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Linear models and misspecification
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® This unit will cover the following

® Recap: linear models and the modeling process

Robustness of OLS estimates, sandwich estimators

Weighted least squares

®m Box-Cox transform, variance stabilizing transformations

® The main theme is: what should we do when the

“Everything should be made as simple as  assumptions of linear models are ?
possible, but not simpler” ® \We will push the linear model to its limit, using it even
Attributed to when is not supposed to work.

® The symbol L] means that a few extra steps are discussed
in the handwritten notes.

The content of this Unit is covered in of Salvan et al. (2020). Alternatively, see Chapter
2 of Agresti (2015) or of Azzalini (2008).
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The modeling process
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Car data (diesel or gas)

®m \We consider data for n = 203 models of cars in
circulation in 1985 in the USA.

11*{_,‘ | ' !:! ‘ ‘3*.’% | ® \We want to predict the distance per unit of fuel
5 - as a function of the vehicle features.
) . i s ' ® \We consider the following variables:
: "'?-h,.., :.!,i ...-‘-'-""“:‘ ® The city distance per unit of fuel (km/L,
e city.distance)
C ERRNE] - ® The engine size (L, engine.size)
T i ] ® The number of cylinders (n.cylinders)
1500 ‘3’3 ',i: I ! {nni ® The curb weight (kg, curb.weight)
tono | " P Sl il = The fuel type (gasoline or diesel, fuel).

5 10 15 201 2 3 4 5 25 50 75 10.0125

We assume you are already familiar with linear models. The following is a brief recap rather than a
full discussion.
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Linear regression
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Let us consider the variables city.distance (y),
engine.size (z) and fuel (z).

A simple linear regression

Yi:/81+52$i+€i7 i:]-a"'ana

could be easily fit by least squares...

.. but the plot suggests that the relationship between
city.distance and engine.size is well
approximated by a function.

.. and also that fuel has a non-negligible effect on the
response.
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Regression models

A and for modeling the relationship between a vector of fixed
covariates x; = (z;,...,Z;)’ € R? and a random variable ¥; € R is

Yi:f(zci;ﬂ)—i—ei, 1=1,...,n,

where the “errors” ¢; are iid random variables, having zero mean and variance o2,

® To estimate the unknown parameters (3, a possibility is to rely on the least squares criterion: we
seek the of the objective function

D(B) = Z{yi — f(=i;8)}°,

using n pairs of covariates &; = (x;1, . - - ,w,-p)T and the observed realizations y; of the random
variables Y;, for 2 = 1,...,n. The is denoted by B

—_— A

® The predicted values are §; = E(Y;) = f(x;8), fori=1,...,n.
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Linear models

m |et us consider again the variables city.distance (y), engine.size (x) and fuel (z).

= Which function f(z, z; 8) should we choose?
m A first attempt is to consider a combined with a dummy variable
f(z,2; 8) = B+ fax + B3z® + Pz’ + B51(z = gas),

which is a special instance of

Linear model

In a linear model the response variable Y is related to the covariates through the function
E(Y;) = f(®i; 8) = iz + -+ + BpTip = 33;7’15,

where @; = (z;1,...,2;)" is a vector of and 8= (Bi,-..,B,)" is the corresponding

vector of
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Matrix notation

® The are collected in the random vector Y = (Y73,...,Y,)T, whose
observed realization is y = (yi,...,y,)"
® The design matrix is a n X p matrix, comprising the covariate's values, defined by
wll o o o mlp
X —

mnl e o o a'j‘np

® The jth variable (column) is denoted with &;, whereas the ith observation (row) is x;:

X = (il,...,ip) = (%1,...,wn)T.
® Then, a linear model can be written using the
Y = X3 +e,

where € = (e1,...,€,)T is a vector of iid error terms with zero mean and variance o?.
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Linear regression: estimation |

® The optimal set of coefficients B is the minimizer of the
D(B) = (y — XB) (y — XB) = |ly - XBII%,

also known as - where

lyll = y/v? + - + 22,

denotes the Euclidean norm.

Least square estimate (OLS)

If the design matrix has full rank, that is, if rk(XTX) — p, then the has an
explicit solution:

B=(XTX)1Xx"y.
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Linear regression: estimation ||

® |n matrix notation, the predicted values can be obtained as
y=XB=Hy, H-=XXTX)"'Xx",

where H isan xXn matrix sometimes called hat matrix. The matrix is
idempotent, meaning that H = H” and H?> = H.

