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® This unit will cover the following topics:

Exponential dispersion families

Likelihood, inference, and testing

Iteratively Re-weighted Least Squares (IRLS)
Deviance, model checking, and residuals

Model selection

® GLMs are regression models with a linear predictor, where the
response variable follows an exponential dispersion family.

® The symbol | means that a few extra steps are discussed in the
handwritten notes.

The content of this Unit is covered in Chapter 2 of Salvan et al. (2020). Alternatively, see Chapter
4 of Agresti (2015) or Chapter 6 of Azzalini (2008).
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Introduction
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Preliminaries
®m GLMs are a class of regression models in which a random variable Y; is modeled as a
function of a vector of x; € RP,

® The random variables Y; are not restricted to be Gaussian. For example:
m Y; € {0,1}, known as binary regression
m Y; €4{0,1,...}, known as
m Y; € (0,00) orY; € (—o0,00)

= Gaussian linear models are a special case of GLMs, arising when Y; € (—o0, 00).

m The are collected in the random vector Y = (Y7,...,Y,)T, whose
observed realization is y = (y1,...,%,)L.
® The design matrix X isann X p matrix containing the covariate values. The jth

variable (column) is denoted by &;, while the i¢th observation (row) is x;.

m \We assume that X has , that is, k(X)) = p with p < n.
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Beetles data, from Bliss (1935)

® The Beetles dataset originates from Bliss (1935). It records the number of adult flour beetles that
died after a 5-hour exposure to gaseous carbon disulphide.

m deaths logdose

59 6 1.6907
60 13 1.7242
62 18  1.7552
56 28  1.7842
63 52 1.8113
59 53  1.8369
62 61  1.8610
60 60  1.8339

® We aim to predict the proportion of deaths as a function of logdose.

® Modeling death proportions directly with is . A variable
transformation provides a more principled solution, but it comes with
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Beetles data, a dose-response plot
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® There is a clear and non-linear pattern between the as a function of

the logdose. The response variable take values in [0, 1].
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Modelling the Beetles data

® et S; be the number of dead beetles out of m;, and let x; denote the log-dose. By definition, S; €
{0,1,...,m;} fori=1,...,8.

® |t is natural to model each §; as independent binomial random variables, counting the number of

deaths out of m; individuals. In other words:

S; rS Binomial(m;, 7;), 1=1,...,8,
where m; is the of death at a given dose z;. Moreover, et Y; = S;/m; be the proportion
of deaths, then:
S.
EY;)=E(— ) =m = .
(¥3) (m) Ti =

® A modeling approach, called logistic regression, specifies:

exp(B1 + Brx;)
1+ exp(B1 + Boi)

Uy

1 ) =B1+foxi = mi=g (P14 Poxi) =
_

gWDZMg(

for some parameters 3, B2 € R. that m; € (0,1) by construction.
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Beetles data, fitted model
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®m The estimates are B; = —60.72 and By = 34.3. This yields the predictive

curve #t(z) = g~ 1(B1 + Box), which estimates the mean proportion E(S;/m;).
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Let Y; = S;/m,; be the proportion of deaths. A direct application of linear models implies:
Y; = b1+ Box; + €.

The coefficients 8; and By are then estimated using OLS using Y; as response.

® The prediction Bl — Bgmi is , meaning it could produce values like “1.3" or “-2" as
estimated proportions, which is clearly undesirable.

® The additive structure Y; = 8; + Bx; + €; cannot hold with iid errors ¢;, because S;, and thus Y;,
are . As a result, the errors are always

m |f m; =1, i.e. when the data are ~all the above issues are

This approach is sometimes called the linear probability model. Before GLMs, it was considered
acceptable despite its issues, but by modern standards it should
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A comparison with old tools Il

We consider the empirical logit variable transformation of Y; = S;/m;, obtaining

S; +0.5

S; +0.5

logit(Y;) = log ( ) = P1 + Pazi + € Y, =

A correction term is necessary because otherwise g(-) = logit(+) is undefined. The predictions belong
to (0,1), since

eXP(Bl + 5'23%)
1+ exp(By + Boz;)’

fi =g [E{g(Yi)}] = g7 (B + Bemi) =

in which B; and $, are estimated with OLS using logit(Z;) as response.

The interpretation of § is less clear, as they refer to the mean of logit(Y;) instead of E(Y;).
An arbitrary is needed.

Inference is problematic and requires further corrections, because of errors.
This approach is with the reasonable assumption S; ~ Binomial(m;, ;).
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A comparison with old tools Il
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m The black line is the predicted curve of a . The orange line is the
predictived curve of a . The blue line is the predictive curve of a linear model after an

empirical logit variable transformation.
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Aids data

® Number of AIDS deaths in Australia in a sequence of three-months periods between 1983 and 1986.

1983-1 1984-1 1985-1 1986-1 1983-2 1984-2 1985-2

deaths 0 1 2 3 1 4 8
period 1 2 3 4 5 §) 7

1986-2 1983-3 1984-3 1985-3 1986-3 1983-4 1984-4
deaths 17 23 32 20 24 37 45
period 8 9 10 11 12 13 14

® We are interested in predicting the number of deaths as a function of the period of time.

® The response variable Y; € {0,1,...} is a non-negative
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Aids data, scatter plot
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®m There is a clear positive association between period and deaths. However, the increase appears to be
than . Note that both the mean and the variability of Y; increase over time.
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Modelling the Aids data

m |et Y; be the number of deaths, and let z; denote the period. By definition, Y; € {0,1,...} are non-

negative counts, forz =1,...,14.

B \We model Y; as independent Poisson random variables, counting the number of deaths:
Y; % Poisson(u;), i=1,...,14,

where p; is the of Y;, namely E(Y;) = u;.

® A modeling approach, called Poisson regression, specifies:
g(ui) =log(pi) = b1+ fexi = pi=g (B + foxi) = exp(B1 + Bami),

for some parameters 81, 82 € R. that u; > 0 by construction.

®m Under this specification, the variances of the observations are
var(Y;) = p; = exp(B1 + Bazi),

which increases with x, as desired. This implies that Y7,...,Y, are . but this is not
an issue in GLMs, as this aspect is automatically accounted for.
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Aids data, fitted model
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®m The estimates are B; = 0.304 and By = 0.259. This yields the predictive

curve ji(z) = exp(B1 + Baz), which estimates the mean E(Y;).
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A comparison with old tools |

We consider the variance-stabilizing transformation S; = 1/Y;, obtaining
VY; = B+ Bozi + €.
The predictions belong to (0, o), since
i = E(\/?z)2 = (b1 + Boz;)?,

in which 81 and B3» are estimated with OLS using 1/Y; as response.

® The interpretation ofB is less clear, as they refer to the mean of v/Y; instead of E(Y;).

® This approach is with the reasonable assumption Y; ~ Poisson(u;) and it only valid
as an asymptotic approximation.

To compare such a model with a similar specification, we also fit another Poisson GLM in which

Y; b Poisson(y;), Vi = B1 + Bex, i=1,...,14.
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A comparison with old tools Il
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m The black line is the predicted curve of a with logarithmic link. The orange
line is the predicted curve of a with a . The blue line is

the predictive curve of a Poisson regression GLM with square-root link.
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The components of a GLM

u . This specifies the probability distribution response variable Y;. The
observations y = (y1,...,yn) on that distribution are treated as
= Linear predictor. For a parameter vector 8 = (B1,...,8,)! and an n X p design matrix X, the

linear predictor is 7 = X 3. We will also write

ﬂi:m?ﬂzmilﬁl-F"'—l—wipﬁp, 1=1,...,n.

m . This is an invertible and differentiable function g(-) applied to each component of the

p; = E(Y;) that relates it to the linear predictor:

gw) =m=z8, =  wi=g"'(m)=g '(zB)
Note that, in general, we express the response in an additive way Y; = g 1(n;) + €.
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Random component of a GLM

® |n GLMs the random variables Y; are and they are distributed according to an

exponential dispersion family, whose definition will be provided in a few slides.

® The used in Statistics, such as the normal, binomial, gamma, and
Poisson, are exponential family distributions.

m Exponential dispersion families are by their mean and variance. Let v(u) > 0 be a
function of the mean, called variance function and let a;(¢) > 0 be functions of an additional

unknown parameter ¢ > 0 called

In a GLMs the observations are independent draws from a distribution ED(u;, a;(¢)v(w;)):
ind
Y ~ ED(ui, ai(@)o(mi),  E(Yi) =mi,  g(m) =i B,
with u; € M. Moreover, the is connected to the mean via v(u):
var(Y;) = a;(¢)v(i),

where a;(¢) = ¢/w; and w; are known weights. Special cases are a;(¢) = ¢ and a;(¢) = 1.
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Notable examples

In a Gaussian linear model we consider the identity link g(u) = p and let
ind
Y; ~ N(ui, %), pi = x; B.
The unknown variance 02 = ¢ is called in GLMs. The is M =R,
whereas a;(¢) = ¢ and the variance function is constant v(u) = 1 (homoschedasticity).
In a binomial regression model with logit link g(u) = logit(u) we let Y; = S;/m; and

Sz' ifli(} Binomial(mi,m-), E (Y;) = T = My, loglt(,uz) = wffﬂ

We have a;(¢) = 1/m; and v(p) = p(1 — p). There is parameter.

