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“Everything should be made as simple as
possible, but not simpler”

Attributed to Albert Einstein

This unit will cover the following topics:

Recap: linear models and the modeling process

Robustness of OLS estimates, sandwich estimators

Weighted least squares

Box-Cox transform, variance stabilizing transformations

The main theme is: what should we do when the
assumptions of linear models are violated?

We will push the linear model to its limit, using it even
when is not supposed to work.

The symbol 📖 means that a few extra steps are discussed
in the handwritten notes.

The content of this Unit is covered in Chapter 1 of Salvan et al. ( ). Alternatively, see Chapter
2 of Agresti ( ) or Chapter 5 of Azzalini ( ).
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The modeling process
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Car data (diesel or gas)

We consider data for  models of cars in

circulation in 1985 in the USA.

We want to predict the distance per unit of fuel
as a function of the vehicle features.

We consider the following variables:

The city distance per unit of fuel (km/L,
city.distance)

The engine size (L, engine.size)

The number of cylinders (n.cylinders)

The curb weight (kg, curb.weight)

The fuel type (gasoline or diesel, fuel).

We assume you are already familiar with linear models. The following is a brief recap rather than a
full discussion.

n = 203
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Linear regression

Let us consider the variables city.distance ( ),

engine.size ( ) and fuel ( ).

A simple linear regression

could be easily fit by least squares…

… but the plot suggests that the relationship between
city.distance and engine.size is not well
approximated by a linear function.

… and also that fuel has a non-negligible effect on the
response.

y

x z

Y ​ =i β ​ +1 β ​x ​ +2 i ϵ ​, i =i 1, … ,n,
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Regression models

A general and more flexible formulation for modeling the relationship between a vector of fixed
covariates  and a random variable  is

where the “errors”  are iid random variables, having zero mean and variance .

x ​ =i (x ​, … ,x ​) ∈i1 ip
T Rp Y ​ ∈i R

Y ​ =i f(x ​;β) +i ϵ ​, i =i 1, … ,n,

ϵ ​i σ2

To estimate the unknown parameters , a possibility is to rely on the least squares criterion: we

seek the minimum of the objective function

using  pairs of covariates  and the observed realizations  of the random

variables , for . The optimal value is denoted by .

β

D(β) = ​
{y ​

−
i=1

∑
n

i f(x ​;β)} ,i
2

n x ​ =i (x ​, … ,x ​)i1 ip
T y ​i

Y ​i i = 1, … ,n ​β̂

The predicted values are , for ​ ​ =ŷi ​ =E(Y ​)i f(x ​
;

​
)i β̂ i = 1, … ,n.
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Linear models

Let us consider again the variables city.distance ( ), engine.size ( ) and fuel ( ).

Which function  should we choose?

y x z

f(x, z;β)

A first attempt is to consider a polynomial term combined with a dummy variable

which is a special instance of linear model.

f(x, z;β) = β ​ +1 β ​x +2 β ​x +3
2 β ​x +4

3 β ​I(z =5 gas),

In a linear model the response variable  is related to the covariates through the function

where  is a vector of covariates and  is the corresponding

vector of coefficients.

Linear model

Y ​i

E(Y ​) =i f(x ​;β) =i β ​x ​ +1 i1 ⋯ + β ​x ​ =p ip x ​β,i
T

x ​ =i (x ​, … ,x ​)i1 ip
T β = (β ​, … ,β ​)1 p

T
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Matrix notation

The response random variables are collected in the random vector , whose

observed realization is .

The design matrix is a  matrix, comprising the covariate’s values, defined by

Y = (Y ​, … ,Y ​)1 n
T

y = (y ​, … , y ​)1 n
T

n × p

X = ​ ​ ​ ​ ​ .

x ​11

⋮
x ​n1

⋯

⋱
⋯

x ​1p

⋮
x ​np

The th variable (column) is denoted with , whereas the th observation (row) is :j ​x~j i x ​i

X = ( ​, … , ​) =x~1 x~p (x ​, … ,x ​) .1 n
T

Then, a linear model can be written using the compact notation:

where  is a vector of iid error terms with zero mean and variance .

