
A Simple Noncalculus Proof That the Median Minimizes the 
Sum of the Absolute Deviations 

NEIL C. SCHWERTMAN, A. J. GILKS, and J. CAMERON* 

It is widely known among statisticians that the median 
minimizes the sum of the absolute deviation about any point 
for a set of x’s, xl, x2, x3, . . . , x,. Some authors (e.g., 
David 1970) point out that when n is even the minimizing 
point is not necessarily unique. The proof that the median 
minimizes the sum of the absolute deviations is omitted in 
many mathematical statistics textbooks. Other textbooks (e.g., 
Bickel and Dobsum 1977, p. 54; Cramer 1946, p. 179; De 
Groot 1975, p. 170; Dwass 1970, p. 341; Von Mises 1964, 
pp. 373-374) suggest or prove the result using expectation 
and integral calculus for continuous data. Wasan (1970, 
p. 119) used a similar expectation argument for discrete 
distributions only. Sposito, Smith, and McCormick (1978) 
provided a somewhat involved proof using summations. 
Bloomfield and Steiger (1983) provided a rather difficult 
and more general investigation of the minimization of the 
general Lp norm that, when p = 1, proves the median min- 
imizes the sum of the absolute derivations. A somewhat 
simplified calculus proof was given by Shad (1969). Aitken 
(1952, pp. 32-34) provided a clever proof with only minor 
use of calculus but did not provide a convenient computa- 
tional procedure. Some authors, such as Gentle, Sposito, 
and Kennedy (1977), have used the absolute deviation for 
various applications, whereas the general L, norm has been 
used by others. For example, Sielken and Hartley (1973) 
and Sposito (1982) showed how one can obtain unbiased 
L ,  and Lp estimators. 

First consider some difficulties that must be overcome 
when using differentiation in the proof. From any set of x’s 
construct the ordered set x(’), x ( ~ ) ,  . . . , x(,), where x ( ~ )  5 
X(2) 5 * * * 5 X(,), and define the sum of the absolute de- 
viations about any point, say a, as D ( a )  = I x ( ~ )  - 
a].  A proof using differentiation of D ( a )  requires consid- 
erable care, since D(a)  is nondifferentiable at a = x(~) (i = 
1, 2, . . . , n). In addition, D ( a )  = Xf=l  ( a  - x(~))  + 

(x(~) - a) = (2k - n)a - Cf=, x0) + 
x(~), where x ( ~ )  I a 5 x ( ~ +  I ) .  The fact that k and each of 
the two summations are functions of a must be considered 
in all differentiations. 

The following noncalculus proof is a simple alternative, 
based on sets, that is appropriate for continuous or discrete 
populations, readily demonstrates the nonuniqueness for even 
n, and provides a convenient method of computation. Con- 
sequently, this proof should be easier for most students to 
understand. 

Theorem. For any set of n finite x’s in R’, the sum of 
the absolute deviations about a point a is minimized when 
the point is the median. 

*Neil C. Schwertman is Professor, Department of Mathematics and 
Statistics, California State University, Chico, CA 95929. A. J. Gilks is 
Senior Lecturer and J. Cameron is Senior Tutor, Division of Computing 
and Mathematics, Deakin University, Victoria 3217, Australia. 

Proof. First, consider any two x’s, x2 > xl. Then for 
any point a such that xl 5 a 5 x2 the sum of the absolute 
deviations about a is a - x1 + x2 - a = x2 - xl. For 
a e [xl, x2] and if a < xl, however, the sum of the absolute 
deviations is x1 - a + x2 - a = x1 + x2 - 2 a  > x1 + 
x2 - 2x, = x2 - xl, and if a > x2 the sum of the absolute 
deviations is a - x1 + a - x2 = 2 a  - x1 - x2 > 2x2 - 
x1 - x2 = x2 - xl. Therefore, for any two x’s the sum 
of the absolute deviations about a point a is minimized when 
a E [x,, x2] and is equal to x2 - xl. 

Now consider the set of nested intervals [x(,), x(,)l, [x(,), 
x(,-l)I, . . . , [ ~ ( i ) , ~ ( n + l - i ) l ,  where+) 5 . . . 5x(,+ and 
i = 1, 2, . . . , c ,  where c is equal to nl2 if n is even and 
is equal to (n + 1)/2 if n is odd. Note that when n is odd 
the innermost interval is [x((,+ 1)12)r x((,+ or equals the 
point x(( ,+~) /~)  (median). If we choose any point, say a, 
such that a E f l f =  [x(,), x(,+ then a minimizes the 
sum of the absolute deviations from the endpoints of each 
of the nested intervals. But D ( a )  = XYZl lx(,) - a1 = 

. + (Ix(,) - a1 + Ix(,+ - c )  - a[).  The parentheses are 
used to indicate the absolute deviations from the endpoints 
for one of the nested intervals; for example, (Ix(,) - a1 + 
I++ 1-1) - a [ )  is the sum of absolute deviations for the 
interval [x(,), x(,+~-,)]. Since point a is in each interval, 
the sum within each set of parentheses or interval is mini- 
mized and hence the total sum of absolute deviation, D(a) ,  
is also minimized. 