In Poisson regression with logarithmic link g(u) = log(u) we let
y; % Poisson(u), log(ui) = =1 B.

We have a;(¢) = 1 and v(u) = p. There is parameter.
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Exponential dispersion families
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Overview
= Figure 1 of Efron (2023). of statistical modeling.
GENERAL THEORY
(asymptotics)
Cd - - = ~
e N\
/7 EXPONENTIAL FAMILIES \
/ (partly exact) \
NORMAL THEORY
(exact calculations)
®m The of in the theory of statistical inference was first emphasized by

Fisher (1934).

® Most well-known distributions—such as Gaussian, Poisson, Binomial, and Gamma—are instances of
exponential families.
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Exponential dispersion family: definition

The of Y; belongs to an exponential dispersion family if it can be written as

pluisti ) = exp { “H T 1y, |

where y; € Y C R, 6, € © C R and a;(¢) = ¢/w; where w; are known positive weights. The
parameter 6; is called while ¢ is called dispersion parameter.

= By specifying the functions a;(+),b(-) and ¢(-) one obtain a particular

m The support Y of Y; does not depend on the parameters ¢ or 6; and b(-) can be differentiated

infinitely many times. In particular, this is a
= As mentioned, special cases are a;(¢) = ¢ and a;(¢) = 1. When a;(¢) = 1 and c(y;, ) = c(y;) we

obtain
p(yi; 0;) = exp {0iy; — b(0:) + c(vi)},
which is called of order 1.
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®m | et us consider the contribution of the 7th observations, which is defined as

0iyi — b(0;
£(0s, ¢; y;) = log p(yi; 0, ¢) = ya.(qf)( )+c(yz-,¢).

If you prefer, this is the log-likelihood when the sample size n = 1 and we only observe Y;.

® The score and functions, namely the first and second derivative over 6; are

O o) = VO & ~v'(6)
80i£(027¢7y2)_ az(¢) ) 802 (027¢7y2)_ az(¢) :

where b/(+) and b"(-) denote the first and derivative of b(-).

m Recall the following , valid in any statistical model:
0
(55,4009

E{(;‘; 6,6, >)} —var (00 7))
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Mean and variance Il ||

® Specializing Bartlett identities in exponential dispersion families, we obtain

() o () - - e

Re-arranging the terms, we finally get the following key result.

Let Y; be an exponential dispersion family, identified by the functions a;(-),b(:) and ¢(+), and with
natural parameter 6;. Then the mean and the variance of Y; equal

E(Y;) =b'(6:),  var(Yi) = ai(¢)b"(6:).

® The mean p; = b'(6;) does not depend on the dispersion parameter.
= We have b”(-) > 0 because var(Y;), which means that b(-) is a convex function.

= Moreover, the function b'(0) is continuous and monotone increasing and hence invertible.

The function b(-) is related to the moment generating function of Y;. Thus, higher order derivatives of

b(-) allows the calculations of skewness, kurtosis, etc.
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Mean parametrization, variance function

Let Y; be an exponential dispersion family, identified by the functions a;(-),b(:) and ¢(+), and with
0;, then

The function u(-) : ® — M is one-to-one and invertible, that is, a of 6;. We

call u; the mean parametrization of an exponential dispersion family.

® The relationship, re-obtaining 6; as a function of u;, is denoted with
0; = 0(ui) =0 (ki)
® Using this notation, we can express the variance of Y; as a function of u; as follows
var(Y;) = ai(¢)b"(6:) = ai(¢)b"(0(i)) = ai(@)v(ki),

where v(u;) := b"(0(w;)) is the variance function.

® The domain M and the variance function v(u) the function b(-) and the entire
distribution, for any given a;(¢). This justifies the notation Y; ~ ED(u;, a;(¢)v(u;))-
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m et Y; ~ N(u;,0?). The density function of Y; can be written as

1 1
p(Ys; i, 0°) WGXP{ 52 (¥ — 1) }
_ exp J Vit pi/2 log(2ma?)  y;
o2 2 202

® Then, we can recognize the following relationships:

92-2 log(2m¢ yf

0; = 0(/1'2') — MK, az‘(¢) = ¢ = 02, b(ei) = C(yi,¢) - = ( ) - .
2 2 2¢

In the Gaussian case, the mean parametrization and the coincide.

Moreover, the ¢ coincides with the variance o?.

m Using the results we previously discussed, we obtain the well-known relationships

E(Y;) =b'(0;) =0;,  var(Y;) = a;(8)b"(6;) = ¢.

The variance function v(u;) = 1 is . We will write Y; ~ ED(u;, ¢) with pu; € M = R.
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Let Y; ~ Poisson(u;). The pdf function of Y; can be written as

pie
p(Yis i) = o = eplwilog(n) — i —log(yi!)}

7°

— exp{yzez - eei - log(yz')}7 Yi = 0,1,2,....

® Then, we can recognize the following relationships:

0; = 0(wi) =log(pi),  ai(d) =1,
b(6;) = €”, c(yi, #) = c(yi) = —log(ui!)-

There is parameter since a;(¢) = 1.
m Using the results we previously discussed, we obtain the well-known relationships
E(Y;) =b'(0;) = e = p;,
var(Y;) = ai(§)b"(6:) = e” = p;.

The variance function v(u;) = p; is . We will write Y; ~ ED(u;, p;) with p; € (0, 00).
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Gamma distribution | [__|

m let Y; ~ Gamma(a, A;). The density function of Y; can be written as

Ay le A

= exp {alogA; — Ajy; + (a — 1) logy; — logI'(a)}
= exp {oz (log Ai — &%) + (a —1)logy; — log I‘(a)}
o
0iy; + log(—0;
~ exp { w080 (19 1080+ (1/9 — 1logy, - 1ogr(1/¢)} R
having defined the dispersion ¢ = 1/a and the 0; = —\i/a.

® Then, we can recognize the following relationships:

ai(¢) = ¢, b(6;) = —log(—0;),
c(yi, ¢) = —(1/¢)log ¢ + (1/¢ — 1) logy; — log I'(1/¢).
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Gamma distribution Il [_|

m Using the results we previously discussed, we obtain the well-known relationships

1 0% 0] Q
. : , . : — — : [ : . . : . ,/ . : — : —
E(Y;) = b'(6;) 6= x M var(Y;) = ai(¢)b"(6;) A
® At the same time, we can write the relationship linking 8; to the mean as
1
02' =0 ;) =— ——
) ==,

from which we finally obtain the following quadratic variance function
() = p-

= We will write ¥; ~ ED(p;, ¢pp?) with p; € (0, 00).
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m | et S; ~ Binomial(m;, m;), with 7; € (0,1). The random variable Y; = S;/m; has density

p(yi; my, 7Ti) = (g;)ﬂrlyl(l _ 7.‘.2,)'rnz'—miyi

_ m; 5 m;Y; (:1 B 7r')77h
m;y; 1— Uy !
= exp {miyi log (1 i ) + m;log(1l — ;) + log ( i ) } ,
— T m;y;

for y; € {0,1/m;,2/my,...,m;/m;}. This can be written as

vy;0; — log{1 + exp(6;)} +log ( m; )} |

1/ m; m;y;

p(yi; mg, 7Ti) = €Xp {

where the is 0; = logit(m;) = log{m/(1 — m;)}.
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Binomial distribution 11 [__|

) 1) ) Y 1 1 ) ) *

m Using the general formulas therefore we obtain

E(Y;) =b'(6;) = 1 j_xfx(ﬁz()ez) = Wi,
var(Y}) _ ai(¢)b,l(0i) _ nil [1 fi};{i)e(zgl)]z _ Mz’(lnb—i Uz’),

from which we obtain that the variance function is v(u;) = p;(1 — p;) is quadratic.

= We will write Y; ~ ED (s, pi(1 — ;) /m;) with p; € M = (0,1).
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Model N (i, 0?) Gamma(a, a/p;) m%Binomial(mZ-, pi) Poisson(u;)
Support Y R 0, 00) {0,1/m;,...,1} N
0; = 0(u;) Wi —1/p log (ﬁ‘;i) log p;
R (—o0,0) R R
b(6;) '9@'2/2 — log(—6;) log{1 + exp(6;) } exp(6;)
o) o’ 1/ 1 1
a;(®) o? 1/ 1/m; 1
M R (0,00) (0,1) (0, 0)
v(ps) 1 T pi(1 — pi) i

The list of exponential dispersion families does not end here. Other examples are the inverse

Gaussian, the

and
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Link functions and canonical link

= To complete the GLM specification, we need to choose a link function g(-) such that:
g(pi) == B, 0;=0(m) = 0;=0(g (i B)).

m |t is fairly natural to consider a monotone and link function g(-) : M — R so that

the inverse g7 1(+) : R — M. This ensures that the predictions are well-defined.
E(Y;) = g '(zi B) € M.

m For example, in binary regression any continuous for g71(-) leads
to a good link function, such as g(-) = ®(-) (probit) or g~ (n;) = €™ /(1 + e™) (logistic).

