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This unit will cover the following topics:

Exponential dispersion families

Likelihood, inference, and testing

Iteratively Re-weighted Least Squares (IRLS)

Deviance, model checking, and residuals

Model selection

GLMs are regression models with a linear predictor, where the
response variable follows an exponential dispersion family.

The symbol 📖 means that a few extra steps are discussed in the
handwritten notes.

The content of this Unit is covered in Chapter 2 of Salvan et al. ( ). Alternatively, see Chapter
4 of Agresti ( ) or Chapter 6 of Azzalini ( ).
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Introduction
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Preliminaries

GLMs are a class of regression models in which a response random variable  is modeled as a

function of a vector of covariates .

The random variables  are not restricted to be Gaussian. For example:

, known as binary regression

, known as count regression

 or 

Gaussian linear models are a special case of GLMs, arising when .

Y ​i

x ​ ∈i Rp

Y ​i

Y ​ ∈i {0, 1}

Y ​ ∈i {0, 1, … }

Y ​ ∈i (0, ∞) Y ​ ∈i (−∞, ∞)

Y ​ ∈i (−∞, ∞)

The response random variables are collected in the random vector , whose

observed realization is .

The design matrix  is an  non-stochastic matrix containing the covariate values. The th

variable (column) is denoted by , while the th observation (row) is .

We assume that  has full rank, that is,  with .

Y = (Y ​, … ,Y ​)1 n
T

y = (y ​, … , y ​)1 n
T

X n × p j

​x~j i x ​i

X rk(X) = p p ≤ n
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Beetles data, from Bliss (1935)

The Beetles dataset originates from Bliss (1935). It records the number of adult flour beetles that
died after a 5-hour exposure to gaseous carbon disulphide.

m deaths logdose

59 6 1.6907

60 13 1.7242

62 18 1.7552

56 28 1.7842

63 52 1.8113

59 53 1.8369

62 61 1.8610

60 60 1.8839

We aim to predict the proportion of deaths as a function of logdose.

Modeling death proportions directly with linear models is inappropriate. A variable
transformation provides a more principled solution, but it comes with drawbacks.
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Beetles data, a dose-response plot

There is a clear positive and non-linear pattern between the proportion of deaths as a function of
the logdose. The response variable take values in .[0, 1]
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Modelling the Beetles data

Let  be the number of dead beetles out of , and let  denote the log-dose. By definition, 

 for .

It is natural to model each  as independent binomial random variables, counting the number of

deaths out of  individuals. In other words:

where  is the probability of death at a given dose . Moreover, et  be the proportion

of deaths, then:

A modeling approach, called logistic regression, specifies:

for some parameters . Note that  by construction.

S ​i m ​i x ​i S ​ ∈i
{0, 1, … ,m ​}i i = 1, … , 8

S ​i

m ​i

S ​i ∼ind Binomial(m ​,π ​), i =i i 1, … , 8,

π ​i x ​i Y ​ =i S ​/m ​i i

E(Y ​) =i E
​

=(
m ​i

S ​i ) π ​ =i μ ​.i

g(π ​) =i log ​
=(

1 − π ​i

π ​i ) β ​ +1 β ​x ​ ⟹2 i π ​ =i g (β ​ +−1
1 β ​x ​) =2 i ​ .

1 + exp(β ​ + β ​x ​)1 2 i

exp(β ​ + β ​x ​)1 2 i

β ​,β ​ ∈1 2 R π ​ ∈i (0, 1)
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Beetles data, fitted model

The maximum likelihood estimates are  and . This yields the predictive
curve  which estimates the mean proportion .

​ ​ =β̂1 −60.72 ​ ​ =β̂2 34.3
(x) =π̂ g ( ​ ​ +−1 β̂1 ​ ​x),β̂2 E(S ​/m ​)i i
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A comparison with old tools I

Let  be the proportion of deaths. A direct application of linear models implies:

The coefficients  and  are then estimated using OLS using  as response.

The prediction  is unrestricted, meaning it could produce values like “1.3” or “-2” as

estimated proportions, which is clearly undesirable.

The additive structure  cannot hold with iid errors , because , and thus ,

are discrete. As a result, the errors are always heteroschedastic.

If , i.e. when the data are binary, all the above issues are exacerbated.

This approach is sometimes called the linear probability model. Before GLMs, it was considered
acceptable despite its issues, but by modern standards it should not be used.

Y ​ =i S ​/m ​i i

Y ​ =i β ​ +1 β ​x ​ +2 i ϵ ​.i

β ​1 β ​2 Y ​i

​ ​ +β̂1 ​ ​x ​β̂2 i

Y ​ =i β ​ +1 β ​x ​ +2 i ϵ ​i ϵ ​i S ​i Y ​i

m ​ =i 1
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A comparison with old tools II

We consider the empirical logit variable transformation of , obtaining

A correction term is necessary because otherwise  is undefined. The predictions belong

to , since

in which  and  are estimated with OLS using  as response.

The interpretation of  is less clear, as they refer to the mean of  instead of .

An arbitrary boundary correction is needed.

Inference is problematic and requires further corrections, because of heteroschedastic errors.

This approach is not compatible with the reasonable assumption .

Y ​ =i S ​/m ​i i

logit( ​) =Y
~
i log ​ =(

m ​ − S ​ + 0.5i i

S ​ + 0.5i ) β ​ +1 β ​x ​ +2 i ϵ ​, ​ =i Y
~
i ​ .

m ​ + 1i

S ​ + 0.5i

g(⋅) = logit(⋅)
(0, 1)

​ =π̂i g [E{g( ​)}] =−1 Y
~
i g ( ​ ​ +−1 β̂1 ​ ​x ​) =β̂2 i ​ ,

1 + exp( ​ ​ + ​ ​x ​)β̂1 β̂2 i

exp( ​ ​ + ​ ​x ​)β̂1 β̂2 i

​ ​β̂1 ​ ​β̂2 logit( ​)Z
~
i

​β̂ logit( ​)Y
~
i E(Y ​)i

S ​ ∼i Binomial(m ​,π ​)i i
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A comparison with old tools III

The black line is the predicted curve of a logistic regression GLM. The orange line is the
predictived curve of a linear model. The blue line is the predictive curve of a linear model after an
empirical logit variable transformation.
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Aids data

Number of AIDS deaths in Australia in a sequence of three-months periods between 1983 and 1986.