Y = Xβ + ϵ,

ϵ = (ϵ ​, … , ϵ ​)1 n
T σ2
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Linear regression: estimation I

The optimal set of coefficients  is the minimizer of the least squared criterion

also known as residual sum of squares (RSS), where

denotes the Euclidean norm.

​β̂

D(β) = (y −Xβ) (y −T Xβ) = ∣∣y −Xβ∣∣ ,2

∣∣y∣∣ = ​,y ​ + ⋯ + y ​1
2

n
2

If the design matrix has full rank, that is, if , then the least square estimate has an

explicit solution:

Least square estimate (OLS)

rk(X X) =T p

​ =β̂ (X X) X y.T −1 T
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Linear regression: estimation II

In matrix notation, the predicted values can be obtained as

where  is a  projection matrix matrix sometimes called hat matrix. The matrix is

idempotent, meaning that  and .

​ =ŷ X ​ =β̂ Hy, H = X(X X) X ,T −1 T

H n × n

H = HT H =2 H

The quantity  is the so-called deviance, which is equal to

Moreover, a typical estimate for the residual variance  is obtained as follows:

To evaluate the goodness of fit, we can calculate the coefficient of determination:

D( ​)β̂

D(
​
) =β̂ ∣∣y − ​∣∣ =ŷ 2 y (I ​ −T

n H)y.

σ2

s =2
​ =

n − p

D( ​)β̂
​ ​(y ​ −

n − p

1

i=1

∑
n

i x ​ ​) .i
T β̂ 2

R =2 1 − ​ =
(“Total deviance”)

(“Residual deviance”)
1 − ​ .

​(y ​ − ​)∑i=1
n

i ȳ 2

​(y ​ − ​ ​)∑
i=1
n

i ŷi
2
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Linear regression: inference

Recall that the errors  have zero mean  and are uncorrelated .

Then, the estimator  is unbiased  and its variance is . Since  is

also unknown, we can estimate the variances of  as follows:

The standard errors of the components of  correspond to the square root of the diagonal of the
above covariance matrix.

ϵ E(ϵ) = 0 var(ϵ) = σ I ​

2
n

​β̂ E( ​) =β̂ β var( ​) =β̂ σ (X X)2 T −1 σ2

​β̂

( ​) =var β̂ s (X X) .2 T −1

​β̂

Let us additionally assume that the errors follow a Gaussian distribution: .

This implies that the distribution of the estimator  is

Confidence interval and Wald’s tests can be obtained through classical inferential theory.

ϵ ​i ∼iid N(0,σ )2

β̂

​ ∼β̂ N ​(β,σ (X X) ).p
2 T −1
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Linear regression: diagnostic

The diagonal elements  of the matrix  are called leverages and it holds

The leverage  determines the precision with which  predicts . For large  close to ,

, therefore changes of a single point  leads to significant changes in .

Leverages also appear in the definition of standardized residuals:

where  are the (raw) residuals.

h ​ ∈i [0, 1] H

var( ​) =Ŷi σ h ​, var(Y ​ −2
i i ​) =Ŷi σ (1 −2 h ​), cor(Y ​, ​) =i i Ŷi ​.h ​i

h ​i ​Ŷi Y ​i h ​i 1
cor(Y ​, ​) ≈i Ŷi 1 Y ​i ​Ŷi

​ =r~i ​ =
​s (1 − h ​)2

i

r ​i
​ ,
​s (1 − h ​)2

i

y ​ − x ​ ​i i
T β̂

r ​ =i y ​ −i x ​ ​i
T β̂

An observation is influent if it has high leverage and high squared residual. Cook’s distance  is

based on the change in  when the observation is removed:

Cook’s distance is considered relatively large when .

c ​i

​β̂

p ⋅ c ​ =i ( ​ −β̂ ​ ​) ( ​) ( ​ −β̂−i
Tvar β̂ −1 β̂ ​ ​) =β̂−i ​ ​ .r~i

2

p(1 − h ​)i

h ​i

c ​ ≥i 1
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Leverages, outliers and influence points