= The quantity D(f) is the so-called deviance, which is equal to
D(B) = |ly - §II* =y' (I - H)y.

® Moreover, a typical estimate for the o2 is obtained as follows:

m To evaluate the goodness of fit, we can calculate the

R2_1_ (“Residual deviance™) 1 > (Y — Z?i)z.
(“Total deviance”) S (g — 7)?
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Linear regression: inference

= Recall that the errors € have zero mean E(e) = 0 and are var(e) = o21,.

" Then, the estimator 3 is E(B) = B and its variance is var(8) = o*(XTX)~'. Since o2 is

also unknown, we can estimate the variances of 8 as follows:
var(f) = s> (X1 X)L

®m The of the components ofB correspond to the square root of the diagonal of the
above covariance matrix.

» S iid
® |et us additionally assume that the errors follow a Gaussian distribution: €; ~ N(0, o2).

A

® This implies that the of the B is
B~ Ny(B,0*(XTX)7).

® Confidence interval and Wald's tests can be obtained through classical inferential theory.
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Linear regression: diagnostic

= The diagonal elements h; € [0, 1] of the matrix H are called leverages and it holds
var(Y;) = o?h;, var(Y; — Y;) = o2(1 — hy), cor(Y;,Y;) = v/ h;.

The leverage h; determines the with which ¥; predicts Y;. For large h; close to 1,
cor(YZ,Y-) ~ 1, therefore changes of a single point Y; leads to significant changes in Y;.
m | everages also appear in the definition of standardized residuals:

_— T Y@y

" V(I —hi) /(1)

where 7; = y; — x5 are the (raw)

® An observation is influent if it has high leverage and high squared residual. c; is
based on the change in B when the observation is removed:

¢ =B —B)var(B) (8- p) = —.

Cook's distance is considered relatively large when ¢; > 1.
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Leverages, outliers and influence points

Cook's distance = 0.6
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Cook's distance = 0.42

0.0 0.5 1.0 1.5 2.0

. leverage, not outlier. Central plot: outlier, not leverage.
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Cook's distance = 9.88
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A first model: estimated coefficients

® Qur first attempt for predicting city.distance (y) via engine.size (x) and fuel (z) is:

f(z,2;8) = B1 + Baz + Bsx® + Buz® + BsI(z = gas).

® \We obtain the following for the regression coefficients B
term estimate std.error statistic p.value
(Intercept) 28.045 3.076 9.119 0.000
engine.size -10.980 3.531 -3.109 0.002

engine.size”2 2.098 1.271 1.651 0.100
engine.size”3 -0.131 0.139 -0.939 0.349
fuel_gas -3.214 0.427 -7.523 0.000

m Moreover, the coefficient R? and the residual standard deviation s are:

r.squared sigma deviance

0.5973454 1.790362 634.6687
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A first model: fitted values
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A first model: graphical diagnostics
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Comments and criticisms

® |s this a good model?

® The overall fit seems satisfactory at first glance, especially if we aim at predicting the urban
distance of cars when average engine size (i.e., between 1.5L and 3L).

®m However, the plot of the r; = y; — ¥; suggests that the homoschedasticity assumption, i.e.

2

var(e;) = o, might be violated.

® Also, this model is unsuitable for . Indeed:
® |t has no grounding in physics or engineering, leading to difficulties when interpreting the trend
and to paradoxical situations.
® For example, the curve of the set of gasoline cars shows a local minimum around 4.6L and then
rises again!

® |t is plausible that we can find a better one, so what's next?
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Linear models and non-linear patterns

® A significant advantage of linear models is that they can describe non-linear relationships via variable
transformations such as polynomials, logarithms, etc.

m This gives the statistician a lot of modeling flexibility. For instance, we could let:

logYi:/81+ﬂ210gwi+ﬁ3-[(zi:gas)+6i7 1=1,...,n.

® This specification is , it fixes the domain issues, and it imposes a monotone
relationship between engine size and consumption.

term estimate std.error statistic p.value
(Intercept) 3.060 0.047  64.865 0
log(engine.size) -0.682 0.040 -17.129 0
fuel_gas -0.278 0.038 -7.344 0
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Second model: fitted values
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Second model: graphical diagnostics

Residuals
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Comments and criticisms

® The goodness of fit indices are the following:

r.squared.original r.squared sigma deviance

0.5847555 0.6196093 0.1600278 5.121777

® Do not mix apple and | Compare R?s only if they refer to the same scale!

® This second model is more parsimonious, and yet it reaches satisfactory predictive performance.