1983-1 1984-1 1985-1 1986-1 1983-2 1984-2 1985-2

deaths 0 1 2 3 1 4 8

period 1 2 3 4 5 6 7

1986-2 1983-3 1984-3 1985-3 1986-3 1983-4 1984-4

deaths 17 23 32 20 24 37 45

period 8 9 10 11 12 13 14

We are interested in predicting the number of deaths as a function of the period of time.

The response variable  is a non-negative count.Y ​ ∈i {0, 1, … }
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Aids data, scatter plot

There is a clear positive association between period and deaths. However, the increase appears to be
faster than linear. Note that both the mean and the variability of  increase over time.Y ​i
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Modelling the Aids data

Let  be the number of deaths, and let  denote the period. By definition,  are non-

negative counts, for .

Y ​i x ​i Y ​ ∈i {0, 1, … }
i = 1, … , 14

We model  as independent Poisson random variables, counting the number of deaths:

where  is the mean of , namely .

A modeling approach, called Poisson regression, specifies:

for some parameters . Note that  by construction.

Under this specification, the variances of the observations are

which increases with , as desired. This implies that  are heteroschedastic, but this is not

an issue in GLMs, as this aspect is automatically accounted for.

Y ​i

Y ​i ∼ind Poisson(μ ​), i =i 1, … , 14,

μ ​i Y ​i E(Y ​) =i μ ​i

g(μ ​) =i log(μ ​) =i β ​ +1 β ​x ​ ⟹2 i μ ​ =i g (β ​ +−1
1 β ​x ​) =2 i exp(β ​ +1 β ​x ​),2 i

β ​,β ​ ∈1 2 R μ ​ >i 0

var(Y ​) =i μ ​ =i exp(β ​ +1 β ​x ​),2 i

x Y ​, … ,Y ​1 n

Home page

14 / 119

https://tommasorigon.github.io/StatIII


Aids data, fitted model

The maximum likelihood estimates are  and . This yields the predictive
curve  which estimates the mean .

​ ​ =β̂1 0.304 ​ ​ =β̂2 0.259
​(x) =μ̂ exp( ​ ​ +β̂1 ​ ​x),β̂2 E(Y ​)i
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A comparison with old tools I

We consider the variance-stabilizing transformation , obtaining

The predictions belong to , since

in which  and  are estimated with OLS using  as response.

The interpretation of  is less clear, as they refer to the mean of  instead of .

This approach is not compatible with the reasonable assumption  and it only valid

as an asymptotic approximation.

To compare such a model with a similar specification, we also fit another Poisson GLM in which

S ​ =i ​Y ​i

​ =Y ​i β ​ +1 β ​x ​ +2 i ϵ ​.i

(0, ∞)

​ ​ =μ̂i E( ​) =Y ​i
2 ( ​ ​ +β̂1 ​ ​x ​) ,β̂2 i

2

​ ​β̂1 ​ ​β̂2 ​Y ​i

​β̂ ​ ​Y i E(Y ​)i

Y ​ ∼i Poisson(μ ​)i

Y ​i ∼ind Poisson(μ ​), ​ =i μ ​i β ​ +1 β ​x ​, i =2 i 1, … , 14.
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A comparison with old tools II

The black line is the predicted curve of a Poisson regression GLM with logarithmic link. The orange
line is the predicted curve of a linear model with a square-root transformation. The blue line is
the predictive curve of a Poisson regression GLM with square-root link.
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The components of a GLM

Random component. This specifies the probability distribution response variable . The

observations  on that distribution are treated as independent.

Y ​i

y = (y ​, … , y ​)1 n

Linear predictor. For a parameter vector  and an  design matrix , the

linear predictor is . We will also write

β = (β ​, … ,β ​)1 p
T n × p X

η = Xβ

η ​ =i x ​β =i
T x ​β ​ +i1 1 ⋯ + x ​β ​, i =ip p 1, … ,n.

Link function. This is an invertible and differentiable function  applied to each component of the

mean  that relates it to the linear predictor:

Note that, in general, we cannot express the response in an additive way .

g(⋅)
μ ​ =i E(Y ​)i

g(μ ​) =i η ​ =i x ​β, ⟹i
T μ ​ =i g (η ​) =−1

i g (x ​β).−1
i
T

Y ​ =i g (η ​) +−1
i ϵ ​i
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Random component of a GLM

In GLMs the random variables  are independent and they are distributed according to an

exponential dispersion family, whose definition will be provided in a few slides.

The distributions most commonly used in Statistics, such as the normal, binomial, gamma, and
Poisson, are exponential family distributions.

Exponential dispersion families are characterized by their mean and variance. Let  be a

function of the mean, called variance function and let  be functions of an additional

unknown parameter  called dispersion.

Y ​i

v(μ) > 0
a ​(ϕ) >i 0

ϕ > 0

In a GLMs the observations are independent draws from a distribution :

with . Moreover, the variance is connected to the mean via :

where  and  are known weights. Special cases are  and .

ED(μ ​, a ​(ϕ)v(μ ​))i i i

Y ​i ∼ind ED(μ ​, a ​(ϕ)v(μ ​)), E(Y ​) =i i i i μ ​, g(μ ​) =i i x ​β,i
T

μ ​ ∈i M v(μ)

var(Y ​) =i a ​(ϕ)v(μ ​),i i

a ​(ϕ) =i ϕ/ω ​i ω ​i a ​(ϕ) =i ϕ a ​(ϕ) =i 1
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Notable examples

In a Gaussian linear model we consider the identity link  and let

The unknown variance  is called dispersion in GLMs. The parameter space is ,

whereas  and the variance function is constant  (homoschedasticity).

In a binomial regression model with logit link  we let  and

We have  and . There is no dispersion parameter.