Left plot: leverage, not outlier. Central plot: outlier, not leverage. Right plot: influence point =
leverage + outlier.
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A first model: estimated coefficients

Our first attempt for predicting city.distance ( ) via engine.size ( ) and fuel ( ) is:

We obtain the following summary for the regression coefficients .

term estimate std.error statistic p.value

(Intercept) 28.045 3.076 9.119 0.000

engine.size -10.980 3.531 -3.109 0.002

engine.size^2 2.098 1.271 1.651 0.100

engine.size^3 -0.131 0.139 -0.939 0.349

fuel_gas -3.214 0.427 -7.523 0.000

Moreover, the coefficient  and the residual standard deviation  are:

r.squared sigma deviance

0.5973454 1.790362 634.6687

y x z

f(x, z;β) = β ​ +1 β ​x +2 β ​x +3
2 β ​x +4

3 β ​I(z =5 gas).

​β̂

R2 s
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A first model: fitted values
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A first model: graphical diagnostics
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Comments and criticisms

Is this a good model?

The overall fit seems satisfactory at first glance, especially if we aim at predicting the urban
distance of cars when average engine size (i.e., between  and ).1.5L 3L

However, the plot of the residuals  suggests that the homoschedasticity assumption, i.e. 

, might be violated.

r ​ =i y ​ −i ​ ​ŷi

var(ϵ ​) =i σ2

Also, this model is unsuitable for extrapolation. Indeed:

It has no grounding in physics or engineering, leading to difficulties when interpreting the trend
and to paradoxical situations.

For example, the curve of the set of gasoline cars shows a local minimum around  and then

rises again!

It is plausible that we can find a better one, so what’s next?

4.6L
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Linear models and non-linear patterns

A significant advantage of linear models is that they can describe non-linear relationships via variable
transformations such as polynomials, logarithms, etc.

This gives the statistician a lot of modeling flexibility. For instance, we could let:

log Y ​ =i β ​ +1 β ​ log x ​ +2 i β ​I(z ​ =3 i gas) + ϵ ​, i =i 1, … ,n.

This specification is linear in the parameters, it fixes the domain issues, and it imposes a monotone
relationship between engine size and consumption.

term estimate std.error statistic p.value

(Intercept) 3.060 0.047 64.865 0

log(engine.size) -0.682 0.040 -17.129 0

fuel_gas -0.278 0.038 -7.344 0
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Second model: fitted values
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Second model: graphical diagnostics
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Comments and criticisms

The goodness of fit indices are the following:

r.squared.original r.squared sigma deviance

0.5847555 0.6196093 0.1600278 5.121777

Do not mix apple and oranges! Compare s only if they refer to the same scale!R2

This second model is more parsimonious, and yet it reaches satisfactory predictive performance.

It is also more coherent with the nature of the data: the predictions cannot be negative, and the
relationship between engine size and the consumption is monotone.

Yet, there is still some heteroscedasticity in the residuals — is this is due to a missing covariate that
has not been included in the model?
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A third model: additional variables

Let us consider two additional variables: curb.weight ( ) and n.cylinders ( ).

A richer model, therefore, could be:

for . The estimates are:

w v

log Y ​ =i β ​ +1 β ​ log x ​ +2 i β ​ logw ​ +3 i β ​I(z ​ =4 i gas) + β ​I(v ​ =5 i 2) + ϵ ​,i

i = 1, … ,n

term estimate std.error statistic p.value

(Intercept) 9.423 0.482 19.549 0.000

log(engine.size) -0.180 0.051 -3.504 0.001

log(curb.weight) -0.943 0.072 -13.066 0.000

fuel_gas -0.353 0.022 -15.934 0.000

cylinders2_TRUE -0.481 0.052 -9.301 0.000
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A third model: graphical diagnostics
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Comments and criticisms

The goodness of fit greatly improved:

r.squared.original r.squared sigma deviance

0.869048 0.8819199 0.0896089 1.589891

In this third model, we handled the outliers appearing in the residual plots, which it turns out are
identified by the group of cars having 2 cylinders.