The following link is called and it is implied by the distribution:

g(ps) = 0(;)) =— 6;= w?ﬁ-

® The identity link is canonical for the Gaussian, the is canonical for the . the
is canonical for the Binomial and the reciprocal is canonical for the Gamma.
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Likelihood quantities
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Likelihood function

s Lety; ED(ui, ai(¢)v(ui)) be the response variable of a GLM, with g(u;) = &7 8. The joint
distribution of the responses Y = (Y1,...,Y,) is

p(y; B,¢) = | | p(vi 8, ¢) = Hexp{yz 2 (9) +C(y¢,¢)}-
i=1 ¢

with 6; = 0(u:) = 0(g~" (=7 B)).

® The function therefore is
— yifli — b(6;)
— + C(yi7 ¢)
; a;(¢)
® |n general, there is with dimension smaller than n.
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Likelihood equations | [

® To conduct inference using the (as in Statistica Il), we need to consider the first and
second derivative of the log-likelihood, that is, the score function
L(8;9) = ~-(5,9)
* Y T 8/8 Y Y
and the J, whose elements are
0 0

Jrs = LB, ), r,s=1,...,p.

9B, 05,

® These quantities have a simple expression in the end, but getting there requires quite a

Let us focus on the estimation of 8, assuming for now that ¢ is a known parameter, as is the case

in binomial or Poisson regression.

This assumption is not restrictive, even when ¢ is actually unknown. In fact, we will show that the
maximum likelihood estimate B does not depend on ¢, and that 8 and ¢ are
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® | et us begin by noting that

66:0) = 55 t60.0) = Y s (s~ gt ) T

9B, - 98, 06,

Such an expression can be simplified because

ab(6;) 96; 06
38, o5, ~ Mg,

which implies that the score function will have the following

=b'(0:)

n

1 96; B
8[# (B, ) = ;ai(qb)(y"_“i)a_@’ r=1,...,p.

m Recall that a;(¢) = ¢/w;, hence the maximum likelihood estimator is obtained by solving:

00;
/sz — 1) 85 =0, r=1,...,p.
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Likelihood equations 111 [

Let f(z) be a function with g(z) = f (=) and first derivative f'(z). Then
@ _ 1y _ 1
o~ O = )y

m Recall that g(u;) = 7 8 = n; and that 6; = 0(u;) is the inverse of u(6;). As an application of the
above lemma:

00; 1 1 1
O (ki) p

Moreover, since we u; = g~ *(n;) we obtain

oni  g'(g7'(m)  9'(wi)
® Summing up, the for composite functions gives:

0B,  Ou; On; 0B,  v(wi) 9' (i)
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Likelihood equations IV [__|

® Combining all the above equations, we obtain an explicit formula for the score function

6 z Lip - (yz - :u'z) Lir
Wi = , r=1,...,p.
8/% By Z v(pi) g (i) ; var(Y;) g'(ws) P

The maximum likelihood estimator solves the

Lip
wj = 0, r=1,...,p,
Z m) g’(ui)

which on ¢. In matrix notation
D'V ' (y—p) =0,
where V' = diag(v(p1) /w1, - .-, v(tn)/wy) and D is an n X p matrix whose elements are

Opi _ Op; O 1
0Br on; 0Br g’ (i)

dir —

Tir, 1=1,...,n, r=1,...,p.
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= \When using the O(ui) = g(u;) significant simplifications arise, because

SZZ a ’U(iLz) =g (ki) = v(u)g () =1.

Thus, plugging-in this equality in the former equations, gives:

00,
9B,

which is not surprising, because the canonical link implies 6; = x;181 + - - - + x;pB,.

= Zir, r=1,...,p,

The under the canonical link are
sz — W)z =0, r=1,...,p.

Let Q = diag(wi,...,w,), then in matrix notation we have X' Q(y — ) = 0. The equations

simplify even further when the weights are constant, i.e. 2 = I,,, yielding XT(y —p)=0.
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Examples of estimating equations

Let Y; ~ ED(u;, ¢) with g(u;) = p;, namely the linear model with the

(canonical) link. The likelihood equations are

XT(y T X/B) — 07
which are also called . Their solution over 8 is the OLS B = (XTX) 1 XTy.

Let Y; ~ ED(u;, ¢/w;) with g(u;) = p;, namely the linear model with the
(canonical) link and heteroschedastic errors. The likelihood equations are

XTn(y o X/B) = 07

Their solution over ( is the weighted least square estimator BWIS = (XTQX)_lXTQy.

Let Y; ~ ED(ui, pi) with g(ui) = log pi, namely a regression model with the
(canonical) link. The likelihood equations can be solved

X" (y—p) =0, u:(ew{ﬁ,...,ew%).
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Example: Beetles data

m Using the Beetles data, we specified a binomial logistic regression model for the counts m;Y; ~
Binomial(m;, ;) with mean E(Y;) = m; = exp(B1 + Bazi) /(1 + exp(B1 + Bazi)).

m The (B1, B2) is the value solving simultaneously:

Zmzyz _ Z exp(B1 + Baxi) . and Zmzwzyz Zmzwz exp(B1 + Baxi)

— "1+ exp(B1 + Boz;) 1+ exp(B1 + Bo;)

Unfortunately, there is solution.

® |n our case, we have that
n n
> muy; =291, > mymy; = 532.2083.
— i=1
m With these values, we can use the algorithm IRLS to solve the above system, obtaining

B = (b1, B2) = (—60.717, 34.270).
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Example: Beetles data

®m The predicted response can be computed by using the formula

exp(B1 + Bozi)

exp(—60.717 + 34.270z;)

i 1+ eXP(Bl 4+ Bm) 1 + exp(—60.717 + 34.270x;)’ =1...8

m; deaths (.5;) logdose (z;) Y, =S;/m; fLi
59 6 1.691 0.102 0.059
60 13 1.724 0.217 0.164
62 18 1.755 0.290 0.362
56 28 1.784 0.500 0.605
63 52 1.811 0.825 0.795
59 53 1.837 0.898 0.903
62 61 1.861 0.984 0.955
60 60 1.884 1.000 0.979

®m The predicted values and the data Y; were also shown in a plot at the beginning of this unit.
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Example: Aids data

® |n the Aids data, we specified a Poisson regression model with E(Y;) = exp(5; + B2x;).

= The maximum likelihood estimate (81, B2) simultaneously:

Z Yi = Z exp(B1 + fex;), and Z ziyi = »_ x; exp(By + fot:).

=1 1=1

® This system does always admits a . This happens, for example, in the extreme case
Z?:l y; = 0, occurring when all counts equal zero.

= Using the Aids data we have Y7  y; =217 and > | z;y; = 2387. Via we
solve the above system of equations and we obtain Bl = 0.304 and Bg = 0.259.

® The estimated mean values are fi; = exp(0.304 + 0.259x;) and in particular the mean for the next

period is

In other words, the estimated number of deaths increases by about 30% every trimester.
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Example: Aids data

deaths (Y;) period (z;) fL;
1983-1 0 1 1.755
1984-1 1 2 2274
1085-1 2 3 2946
1986-1 3 4  3.817
1983-2 1 5 4945
1984-2 4 6  6.407
1985-2 8 7 8.301
1986-2 17 8 10.755
1983-3 23 9 13.934
1984-3 32 10 18.052
1985-3 20 11 23.389
1986-3 24 12 30.302
1983-4 37 13 39.259
1984-4 45 14 50.863

® The predicted values and the data Y; were also shown in a plot at the beginning of this unit.
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m | et us first consider the negative derivative of the score function, that is the
J with entries:

0o | 0 0 «— 1 00;
.rs - — 14 ) - = 1 M
ST} laﬁr (5 ¢)] 9B, ;ai(qs) i~ 1) g,
o - 1 8/%' 892 ' . 8291 L
_;az(gb) [8638&_(%_#2)3@«3[35]’ 7”78—1,...,]?.

m |et I =E(J) be the p x p Fisher information matrix associated with 3, whose elements are

00
0B, 9B

® Thus, the Fisher information matrix substantially simplifies because E(Y;) = w;, obtaining:

z’rs:E(jrs):E< ﬂ(ﬂ,gb)), r,s=1,...,p.
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Observed and expected information Il [

® |n the previous slides we already computed the explicit values of these derivatives:

O Tis 00; Tis

88, g (w)’ 88, v(pi)g (i)

Combining the above equations, we obtain that the I of a GLM has entries
xzra:w - LirLis
= — wj = , r,s=1,...,p.
; W~ g
In matrix notation, we have that
I=X"WX,
where W = diag(wy, ..., w,) and w; are weights such that

1 wj 1 . 1 n
- = : i=1,...,n.
dv(pi)g' (ns)?  var(Ys)g'(pi)?

w; —
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Canonical link: simplifications [

Under the we have that 6; = x;181 + - - - + BpZip, which means that

=0 — rs = Jrs = .
96,05, e Zl a:(¢) OB, 9B,

The observed information J is . which means that observed information and
expected (Fisher) information coincide, that is i,; = j.s and I = J.