® |t is also more coherent with the nature of the data: the predictions cannot be negative, and the
relationship between engine size and the consumption is monotone.

® Yet, there is still some heteroscedasticity in the residuals — is this is due to a missing covariate that
has not been included in the model?
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A third model: additional variables

m |et us consider two additional variables: curb.weight (w) and n.cylinders (v).

® A richer model, therefore, could be:

logY; = p1 + B2logx; + B3logw; + Bal(z = gas) + BsI(vi = 2) + €,

fort =1,...,n. The estimates are:
term estimate std.error statistic p.value
(Intercept) 9.423 0.482 19.549 0.000
log(engine.size) -0.180 0.051 -3.504 0.001
log(curb.weight) -0.943 0.072 -13.066 0.000
fuel_gas -0.353 0.022 -15.934 0.000
cylinders2_TRUE -0.481 0.052 -0.301 0.000
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A third model: graphical diagnostics
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Comments and criticisms

® The goodness of fit greatly improved:

r.squared.original r.squared sigma deviance
0.869048 0.88319199 0.0896089 1.589891

® |n this third model, we handled the appearing in the residual plots, which it turns out are
identified by the group of cars having 2 cylinders.

® The diagnostic plots are also very much improved, although still not perfect.

® The estimates are coherent with our expectations, based on common knowledge. Have a look at the
book (Azzalini and Scarpa (2012)) for a detailed explanation of !

® The car dataset is available from the textbook (A&S) website:

m Dataset http://azzalini.stat.unipd.it/Book-DM /auto.dat
m Variable description http://azzalini.stat.unipd.it/Book-DM /auto.names
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Misspecification and remedies
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Assumptions and misspecification

Classical assumptions of linear models

= (A.1) Linear structure, namely Y = X + € with E(€) = 0, implying E(Y') = X 5. 1
= (A.2) and of the errors, namely var(€) = o*1,.

= (A.3) , namely € ~ N,,(0,021I,). In other words, the errors ¢; S N(0,0?) are iid

Gaussian random variables with zero mean and variance o2.

It is also commonly asked that rk(X) = p, otherwise the model is not identifiable.

® |f one of the above assumptions is violated, it is not necessarily a huge problem, because

® the OLS estimator B is fairly to misspecification;

= simple fixes (variable transformations, standard error corrections) are available.

1. If the intercept is included in X, the errors automatically satisfy the property E(e) = 0.
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Robust estimation and assumptions

® A plane can still fly with one of its engines on fire, but this is hardly an appealing situation.

® Similarly, robust estimators may work under model misspecification, but this does not mean we
should neglect checking whether the original assumptions hold.
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Non-normality of the errors | |

m |et us consider the case in which assumptions (A.1)-(A.2) are valid but (A.3) , that is
E(e) = 0 and var(e) = o1, but € does follow distribution.

® For example, €; may follow a Laplace distribution, a skew-Normal, a logistic distribution, a Student's

t distribution, etc.

® The OLS estimate B is anymore the estimator, but it preserves most of

its properties and a geometric interpretation.

Under (A.1)-(A.2), even without requiring normality of the errors (A.3), we obtain the usual

formulas:

E(B) =4,  var(f)=c*(XTX)

Moreover, because of Gauss-Markov theorem, the OLS estimator B is the most within the
class of linear and unbiased estimators (BLUE) for any distribution of the errors €.

® |n fact, note that the of the Gauss-Markov theorem requires (A.1)-(A.2) but (A.3).
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Non-normality of the errors |I

® \When the errors are non Gaussian the exact inferential results are not valid. In particular 8 does
not follow anymore a Gaussian distribution.

= However, a can be invoked under very mild conditions on the design matrix
X.
® Thus, when the sample size n is large enough, then the following holds

B AN, (8,0 (XTX)™),

from which confidence intervals and test statistics can be obtained as usual. The approximation is
if the errors are symmetric around 0.

Non-normality of the errors is : the OLS estimator preserves most of its
properties, including approximate normality for sufficiently large n.