The diagnostic plots are also very much improved, although still not perfect.

The estimates are coherent with our expectations, based on common knowledge. Have a look at the
book (Azzalini and Scarpa ( )) for a detailed explanation of !

The car dataset is available from the textbook (A&S) website:

Dataset 

Variable description 

2012 β ​4

http://azzalini.stat.unipd.it/Book-DM/auto.dat

http://azzalini.stat.unipd.it/Book-DM/auto.names
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Misspecification and remedies
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Assumptions and misspecification

(A.1) Linear structure, namely  with , implying . 1

(A.2) Homoschedasticity and uncorrelation of the errors, namely .

(A.3) Gaussianity, namely . In other words, the errors  are iid

Gaussian random variables with zero mean and variance .

It is also commonly asked that , otherwise the model is not identifiable.

If one of the above assumptions is violated, it is not necessarily a huge problem, because

the OLS estimator  is fairly robust to misspecification;

simple fixes (variable transformations, standard error corrections) are available.

1. If the intercept is included in , the errors automatically satisfy the property .

Classical assumptions of linear models

Y = Xβ + ϵ E(ϵ) = 0 E(Y ) = Xβ

var(ϵ) = σ I ​

2
n

ϵ ∼ N ​(0,σ I ​)n
2

n ϵ ​i ∼iid N(0,σ )2

σ2

rk(X) = p

​β̂

X E(ϵ) = 0
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Robust estimation and assumptions

A plane can still fly with one of its engines on fire, but this is hardly an appealing situation.

Similarly, robust estimators may work under model misspecification, but this does not mean we
should neglect checking whether the original assumptions hold.
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Non-normality of the errors I 📖

Let us consider the case in which assumptions (A.1)-(A.2) are valid but (A.3) is not, that is
 and , but  does not follow a Gaussian distribution.

For example,  may follow a Laplace distribution, a skew-Normal, a logistic distribution, a Student’s

t distribution, etc.

E(ϵ) = 0 var(ϵ) = σ I ​

2
n ϵ

ϵ ​i

The OLS estimate  is not anymore the maximum likelihood estimator, but it preserves most of
its properties and a geometric interpretation.

Under (A.1)-(A.2), even without requiring normality of the errors (A.3), we obtain the usual
formulas:

Moreover, because of Gauss-Markov theorem, the OLS estimator  is the most efficient within the
class of linear and unbiased estimators (BLUE) for any distribution of the errors .

In fact, note that the proof of the Gauss-Markov theorem requires (A.1)-(A.2) but not (A.3).

​β̂

E( ​) =β̂ β, var( ​) =β̂ σ (X X) .2 T −1

​β̂

ϵ
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Non-normality of the errors II

When the errors are non Gaussian the exact inferential results are not valid. In particular  does
not follow anymore a Gaussian distribution.

However, a central limit theorem can be invoked under very mild conditions on the design matrix
.

Thus, when the sample size  is large enough, then the following approximation holds

from which confidence intervals and test statistics can be obtained as usual. The approximation is
excellent if the errors are symmetric around .

​β̂

X

n

​
N

​
(β,σ (X X) ),β̂ ∼̇ p

2 T −1

0

Non-normality of the errors is not a major concern: the OLS estimator preserves most of its
properties, including approximate normality for sufficiently large .

There is often an over-emphasis on testing whether the residuals are Gaussian. However, even if
normality is rejected, the practical implications are minimal.

n
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Heteroschedasticity of the errors I 📖

Suppose now that the linearity assumption (A.1) is valid but homoschedasticity of the errors (A.2)
is not. Instead, we consider heteroschedastic errors:

where  is a diagonal matrix with positive entries.

The OLS estimator is still unbiased, with a modified covariance structure1

If in addition we assume Gaussianity of the errors, that is , then

Under suitable but mild conditions on  and , the estimator is also consistent.

