We will provide a very informal and intuitive explaination. This is not a rigorous proof.

The asymptotic variance of $\hat{\beta}$ is equal to

vor (β) 2 (xTwx), W= diag (m, 1, (1-1,),..., m, 1, (1-1,)).

We will say that (xTxxx)"-> \$\phi\$, i.e the std. evers get smaller ond smaller of

XTXXX -> 20. Note that the generic diagonal entry of such a matrix is

 $\sum_{i=1}^{m} m_i \tilde{n}_i (1-\tilde{n}_i) \times_{is}^2, \qquad \S_n \qquad s=1,...,p.$

which grows for $m_i \rightarrow \infty$ and also as $m \rightarrow \infty$ (under minor conditions on \times_{is}^2).