Under the , we also have the simplifications 1/v(u;) = ¢'(u;), yielding
. _1¢
lrs = 5 Z wiv(ui)wirwisa r,s=1,...,p.
i=1

In matrix notation, we have that I = XWX with weights

_ 1 ( 2) v(:u"i)

Wi) = ——— 1=1,...,n.

ai(¢)’
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Further considerations

® The and expected information matrices J and I, as well as weights W, depend on § and
¢. We write J, I and W to indicate that B and ¢ have been estimated with B and qg

m |f X has full rank and ¢'(u) # 0, then I is for any value of 8 and ¢.
m Under the ~we have J = I, and both matrices are if rk(X) = p.
® This implies that the log-likelihood function is because its second derivative is negative
definite, so any to the is also a global optimum.
m The Fisher information matrix could be computed exploiting , namely
0 0
rs = I l ) l ) ) ,8=1,...,p.
i =E|(5546.0) (5r6.0) | 1 p
as in Agresti (2015). Of course, the final result with ours.
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«« - Orthogonality of 3 and v

m | et us now consider the case in which ¢ is unknown so that a;(¢) = ¢/w;. We obtain:

: 0 (9 06;
Jre = — 857‘(% ¢22wz — 14;) 57 T Leop
whose is 3,4 = E(jrg) = 0 since E(Y;) = p;.

® This means the Fisher information matrix accounting for ¢ takes the form:
I 0 I o\ ' (' o
0 iy 0 49 N0 1/ige
where [I|,s = i,s are the elements associated to [ as before.

The parameters 8 and ¢ are and their estimates are asymptotically independent.

Moreover, the matrices I and I ! are sufficient for inference on B and there is no need to compute

144. Moreover, the maximum likelihood B can also be computed without knowing ¢.
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IRLS algorithm
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Numerical methods for maximum likelihood estimation

® |n general, the estimating equations of a GLM
D'V ' (y-—p)=0

cannot be solved in closed form and we need to rely on

= An method means that we start the algorithm with a candidate value B ( ).
Then, at the step t we update

B — update(8Y), t=1,2,...

= The algorithm whenever a certain criteria is met, e.g. when ||[8#1) — || < €, where € is
sometimes called . We say it reached convergence.

m The iteratively re-weighted least squares (IRLS) algorithm became very popular after being
proposed by Nelder and Wedderburn (1972) and is currently implemented in R.

® The IRLS algorithm can be used for any GLM, has a clear geometric interpretation, and often delivers
good performance. It can be seen as a of Newton-Raphson.
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Newton-Raphson algorithm |

® |n the Newton-Raphson algorithm, we consider a second-order Taylor expansion of the log-likelihood
¢(B) = £(B, ¢) centered in BY), namely:

£(8) ~ £(8Y) + L.(BO) (8 — BY) — 2 (8~ BT TO(8 — 5)

where £,(8®) is the and J is the observed information, evaluated at 8.

® |n other words, we the log-likelihood £(3) with a parabola. This gives the

£.(8") — JW (g - V) = 0.
® Solving the equation above gives the following

B — g 4 (JW)~1g, (O, t=1,2,...

The Netwon-Raphson method essentially considers a series of to the log-
likelihood, each time evaluating the point of maximum.

Home page

54 /119

BICOCCA


https://tommasorigon.github.io/StatIII

55 /119

Newton-Raphson algorithm ||

L(B)

L
/ Quadratic
approximation

Figure 4.2 [Tllustration of a cycle of the Newton—Raphson method.

m Figure taken from Agresti (2015).
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Iteratively re-weighted least squares | [__|

= The matrix J% is not always invertible, therefore the algorithm may crash. To remedy this, we

replace it with the expected information 10

B — g0 4 (1Yl (B0, t=1,2,...

This method is also called

® The above formula can simplified a bit. First, we rewrite the as

o5 (6.9 zwz zxwwz ui)g (1),

where the were defined as w; = w;/(dv(w;)g'(145)?). In matrix notation we will write:

g*(ﬁ(t)) _ XTW(t)u(t), 70 — XTW(t)X,

= (yi — ,ngt))g'(,ugt)) fori =1,...,n.
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Iteratively re-weighted least squares Il [__|

® Exploiting the former formulas, we can write the IRLS update as follows
ﬁ(tﬂ) _ B(t) + (XTw(t)X)—lew(t)u(t)_

Now both sides by (XTW(t)X), simplify and the resulting terms. This gives
the following formula.

In the iteratively re-weighted least squares (IRLS) algorithm, we consider the updates:
Blt+1) — (XTW(t)X)—leW(t)z(t)’ t=1,2,....

where z(®) = ( y), e ,zT(Lt)) is called whose elements are defined as

2 = alTB0 +ul) =2l B0 + (i — g (W), i=1,....m,

Hence, each update can be interpreted as the solution of a problem:

B(t+1) — arg /'ngn (z(t) _ X,B)TW(t) (z(t) — Xﬁ)
cRP
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Iteratively re-weighted least squares 11l [__|

® The IRLS updates does not depend on the choice of ¢, because it in the multiplications, as

we would expect.

®m The pseudo-responses have a nice interpretation, because they can be interpreted as a linear
approximation of the transformed responses:

g(yi) =~ g(wi) + (yi — a)g' (ps) = mi + (yi — wi)g' (ps) = 2.
® Based on this approximation, a good initialization is
1 _
wh =1,  V=gw), = @ P=X"X)"X"g),

the solution for the transformed data. To avoid boundary issues, sometimes the data are
perturbed, as we did in Binomial regression.
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Example: IRLS for logistic regression

m Consider a logistic regression model for Y; € {0,1/m;,...,1} with probability of

success m; = u; and trials m;.

IRLS algorithm for logistic regression

= ,8(1) - (XTX)_lXTlogit(Q) where logit(y) is the transform.

" Fort=1,2,... until compute:
6(t+1) _ (XTW(t)X)_leW(t)Z(t),

" z@ = mﬂi(t)(l — Wgt)) and the pseudo-responses z®) are

where the weights in W equals w

o ®
M —pfpp SN =1,
w01 i)

with probabilities 7ri(t) = exp(x! Y) /(1 + exp(xl BY)) for i = 1,...,n.
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Estimation of the dispersion ¢

® |n some GLMs, such as the Gaussian and the Gamma, there is a ¢ that we

need to estimate.

B |nstead of the maximum likelihood, because of and lack of robustness it is
typically preferred a estimator. If u; were known, the estimator
1 ZR: (yi — mi)?
n e o)
would be for ¢, because E{(Y; — p;)?} = (¢/w;)v(;). This motivates the estimator
f 1 & (v — ﬂz‘)z N ~1/..TA
¢ = W=~ fi =g " (x; B).
n—p ; v(fi)

® This is a consistent estimator of ¢ as long as B is consistent.

m When g(u;) = p; is the identity link and v(u;) = w; = 1, this coincides with the usual unbiased
estimator s? of o2 for a Gaussian linear model.
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Inference and hypothesis testing
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Asymptotic distribution of B

The of the maximum likelihood estimator is

~

BN, (8,(X"WX)),

for large values of n and under mild regularity conditions on X.

®m Under correct specification and mild conditions on X, the maximum likelihood estimator is
and with known asymptotic variance

E(8 — B) ~ 0, var(8) ~ (XTwXx) .
® |n practice, since W depends on 8 and ¢, we rely on the following approximation
var(f) = (XTWX) ™,

where we plugged in the estimates B and gﬁ into W obtaining W. The are:

std. Error = [(f)]; = / [(XTWX)-1],
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Example: Beetles data

m Using the Beetles data, we specified a binomial logistic regression model for the counts m;Y; ~
Binomial(m;, 7;) with mean u; = exp(B1 + Boz;) /(1 + exp(B1 + Bax;)).

m \We previously B = (—60.717,34.270). This means that the weights are estimated as

~

W = diag(mif1(1 — fin), ..., muin(l — fin)) = diag(3.255,8.227,...,1.231).

from which we obtain the Fisher information matrix:

XTwx = Soiama(— ) Yo amf (1 — ) _(58.484 104.011
Szl — ) Sor @imafu (1 — ) 104.011 185.095 ) °

B Hence, the estimated covariance matrix of the maximum likelihood estimator is

i) = (XTWX)! = ( 26.840 —15.082) .

_15.082  8.481
m Therefore the are
@) = VIXTWX) ), —  se(8) = (5.181,2.912).
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Example: Aids data

® |n the Aids data, we specified a Poisson regression model with E(Y;) = exp(81 + B2x;) and
estimated 3 = (0.304, 0.259).