In Poisson regression with logarithmic link  we let

We have  and . There is no dispersion parameter.

g(μ) = μ

Y ​i ∼ind N(μ ​,σ ), μ ​ =i
2

i x ​β.i
T

σ =2 ϕ M = R
a ​(ϕ) =i ϕ v(μ) = 1

g(μ) = logit(μ) Y ​ =i S ​/m ​i i

S ​i ∼ind Binomial(m ​,π ​), E Y ​ =i i ( i) π ​ =i μ ​, logit(μ ​) =i i x ​β.i
T

a ​(ϕ) =i 1/m ​i v(μ) = μ(1 − μ)

g(μ) = log(μ)

Y ​i ∼ind Poisson(μ), log(μ ​) =i x ​β.i
T

a ​(ϕ) =i 1 v(μ) = μ
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Exponential dispersion families
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Overview

Figure 1 of Efron ( ). Three level of statistical modeling.

The prime role of exponential families in the theory of statistical inference was first emphasized by
Fisher ( ).

Most well-known distributions—such as Gaussian, Poisson, Binomial, and Gamma—are instances of
exponential families.

2023

1934
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Exponential dispersion family: definition

The density of  belongs to an exponential dispersion family if it can be written as

where ,  and  where  are known positive weights. The

parameter  is called natural parameter while  is called dispersion parameter.

Y ​i

p(y ​; θ ​,ϕ) =i i exp ​ + c(y ​,ϕ) ,{
a ​(ϕ)i

θ ​y ​ − b(θ ​)i i i
i }

y ​ ∈i Y ⊆ R θ ​ ∈i Θ ⊆ R a ​(ϕ) =i ϕ/ω ​i ω ​i

θ ​i ϕ

By specifying the functions  and  one obtain a particular parametric model.

The support  of  does not depend on the parameters  or  and  can be differentiated
infinitely many times. In particular, this is a regular statistical model.

As mentioned, special cases are  and . When  and  we

obtain

which is called natural exponential family of order 1.

a ​(⋅), b(⋅)i c(⋅)

Y Y ​i ϕ θ ​i b(⋅)

a ​(ϕ) =i ϕ a ​(ϕ) =i 1 a ​(ϕ) =i 1 c(y ​,ϕ) =i c(y ​)i

p(y ​; θ ​) =i i exp θ y ​ − b(θ ​) + c(y ​) ,{ i i i i }
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Mean and variance I 📖

Let us consider the log-likelihood contribution of the th observations, which is defined as

If you prefer, this is the log-likelihood when the sample size  and we only observe .

The score and hessian functions, namely the first and second derivative over  are

where  and  denote the first and second derivative of .

Recall the following Bartlett identities, valid in any regular statistical model:

i

ℓ(θ ​,ϕ; y ​) =i i log p(y ​; θ ​,ϕ) =i i ​ +
a ​(ϕ)i

θ ​y − b(θ ​)i i i
c(y ​,ϕ).i

n = 1 Y ​i

θ ​i

​ ℓ(θ ​,ϕ; y ​) =
∂θ ​i

∂
i i ​

,
​
ℓ(θ ​

,ϕ; y ​
) =

a ​(ϕ)i

y ​ − b (θ ​)i
′

i

∂θ ​i
2

∂2

i i ​ .
a ​(ϕ)i

−b (θ ​)′′
i

b (⋅)′ b (⋅)′′ b(⋅)

​

E ​ ℓ(θ ​,ϕ;Y ​)(
∂θ ​i

∂
i i )

E ​ ℓ(θ ​,ϕ;Y ​) = var ​ ℓ(θ ​,ϕ;Y ​){(
∂θ ​i

∂
i i )

2

} (
∂θ ​i

∂
i i )

= 0,

= E − ​ ℓ(θ ​,ϕ;Y ​) .(
∂θ ​i

2
∂2

i i )
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Mean and variance II 📖

Specializing Bartlett identities in exponential dispersion families, we obtain

Re-arranging the terms, we finally get the following key result.

Let  be an exponential dispersion family, identified by the functions  and , and with

natural parameter . Then the mean and the variance of  equal

The mean  does not depend on the dispersion parameter.

We have  because , which means that  is a convex function.

Moreover, the function  is continuous and monotone increasing and hence invertible.

The function  is related to the moment generating function of . Thus, higher order derivatives of

 allows the calculations of skewness, kurtosis, etc.

E ​ =(
a ​(ϕ)i

Y ​ − b (θ ​)i
′

i ) 0, var ​ =(
a ​(ϕ)i

Y ​ − b (θ ​)i
′

i ) ​ =
a ​(ϕ)i

2

var(Y ​)i
​ .

a ​(ϕ)i

b (θ ​)′′
i

Y ​i a ​(⋅), b(⋅)i c(⋅)
θ ​i Y ​i

E(Y ​) =i b (θ ​), var(Y ​) =′
i i a ​(ϕ)b (θ ​).i

′′
i

μ ​ =i b (θ ​)′
i

b (⋅) >′′ 0 var(Y ​)i b(⋅)

b (θ)′

b(⋅) Y ​i

b(⋅)
Home page

25 / 119

https://tommasorigon.github.io/StatIII


Mean parametrization, variance function

Let  be an exponential dispersion family, identified by the functions  and , and with

natural parameter , then

The function  is one-to-one and invertible, that is, a reparametrization of . We

call  the mean parametrization of an exponential dispersion family.

Y ​i a ​(⋅), b(⋅)i c(⋅)
θ ​i

μ(θ ​) :=i μ ​ =i E(Y ​) =i b (θ ​).′
i

μ(⋅) : Θ → M θ ​i

μ ​i

The inverse relationship, re-obtaining  as a function of , is denoted with

Using this notation, we can express the variance of  as a function of  as follows

where  is the variance function.

The domain  and the variance function  characterize the function  and the entire

distribution, for any given . This justifies the notation .

θ ​i μ ​i

θ ​ =i θ(μ ​) =i b (μ ​).′−1
i

Y ​i μ ​i

var(Y ​) =i a ​(ϕ)b (θ ​) =i
′′

i a ​(ϕ)b (θ(μ ​)) =i
′′

i a ​(ϕ)v(μ ​),i i

v(μ ​) :=i b (θ(μ ​))′′
i

M v(μ) b(⋅)
a ​(ϕ)i Y ​ ∼i ED(μ ​, a ​(ϕ)v(μ ​))i i i
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Gaussian distribution 📖

Let . The density function of  can be written as

Then, we can recognize the following relationships:

In the Gaussian case, the mean parametrization and the natural parametrization coincide.
Moreover, the dispersion  coincides with the variance .

