a quantile~quantile plot in which X, is plotted against
G~1(py) where G is a distribution function. Various rules
for py, have been suggested (see Cunnane 1978; Harter 1984;
Kimball 1960; Mage 1982). Each plotting rule corresponds
to a sample quantile definition by defining Q;(px) = Xz
and using linear interpolation for p # p,. However, the cri-
teria by which a plotting position is chosen (e.g., the five
postulates of Gumbel 1958, pp. 32-34 or the three purposes
of Kimball 1960) may be quite different from the criteria
for choosing a good sample quantile definition.

We compare sample quantile definitions of the form (1)
by describing their motivation and whether or not they pos-

Table 1. Six Desirable Properties for a Sample Quantile

P1: C);(p) is continuous.
P2 Freq(Xx < Qi(p)) = pn. i
P3: Freq(Xy < Qi(p)) = Freq(Xx = Qi(1 — p)).
P4: Where Q' (x) is uniquely defined,
P 21
Q7 (Xuy) + Q Kp—kan)) =1 for k=1,...,n
P5: Where (f),._1(x) is uniquely defined,
Q7' (X)) > 0and Q7 (Xm) < 1.
P6:  Gy(.5) is equal to the sample median defined by

[X(/) + )((/.,_1)]/2 itn=2/
Xi+1y ifn=2+1.
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sess the six properties shown in Table 1. (The notation
Freq(Xj < x) denotes the number of observations less than
or equal to x.)

Property P1 is based on the common assumption that
Q(p) is a continuous function of p. Property P2 is the sam-
ple analog of the result F'(Q(u)) > u (with equality when F’
is continuous). Properties P3 and P4 are symmetry proper-
ties that require that the tails of the underlying distribution
are treated equally. P3 is equivalent to Freund and Perles’
(1987) criterion B for quartiles. Property P35 reflects the re-
sult that for a continuous distribution, we expect there to
be positive probability for values beyond the range of the
data. Property P6 is sensible given the widespread use of
the sample median.

2. DISCONTINUOUS FUNCTIONS

Definition 1. The oldest and most studied definition is
the inverse of the empirical distribution function obtained
by setting m = 0 and

R if g>0
] oifg=o.

This is the step function shown schematically in Figure 1.
The value of the function at each jump is shown as a solid
point (¢). For this definition

Freq(Xi < Q1(p)) = [pn]
and

Freq(X; > Q1(1 —p)) = [pn +1].

Definition 2. Qy(p) is similar to Q,(p) except that aver-
aging is used when g = 0. Hence m = 0,

7:{
and

Freq(Xx < Qa(p)) = Freq(Xy > Qa2(1 —p)) = [pn].

Q2(p) is shown in Figure 2.
Definition 3. Q3(p) is defined as the order statistic Xy,

Ll ST

g=0
g>0

where k is the nearest integer to np. So we set m = —% and,
X G2
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Figure 1. Schematic Representation of é1 p).
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Figure 2. Schematic Representation of Q- (p)-

when g > 0, let v = 1. At g = 0 there is more than one way
to define “nearest.” One approach, which is implemented in
SAS, is to choose the nearest even order statistic at g = 0.
Hence
~v=0 1if g =0 and j even
and
~v =1 otherwise.

For this definition

pn] if g=0 and | pn| even

| pn+ 1] otherwise

Freq(X, < Qs(p)) = {

and
[pn+3] ifg=0

and [ (1 — p)n] even
[pn+ 1] otherwise.

Freq(Xy, > Qs(1 —p)) =

Figure 3 shows Qs3(p). We summarize the properties of
these sample quantile definitions in Table 2.

3. PIECEWISE LINEAR CONTINUOUS
FUNCTIONS

The related problem of selecting a plotting position when
plotting quantiles leads to a number of sample quantile def-
initions constructed by linearly interpolating between plot-

X 42 |
X (i+l)-
)

G-D

G-1/n jm G+1)/n

Figure 3. Schematic Representation of Qz(p) (j Even).
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Table 2. Summary of Properties of Q;(p), Qz(p), and Q3 (p)

Definition P1 P2 P3 P4 P5 P6
1 v v/ (n odd)
2 Vv Vv v
3 v

ting positions. Blom (1958) considered the plotting position

k—«

pk:n—a—ﬂ—l—l’

where « and § are constants, which includes all the usual
plotting positions that are advocated. Interpolating between
the points (px, X(z)) gives a sample quantile of the form
(1) with m = a+p(1 — a — () and v = g. Harter (1984)
provides a review of the various plotting positions that have
been proposed. One example is shown in Figure 4 for o = 0
and 3 = 1 so that py = k/n. This is an interpolation of the
step function of Definition 1.
Of course, P1 is satisfied for all such definitions. Also,

Freq(X), < Qi(p)) = |pn +m|

=|pm+a+p(l-a-p))

and

~

>Qi(l-p))=
=|ppn—a—-pl—a-p0)+1].

Hence P2 is satisfied for all p if and only if o+ 3 < 1 and
o > 0, and P3 is satisfied for all p if and only if & = § = %,
in which case m = 1.