® This means that the weights are estimated as
W = diag(ju, . .., fi,) = diag(1.755, ..., 50.863).

from which we obtain the Fisher information matrix:

T [ Sor i Son w217 2387
AW = (Z?lwiﬂi Z?lw?ﬂ) B (2387 28279.05 / -

® Hence, the estimated covariance matrix of the maximum likelihood estimator is

0.06445 —0.00544)

var(8) = (X'WX) ™' = (—0.00544 0.00049

® Therefore the are

se(A); =V (XTWX) 1], —  se(B) = (0.254,0.022).
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Wald test and confidence intervals

® Consider the hypothesis Hy : 8; = By against the H, : Bj # By. The Wald test
statistic z;, rejecting the hypothesis for large values of |z;| is:
z value = z; = bi =P _ bi = o ~N(0,1).

@ xtwx),

which is distributed as a standard normal under H,.

® The p-value is defined in the usual way, namely

qos = B(Z > |5]) =201 - 8(|5]),  Z ~N(O,1).

® By inverting the the Wald test, we obtain the associated confidence interval

Bi £ 21 a2 \/[(XTWX)_l]jj-

of level 1 — a, where 2;_, /7 is the quantile of a standard Gaussian.
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Comparison with the Gaussian linear model

® |n a classical Gaussian linear model the weight matrix is W = o2l therefore
B~N, (,8, 02(XTX)‘1) .

® The Wald statistic Zj to

A

- Bj —Aﬁo _ Bi — Bo
CEOL s (xTx),

Y

which is the usual test statistic considered, e.g., in the output of 1m in R.

= However, in the Gaussian case there is of . The distribution of z; is a
' t,—p under Hy, which indeed converges to a N(0,1) for large values of n.

In GLMs we use procedures that are rather than exact. Of course, whenever an exact
result is known, we should use it.
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Example: Beetles data

® The Wald test is the choice in R for checking the hypotheses Hj : 3; = 0. In the Beetles

data we get the following familiar summary:

z test of coefficients:

Estimate Std. Error z value Pr(>|zl|)

(Intercept) -60.7175 5.1807 -11.720 < 2.2e-16 **x*
logdose 34.2703 2.9121 11.768 < 2.2e-16 **x*
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

® Many of the above quantities (estimates and standard errors) have been obtained before.

® |n this case, we the null hypothesis that 83 = 0. Indeed, even from the scatterplot there was
evidence of a relationship between the deaths proportion and the logdose.

® For completeness, we also compute the associated Wald confidence intervals, which are:

2.5 % 97.5 %
(Intercept) -70.87144 -50.56347
logdose 28.56265 39.97800
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Example: Aids data

® The Wald tests for checking the hypotheses Hj : B; = 0 in the Aids data are provided below.

z test of coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) 0.303655 0.253867 1.1961 0.2317

period 0.258963  0.022238 11.6448 <2e-16 ***
Signif. codes: 0 's#*' 0.001 '#*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
® |n this case, we the null hypothesis that 8y = 0 because the p-value Pr(>|z|) ~ 0. Again,

this is not very surprising: the number of deaths was clearly increasing over time.

m The associated Wald confidence intervals are:

2.5 % 97.5 %
(Intercept) -0.1939158 0.8012249
period 0.2153764 0.3025494

SSUNIVERSITA
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General hypothesis testing

® Suppose we wish to test multiple parameters at the same time. Let us organize the parameters into

two blocks:
/E} /Egl /53170-+-]
B = (/BA> ) Ba = , PBp= )
B
By By

where ¢ = p — py is the number of . We want to test the hypothesis:

Hy:Bp =0y  against  Hj:Bp # bo.
A common case is Hy : Bg =0 ( ), where we compare the M,

against the full model M;. We verify if all the q variables associated with 8 can be omitted.

The case g = 1, that is 8p = 8, with Hy : 8, = 0 corresponds to the previously considered situation

where we test if a , say fBp, is non-zero.
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Testing hypothesis in GLMs |

® There are that we could consider for such a testing problem: the W,
, the W.. and the log-likelihood ratio test W.
m All these tests the null hypothesis for large values of the statistic.

Wald test (general case)

Let B = (BA,BB) be the unrestricted maximum likelihood, the quantity

W. = (Bs — bo)” var(6s) ! (B — o),

is called Wald test. Here Va\r(BB) is the appropriate of (XTVAVX)_1 and W is estimated
using B and q3 Under Hj this quantity is distributed as
We <~ xz,

a x? distribution with q degrees of freedom. The p-value is Pr (>Chi) = P(W, > We, obs )-

® (Clearly, in the ¢ = 1 case we recover the Wald statistic with zj2- = W..
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Log-likelihood ratio test

Log-likelihood ratio test (LRT)

Let 8 = (BA,BB) be the unrestricted maximum likelihood and let 3, = (BA,mﬂo) the restricted
maximum likelihood estimate. The quantity

W = 2[4(B; $) — £(Bo; 9)),
is called log-likelihood ratio test (LRT). Under Hy this quantity is approximately distributed as
W~ x3,

a x? distribution with ¢ degrees of freedom. The p-value is Pr(>Chi) = P(W > webs).

" When testing Hy : B = 0, we separately fit the full model, obtaining B and the reduced model,
obtaining B0 = (B4,,0). Then, we compare their log-likelihoods: £(; b) — £(Bo; ).
®m The LRT is the default in R for comparing nested models.

When the dispersion parameter ¢ is unknown, a variant uses separate estimates (ﬁ based on 5’ and
¢p, based on By. The anova R command uses a single ¢, as described above.
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Score or Rao test

Rao-score test

Let B = (BA,BB) be the unrestricted maximum likelihood and let BO = (BA,OaBO) the restricted
maximum likelihood estimate. Moreover, let

9,

£5(8:0) = 55 1(5.9).
namely the of the score function associated with Sg. The quantity

W = £5(Bo; §)" az(Bs) £s(bo; $),
is called Rao-score test. Here var(fp) is the appropriate of (XTW X) ! where W is

estimated using the restricted BO. Under Hj this quantity is approximately distributed as

W ~ X2,

a x? distribution with q degrees of freedom. The p-value is Pr(>Chi) = P(W, > Wy, obs)-

The Rao-score test arguably the less common. When ¢ is unknown, there are several variants

depending on how it is estimated.
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A graphical representation when p =1

7770} slope ¢'(8;)

e me E m omm mm ew wm

b o - — o e e e =

6 B \

deviation 16 — bn]
Figure 4.2 Three test functions connected to the log-likelihood

m Figure taken from Azzalini (1996). This is also the of the !
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Three asymptotically equivalent tests

The Wald test, the Score test and the log-likelihood ratio test are asymptotically equivalent, that
is, these tests give the same number for large values of n. We have that

W, =W +0,(1), Wy, =W +0,(1),

where 0,(1) is a quantity that goes to 0 in probability as n — oo.

" When g = 1, we can also invert W, W, and W tests over By to obtain the corresponding
. This is often done for W, and W.

® The Wald test depends on the parametrization. When considering a transformation of 3, the variance

must be adjusted using the derivative of the transformation (delta method).1

® On the other hand, both the LRT and the score are invariant, and therefore we can simply
the of the without further corrections.

1. Transforming the extremes of Wald confidence interval “works” in the sense that it produces a valid
confidence interval, but it is the Wald interval in the trasformed scale.
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Comparison with the Gaussian linear model

2

In the Gaussian linear model all tests are equivalent if ¢ = o° is . We have

Y — X5l — |lY = XBI>

W=W,=W,= : X2

o

The XZ distribution is and not an approximation thanks to Cochran theorem.

2

® Consider the log-likelihood ratio for testing Hy : Bg = By. Suppose o° is , then:

_ HY—XBoWj 1Y - X8> _ (Y - XBoll* — lly — YBI*)/qg

W = 2[£(B; ¢) — £(Bo; )] q -
¢ |ly — XB[[*/(n —p)
= qF,
where F' ~ F,,,_, is the usual 's F. Indeed ¢F' is distributed as x§ for large
values of n.

® The quantities W, W,, and W are the natural extension of the F-statistic for GLMs. They are
distributed as X7 with ¢ degrees of freedom.
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Example: Beetles data

® \We would like to use the Wald, the and the tests to verify the
hypothesis Hy : B = 0, that is the relevance of 1logdose in predicting the response.

® |n this case, we have ¢ = 1 (Df) because there is only one parameter under scrutiny.

Test for the hypothesis Hy : 82 =0 Chi Df Pr(>Chi)
W, - Wald test 138.488 1
W, - 227.580 1
W - 272.970 1

® As one may expect, the test values are not identical. Here the sample size is n = 8, which is definitely

not a big number, therefore we are far from the asymptotic regime.

® However, the practical conclusions are identical. All tests strongly the null hypothesis.

= We previously obtained the Wald statistic z; and indeed zj2. = 11.768112 = 138.488 = W.,.
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Example: Beetles data

m Any statistical test can be , namely we find all the values 3, such that we do not reject the
null hypothesis. This generates a confidence interval.

® For the Wald test, the inversion is done analytically, producing the “usual” confidence interval.
® For the Rao-score and the log-likelihood ratio we need numerical procedures.

