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 tistical Computing and Statistical Computing Software Reviews; suitable
 contents for each of these sections are described under the respective

 section heading. Articles submitted for the department, outside the two

 sections, should not be highly technical and should be relevant to the

 teaching or practice of statistical computing.

 Sample Quantiles in Statistical Packages

 Rob J. HYNDMAN and Yanan FAN

 There are a large number of different definitions used for

 sample quantiles in statistical computer packages. Often

 within the same package one definition will be used to

 compute a quantile explicitly, while other definitions may

 be used when producing a boxplot, a probability plot, or

 a QQ plot. We compare the most commonly implemented

 sample quantile definitions by writing them in a common

 notation and investigating their motivation and some of

 their properties. We argue that there is a need to adopt a
 standard definition for sample quantiles so that the same

 answers are produced by different packages and within

 each package. We conclude by recommending that the

 median-unbiased estimator be used because it has most of

 the desirable properties of a quantile estimator and can

 be defined independently of the underlying distribution.

 KEY WORDS: Percentiles; Quartiles; Sample quantiles;

 Statistical computer packages.

 1. INTRODUCTION

 The quantile of a distribution is defined as

 Q(p)=F-1(p)zinf{x: F(x) >p}, 0<p< 1,

 where F(x) is the distribution function. Sample quan-
 tiles provide nonparametric estimators of their population
 counterparts based on a set of independent observations

 {X1, ... , X,} from the distribution F. Let {X(1), ... X(n)
 denote the order statistics of Xi..., Xn }, and let Qi (p)
 denote the ith sample quantile definition.

 One difficulty in comparing quantile definitions is that
 there is a number of equivalent ways of defining them.
 However, the sample quantiles that are used in statistical

 packages are all based on one or two order statistics, and

 can be written as

 Qi(p) (l - ^)X(j) + -yx(j +)

 where j -m < p < j-m +
 n n

 for some m E R and 0 < a < 1. The value of ay is a function
 of j = Lpn + rnj and g = pn + 7n - j. Here, LIu denotes the

 largest integer not greater than u; later we shall use F[u to
 denote the smallest integer not less than u.

 We consider estimators of the form (1), including some

 that are not found in statistical packages. There have been

 several other nonparametric quantile estimators proposed

 that are not of the form (1) (e.g., Harrell and Davis 1982;

 Sheather and Marron 1990), but these are not implemented

 in widely available packages and so are not considered here.

 We also exclude sample quantiles that are not defined for

 all p including hinges and other letter values (Hoaglin 1983)
 and related methods (Freund and Perles 1987).

 A closely related problem is the selection of plotting posi-

 tion in a quantile plot in which X(k) is plotted against Pk or

 in a quantile-quantile plot in which X(k) is plotted against
 G-1 (pk) where G is a distribution function. Various rules
 for Pk have been suggested (see Cunnane 1978; Harter 1984;

 Kimball 1960; Mage 1982). Each plotting rule corresponds

 to a sample quantile definition by defining Qi(Pk) = X(k)
 and using linear interpolation for p + Pk However, the cri-
 teria by which a plotting position is chosen (e.g., the five
 postulates of Gumbel 1958, pp. 32-34 or the three purposes

 of Kimball 1960) may be quite different from the criteria
 for choosing a good sample quantile definition.

 We compare sample quantile definitions of the form (1)

 by describing their motivation and whether or not they pos-

 Table 1. Six Desirable Properties for a Sample Quantile

 P1: Qj(p) is continuous.

 P2: Freq(Xk < 0i(p)) > pn.
 P3: Freq(Xk < Qj(p)) = Freq(Xk > Q(1 - p)).

 P4: Where Qj-1 (x) is uniquely defined,

 Q; (X(k)) + Qj (X(n-k?1)) = 1 for k = 1, . n.
 P5: Where Qj-7' (x) is uniquely defined,

 Q-1 (X(1)) > 0 and 71 (X(n)) < 1.