Using the results we previously discussed, we obtain the well-known relationships

The variance function  is constant. We will write  with .

Y ​ ∼i N(μ ​,σ )i
2 Y ​i

​

p(y ​;μ ​,σ )i i
2 = ​ exp − ​ (y ​ − μ ​)

​2πσ2

1
{

2σ2

1
i i

2}

= exp ​ − ​ − ​{
σ2

y ​μ ​ − μ ​/2i i i
2

2
log(2πσ )2

2σ2

y ​i
2

}

θ ​ =i θ(μ ​) =i μ ​, a ​(ϕ) =i i ϕ = σ , b(θ ​) =2
i ​ , c(y ​,ϕ) =

2
θ ​i

2

i − −
2

log(2πϕ)
​ .

2ϕ
y ​i

2

ϕ σ2

E(Y ​) =i b (θ ​) =′
i θ ​, var(Y ​) =i i a ​(ϕ)b (θ ​) =i

′′
i ϕ.

v(μ ​) =i 1 Y ​ ∼i ED(μ ​,ϕ)i μ ​ ∈i M = R
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Poisson distribution 📖

Let . The pdf function of  can be written as

Then, we can recognize the following relationships:

There is no dispersion parameter since .

Using the results we previously discussed, we obtain the well-known relationships

The variance function  is linear. We will write  with .

Y ​ ∼i Poisson(μ ​)i Y ​i

​ ​

p(y ​;μ ​)i i = ​ = exp{y ​ log(μ ​) − μ ​ − log(y ​!)}
y ​!i

μ ​ei
y ​i −μ ​i

i i i i

= exp{y ​θ ​ − e − log(y ​!)}, y ​ = 0, 1, 2, … .i i
θ ​i

i i

​ ​ ​ ​

θ ​i

b(θ ​)i

= θ(μ ​) = log(μ ​),i i

= e ,θ ​i

a ​(ϕ) = 1,i

c(y ​,ϕ) = c(y ​) = − log(y ​!).i i i

a ​(ϕ) =i 1

​ ​

E(Y ​)i
var(Y ​)i

= b (θ ​) = e = μ ​,′
i

θ ​i
i

= a ​(ϕ)b (θ ​) = e = μ ​.i
′′

i
θ ​i

i

v(μ ​) =i μ ​i Y ​ ∼i ED(μ ​,μ ​)i i μ ​ ∈i (0, ∞)
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Gamma distribution I 📖

Let . The density function of  can be written as

having defined the dispersion  and the natural parameter .

Then, we can recognize the following relationships:

Y ​ ∼i Gamma(α,λ ​)i Y ​i

​

p(y ​;α,λ ​)i i = ​

Γ(α)
λ ​y ​ei
α

i
α−1 −λ ​y ​i i

= exp α log λ ​ − λ ​y ​ + (α − 1) log y ​ − log Γ(α){ i i i i }

= exp α log λ ​ − ​y ​ + (α − 1) log y ​ − log Γ(α){ ( i
α

λ ​i
i) i }

= exp ​ − (1/ϕ) log ϕ + (1/ϕ − 1) log y ​ − log Γ(1/ϕ) , y > 0,{
ϕ

θ ​y ​ + log(−θ ​)i i i
i }

ϕ = 1/α θ ​ =i −λ ​/αi

a ​(ϕ)i

c(y ​,ϕ)i

= ϕ, b(θ ​) = − log(−θ ​),i i

= −(1/ϕ) log ϕ + (1/ϕ − 1) log y ​ − log Γ(1/ϕ).i
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Gamma distribution II 📖

Using the results we previously discussed, we obtain the well-known relationships

At the same time, we can write the inverse relationship linking  to the mean as

from which we finally obtain the following quadratic variance function

We will write  with .

E(Y ​) =i b (θ ​) =′
i −

​
=

θ ​i

1
​ =

λ ​i

α
μ ​, var(Y ​) =i i a ​(ϕ)b (θ ​) =i

′′
i ​ =

θ ​i
2
ϕ

​ .
λ ​i

2
α

θ ​i

θ ​ =i θ(μ ​) =i − ​

μ ​i

1

v(μ ​) =i μ ​.i
2

Y ​ ∼i ED(μ ​,ϕμ ​)i i
2 μ ​ ∈i (0, ∞)
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Binomial distribution I 📖

Let , with . The random variable  has density

for . This can be written as

where the natural parameter is .

S ​ ∼i Binomial(m ​,π ​)i i π ​ ∈i (0, 1) Y ​ =i S ​/m ​i i

​ ​

p(y ​;m ,π ​)i i i = ​ π ​(1 − π ​)(
m ​y ​i i

m ​i ) i
m ​y ​i i

i
m ​−m ​y ​i i i

= ​ ​ (1 − π ​)(
m ​y ​i i

m ​i ) (
1 − π ​i

π ​i )
m ​y ​i i

i
m ​i

= exp m ​y ​ log ​ + m ​ log(1 − π ​) + log ​ ,{ i i (
1 − π ​i

π ​i ) i i (
m ​y ​i i

m ​i )}

y ​ ∈i {0, 1/m ​, 2/m ​, … ,m ​/m ​}i 2 i i

p(y ​;m ​,π ​) =i i i exp ​ + log ​ ,{
1/m ​i

y ​θ ​ − log{1 + exp(θ ​)}i i i (
m ​y ​i i

m ​i )}

θ ​ =i logit(π ​) =i log{π/(1 − π ​)}i
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Binomial distribution II 📖

Note that . This means there no dispersion parameter  and

Using the general formulas therefore we obtain

from which we obtain that the variance function is  is quadratic.

We will write  with .