® |n the Beetles data, the three tests produce the following confidence intervals for 35, associated to
logdose.

Confidence intervals for 8, at a 95% level 2.5% 97.5%

W, - Wald test 28.563 39.978
W, - 28.588 39.957
W - 28.854 40.301

m \Wald interval was also computed before. The three tests produce nearly identical intervals.
m \Wald is always symmetric around Bj, whereas Rao and the log-likelihood ratio are typically

, depending on the shape of the likelihood function.
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Example: Aids data

® | et us know perform the same analysis for the Aids data. Again, we test the null hypothesis Hj :

B2 = 0, which is the relevance of period in predicting the response.

Test for the hypothesis Hy : 85 =0 Chi Df Pr(>Chi)
W. - Wald test 135.602 1 ~ 0
W, - 163.586 1 ~ 0
W - 178.551 1 ~ 0
m As before, despite their numerical differences, all the tests the null hypothesis. We previously

obtained the Wald statistic z; = 11.645 and indeed zj2- — 11.645% = 135.6 = W_..

Confidence intervals for 3, at a 95% level 2.5% 97.5%

W. - Wald test 0.2154 0.3025
W, - 0.2155 0.3025
W - 0.2165 0.3037

Home page En:ucn%


https://tommasorigon.github.io/StatIII

79 /119

Example: Aids data

= \We are actually interested in a confidence interval for the quantity 100 x (exp(82) — 1), which is the
percentage increase of deaths after each period.

® Thanks to invariance property of the Rao-score and the log-likelihood ratio tests, we can simply
the original intervals for (.

m |f the extremes of the log-likelihood ratio interval are Clow, Chign, then the new interval is
(100 x (exp(Clow) — 1), 100 x (exp(Chign) — 1)].

and similarly for the Rao-score case. These are reported below.

Confidence intervals for 100[exp(82) — 1] at a 95% level 2.5% 97.5%

W, - 24.04 35.32

W - 2417 35.49
m The percentage increase is between 24% and 35% each period, with a 95% confidence.
® These confidence intervals are always , which is desirable because they are percentages.
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Example: Aids data

® |n the Wald case, we cannot simply transform the extremes of the intervals. Indeed, that would lead
to a valid confidence interval that is not anymore of Wald type (Lo sbagliato &').

® |nstead, we first need to the according to the delta method, obtaining
var{100[exp(f;) — 1]} = 100? exp (24, )var(3,;) = 8.301184.
= The Wald confidence interval for 100[exp(53;) — 1] therefore is

100[exp(Bs) — 1] = 21_4/256{100[exp(Bs) — 1]}.

Confidence intervals for 100[exp(f2) — 1] at a 95% level 2.5% 97.5%
W, - Wald test 23.91 35.21
“Lo sbagliato” - transformed Wald 24.03 35.33

Whenever there are restrictions on the parametric space, as in this case, Wald is typically
. Here, it could lead to , which is absurd.
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Deviance, model checking, residuals
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Deviance: some intuitions

In a Gaussian linear model, we called the residual sum of squares, that is
~ T A N
D(y;fr) = > (vi— @ B)* =D (v — ).
i=1 i=1

The residual sum of squares D(y; ft) is a goodness of fit measure. The lower the deviance, the
higher the quality of the predictions.

When o2 is _the distribution of the scaled deviance is

D(Y;i) 1 ;
LIS S
1=1

o

When o2 is known, the difference of scaled deviances of two nested models is:

D(Y;fw) —D(Y;i) _ |IY - XBo|* - |[Y - XBII>

o o

The natural question is: what is a natural generalization of the deviance for GLMs?
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Example: Beetles data, saturated model

m | et us consider again the Beetles data and the predictions fi;, based on p = 2 parameters. These

predictions are not perfect but that may be due to chance.

m; deaths (5;) logdose (x;) Y, = 8S;/m; fLi
59 6 1.691 0.102 0.059
60 13 1.724 0.217 0.164
62 18 1.755 0.290 0.362
56 28 1.784 0.500 0.605
63 52 1.811 0.825 0.795
59 53 1.837 0.898 0.903
62 61 1.861 0.984 0.955
60 60 1.884 1.000 0.979
® The s;/m; can be seen as estimates of the most flexible model, in which

every observation Y; has its own mean u;. We call it
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Saturated model

m |et us express the of a GLM as a function of the mean p = (u1,-- ., tn)-

® \When evaluated in the maximum likelihood, this gives:

Ui, @) = Zwiyie(ﬂi) _qbb(e(ﬂi)) +c(yi, b).

The maximum likelihood for each p; is , in the sense that depends on the p parameters of

the linear predictor x7 3 through the link function g(u;) = «I'5.

® |n the saturated model the means u; are : each parameter is estimated separately,
giving the maximum likelihood estimate fi; sot = ;. This happens whenever p = n.

® When evaluated in the maximum, the log-likelihood of the saturated model is

bl d) = w2 _qsb(e(yi)) ey d).

® The saturated model is the most complex model we can think of.
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Deviance

The deviance of a GLM is defined as

=2 Zwi {il0(yi) — 0(f1i)] — [b(6(vi)) — b(6(12:))]} -

The quantity D(y; ft)/¢ is called scaled deviance and it corresponds to a
W in which the current model is tested against the saturated model.

By definition, the deviance is : D(y; 1) > 0, because £rq(y, @) > La(fr, ).

The deviance of the saturated model is D(y;y) = 0.

The deviance describes a lack of fit: the higher the deviance, the poorer the fit.

It measures the discrepancy between the saturated model and a model using p < n parameters.

The deviance is a function of u, therefore its definition does not depend on the link function g(-).
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Deviance and log-likelihood ratio test

Let us consider two My C M. The M, has py parameters and
predictions ft,. The full model M; has p parameters f1,.

The log-likelihood ratio test W for testing model M, against model M11 can be written as

D(Y3ﬂo) D(Y§ﬁ)- 2

Y

—

where ¢ = p — po are the degrees of freedom.

® The log-likelihood ratio can be interpreted as a difference of scaled deviances. This explains why it is
popular in GLMs for comparing nested models.

® This is also strong parallelism with the Gaussian linear model.

1. More formally, we should say that we are testing the hypothesis Hj : Bg = 0 against the alternative
H, : Bp # 0. | hope you can tolerate this slight linguistic abuse.
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The null model

Let us consider a model M, with no covariates and one parameter (p = 1), i.e. the intercept.
The predicted values are all equals to

A

i:"null - (9_1(61)7 < 79_1(/81))‘
We call My the null model and D(y; fr,,) the

® The null model is the “opposite” of the saturated model. It is the among all models and the
one having the highest deviance.

® |ndeed, the following inequalities hold:
0=D(y;y) < D(y; &) < D(Y; fou)-

® |t is sometimes useful to test the current model against the null model:

W = D(Y7 ilnull)A_ D(Y7 i:l') iy X229_1°
¢
If the Hy is not rejected, it means all the are regarded as
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Pearson X? statistic

® The deviance is a log-likelihood ratio test between a given model and the saturated model, rescaled
by ¢.

® Hence, we may consider another test, like the . to obtain an alternative definition.

Let W, be the Rao-Score test comparing model M with the . Then, it holds:

n

)2
W= X2 =Y P
i1 v(fi;)

which is known as generalized Pearson chi-squared statistic.

m Karl Pearson introduced X?2 in 1900 for testing various hypotheses using the chi-squared distribution,

such as the hypothesis of independence in contingency tables.
m Since W, and W are asymptotically equivalent, so will be the chi-squared statistic X2 and the

deviance D(Y; f1) for large values of n.

Home page %wucn%


https://tommasorigon.github.io/StatIII

89 /119

Deviance of a Gaussian linear model

= |n the classical Gaussian linear model, we have that 6; = u; and b(6;) = 6%/2. Thus 0(y;) = y; and

f) = 22%‘ {vil0(y:) — 0(:)] — [b(6(y:)) — b(6(f1:))]}

—22{.% vi /2 + i /2}
= (W7 = 2wifi + 1) = (i — )’
=1 =1
® |n the Gaussian case, the deviance is the and D(y; 1) = X2,

= Note that the null deviance is obtained with fu ., = (7, ..., ) so that

n

D(y; fyn) = Z(yz - )

i=1
namely the so-called total deviance.
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Deviance of a Poisson model

m | et us consider a Poisson regression model, that is §; = log u; and b(6;) = exp(6;) = u;

0(y;) = logy; and
D(y; i) = 2Z{yi(logyi —log fi;) — yi + [ }
i—1

=2 Z{yz’ log(yi/ i) — yi + fui},
=1

with the that y; log(y;/ft;) = 0 whenever y; = 0.

m The X? statistic in this case has a very simple form

n 2 n

X2 = Z M _ Z (observed; — fittedi)z.