1. These results are valid even when the matrix  is non-diagonal. This is useful to model correlated
responses.

var(ϵ) = Σ, or equivalenty var(Y ​) =i σ ​, i =i
2 1, … ,n

Σ = diag(σ ​, … ,σ ​)1
2

n
2

E( ​) =β̂ β, var( ​) =β̂ (X X) X ΣX(X X) .T −1 T T −1

ϵ ∼ N ​(0,Σ)n

∼β̂ N ​(β, (X X) X ΣX(X X) ).p
T −1 T T −1

X Σ

Σ
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Heteroschedasticity of the errors II

The OLS estimator in presence of heteroschedasticity still gives a good point estimate. However,
the OLS estimator is not efficient and the classical standard errors are wrong.

A potential approach is to accept the inefficiency of the OLS estimator in this scenario and correct
the standard errors.

The elements of  are unknown, but we can estimate them from the data. Note that

suggesting the estimate .

This leads to the so-called sandwich estimator of the covariance matrix:

where  and .

These are known as White’s heteroscedasticity-consistent standard errors. 1

1. White originally proposed the simpler version . Another variant is .

Σ

var(r ​) =i var(y ​ −i x ​ ​) =i
T β̂ σ ​(1 −i

2 h ​),i

​ =σ̂i
2 r ​/(1 −i

2 h ​)i

( ​) =var β̂ (X X) X X(X X) ,T −1 T Σ̂ T −1

=Σ̂ diag( ​, … , ​)ŵ1 ŵn ​ =ŵi r ​/(1 −i
2 h ​)i

​ =σ̂i
2 r ​i

2
​ =σ̂i

2 r ​/(1 −i
2 h )i 2
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Weighted least squares I 📖

Let us consider again the case of heteroschedastic errors:

where  are positive weights. However, here we assume that the weights

 are known, a common situation in survey design.

Let us define the standardized quantities:

This is equivalent to say that  and . Then, it is easy to show that

namely the assumptions (A.1) and (A.2) are valid in the transformed scale.

In other words, after a suitable transformation, we reconducted the problem to a standard linear
model.

var(ϵ) = σ Ω , or equivalenty var(Y ​) =2 −1
i σ ​ =i

2
​ , i =

ω ​i

σ2
1, … ,n

Ω = diag(ω ​, … ,ω ​)1 n

ω ​, … ,ω ​1 n

Y =∗ Ω Y , X =1/2 ∗ Ω X.1/2

Y ​ =i
∗

​Y ​ω ​i i x ​ =ij
∗

​x ​ω ​i ij

E(Y ) =∗ X β, var(Y ) =∗ ∗ σ Ω Ω Ω =2 1/2 −1 1/2 σ I ​,2
n
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Weighted least squares II 📖

Thus an estimator for , based on the transformed data, is obtained minimizing the deviance

which is a weighted version of the original quadratic loss, with high weight = low variance.

The resulting OLS estimate minimizing  in the transformed and original scales is

and it is referred to as weighted least squares estimator of .

Such an estimator is unbiased and efficient (BLUE), with

Moreover, if  it also coincides with the maximum likelihood estimator.

β

​ ​

D ​(β)wls = (y −X β) (y −X β) = (y −Xβ) Ω(y −Xβ)∗ ∗ T ∗ ∗ T

= ​ω ​(y ​ − x ​β) .
i=1

∑
n

i i i
T 2

D ​(β)wls

​ ​ =β̂wls [(X ) X ] (X ) y =∗ T ∗ −1 ∗ T ∗ (X ΩX) X ΩyT −1 T

β

E( ​ ​) =β̂wls β, var( ​ ​) =β̂wls σ (X ΩX) .2 T −1

ϵ ∼ N ​(0,σ Ω )n
2 −1
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Variable transformations

Another remedy for misspecification was already applied in the analysis of the car dataset, namely
through variable transformation.

While the model may have been incorrectly specified for the original data, it could become
appropriate once the transformations are considered, namely

where  and  for  are non-linear and known functions.

g(Y ​) =i h ​(x ​)β ​ +1 i 1 ⋯ + h ​(x ​)β ​ +p i p ϵ ​, i =i 1, … ,n,

g(⋅) h ​(⋅)j j = 1, … , p

This idea is conceptually simple and powerful. It also shows that linear models are capable of
capturing non-linear relationships, as long as they remain linear in the parameters.