There is often an on testing whether the residuals are Gaussian. However, even if
normality is rejected, the practical implications are minimal.
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Heteroschedasticity of the errors | ||

m Suppose now that the linearity assumption (A.1) is valid but of the errors (A.2)
is . Instead, we consider heteroschedastic errors:
var(e) = ¥, orequivalenty var(Y;)=o02, i=1,...,n
where ¥ = diag(c?,...,02) is a diagonal matrix with positive entries.
® The OLS estimator is still , with a modified covariance structurel

EB) =8, var(f)=(X'X)'X"sx(X"Xx)
If in addition we assume Gaussianity of the errors, that is € ~ N,,(0, X), then
B~ N,(8,(X"X) ' X"SX (X" X) ).
Under suitable but mild conditions on X and X, the estimator is also

1. These results are valid even when the matrix 3 is non-diagonal. This is useful to model correlated
responses.
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Heteroschedasticity of the errors ||

The OLS estimator in presence of heteroschedasticity still gives a good point estimate. However,
the OLS estimator is and the classical are

A potential approach is to of the OLS estimator in this scenario and correct
the standard errors.

The elements of X are . but we can estimate them from the data. Note that
var(r;) = var(y; — a:fﬁ) = o2(1 — hy),

suggesting the estimate 62 = r2/(1 — h;).

This leads to the so-called of the covariance matrix:
var(3) = (XTX)  X"EX(XTX)

where 3 = diag(t1, . . .,,) and @; = 72/(1 — hy).

These are known as White’s heteroscedasticity-consistent standard errors. -

2 2 2

. White originally proposed the simpler version 67 = r?. Another variant is 62 = r?/(1 — h;)>.

P
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Weighted least squares | [

® | et us consider again the case of heteroschedastic errors:

_ : o ,
var(€) = 02Q!, orequivalenty var(Y;)=o’=—, i=1,...,n
Wi
where 2 = diag(ws,...,w,) are positive . However, here we assume that the weights
wi, . ..,w, are known, a common situation in survey design.
m | et us define the quantities:

Y =02y, XxX*=0YX.
This is equivalent to say that ¥;" = ,/w;Y; and x;kj = y/w;Ti;. Then, it is easy to show that

E(Y*)=X*8, var(Y*)=oQY2Q71QY2 = 521,

namely the (A.1) and (A.2) are valid in the transformed scale.
® |n other words, a suitable , we reconducted the problem to a standard linear
model.

Home page

32 /44

BICOCCA


https://tommasorigon.github.io/StatIII

33/ 44

Weighted least squares Il [

® Thus an estimator for 3, based on the transformed data, is obtained minimizing the deviance
Dyis(B) = (y* - X"B) (v — X"8) = (y— XB)' Qy — XB)

= sz —chﬂ

which is a version of the original quadratic loss, with

® The resulting OLS estimate minimizing Dyi5(3) in the transformed and original scales is
B = (X XTHX) Ty = (XTQX) ' X Qy
and it is referred to as weighted least squares estimator of 3.

® Such an estimator is and (BLUE), with
E(Bwls) — Ba Var(/éwls) — Uz(XTQX)_l

Moreover, if € ~ N, (0, a2ﬂ_1) it also coincides with the estimator.
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Variable transformations

® Another remedy for was already applied in the analysis of the car dataset, namely
through variable transformation.

While the model may have been incorrectly specified for the original data, it could become
appropriate once the are considered, namely

g(}/;) — hl(wZ)IB]. Tt hp(wz)/Bp T €, 1= 17 ey T

where g(-) and h;(:) for j =1,...,p are and known functions.

m This idea is conceptually simple and powerful. It also shows that linear models are capable of
capturing non-linear relationships, as long as they remain

= However, choosing g(:) and h;(-) in practice is . In our case study, we proceeded by trial
and error and used contextual information to guide our final choice.

® Regarding the functions h;(-), polynomial terms are a simple and common option. More advanced
approaches based on will be discussed in Data Mining.
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Box-Cox transform

Box-Cox transform

If the data are y; are , we may consider a parametric class of transformations:

g/\(y) — ) A 7é 0.

and g)(y) = logy when X\ = 0. This is the celebrated Box-Cox transform.

The case A =1 corresponds to no transformation, A = 1/2 to the square root, A = 0 to the
logarithm, and A = —1 to the reciprocal.

® \We estimate A from the data using . so that the data themselves can inform us

about the best transformation. We assume

a(Y;) :mfﬂ+ei, €; NN(O,02), 1=1,...,n.