P % fitted;

1=

As discussed in Salvan et al. (2020), Example 2.12, this can be seen as a
of the deviance, which is valid for large values of n.
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Deviance of a binomial model |
m | et us consider a Binomial regression model m;Y; = S; ~ Bimonial(m;, 7;) with u; = 7;. Then
L) =) {miyilog (i) +mi(1 — y;)log (1 — )}

=1

Therefore, under the convention zlog(x) = 0 as before, the deviance is

. E Yi 1 —y
D(y; i) = 2Zmi{yz-log (;) + (1 —y;)log (1 — )}
i=1 L

1

n
m. . m. J— m. .
=2 Z {miyi log (mzZz) + (m; — myy;) log (mz — mi”/;) } :

1=1

®m The quantities m;y; and m; — m;y; can be interpreted as the number of observed successes and
, respectively. Similarly, m;f; and m; — m;ji; represent their . Hence, we can write

2n
~ Z observed;
_l)(y7 Ij,) = 2 < Observedj ].Og (W)
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Deviance of a binomial model |l

m The X? statistic of a binomial model, recalling that v(u;) = p;(1 — p;), equals to

2 _ (i — f1:)°
e Z fi(1 — ;) /m;

1=1

_ Z mzyz mz:“fz) 4 Z [( miyi) — (ml - mzﬂz)]Q )

mif; 1 m; — My

The second representation follows after some

® The second equation shows that we can write

2n .
X2 _ E (observed; — flttedj)2.

- fittedj
j=1

m As already mentioned, the X2 statistic can be seen as a of the deviance.
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Deviance as goodness of fit measure |

® The deviance is useful a for the goodness of fit.

® |t s to use the deviance as a formal statistical test, to verify if the current model is
adequate compared to the saturated model.

m Suppose ¢ were known, then in the Gaussian case we would have D(y; ft)/¢ ~ X%_p, which would

allow us to check the adequacy of the model.

= Unfortunately, whenever ¢ is we obtain D(y; f1)/¢ ~ n — p, and exactly n — p in the
Gaussian case, so this strategy can not be used.

® On the other hand, for example in Poisson e binomial regression, we have ¢ = 1. Hence, the intuition
tells us that, at least approximately, we should have

D(y; o) ~ xi_,-

® Unfortunately, this is the : the saturated model is an “irregular case” in that the number of
parameters p = n grows with the sample size.

® The usual “large n" approximation does not hold in general, e.g. because X727,—p itself depends on n.
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Deviance as goodness of fit measure ||

m Despite these bad news, it turns out that in some special cases, the X,Z,L_p approximation is still valid

even for fixed values of n.

Then the deviance D(y; f1) and the X? Pearson statistic are approximately distributed as a xi_p

in the following cases:

® |n binomial regression, for large values of m; (small-dispersion asymptotics);
® |n Poisson regression, for large values of the estimated means fi; (say fi; > 5);

® When ¢ is known and ¢ — 0 (small-dispersion asymptotics).

= Small-dispersion asymptotics describe an alternative limiting regime in which the variance of the
observations tends to 0.

® |n binomial regression the X? statistic converges to X%_p more quickly than the deviance and has a
more trustworthy p-value when some expected success or failure totals are less than about five.

®m The X727,—p approximation is for binary regression, i.e. when m; = 1.
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On pseudo-R?

m There exist several generalizations of the R? statistic for linear models, called pseudo-R?
(e.g. McFadden, Cox & Snell, Nagelkerke, Tjur, etc.).

® These indices are and could mislead those accustomed with standard R%. A
pseudo-R? ~ 0.4 may indicate a nearly perfect fit (i.e. Beetles data), which is confusing.

m On top of this, these pseudo-R? produce different answers depending on the aggregation of the
data.

® The recommendation is to rely on indices tailored for the data at hand, such as the ROC curve for
binary data, or the correlation between y and fx.

® The residual deviance is also a useful tool, especially for comparing models.

m Pseudo-R? are often shown by default in other software, such as SAS or SPSS.
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Example: Beetles data, output of summary

® This is how the summary of a GLM looks like. It is very similar to the summary of 1m. At this stage of
the course, you should be able to understand almost everything.

Call:

glm(formula = cbind(deaths, m - deaths) ~ logdose, family = "binomial",
data = Beetles)

Coefficients:
Estimate Std. Error z value Pr(>lzl)
(Intercept) -60.717 5.181 -11.72 <2e-16 **x
logdose 34.270 2.912 11.77 <2e-16 *xxx
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.202 on 7 degrees of freedom
Residual deviance: 11.232 on 6 degrees of freedom
AIC: 41.43

NMiamhar Af Fichar QraAarina i+aratinmne /1

® Null deviance corresponds to the null deviance D(y; ft,11)-

m Residual deviance corresponds to the D(y; fx) of the current model.

A

< DEGLI STUDI
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Example: Beetles data, output of anova

® anova(modelO, modell) computes log-likelihood ratio test comparing two nested models: the
model My with pg parameters and the full model M; with p parameters.

Analysis of Deviance Table

Model 1: cbind(deaths, m - deaths) ~ 1
Model 2: cbind(deaths, m - deaths) ~ logdose
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 7 284.202
2 6 11.232 1 272.97 < 2.2e-16 *x**
;;;nif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '." 0.1 " " 1
m Resid Df are the degrees of freedom of the , that is n — pg and n — p, respectively.
m Resid. Dev are the deviances of the model D(y; f1,) and the full model D(y; ). In this

example, the reduced model is also the
m Df refers to the degrees of freedom g = p — py of the test, which is ¢ = 1 in this case.
m Deviance indicates the change in deviance, that is oW = D(y; f1,) — D(y; 1).
®m Pr(>Chi) is the p-value of the log-likelihood ratio test W.

Home page ;H:lll:l:%


https://tommasorigon.github.io/StatIII

98 / 119

Example: Beetles data, goodness of fit

=6)

dchisq(x, df

0.00 0.02 0.04 0.06 008 010 0.12 0.14

® The deviance equals D(y; ft) = 11.232, with n — p = 8 — 2 = 6 degrees of freedom. The observed
X2 equals 10.027.

m Using the X? statistic with 6 degrees of freedom, we obtain the p-value P(X? > 10.027) = 0.124, as
pictured above, which can be interpreted as a lack of fit.
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Example: Aids data, output of summary

m Below is shown the summary of the Poisson regression model with the Aids data.

Call:
glm(formula = deaths ~ period, family = "poisson", data = Aids)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.30365 0.25387 1.196 0.232
period 0.25896 0.02224 11.645 <2e-16 *xx

Signif. codes: O 'x*xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 208.754 on 13 degrees of freedom
Residual deviance: 30.203 on 12 degrees of freedom

AIC: 86.949

Number of Fisher Scoring iterations: b5

A

< DEGLI STUDI
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Example: Aids data, output of anova and lrtest

Analysis of Deviance Table

Model 1: deaths ~ 1
Model 2: deaths ~ period
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 13 208.754
2 12 30.203 1 178.55 < 2.2e-16 xxx
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The use of the term deviance to indicate the difference between two deviances is a bit
| do not know the the reason, but the 1rtest function of the Imtest package changed it.

Likelihood ratio test

Model 1: deaths ~ 1
Model 2: deaths ~ period
#Df  LogLik Df Chisq Pr(>Chisq)
1 1 -130.750
2 2 -41.475 1 178.55 < 2.2e-16 **x*

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

A

< DEGLI STUDI
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Example: Aids data, goodness of fit

m The deviance equals D(y; ft) = 30.203, with n — p = 14 — 2 = 12 degrees of freedom. The
observed X2 equals 29.92.

m Using the X? statistic with 12 degrees of freedom, we obtain the p-value P(X? > 29.92) = 0.0028,
therefore the hypothesis that this model has a comparable fit with the saturated model.

m The X? goodness of fit test indicates a potential issue with the model, but it does not explain why.
m A few remedies could be:

a. Choosing a different ;

b. Including an additional covariate (if available), and/or considering non-linear
of the available ones:

c. Choosing a different instead of the Poisson, such as the negative binomial;

d. Accounting for overdispersion using quasi-likelihoods, that is, estimating ¢ from the data rather
than fixing it to ¢ = 1.

® |t turns out that selecting the link function g(u;) = /p; yields a much better fit with X? =17.09,
whose p-value is 0.146. This is not the only possible solution.
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Residuals

® Linear models have an additive structure y; = a:iTﬁ + €; therefore the residuals can be estimated as
ri =Yi — i
We call these the response residuals.

® GLMs do not have an additive decomposition, therefore we need define a good of
. There are at least 2 alternatives: Pearson and deviance residuals.

® |deally, we would like residuals to have approximately 0 mean and unitary variance, but these
properties will not hold exactly.

® The analysis of the residuals is very helpful for identifying any misspecification as well as hinting the
solution. In particular, it is useful for instance to:

a. Choosing the correct variance function v(u;), i.e. the correct response distribution;
b. Choosing the correct link function;
c. ldentifying latent patterns, often an indication of an omitted variable;

d. ldentifying potential outliers and leverage points.
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Pearson residuals

For a GLM with variance function v(u;), we call Pearson residuals the following quantities:

Yi — Mg

1=1,...,n.