However, choosing  and  in practice is not simple. In our case study, we proceeded by trial

and error and used contextual information to guide our final choice.

g(⋅) h ​(⋅)j

Regarding the functions , polynomial terms are a simple and common option. More advanced

approaches based on splines will be discussed in .

h ​(⋅)j

Data Mining
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Box-Cox transform

If the data are  are positive, we may consider a parametric class of transformations:

and  when . This is the celebrated Box-Cox transform.

The case  corresponds to no transformation,  to the square root,  to the

logarithm, and  to the reciprocal.

Box-Cox transform

y ​i

g ​(y) =λ ​ , λ =
λ

y − 1λ

 0.

g ​(y) =λ log y λ = 0

λ = 1 λ = 1/2 λ = 0
λ = −1

We estimate  from the data using maximum likelihood, so that the data themselves can inform us

about the best transformation. We assume

The aim of the transformation is to produce a response for which the variance of  is constant with

an approximately normal distribution.

λ

g ​(Y ​) =λ i x ​β +i
T ϵ ​, ϵ ​ ∼i i N(0,σ ), i =2 1, … ,n.

ϵ ​i
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Box-Cox transform: derivation I 📖

By assumption, the distribution of the transformed data  is Gaussian,

therefore their joint density is

Using standard tools of probability theory, we can obtain the density of the original data:

The additional term is the determinant of the Jacobian of the transformation.

The log-likelihood therefore is

Z ​ =λ (g ​(Y ​), … , g ​(Y ​))λ 1 λ n
T

f ​(z ​) =Z λ ​ exp − ​ (z ​ −Xβ) (z ​ −Xβ) .
(2πσ )2 n/2

1
{

2σ2

1
λ

T
λ }

f ​(y) =Y f ​(g ​(y ​), … , g ​(y ​)) ​ ​ ​ ​ , where ​ ​ ​ =Z λ 1 λ n

i=1

∏
n

∂y ​i

∂g ​(y ​)λ i

∂y ​i

∂g ​(y ​)λ i
y ​.i
λ−1

ℓ(β,σ ,λ) =2 − ​ log σ −
2
n 2

​ (z ​ −
2σ2

1
λ Xβ) (z ​ −T

λ Xβ) + (λ − 1) ​ log y ​.
i=1

∑
n

i
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Box-Cox transform: derivation II 📖

Note that, for any given value of , the maximum likelihood estimates are

We can plug-in the above estimates into the log-likelihood. This gives the profile log-likelihood for
, which admits a very simple expression:

which must be numerically maximized over , e.g. using optim.

The optimal value , as well as a confidence interval for it, may offer guidance in

choosing the right transformation.

λ

​ ​ =β̂λ (X X) X z ​, ​ =T −1 T
λ σ̂λ

2
​ (z ​ −

n

1
λ X ​ ​) (z ​ −β̂λ

T
λ X ​ ​),β̂λ

λ

ℓ ​(λ) =P ℓ( ​ ​, ​,λ) =β̂λ σ̂λ
2 − ​ log ​ +

2
n

σ̂λ
2 (λ − 1) ​ log y ​,

i=1

∑
n

i

λ

=λ̂ arg max ℓ ​(λ)P

Box and Cox suggested using this approach as an exploratory tool. For instance, an optimal value
 is hard to interpret but it could suggest a square root transformation.=λ̂ 0.4210283
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Box-Cox transform for the auto dataset

The Box-Cox transform in the auto dataset suggests a reciprocal transformation:

which is a good alternative to our model based on logarithms of , and  (but…).

​ =
Y ​i

1
β ​ +1 β ​x ​ +2 i β ​w ​ +3 i β ​I(z ​ =4 i gas) + β ​I(v ​ =5 i 2) + ϵ ​,i

y ​,x ​i i w ​i
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A fourth model: graphical diagnostics
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Variance stabilizing transformations I 📖

Let  with mean . Note that

is asymptotically Gaussian for large values of . However, data are heteroschedastic.