E(Y ​) =i E(Z ​/m ​) =i i π ​ =i μ ​i ϕ

θ ​ =i logit(μ ​), a ​(ϕ) =i i ​ , b(θ ​) =
m ​i

1
i log{1 + exp(θ ​)}, c(y ​) =i i log ​ .(

m ​y ​i i

m ​i )

​ ​

E(Y ​)i

var(Y ​)i

= b (θ ​) = ​ = μ ​,′
i 1 + exp(θ ​)i

exp(θ ​)i
i

= a ​(ϕ)b (θ ​) = ​ ​ = ​ ,i
′′

i
m ​i

1
[1 + exp(θ ​)]i

2

exp(θ ​)i
m ​i

μ ​(1 − μ ​)i i

v(μ ​) =i μ ​(1 −i μ ​)i

Y ​ ∼i ED(μ ​,μ ​(1 −i i μ ​)/m ​)i i μ ​ ∈i M = (0, 1)
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Notable exponential dispersion families

Model

Support 

Parametric space 

The list of exponential dispersion families does not end here. Other examples are the inverse
Gaussian, the negative binomial and hyperbolic secant distributions.

N(μ ​,σ )i
2 Gamma(α,α/μ ​)i ​ Binomial(m ​,μ ​)

m ​i

1
i i Poisson(μ ​)i

Y R [0, ∞) {0, 1/m ​, … , 1}i N

θ ​ =i θ(μ ​)i μ ​i −1/μ ​i log ​( 1−μ ​i

μ ​i ) logμ ​i

Θ R (−∞, 0) R R

b(θ ​)i θ ​/2i
2 − log(−θ ​)i log{1 + exp(θ ​)}i exp(θ ​)i

ϕ σ2 1/α 1 1

a ​(ϕ)i σ2 1/α 1/m ​i 1

M R (0, ∞) (0, 1) (0, ∞)

v(μ )i 1 μ ​i
2 μ ​(1 −i μ ​)i μ ​i
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Link functions and canonical link

To complete the GLM specification, we need to choose a link function  such that:

It is fairly natural to consider a monotone and differentiable link function  so that

the inverse . This ensures that the predictions are well-defined.

For example, in binary regression any continuous cumulative distribution function for  leads

to a good link function, such as  (probit) or  (logistic).

g(⋅)

g(μ ​) =i x ​β, θ ​ =i
T

i θ(μ ​) ⟹i θ ​ =i θ(g (x ​β)).−1
i
T

g(⋅) : M → R
g (⋅) :−1 R → M

E(Y ​) =i g (x ​β) ∈−1
i
T M.

g (⋅)−1

g(⋅) = Φ(⋅) g (η ​) =−1
i e /(1 +η ​i e )η ​i

The following link is called canonical link and it is implied by the distribution:

The identity link is canonical for the Gaussian, the logarithm is canonical for the Poisson, the logit
is canonical for the Binomial and the reciprocal is canonical for the Gamma.

g(μ ​) =i θ(μ ​) ⟹i θ ​ =i x ​β.i
T
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Likelihood quantities
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Likelihood function

Let  be the response variable of a GLM, with . The joint

distribution of the responses  is

with .

The log-likelihood function therefore is

Y ​i ∼ind ED(μ ​, a ​(ϕ)v(μ ​))i i i g(μ ​) =i x ​βi
T

Y = (Y ​, … ,Y ​)1 n

p(y;β,ϕ) = ​p(y ​;β,ϕ) =
i=1

∏
n

i ​ exp ​ + c(y ​,ϕ) .
i=1

∏
n

{
a ​(ϕ)i

y ​θ ​ − b(θ ​)i i i
i }

θ ​ =i θ(μ ​) =i θ(g (x ​β))−1
i
T

ℓ(β,ϕ) = ​ ​ +
i=1

∑
n

a ​(ϕ)i

y ​θ ​ − b(θ ​)i i i
c(y ​,ϕ).i

In general, there is no sufficient statistic with dimension smaller than .n
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Likelihood equations I 📖

To conduct inference using the classical theory (as in Statistica II), we need to consider the first and
second derivative of the log-likelihood, that is, the score function

and the observed information matrix , whose elements are

These quantities have a simple expression in the end, but getting there requires quite a bit of
calculus.

ℓ ​(β;ϕ) :=∗ ​ ℓ(β,ϕ),
∂β
∂

J

j ​ =rs − ​ ​ ℓ(β,ϕ), r, s =
∂β ​r

∂
∂β ​s

∂
1, … , p.

Let us focus on the estimation of , assuming for now that  is a known parameter, as is the case

in binomial or Poisson regression.

This assumption is not restrictive, even when  is actually unknown. In fact, we will show that the

maximum likelihood estimate  does not depend on , and that  and  are orthogonal.

β ϕ

ϕ

​β̂ ϕ β ϕ
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Likelihood equations II 📖

Let us begin by noting that

Such an expression can be simplified because

which implies that the score function will have the following structure:

Recall that , hence the maximum likelihood estimator is obtained by solving:

ℓ ​(β;ϕ) =r ​ ℓ(β,ϕ) =
∂β ​r

∂
​ ​ y ​ ​ − ​ , r =

i=1

∑
n

a ​(ϕ)i

1
( i ∂β ​r

∂θ ​i

∂β ​r

∂b(θ ​)i ) 1, … , p.