® The aim of the transformation is to produce a response for which the variance of ¢; is constant with
an distribution.
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Box-Cox transform: derivation | [__|

= By assumption, the distribution of the transformed data Z, = (g\(Y1),...,9x(Y,))? is Gaussian,

therefore their joint density is

1 1
fZ(Z/\):WeXP{ 2% 2(ZA—X5) (z,\—Xﬁ)}.

m Using standard tools of probability theory, we can obtain the density of the

n

0 ; 09x(y; _
(@) = falanton)s- - o) TT |22 where |20,
i1 Yi Yi
The additional term is the determinant of the of the transformation.
® The log-likelihood therefore is
1
£L(B,0% ) = ——loga — 55 (m = XB) (2= XB) + (A - 1) Zlogyz

Home page En:ucn%


https://tommasorigon.github.io/StatIII

37 /44

Box-Cox transform: derivation Il [__|

m Note that, for any given value of A, the maximum likelihood estimates are

- R 1 N N
Br=(X"X)'X"z),, &= "(2a— XB\)(2x— XBh),
n

= \We can the above estimates into the log-likelihood. This gives the profile log-likelihood for
A, which admits a very simple expression:

N R n " n
tp(\) = £(Br,63,A) = —5 1og &3 + (A — 1) ) logy;,
=1

which must be over A\, e.g. using optim.

® The optimal value A\ = arg max £p(\), as well as a confidence interval for it, may offer guidance in
choosing the right transformation.

Box and Cox suggested using this approach as an exploratory tool. For instance, an optimal value

~

A = 0.4210283 is but it could suggest a square root transformation.

Home page ;II:I]BI:%


https://tommasorigon.github.io/StatIII

Home page

38 / 44

Box-Cox transform for the auto dataset

log-Likelihood
-120 -100 -80

-140

-160

2 : 0 : 2
A
® The Box-Cox transform in the auto dataset suggests a transformation:
% = 81+ Bozi + Bsw; + Bal(zi = gas) + B51(vi = 2) + €,
which is a good alternative to our model based on logarithms of y;, z;, and w; (but...).
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A fourth model: graphical diagnostics
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Variance stabilizing transformations | [

= |et Y; ~ Poisson(y;) with mean E(Y;) = u; = f(=;; 8) = var(Y;). Note that

is asymptotically Gaussian for large values of u;. However, data are

® |n modeling count data, we could transform the counts so that, at least . the variance
of g(Y;) is constant and ordinary least squares methods can be used.

® As an application of the delta method, the following linearization holds
9(Yi) — g(w:) = (Yi — pi)g' (i),  which implies  var{g(¥;)} = ¢'(1;)*var(¥;).

In the Poisson case var{g(Y;)} ~ i g'(u:)? and we would like this to be

® The choice g(y) = /9, called transformation, gives
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Variance stabilizing transformations Il [

m | et Y; ~ Binomial(7;, m;), with success probability ; = f(@;; 8) and trials m;. For large values of
m;, the holds

}fi &N(m@-m, mﬂri(l — 7'('@))

However, the data are , because var(Y;) = m;m;(1 — m;).

® Thus, a variance stabilizing transformation in this case is

because in fact we have that

v 2N
var(gm, (i) ~ (\/1 —(2m — 1)? mz) imi(1 i) = 1.

® |f the data are gamma distributed, the transform is g(y) = logy.
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Limitations of variable transformations |

® Variable transformations are appealing for their simplicity and have a long history in statistics.
However, they also have some

® |n the case of transformations applied only to the explanatory variables, the model is
Yl:hl(wl)ﬂl—k—khp(w,)ﬁp—l—ez, ’I::].,...,’n,,

Thus, the coefficient 8; can be as the change in the mean of Y;

corresponding to a one-unit increase z;; — x;; + 1 of the jth covariate.

® |n the case of transformations of the variable we let E(g(Y;)) = @I 8. However:
g(E(Y:)) # E(g(Y:)) = EY)#g (i)

Thus §; = g~ *(x!B) is a reasonable prediction for Y; and for its

® When g(y) = logy this distinction can be made explicit, because we have
g '(B{g(Y)}) = g7 (zi B) = exp(; B),  E(Yi) = exp(a; B+ 0°/2),
the former being the of Y;, whereas the latter is the usual mean.
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Limitations of variable transformations |l

Suppose Y; ~ Binomial(7, m;). The variance stabilizing transformation is not fully satisfactory:

m |t the , because it models E{g(Y;)} instead of E(Y;);

® |t is an asymptotic approximation, and is only valid for m; — oo.

® The transform depends on m;, therefore we cannot make predictions for a generic covariate value

ax; without knowing the associated m;.

Besides, this transform is clearly not applicable when m; =1 and Y; € {0,1}, a very common

problem called

® |f we know that Y; follows, say, a Bernoulli or a Gamma distribution, then we should use the

appropriate likelihood rather than a

® Generalized Linear Models provide a to the above problem.
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