In modeling count data, we could transform the counts so that, at least approximately, the variance
of  is constant and ordinary least squares methods can be used.

Y ​ ∼i Poisson(μ ​)i E(Y ​) =i μ ​ =i f(x ​;β) =i var(Y ​)i

Y ​ N(μ ​,μ ​),i ∼̇ i i

μ ​i

g(Y ​)i

As an application of the delta method, the following linearization holds

In the Poisson case  and we would like this to be constant.

g(Y ​) −i g(μ ​) ≈i (Y ​ −i μ ​)g (μ ​),  which implies  var{g(Y ​)} ≈i
′

i i g (μ ​) var(Y ​).′
i

2
i

var{g(Y ​)} ≈i μ ​ g (μ ​)i
′

i
2

The choice , called variance stabilizing transformation, givesg(y) = ​y

var( ​) ≈Y ​i ​ μ ​ =(
2 ​μ ​i

1
)

2

i ​ .
4
1

Home page

40 / 44

https://tommasorigon.github.io/StatIII


Variance stabilizing transformations II 📖

Let , with success probability  and trials . For large values of

, the Gaussian approximation holds

However, the data are heteroschedastic, because .

Thus, a variance stabilizing transformation in this case is

because in fact we have that

Y ​ ∼i Binomial(π ​,m ​)i i π ​ =i f(x ​;β)i m ​i

m ​i

Y ​ N(m ​π ​,m ​π ​(1 −i ∼̇ i i i i π ​)).i

var(Y ​) =i m ​π ​(1 −i i π ​)i

g ​(y) =m ​i
​ arcsin ​ − 1 ,m ​i (

m ​i

2y
)

var(g ​(Y ​)) ≈m ​i i ​ ​ m ​π ​(1 −(
​1 − (2π ​ − 1)i

2

​m ​i

m ​i

2
)

2

i i π ​) =i 1.

If the data are gamma distributed, the variance stabilizing transform is .g(y) = log y
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Limitations of variable transformations I

Variable transformations are appealing for their simplicity and have a long history in statistics.
However, they also have some drawbacks.

In the case of transformations applied only to the explanatory variables, the model is

Thus, the coefficient  can no longer be interpreted as the change in the mean of 

corresponding to a one-unit increase  of the th covariate.

Y ​ =i h ​(x ​)β ​ +1 i 1 ⋯ + h ​(x ​)β ​ +p i p ϵ ​, i =i 1, … ,n,

β ​j Y ​i

x ​ →ij x ​ +ij 1 j

In the case of transformations of the response variable we let . However:

Thus  is a reasonable prediction for  and not an estimate for its mean.

When  this distinction can be made explicit, because we have

the former being the geometric mean of , whereas the latter is the usual mean.

E(g(Y ​)) =i x ​βi
T

g(E(Y ​)) =i  E(g(Y ​)) ⟹i E(Y ​) =i  g (x ​β).−1
i
T

​ ​ =ŷi g (x ​ ​)−1
i
T β̂ Y ​i

g(y) = log y

g (E{g(Y ​)}) =−1
i g (x ​β) =−1

i
T exp(x ​β), E(Y ​) =i

T
i exp(x ​β +i

T σ /2),2

Y ​i
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Limitations of variable transformations II

Suppose . The variance stabilizing transformation is not fully satisfactory:

It complicates the interpretation, because it models  instead of ;

It is an asymptotic approximation, and is only valid for .

The transform depends on , therefore we cannot make predictions for a generic covariate value

 without knowing the associated .

Besides, this transform is clearly not applicable when  and , a very common

problem called binary regression.

If we know that  follows, say, a Bernoulli or a Gamma distribution, then we should use the

appropriate likelihood rather than a Gaussian approximation.

Generalized Linear Models provide a much more elegant solution to the above problem.

Y ​ ∼i Binomial(π,m ​)i

E{g(Y ​)}i E(Y ​)i

m ​ →i ∞

m ​i

x ​i m ​i

m ​ =i 1 Y ​ ∈i {0, 1}

Y ​i
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