​ =
∂β ​r

∂b(θ ​)i
b (θ ​) ​ =′

i ∂β ​r

∂θ ​i
μ ​ ​ ,i ∂β ​r

∂θ ​i

​ ℓ(β,ϕ) =
∂β ​r

∂
​ ​ (y ​ −

i=1

∑
n

a ​(ϕ)i

1
i μ ​) ​ , r =i ∂β ​r

∂θ ​i 1, … , p.

a ​(ϕ) =i ϕ/ω ​i

​ ​ω ​(y ​ −​

ϕ

1

i=1

∑
n

i i μ ​) ​ =i ∂β ​r

∂θ ​i 0, r = 1, … , p.
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Likelihood equations III 📖

Let  be a function with inverse  and first derivative . Then

Recall that  and that  is the inverse of . As an application of the

above lemma:

Moreover, since we  we obtain

Summing up, the chain rule of derivation for composite functions gives:

f(x) g(x) = f (x)−1 f (x)′

​ =
∂x
∂g

[f ] (x) =−1 ′
​ .

f (f (x))′ −1

1

g(μ ​) =i x ​β =i
T η ​i θ ​ =i θ(μ ​)i μ(θ ​)i

​ =
∂μ ​i

∂θ ​i
θ (μ ​) =′

i ​ =
μ (θ(μ ​))′

i

1
​ =

b (θ(μ ​))′′
i

1
​ ,

v(μ ​)i

1

μ ​ =i g (η ​)−1
i

​ =
∂η ​i

∂μ ​i
​
=

g (g (η ​))′ −1
i

1
​
.

g (μ ​)′
i

1

​ =
∂β ​r

∂θ ​i
​ ​ ​ =

∂μ ​i

∂θ ​i

∂η ​i

∂μ ​i

∂β ​r

∂η ​i
​ ​x ​, r =

v(μ ​)i

1
g (μ ​)′

i

1
ir 1, … , p.
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Likelihood equations IV 📖

Combining all the above equations, we obtain an explicit formula for the score function

The maximum likelihood estimator solves the likelihood equations:

which do not depend on . In matrix notation

where  and  is an  matrix whose elements are

​ ℓ(β,ϕ) =
∂β ​r

∂
​ ​ω ​ ​ ​ =

ϕ

1

i=1

∑
n

i
v(μ ​)i

(y ​ − μ ​)i i

g (μ ​)′
i

x ​ir
​ ​ ​ , r =

i=1

∑
n

var(Y ​)i

(y ​ − μ ​)i i

g (μ ​)′
i

x ​ir 1, … , p.

​ω ​ ​ ​ =
i=1

∑
n

i
v(μ ​)i

(y ​ − μ ​)i i

g (μ ​)′
i

x ​ir 0, r = 1, … , p,

ϕ

D V (y −T −1 μ) = 0,

V = diag(v(μ ​)/ω , … , v(μ ​)/ω )1 1 n n D n × p

d ​ =ir ​ =
∂β ​r

∂μi
​ ​ =

∂η ​i

∂μ ​i

∂β ​r

∂η ​i
​x ​, i =

g (μ ​)′
i

1
ir 1, … ,n, r = 1, … , p.
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Canonical link: simplifications 📖

When using the canonical link  significant simplifications arise, because

Thus, plugging-in this equality in the former equations, gives:

which is not surprising, because the canonical link implies .

The likelihood equations under the canonical link are

Let , then in matrix notation we have . The equations

simplify even further when the weights are constant, i.e.  , yielding .

θ(μ ​) =i g(μ ​)i

​ =
∂μ ​i

∂θ ​i
​ =

v(μ ​)i

1
g (μ ​) ⟹′

i v(μ ​)g (μ ​) =i
′

i 1.

​ =
∂β ​r

∂θ ​i
x , r =ir 1, … , p,

θ ​ =i x ​β ​ +i1 1 ⋯ + x ​β ​ip p

​ω ​(y ​ −
i=1

∑
n

i i μ ​)x ​ =i ir 0, r = 1, … , p.

Ω = diag(ω ​, … ,ω ​)1 n X Ω(y −T μ) = 0
Ω = I ​n X (y −T μ) = 0
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Examples of estimating equations

Let  with , namely the Gaussian linear model with the identity

(canonical) link. The likelihood equations are

which are also called normal equations. Their solution over  is the OLS .

Let  with , namely the Gaussian linear model with the identity
(canonical) link and heteroschedastic errors. The likelihood equations are

Their solution over  is the weighted least square estimator .

Let  with , namely a Poisson regression model with the logarithmic
(canonical) link. The likelihood equations can be solved numerically

Y ​ ∼i ED(μ ​,ϕ)i g(μ ​) =i μ ​i

X (y −T Xβ) = 0,

β ​
=β̂ (X X) X yT −1 T

Y ​ ∼i ED(μ ​,ϕ/ω ​)i i g(μ ​) =i μ ​i

X Ω(y −T Xβ) = 0,

β ​ =β̂wls (X ΩX) X ΩyT −1 T

Y ​ ∼i ED(μ ​,μ ​)i i g(μ ​) =i logμ ​i

X (y −T μ) = 0, μ = (e , … , e ).x ​β1
T x ​βn

T
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Example: Beetles data

Using the Beetles data, we specified a binomial logistic regression model for the counts 

 with mean .

The maximum likelihood estimate  is the value solving simultaneously:

Unfortunately, there is no closed form solution.

In our case, we have that

With these values, we can use the numerical algorithm IRLS to solve the above system, obtaining

m ​Y ​ ∼i i

Binomial(m ​,π ​)i i E(Y ​) =i π ​ =i exp(β ​ +1 β ​x ​)/(1 +2 i exp(β ​ +1 β ​x ​))2 i

( ​ ​, ​ ​)β̂1 β̂2

​m ​y ​ =
i=1

∑
n

i i ​m ​ ​ , and ​m ​x ​y ​ =
i=1

∑
n

i 1 + exp(β ​ + β ​x ​)1 2 i

exp(β ​ + β ​x ​)1 2 i

i=1

∑
n

i i i ​m ​x ​ ​ .
i=1

∑
n

i i 1 + exp(β ​ + β ​x ​)1 2 i

exp(β ​ + β ​x ​)1 2 i

​m ​y ​ =
i=1

∑
n

i i 291, ​m ​x ​y ​ =
i=1

∑
n

i i i 532.2083.

​ =β̂ ( ​ ​, ) =β̂1 β2̂ (−60.717, 34.270).
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Example: Beetles data

The predicted response can be computed by using the formula

deaths ( ) logdose ( )

59 6 1.691 0.102 0.059

60 13 1.724 0.217 0.164

62 18 1.755 0.290 0.362

56 28 1.784 0.500 0.605

63 52 1.811 0.825 0.795

59 53 1.837 0.898 0.903

62 61 1.861 0.984 0.955

60 60 1.884 1.000 0.979

The predicted values and the data  were also shown in a plot at the .