 P6: Q6(.5) is equal to the sample median defined by

 [X(S) + X(/+1)]/2 if n = 2/
 X(/+ 1) if n = 2/ + 1.
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 sess the six properties shown in Table 1. (The notation

 Freq(Xk < x) denotes the number of observations less than

 or equal to x.)
 Property P1 is based on the common assumption that

 Q(p) is a continuous function of p. Property P2 is the sam-

 ple analog of the result F(Q(u)) > u (with equality when F

 is continuous). Properties P3 and P4 are symmetry proper-

 ties that require that the tails of the underlying distribution

 are treated equally. P3 is equivalent to Freund and Perles'
 (1987) criterion B for quartiles. Property P5 reflects the re-

 sult that for a continuous distribution, we expect there to

 be positive probability for values beyond the range of the

 data. Property P6 is sensible given the widespread use of
 the sample median.

 2. DISCONTINUOUS FUNCTIONS

 Definition 1. The oldest and most studied definition is

 the inverse of the empirical distribution function obtained
 by setting rn= 0 and

 I if g> 0

 7=Oif g=0.

 This is the step function shown schematically in Figure 1.

 The value of the function at each jump is shown as a solid

 point (*). For this definition

 Freq(Xk < Q1(P)) = ipn]

 and

 Freq(Xk > Q1(1 - P)) =Lpnr+ 1].

 Definition 2. Q2 (P) is similar to Q1 (p) except that aver-
 aging is used when g = 0. Hence m= 0,

 g=0
 I g > 0

 and

 Freq(Xk < Q2 (P)) = Freq(Xk > Q2 (1 - P)) = Fpn.

 Q2(P) is shown in Figure 2.
 Definition 3. Q (P) is defined as the order statistic X(k)

 where k is the nearest integer to np. So we set m= - 1 and,

 when g > 0, let a = 1. At g = 0 there is more than one way

 to define "nearest." One approach, which is implemented in

 SAS, is to choose the nearest even order statistic at g 0.
 Hence

 a 0 if g = 0 and j even
 and

 1 otherwise.

 For this definition

 Freq (Xk _ Q 3 ( r)) {Lpni if g = 0 and Lprni even
 Lpn + oj otherwise

 and

 _pf Fpr+i? if g = 0
 Freq(Xk > Q3(1 -p)) - and L(1 -p)rnj even

 [Fpnr ?1 otherwise.

 Figure 3 shows Q3 (p). We summarize the properties of
 these sample quantile definitions in Table 2.

 3. PIECEWISE LINEAR CONTINUOUS
 FUNCTIONS

 The related problem of selecting a plotting position when
 plotting quantiles leads to a number of sample quantile def-
 initions constructed by linearly interpolating between plot-

 x - 0

 X 0'+1)

 X (j)-

 x( 1) ,_,_,_ _

 (j-1)/n j/n (0+1)/n

 Figure 1. Schematic Representation of Q1 (p).

 0
 x- 0+1

 0

 x (j)-

 x i-1) -
 I I I >

 (j-1)/n j/n (0+1)/n

 Figure 2. Schematic Representation of 02(P).

 - ~ ~ ~ ~ ~ ~ ~ ~ o

 X (j)-

 X-1)

 (j-1)/n j/n (j+1)/n

 Figure 3. Schematic Representation of 03(p) (j Even).
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 Table 2. Summary of Properties of QI (p), 02(p), and Q3(p)

 Definition P1 P2 P3 P4 P5 P6

 1 V V (n odd)
 2 <

 3 V

 ting positions. Blom (1958) considered the plotting position

 k - ae
 Pk 0+ V

 where a and ,B are constants, which includes all the usual

 plotting positions that are advocated. Interpolating between

 the points (Pk, X(k)) gives a sample quantile of the form
 (1) with m = a + p(l - a - p3) and a = g. Harter (1984)
 provides a review of the various plotting positions that have

 been proposed. One example is shown in Figure 4 for a = 0

 and 0 = 1 so that Pk = k/n. This is an interpolation of the
 step function of Definition 1.