For P4 to hold we require py + pn—r+1 = 1, and so
o =, and for P5 we need < 1 and 8 < 1.

If n =2,
Qz‘(-5) =(1-v

)
where v = m — |[m]. So for even n, P6 is satis-
fied if and only if m = —é— when p = —, which occurs when

a=p.Ifn=20+1,
(I =) X (rm1s2)) + 7YX (1rm+3/2))

Qu(.5) =
where v = 2 +m— |1 +m]. So for odd n, P6 is satisfied if
and only if m = % when p = 3. So again we need o = 3.

Definition 4. Parzen (1979) suggested defining a sample
quantile by interpolating the step function of Definition 1
as shown in Figure 4. This amounts to p; = k/n.

Definition 5. A very old definition, proposed by Hazen
(1914) and popular among hydrologists, is based on p; =
(k — 3)/n. This is the value midway through each step of
Definition 1.

The remaining definitions are derived on the basis of esti-
mation arguments. Let L be some measure of location such
as the mean, median, or mode. There are two classes of
quantile definitions that are derived using estimation argu-
ments. The first approach chooses pr = LF(X)) and the
second approach chooses py = F(LX(y)). If F' is the uni-

Freq( X} lpn —m + 1]

X(4m)) T YX(m1))s

X G+2)

x(i+l)

@

G-

G-1/n jm G+1)/n (G+2)/n
Figure 4. Schematic Representation of Q 4 (P)-

form distribution, the two approaches are equivalent. Also,
if L denotes the median and F' is strictly monotonic, the two
approaches are equivalent because the median is invariant
under monotonic transformation.

Following the first approach, note that F'(X}) has a uni-
form distribution so F'(X(;) has the same distribution as
the kth-order statistic from a uniform distribution, namely
the beta distribution 3(k,n — k + 1). Hence this approach
is distribution-free in the sense that the resulting plotting
positions do not depend on the distribution F'. Definitions
Qs(p), Q7(p), and Qs(p) can be derived in this way.

Definition Qo(p) is derived following the second ap-
proach (and because Qg(p) uses L = median, it can also
be derived following the second approach). Note that defi-
nitions derived in this way are L-unbiased because

Qlpr) = Q(F(LX (1)) = LX (1) = LQs(px).-

However, these definitions are not distribution-free because
different values of pj, result for different distributions F.

Clearly, only Qs(p) is both L-unbiased and distribution-
free.

Definition 6. Weibull (1939) and Gumbel (1939) pro-
posed p = k/(n + 1). In this case p, = EF(X(;)) and
the vertices divide the sample space into n + 1 regions,
each with probability 1/(n + 1) on average. In particular,
PI‘(X < X(l)) = PI“(X > X(n)) = 1/(n+ 1).

Definition 7. Gumbel (1939) also considered the modal
position p; = modeF (X)) = (k —1)/(n — 1). One nice
property is that the vertices of Q7(p) divide the range into
n — 1 intervals, and exactly 100p% of the intervals lie to
the left of Q- (p) and 100(1 — p)% of the intervals lie to the
right of Q-(p).

Definition 8. The median position, MF(X4,), where M
denotes the median, is more difficult to obtain. Using an ap-
proximation to the incomplete beta function ratio (Johnson
and Kotz 1970, p. 48) we find MF (X)) ~ (k—3)/(n+3).
Therefore, we define the sample quantile by setting p, =
(k~1)/n+ ).

In fact, the resulting sample quantile is median unbiased
of order o(n~1/2) (Reiss 1989). Reiss also states that the
resulting sample quantile is optimal in the class of all esti-
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Table 3. Summary of Properties of Qj(p), i = 4, ..., 9

Definition — « m P1 P2 P3 P4 P5 P6

4 0 1 0 v

5 oz : v vV v VY

6 0 0 p NV, v ooV

7 11 1-p VARV v v

8 LR VA v vV

9 8% ip+d vV v vV

mators that are median unbiased of order o(n~'/2) and equi-
variant under translations (shifting the observations
amounts to shifting the distribution of Q;(p)).

Hoaglin (1983) shows that when p is an integer multiple
of (.5)" where [ is an integer, Qs (p) gives approximately the
same results as “letter values.”

Benard and Bos-Levenbach (1953) also argue for p, =
MF (X)), but use the approximation pr = (k — .3)/
(n+.4).

Definition 9. Blom (1958) shows that p, = (k — 2)/
(n+ 1) gives a better approximation to F(EX ) for the
normal distribution. Therefore, Qg(py) is an approximately
unbiased estimate of Q(px) when F' is normal. Because this
definition is distribution-dependent, it tends to be used for
normal QQ plots rather than as a general sample quantile
definition. Analogous py, for other distributions are listed in
Cunnane (1978).

We summarize the properties of these definitions in
Table 3.

4. STATISTICAL PACKAGES

In this section we summarize the sample quantile defini-
tions that are implemented in some major statistical pack-
ages. Note that we only consider commands that compute
quantiles explicitly, and we ignore implicit quantile defi-
nitions that are used in probability plots, quantile—quantile
plots, and boxplots. Often a package will use a different
definition of sample quantile in a plot from what is used
when explicitly computing quantiles.