​ ​ =μ̂i ​ =
1 + exp(

​ ​
+

​ ​x ​
)β̂1 β̂2 i

exp( ​ ​ + ​ ​x ​)β̂1 β̂2 i
​ , i =

1 + exp(−60.717 + 34.270x ​)i

exp(−60.717 + 34.270x ​)i 1, … , 8.

mi S ​i x ​i Y ​ =i S ​/m ​i i ​μ̂i

Y ​i beginning of this unit
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Example: Aids data

In the Aids data, we specified a Poisson regression model with .

The maximum likelihood estimate  solve simultaneously:

This system does not always admits a solution. This happens, for example, in the extreme case
, occurring when all counts equal zero.

E(Y ​) =i exp(β ​ +1 β ​x ​)2 i

( ​ ​, ​ ​)β̂1 β̂2

​y ​ =
i=1

∑
n

i ​ exp(β ​ +
i=1

∑
n

1 β ​x ​), and ​x ​y ​ =2 i

i=1

∑
n

i i ​x ​ exp(β ​ +
i=1

∑
n

i 1 β ​x ​).2 i

​ y ​ =∑
i=1
n

i 0

Using the Aids data we have  and . Via numerical methods we

solve the above system of equations and we obtain  and .

The estimated mean values are  and in particular the mean for the next

period is

In other words, the estimated number of deaths increases by about  every trimester.

​ y ​ =∑i=1
n

i 217 ​ x ​y ​ =∑i=1
n

i i 2387
​ ​ =β̂1 0.304 ​ ​ =β̂2 0.259

​ ​ =μ̂i exp(0.304 + 0.259x ​)i

​ ​ =μ̂i+1 exp(0.304 + 0.259(x ​ +i 1)) = exp(0.259) ​ ​ =μ̂i 1.296 ​ ​.μ̂i

30%
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Example: Aids data

deaths ( ) period ( )

1983-1 0 1 1.755

1984-1 1 2 2.274

1985-1 2 3 2.946

1986-1 3 4 3.817

1983-2 1 5 4.945

1984-2 4 6 6.407

1985-2 8 7 8.301

1986-2 17 8 10.755

1983-3 23 9 13.934

1984-3 32 10 18.052

1985-3 20 11 23.389

1986-3 24 12 30.302

1983-4 37 13 39.259

1984-4 45 14 50.863

The predicted values and the data  were also shown in a plot at the .

Y ​i x ​i ​ ​μ̂i

Y ​i beginning of this unit
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Observed and expected information I 📖

Let us first consider the negative derivative of the score function, that is the observed information
matrix  with entries:

Let  be the  Fisher information matrix associated with , whose elements are

Thus, the Fisher information matrix substantially simplifies because , obtaining:

J

​ ​

j ​rs = − ​ ​ ℓ(β,ϕ) = − ​ ​ ​ (y ​ − μ ​) ​

∂β ​s

∂
[

∂β ​r

∂
]

∂β ​s

∂

i=1

∑
n

a ​(ϕ)i

1
i i ∂β ​r

∂θ ​i

= ​ ​ ​ ​ − (y ​ − μ ​) ​ , r, s = 1, … , p.
i=1

∑
n

a ​(ϕ)i

1
[

∂β ​s

∂μ ​i

∂β ​r

∂θ ​i
i i ∂β ​∂β ​r s

∂ θ ​

2
i ]

I = E(J) p × p β

i ​ =rs E(j ​) =rs E − ​ ​ ℓ(β,ϕ) , r, s =(
∂β ​r

∂
∂β ​s

∂
) 1, … , p.

E(Y ​) =i μ ​i

i ​ =rs ​ ​ ​ ​ , r, s =
i=1

∑
n

a ​(ϕ)i

1
∂β ​s

∂μ ​i

∂β ​r

∂θ ​i 1, … , p.
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Observed and expected information II 📖

In the previous slides we already computed the explicit values of these derivatives:

Combining the above equations, we obtain that the Fisher information  of a GLM has entries

In matrix notation, we have that

where  and  are weights such that

​ =
∂β ​s

∂μ ​i
​ , ​ =

g (μ ​)′
i

x ​is

∂β ​r

∂θ ​i
​ .

v(μ ​)g (μ ​)i
′

i

x ​is

I

i ​ =rs ​ ​ω ​ ​ =
ϕ

1

i=1

∑
n

i
v(μ ​)g (μ ​)i

′
i

2

x ​x ​ir is
​ ​ , r, s =

i=1

∑
n

var(Y ​)g (μ ​)i
′

i
2

x ​x ​ir is 1, … , p.

I = X WX,T

W = diag(w ​, … ,w ​)1 n w ​i

w ​ =i ​ ​ =
ϕ

1
v(μ ​)g (μ ​)i

′
i

2

ω ​i
​ , i =

var(Y ​)g (μ ​)i
′

i
2

1
1, … ,n.
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Canonical link: simplifications 📖

Under the canonical link we have that , which means that

The observed information  is non-stochastic, which means that observed information and
expected (Fisher) information coincide, that is  and .

θ ​ =i x ​β ​ +i1 1 ⋯ + β ​x ​p ip

​ =
∂β ​∂β ​r s

∂ θ ​

2
i 0 ⟹ i ​ =rs j ​ =rs ​ ​ ​ ​ .

i=1

∑
n

a ​(ϕ)i

1
∂β ​s

∂μ ​i

∂β ​r

∂θ ​i

J

i ​ =rs j ​rs I = J

Under the canonical link, we also have the simplifications , yielding

In matrix notation, we have that  with weights

1/v(μ ​) =i g (μ ​)′
i

i ​ =rs ​ ​ω ​v(μ ​)x ​x ​, r, s =
ϕ

1

i=1

∑
n

i i ir is 1, … , p.

I = X WXT

w ​ =i ​ω ​v(μ ​) =
ϕ

1
i i ​ , i =

a ​(ϕ)i

v(μ ​)i 1, … ,n.
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Further considerations

The observed and expected information matrices  and , as well as weights , depend on  and

. We write ,  and  to indicate that  and  have been estimated with  and .