 Of course, P1 is satisfied for all such definitions. Also,

 Freq(Xk Q )i (p)) = L PT + mj

 = Lpn + a + p(l-a _a )i

 and

 Freq(Xk ? Q(1 )) = Lpn - rm + 1]

 = Lpn-a-p(l-a-/3) + 1i.

 Hence P2 is satisfied for all p if and only if a + 13 < 1 and
 a > 0, and P3 is satisfied for all p if and only if a = 1 = '
 in which case m= 2

 For P4 to hold we require Pk + Pn-k+1 1, and so
 a = /, and for P5 we need a < 1 and /3 < 1.

 If n = 21,

 Qj(.5) = (1 - 7Y)X(Ll+mj) + 'YX(Ll+7n+1J),

 where = m - Lmi. So for even n, P6 is satis-
 fied if and only ifTm = 1 when p 1, which occurs when 2 2

 a =3. If nr 21 + 1,

 Qj(.5) (1 - )y)X([Ll+7n+1/2j) + 'YX( L+in+3/2 )

 where a = + m - L2 + mi]. So for odd n, P6 is satisfied if
 and only if m T when p =. So again we need a = 3.

 Definition 4. Parzen (1979) suggested defining a sample
 quantile by interpolating the step function of Definition 1
 as shown in Figure 4. This amounts to Pk = k/n.

 Definition 5. A 'very old definition, proposed by Hazen
 (1914) and popular among hydrologists, is based on Pk
 (k - ')/n. This is the value midway through each step of
 Definition 1.

 The remaining definitions are derived on the basis of esti-
 mation arguments. Let L be some measure of location such

 as the mean, median, or mode. There are two classes of

 quantile definitions that are derived using estimation argu-

 ments. The first approach chooses Pk =LF(X(k)) and the
 second approach chooses Pk =F(LX(k)). If F is the uni-

 form distribution, the two approaches are equivalent. Also,

 if L denotes the median and F is strictly monotonic, the two

 approaches are equivalent because the median is invariant

 under monotonic transformation.

 Following the first approach, note that F(Xk) has a uni-

 form distribution so F(X(k)) has the same distribution as
 the kth-order statistic from a uniform distribution, namely

 the beta distribution 4(k, n - k + 1). Hence this approach

 is distribution-free in the sense that the resulting plotting

 positions do not depend on the distribution F. Definitions

 Q6(P), Q7(P), and Q8(P) can be derived in this way.
 Definition Q9(p) is derived following the second ap-

 proach (and because Q8(P) uses L = median, it can also
 be derived following the second approach). Note that defi-
 nitions derived in this way are L-unbiased because

 Q(Pk) = Q(F(LX(k))) = LX(k) = LQi(pk).

 However, these definitions are not distribution-free because

 different values of Pk result for different distributions F.

 Clearly, only Q8 (P) is both L-unbiased and distribution-
 free.

 Definition 6. Weibull (1939) and Gumbel (1939) pro-

 posed Pk = k/(n + 1). In this case Pk = EF(X(k)) and
 the vertices divide the sample space into n + 1 regions,
 each with probability 1/(n + 1) on average. In particular,

 Pr(X < X(i)) = Pr(X > X(n)) = 1/(n + 1).
 Definition 7. Gumbel (1939) also considered the modal

 position Pk = modeF(X(k)) = (k - 1)/(n - 1). One nice

 property is that the vertices of Q7(p) divide the range into
 n- 1 intervals, and exactly 100p% of the intervals lie to
 the left of Q7(p) and 100(1 - p)% of the intervals lie to the
 right of Q7(P).