BMDP: Since the 1990 release of BMDP, quartiles in
BMDP 2D have been computed using Qg(p). More gen-
eral quantiles cannot be computed. Note that the manual
(BMDP 1992) incorrectly describes the method of comput-
ing quartiles.

GLIM: The $tab percentile command of GLIM
V3.77 gives Q(p), while $tab interpolate gives
Qs(p) (GLIM 1987).

Minitab: The DESCRIBE command computes quartiles
using Qg (p) (Minitab 1994). The quartiles produced by the
experimental command $DESCRIBE are not documented,
but numerical experiments suggest that Q5 (p) is used. Other
quantiles are not available.

SAS: PROC UNIVARIATE allows five different quan-
tile definitions (SAS 1990): Q1(p), Q2(p), Q3 (p), Qa(p),
and Qs(p).
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Splus: The quantile( ) command of Splus 3.1 uses
Q+(p) (although S-PLUS (1991) states that Qs (p) is used).

SPSS: The frequencies command of SPSS appears to
use Qs(p), although this is nowhere documented.

5. SUMMARY AND CONCLUSIONS

Only Qs (p) satisfies all six properties, P1-P6. However,
it is a compromise definition in the sense that it is derived
by interpolating between the midpoints of the inverse of the
distribution function. It is not justified on the basis of an
estimation argument. Definitions Qg(p)-Qo(p) each satisfy
five of the six properties, and their derivations are more eas-
ily justified. Of these, Qs(p) seems the best because it gives
(approximately) median-unbiased estimates of Q(p) regard-
less of the distribution, F. Both Qg(p) and Q7 (p) are also
distribution-free, but they are not unbiased, whereas Qg(p)
is approximately unbiased for the normal distribution, but
not for other distributions.

The current variation in sample quantile definitions
causes confusion, and so there is a need to standardize the
definition of sample quantile across packages and within
packages. This is an analogous situation to the problem of
defining sample variance. In that case the statistical commu-
nity has adopted the unbiased definition (with denominator
n—1) as the standard rather than the more intuitive average
of squared deviations (with denominator n) or the minimum
MSE definition (with denominator n + 1 for a normal dis-
tribution). This avoids confusion and ensures comparable
results on all software. We believe there is a similar need
to adopt a standard sample quantile definition, and we pro-
pose that Qg(p) is the best choice.

[Received March 1995. Revised March 1996.]
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A Note on the Calculation of Pr{X; < X, < - < X}

A.J. HAYTER and W. LU

Suppose that X; are independent random variables, and that
X, has cdf Fj(z),1 < i < k. Many statistical problems
involve the probability Pr{X; < X3 < --- < X;}. In this
note a numerical method is proposed for computing this
probability.

KEY WORDS: Multivariate probability; Statistical com-
puting.

Suppose that X; are independent random variables (dis-
crete or continuous), and that X; has cdf Fj(z),1 <i < k.
We want to compute the probability P, = Pr{X; < X3 <
.-+ < X }. In isotonic regression it is essential to find P, in
order to find the level probabilities P(l, k). See, for exam-
ple, Robertson, Wright, and Dykstra (1988 pp. 74-77). In
ranking and selection problems the probability of correct
ranking can be expressed in terms of Py. See, for example,
Bechhofer (1954). The size and power of a multiple com-
parison test proposed by Hochberg and Marcus (1978) also
depend on Py. Generally speaking, Py can be computed ex-
actly for small values of k,k < 5 say, by using repeated
numerical integrations or summations. For large values of
k, however, this approach becomes infeasible, and analytic
approximations tend to be used; see Gupta (1963) and the
references therein when X; are normal random variables.

Our numerical method relies on the following simple re-
cursive relationship. Define

= PI‘{Xl <{L‘}=F1(IL)
= PI‘{X1<X2<"'<XL<{L‘},

ri(x)
ri(z) [ >1.

Then it is easy to see that
[ mawdRe. 22O
(—oo,z)

T (a,) =

and
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P, = / e (y) dF(y). @)

—00

The function 7;(x) can thus be calculated recursively by (1).
The basic method is to evaluate the right-hand side of (1)
at points on a chosen grid; r;(z),z € R is then approxi- -
mated by proper interpolation and extrapolation. Continu-
ing in this way until r;_;(z) is found, P can then be com-
puted from (2). In this process most of the computing time
is spent on the recursive calculations of 7;(x), which in-
volves only one-dimensional numerical integrations or sum-
mations. The computing intensity therefore increases about
linearly in k£. We have experimented with independent nor-
mal random variables X; by using linear approximations,
several different grids, and NAG library routine for one-
dimensional numerical integrations; on a Silicon Graphics
Indigo 2 it took less than one minute to compute one Psg
accurate to the third decimal place.

In Hayter and Liu (1996) we have used a similar recur-
sive method to compute the critical points and power of the
one-sided studentised range test of Hayter (1990). In fact,
such recursive computing methods are frequently used in
sequential analysis. See, for example, Eales and Jennison
(1992). It seems that some other probabilities that have de-
fied exact calculations so far can be calculated similarly.
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