Note that when n is even and x(,/~) < x(,,~+ ,) the inner- 
most interval is [x(,/~), x(,,/~+ and hence any a such that 
x(,/~) I a I x(,/~+ I )  is contained in each of the nested in- 
tervals and hence minimizes D(a).  Also observe that for 
each of the nested intervals, for example, [x(,), x(,+~-,)], 
the sum of the absolute deviations of a from the endpoints 
is x(,,+,-,) - x(,) if (Y is in the interval. Then D ( a )  = 

- al + k ( n )  - 4) + (Gc(2)  - 4 + k ( n - 1 )  - 4) + 

(I+,) - 4 + Ix(n) - 4) + (I+,) - 4 + IX(n-1) - 

4) + * * - + (IX(,) - 4 + G c ( n + l - c )  - 4) = (x(n) - 
~ ( 1 ) )  + (X(n-1) - ~ ( 2 ) )  + * * * + (X(n+l-c) - x(c)) = 
x y = n  + 1 - c  - X;= I 

Although the fact that the median minimizes the sum of 
the absolute deviations about any point is not new, this proof 
seems to be new or at least was not found in the literature 
that was reviewed. This proof is easy to illustrate graphically 
and should make the proof understandable to statistics stu- 
dents without requiring strong calculus backgrounds and 
without having to assume either discrete or continuous dis- 
tributions. 
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A Simplified Derivation of the Variance of Kendall’s Rank 
Correlation Coefficient 

PAUL D. VALZ and A. IAN McLEOD* 

In this article, a short and simple derivation of the variance 
of Kendall’s rank correlation coefficient, .i , is 
presented by making use of the inversion vector. 

KEY WORDS: Indicator function; Inversion vector. 

1. INTRODUCTION 

Let R,  and R2 be the rankings of n individuals with respect 
to two criteria and assume, initially, that there are no ties 
in either ranking. Then, without loss of generality, it may 
also be assumed that R ,  is in its natural order so that R2 = 
(1,2, . . . , n). Let R 1  = (r l ,  r2,  . . . , rn). Then the negative 
score, Q ,  is given by 

(1) 

where I(o,  %)(.) denotes the indicator function on (0, a). 
Kendall’s mnk correlation coefficient (Kendall 1975, eq. 1.5) 
is then given by 

Q = C ~ ( o ,  -x)(rj - r ; ) ,  
i > j  

.i = I - 4Q/n(n - 1). (2) 
A rather lengthy derivation of the variance of .i was given 
by Kendall(l975, chap. 5 )  for the general case of tied ranks. 
Noether (1967, chap. 10) presented a more concise ap- 
proach. For the case in which the two criteria are assumed 
to be independent and continuous, however, the derivation 
given in Section 2 is more direct than these other ap- 
proaches. 

The notion of an inversion vector provides the basis for 
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our derivation. Reingold, Nievergelt, and Deo (1977) de- 
fined an inversion vector, Ik = ( i l ,  i2, . . . , in), as follows. 

Let X = (x,, x2, . . . , x k )  be a sequence of numbers. A 
pair (x!, xi) is called an inversion of X if 1 < j and xI > xj.  
The inversion vector of X is the sequence of integers i l  , i2, 
. . . , ik obtained by letting ij be the number of x, such that 
(x I ,  xi) is an inversion. Hence ij is the number of elements 
greater than xi and to its left in the sequence. Note that 0 5 
i j l j -  1. For example, the inversion vector for the per- 
mutation P = (4, 3 ,  5, 2, 1, 7, 8, 6, 9) is I = (0, 1, 0, 
3, 4, 0,  0, 2, 0). It may be proved by induction that each 
inversion vector uniquely represents a permutation of the 
first k natural numbers. 

2. DERIVATION OF THE VARIANCE 

Let I, be the inversion vector corresponding to the ranking 
R,  so that 

I ,  = (0, i2, i3, . . ., i n ) ,  0 5 4 5 j - 1. 

It follows from the definitions of Q and I, that 

Q = 2 i j .  (3) 
j =  1 

Under the assumption of independent rankings, inversion 
vectors are equiprobable. Since the set of n! inversion vec- 
tors may be divided into ( n ! / j )  subsets o f j  inversion vectors 
so that members of the same subset differ only on the jth 
element, it then follows that each of the j possible values 
(0, 1, . . . , j - 1) of 6 have probability j - I .  Hence 

E ( i j )  = ( j  - 1)/2 (4) 
and, consequently, 
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