® Pearson residuals rescale the response residuals, accounting for

m Pearson residuals own their name to the fact that the X2 statistic is obtained as

2

n n ~
2 2 _ (yz — ;)
XD e = ey
1=1 =1

Moreover, the dispersion parameter, when present, can be estimated as

n

1 2

T p.
i, P
! i=1

b =
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Deviance residuals

The deviance of a GLM can be written as a sum of individual contributions D(y; 1) = > ; d; and

di = 2w; {y:[0(ys) — O(f2:)] — [b(0(w:)) —b(O(:))]},  i=1,...,n.

We call deviance residuals the following quantities:

rip = sign(y; — )v/di,  i=1,...,n.

m By definition, the deviance is obtained as

n

D(y; ir) = ZTZD-

i=1
® Deviance residuals are the choice in the residuals R function.

® Pearson residuals are an asymptotic approximation of deviance residuals, therefore these two
quantities are often very similar in practice.
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A weighted projection matrix

® |n linear models, we considered the hat matrix H = X(XTX)_lXT, whose diagonal elements h;
are called and it holds var(r;) = o%(1 — h;).

m Several arguments can be invoked to justify the following weighted hat matrix in GLMs
Hy = WX XTWX) ' XW/2

This matrix is symmetric (Hy = H7y) and (H?, = Hy), i.e. a projection matrix.

= \We denote with h; v the diagonal elements of Hy;, which are the leverages of a GLM. In practice
W is estimated from the data, therefore the leverages will depend on the

m |t can be shown, as in Agresti (2015), Section 4.4.5, that

var(y; — ;) =~ ¢/wiv(pw;)(1 —hiw) = var(rip) ~ ¢(1 —h,w).

® A technical but deeper discussion about Hy can be found in the Appendix of Chapter 4 of Agresti
(2015), where stronger analogies with linear models are shown.
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Standardized residuals

® |n analogy of what has been done for GLMs, we can consider the standardized version of Pearson

and deviance residuals.

m Standardized Pearson residuals are defined as

A

- rip Yi — Ky
ri,P p— = = f— = =
Vo —haw)  y/dlwwlins) (1 — huw)

where qg is an estimate of ¢ (if unknown) and i;,@',W is an estimate of the leverages.

m Standardized deviance residuals are defined as

~ Ti.D .
Ti,D = —7= = , 1=1,...,n.
\/¢(1 — hiw)
® \We can also obtain an by considering
Iy
Ci = 7:1,2,P Z’VY ) 1 =1, y
p(1—hyw)
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On Q-Q plots and other practicalities

m |t is sometimes recommended to check the normality of the Pearson/deviance residuals using Q-Q
plots. Such a plot is also provided in R.
® |ndeed, for example under small dispersion asymptotics or other specific, Pearson residuals are

Gaussian.

m However, these conditions are often not met. For example, in binary data the response y; € {0,1}
can only assume two values and the residuals will not be Gaussian distributed, even for large n.

® Actually, the analysis for the residuals in binary data do ; see e.g.
Salvan et al. (2020), Section 3.6.

The analysis of residuals in GLMs is often useful but should be taken cum grano salis, particularly
when dealing with discrete responses that take only a few distinct values.

Overreliance on residual analysis can encourage automatic decisions rather than thoughtful, critical
judgment. A good model should not be discarded solely on the basis of a “bad” diagnostic plot.
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On identifying and removing outliers

® The analysis of the residuals can also help in identifying outliers and influence points. However, we
must be careful in drawing conclusions.

® An outlier might be detected as such simply as the consequence of , €.g. an
omitted variable.

® |n the vast majority of cases, the presence of outliers should be carefully dealt with by carefully
modifying the model.

m There are instances in which outliers are actually contaminated data points (e.g. age = -3). If

there is strong and contextual evidence that this might be the case, then these points should be
. Otherwise, removing data points is a

In statistical modelling, we wish to find a model that fits our data, not a dataset that is aligned with
our prescribed model.

Discarding observations until the hypoteshes are reasonable it skews the overall analysis and does not
answer any meaningful scientific or business question.
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Example: Beetles data

1.5
1.5

1.0
1.0

Standardized deviance residuals
) -0.5 0.0 05 )
[ ]
Standardized Pearson residuals
-0.5 0.0 05
[ )

-1.5

[ ]
-1.5
[ J

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

m A formal test already confirmed that there are noticeable between this model and the
saturated model. The analysis of the residuals confirms it.

® Deviance residuals and Pearson residuals are very similar, as expected.
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Example: Beetles data

Cook's distance

0.5

0.4

Cook's distance
0.3

0.1

Obs. number
glm(cbind(deaths, m - deaths) ~ logdose)

® The Cook’s distance also confirms that there are not strong influence points.

SSUNIVERSITA
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Example: Aids data
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® From both residuals plots it is evident that three observations are highly underestimated, while the
others are slightly underestimated.

®m The lack of fit can be solved, in this case, by using a different link function.
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Example: Aids data

Standardized deviance residuals
0
|
.

Standardized Pearson residuals
[ ]

m \We estimated a Poisson regression model with a non-canonical link function g(u;) = /-

® This yields a much better fit, as we previously discussed. The residuals are also better behaved.
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Model selection

Home page sicaccs


https://tommasorigon.github.io/StatIII

114 / 119

Model selection process

®m Model selection for GLMs faces the same issues as for linear models.

B The selection process becomes more difficult as the number of explanatory variables p increases,

because of the growth in possible effects and interactions. There are two competing goals:
a. The model should be complex enough to fit the data well,

b. On the other hand, it should the data and ideally remain simple to
interpret.

® Most research studies are designed to answer certain questions, which guide the choice.

= Confirmatory analyses use a restricted set of models, e.g. for testing a study hypothesis about an
effect by comparing models that effect.

m Exploratory studies, instead, search among possible models which may provide clues about the
structure of effects or can raise questions for future research.

m |n either case, it is helpful first to study the marginal effect of each predictor. Use
and a scatterplot matrix to get a feel for those effects.
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Automatic model selection

= With p explanatory variables, the number of potential models is the huge number

> (7) -

k=1

®m Best subset selection identifies the model that optimizes an information criterion e.g. AlC or BIC,
which are defined as

A

AIC = —2¢(8) + 2k,  BIC = —24(B3) + klogn,

where k is the number of parameters in the model.

® Best subset selection is when p is large, to the extent that it is not even

feasible in most cases, but approximations such as forward and backward selection are possible.

® |n exploratory studies, these methods are useful if applied cautiously.

® As we shall discuss, an excess of automatism may lead to good predictive performance, but it may
fail in making the model simple or interpretable.
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Stepwise procedures: forward and backward selection

Forward selection adds terms sequentially. At each stage it selects the term giving the greatest
improvement in terms of or other goodness of fit measures.

The process stops when further additions do not improve the it, according to statistical significance
(i.e. a log-likelihood ratio test) or a criterion for judging the model fit (such as the AIC or BIC).

A stepwise variation of this procedure rechecks, at each stage, whether terms added at previous
stages are still needed.

begins with a complex model and sequentially removes terms.

At each stage, it selects the term whose removal has the least damaging effect on the model, such as
the largest p-value in a test or the least deterioration in a criterion for judging the model fit.

The process stops when any further deletion leads to a poorer it.

Whenever possible, i.e. when p is not too large, we recommend manually performing each stage of
forward or backward procedures and
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Comments on forward /backward selection |

® An interaction term should not be included without its

® For qualitative predictors with > 2 categories: add/drop the , not just one indicator.
Otherwise, results depend on the reference category used in coding.

® Some statisticians prefer backward elimination over . It is safer to delete terms
from an overly complex model than to to an overly simple one.

® Forward selection based on significance tests:

a. May stop prematurely if a test has low power.

b. Early-stage comparisons often involve , making tests questionable.

m Neither backward nor forward strategies guarantee a meaningful model.

m Evaluating many terms increases risk of chance findings. If true effects are , the largest sample
effect likely overestimates the truth.

m Use of standard significance tests in selection lacks . Distribution of
minimum or maximum p-values at each stage is not the same as the distribution of a pre-selected

variable. This issue is called multiple testing and leads to conclusions.
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Comments on forward /backward selection Il

m Statistical significance is not the same as practical significance; do not rely only on significance
tests.

® The price to pay for adding an irrelevant variable is an increase in variance of the estimates. The
price to pay for dropping a relevant variable is an increase in

m |t is possible to include variables central to the study goals even if

® |t enables comparisons with other studies where the effect is significant, perhaps because of a
larger sample size;

m |f the variable is a potential , i.e. possibly relevant for predicting the response, but
not of direct interest, including it in the model may help to reduce bias in estimating relevant
effects of key explanatory variables.

® Do not keep variables just because they are significant.

®m As an example, consider an adjusted R? = 0.39 in a linear model with interactions vs. 0.38
without. The simpler model may be preferable being more interpretable.
m Algorithmic selection methods are no substitute for careful thought in model building.
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