 Definition 8. The median position, MF(X(k)), where M

 denotes the median, is more difficult to obtain. Using an ap-
 proximation to the incomplete beta function ratio (Johnson

 and Kotz 1970, p. 48) we find MF(X(k)) (k- 3)/(n+ 3).
 Therefore, we define the sample quantile by setting Pk

 (k - )(n + )
 In fact, the resulting sample quantile is median unbiased

 of order o(n-'/2) (Reiss 1989). Reiss also states that the
 resulting sample quantile is optimal in the class of all esti-

 X (j+)d x 0+2) ,l
 X 01)

 I I I I I
 (j-1)/n j/n (0+1)/n (j+2)/n

 Figure 4. Schematic Representation of 64 (p).
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 Table 3. Summary of Properties of Qi (p), i = 4,..., 9

 Definition ca /3 m P1 P2 P3 P4 P5 P6

 4 0 1 0 / /
 5 1 1 1 5 2 2 2 V/ V/ V V V

 6 0 0 p / / / / V
 7 1 1 i-p / / / V

 8 3 3 p +
 8 8 4 V8 V / V V V

 mators that are median unbiased of order o(n-r/2) and equi-

 variant under translations (shifting the observations

 amounts to shifting the distribution of Qi (p)).
 Hoaglin (1983) shows that when p is an integer multiple

 of ( 5)1 where 1 is an integer, Q8 (p) gives approximately the
 same results as "letter values."

 Benard and Bos-Levenbach (1953) also argue for Pk

 MF(X(k)), but use the approximation Pk - (k -.3)/
 (n+ .4).

 Definition 9. Blom (1958) shows that Pk (k -)/
 (n + 4) gives a better approximation to F(EX(k)) for the

 normal distribution. Therefore, Q9(Pk) is an approximately
 unbiased estimate of Q(Pk) when F is normal. Because this
 definition is distribution-dependent, it tends to be used for

 normal QQ plots rather than as a general sample quantile

 definition. Analogous Pk for other distributions are listed in

 Cunnane (1978).

 We summarize the properties of these definitions in

 Table 3.

 4. STATISTICAL PACKAGES

 In this section we summarize the sample quantile defini-

 tions that are implemented in some major statistical pack-

 ages. Note that we only consider commands that compute

 quantiles explicitly, and we ignore implicit quantile defi-

 nitions that are used in probability plots, quantile-quantile
 plots, and boxplots. Often a package will use a different

 definition of sample quantile in a plot from what is used

 when explicitly computing quantiles.

 BMDP: Since the 1990 release of BMDP, quartiles in

 BMDP 2D have been computed using Q6(P). More gen-
 eral quantiles cannot be computed. Note that the manual

 (BMDP 1992) incorrectly describes the method of comput-

 ing quartiles.

 GLIM: The $tab percentile command of GLIM

 V3.77 gives Q2(P), while $tab interpolate gives
 QS(P) (GLIM 1987).

 Minitab: The DESCRIBE command computes quartiles

 using Q6 (P) (Minitab 1994). The quartiles produced by the
 experimental command %DESCRIBE are not documented,

 but numerical experiments suggest that Q2 (P) is used. Other

 quantiles are not available.

 SAS: PROC UNIVARIATE allows five different quan-

 tile definitions (SAS 1990): Q1(P), Q2(P), Q3(P), Q4(P),
 and Q6(P).

 Splus: The quant i le ( ) command of Splus 3.1 uses

 Q7(P) (although S-PLUS (1991) states that Q5(P) is used).
 SPSS: The frequencies command of SPSS appears to

 use Q6(p), although this is nowhere documented.

 5. SUMMARY AND CONCLUSIONS

 Only Q5(P) satisfies all six properties, P1-P6. However,
 it is a compromise definition in the sense that it is derived

 by interpolating between the midpoints of the inverse of the

 distribution function. It is not justified on the basis of an

 estimation argument. Definitions Q6 (P)-Q9(p) each satisfy
 five of the six properties, and their derivations are more eas-

 ily justified. Of these, Q8 (p) seems the best because it gives
 (approximately) median-unbiased estimates of Q(p) regard-
 less of the distribution, F. Both Q6(p) and Q7(p) are also
 distribution-free, but they are not unbiased, whereas Q9(P)
 is approximately unbiased for the normal distribution, but

 not for other distributions.

 The current variation in sample quantile definitions

 causes confusion, and so there is a need to standardize the
 definition of sample quantile across packages and within

 packages. This is an analogous situation to the problem of
 defining sample variance. In that case the statistical commu-

 nity has adopted the unbiased definition (with denominator

 n- 1) as the standard rather than the more intuitive average
 of squared deviations (with denominator n) or the minimum
 MSE definition (with denominator n + 1 for a normal dis-
 tribution). This avoids confusion and ensures comparable
 results on all software. We believe there is a similar need

 to adopt a standard sample quantile definition, and we pro-

 pose that Q8 (p) is the best choice.

 [Received March 1995. Revised March 1996.]
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 A Note on the Calculation of Pr{Xi < X2 < K *.* < X}

 A. J. HAYTER and W. Liu

 Suppose that Xi are independent random variables, and that
 Xi has cdf Fi(x), 1 < i < k. Many statistical problems
 involve the probability Pr{Xl < X2 < ... < Xk }. In this
 note a numerical method is proposed for computing this

 probability.

 KEY WORDS: Multivariate probability; Statistical com-

 puting.

 Suppose that Xi are independent random variables (dis-
 crete or continuous), and that Xi has cdf Fi(x), 1 < i < k.
 We want to compute the probability Pk = Pr{Xi < X2 <
 ... < Xk }. In isotonic regression it is essential to find Pk in
 order to find the level probabilities P(l, k). See, for exam-
 ple, Robertson, Wright, and Dykstra (1988 pp. 74-77). In
 ranking and selection problems the probability of correct

 ranking can be expressed in terms of Pk. See, for example,
 Bechhofer (1954). The size and power of a multiple com-

 parison test proposed by Hochberg and Marcus (1978) also
 depend on Pk- Generally speaking, Pk can be computed ex-

 actly for small values of k, k < 5 say, by using repeated

 numerical integrations or summations. For large values of

 k, however, this approach becomes infeasible, and analytic

 approximations tend to be used; see Gupta (1963) and the

 references therein when Xi are normal random variables.
 Our numerical method relies on the following simple re-

 cursive relationship. Define

 ri (x) = Pr{Xi < x} = F1 (x)

 ri(x) = PrfXi < X2 < < XIl < XI, I > I.

 Then it is easy to see that

 ri(x) r -1 (y)dFI(y), I > 2 (1)

 and

 The function r1 (x) can thus be calculated recursively by (1).

 The basic method is to evaluate the right-hand side of (1)

 at points on a chosen grid; r1 (x), x c R is then approxi-

 mated by proper interpolation and extrapolation. Continu-

 ing in this way until rk-l (x) is found, Pk can then be com-

 puted from (2). In this process most of the computing time

 is spent on the recursive calculations of ri (x), which in-
 volves only one-dimensional numerical integrations or sum-

 mations. The computing intensity therefore increases about

 linearly in k. We have experimented with independent nor-

 mal random variables Xi by using linear approximations,
 several different grids, and NAG library routine for one-

 dimensional numerical integrations; on a Silicon Graphics

 Indigo 2 it took less than one minute to compute one P50

 accurate to the third decimal place.
 In Hayter and Liu (1996) we have used a similar recur-

 sive method to compute the critical points and power of the

 one-sided studentised range test of Hayter (1990). In fact,

 such recursive computing methods are frequently used in

 sequential analysis. See, for example, Eales and Jennison
 (1992). It seems that some other probabilities that have de-

 fied exact calculations so far can be calculated similarly.
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