J I W β

ϕ Ĵ Î Ŵ β ϕ ​β̂ ​ϕ̂

If  has full rank and , then  is positive definite for any value of  and .X g (μ) =′  0 I β ϕ

Under the canonical link, we have , and both matrices are positive definite if .

This implies that the log-likelihood function is concave because its second derivative is negative
definite, so any solution to the estimating equations is also a global optimum.

J = I rk(X) = p

The Fisher information matrix could be computed exploiting Bartlett identity, namely

as in Agresti ( ). Of course, the final result coincide with ours.

i ​ =rs E
​ ℓ(β,ϕ) ​ ℓ(β,ϕ) , r, s =[(

∂β ​r

∂
) (

∂β ​s

∂
)] 1, … , p.

2015
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☠️ - Orthogonality of  and 

Let us now consider the case in which  is unknown so that . We obtain:

whose expected value is  since .

β ψ

ϕ a ​(ϕ) =i ϕ/ω ​i

j ​ =rϕ − ​ ​ ℓ(β,ϕ) =
∂β ​r

∂
∂ϕ
∂

​ ​ω ​(y ​ −
ϕ2

1

i=1

∑
n

i i μ ​) , r =i ∂βr

∂θ ​i 1, … , p.

i ​ =rϕ E(j ​) =rϕ 0 E(Y ​) =i μ ​i

This means the Fisher information matrix accounting for  takes the form:

where  are the elements associated to  as before.

The parameters  and  are orthogonal and their estimates are asymptotically independent.

Moreover, the matrices  and  are sufficient for inference on  and there is no need to compute

. Moreover, the maximum likelihood  can also be computed without knowing .

ϕ

​ ​ ⟹(
I

0
0
i ​ϕϕ

) ​ ​ =(
I

0
0
i ​ϕϕ

)
−1

​ ​(
I−1

0
0

1/i ​ϕϕ
)

[I] ​ =rs irs β

β ϕ

I I−1 β

i ​ϕϕ ​β̂ ϕ
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IRLS algorithm
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Numerical methods for maximum likelihood estimation

In general, the estimating equations of a GLM

cannot be solved in closed form and we need to rely on numerical methods.

An iterative method means that we start the algorithm with a candidate value  (initialization).

Then, at the step  we update

The algorithm stops whenever a certain criteria is met, e.g. when , where  is

sometimes called tolerance. We say it reached convergence.

D V (y −T −1 μ) = 0

β(1)

t

β =(t+1) update(β ), t =(t) 1, 2,…

∣∣β −(t+1) β ∣∣ <(t) ϵ ϵ

The iteratively re-weighted least squares (IRLS) algorithm became very popular after being
proposed by Nelder and Wedderburn ( ) and is currently implemented in R.

The IRLS algorithm can be used for any GLM, has a clear geometric interpretation, and often delivers
good performance. It can be seen as a variant of Newton-Raphson.

1972
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Newton-Raphson algorithm I

In the Newton-Raphson algorithm, we consider a second-order Taylor expansion of the log-likelihood
 centered in , namely:

where  is the score function and  is the observed information, evaluated at .

In other words, we approximate the log-likelihood  with a parabola. This gives the

approximate likelihood equations:

Solving the equation above gives the following updates:

The Netwon-Raphson method essentially considers a series of parabolic approximations to the log-
likelihood, each time evaluating the point of maximum.

ℓ(β) = ℓ(β,ϕ) β(t)

ℓ(β) ≈ ℓ(β ) +(t) ℓ ​(β ) (β −∗
(t) T β ) −(t)

​ (β −
2
1

β ) J (β −(t) T (t) β )(t)

ℓ ​(β )∗
(t) J (t) β(t)

ℓ(β)

ℓ ​(β ) −∗
(t) J (β −(t) β ) =(t) 0.

β =(t+1)
​ +β̂(t) (J ) ℓ ​(β ), t =(t) −1

∗
(t) 1, 2, …
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Newton-Raphson algorithm II

Figure taken from Agresti ( ).2015
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Iteratively re-weighted least squares I 📖

The matrix  is not always invertible, therefore the algorithm may crash. To remedy this, we
replace it with the expected information .

In the iteratively re-weighted least squares (IRLS) algorithm, we consider the updates:

This method is also called Fisher scoring.

The above formula can simplified a bit. First, we rewrite the score as

where the weights were defined as . In matrix notation we will write:

where  and  for .

J (t)

I(t)

β =(t+1) β +(t) (I ) ℓ ​(β ), t =(t) −1
∗

(t) 1, 2, …

​ ℓ(β,ϕ) =
∂β ​r

∂
​ω ​ ​ ​ =

ϕ

1

i=1

∑
n

i
v(μ ​)i

(y − μ ​)i i

g (μ ​)′
i

x ​ir
​x ​w ​(y ​ −

i=1

∑
n

ir i i μ ​)g (μ ​),i
′

i

w ​ =i ω ​/(ϕv(μ ​)g (μ ​) )i i
′

i
2

ℓ ​(β ) =∗
(t) X W u , I =T (t) (t) (t) X W X,T (t)

u =(t) (u ​, … ,u ​)1
t

n
(t) T u ​ =i

(t) (y ​ −i μ ​)g (μ ​)i

(t) ′
i

(t)
i = 1, … ,n
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Iteratively re-weighted least squares II 📖

Exploiting the former formulas, we can write the IRLS update as follows

Now multiply both sides by , simplify and re-arrange the resulting terms. This gives
the following formula.

In the iteratively re-weighted least squares (IRLS) algorithm, we consider the updates:

where  is called pseudo-response whose elements are defined as

Hence, each update can be interpreted as the solution of a weighted least square problem:

β =(t+1) β +(t) (X W X) X W u .T (t) −1 T (t) (t)

(X W X)T (t)

β =(t+1) (X W X) X W z , t =T (t) −1 T (t) (t) 1, 2, … ,

z =(t) (z ​, … , z )1
(t)

n
(t)

z ​ =i

(t)
x ​ ​ +i
T β̂(t) u ​ =i

(t)
x ​ ​ +i
T β̂(t) (y ​ −i μ ​)g (μ ), i =i

(t) ′
i

(t) 1, … ,n.

β =(t+1) arg ​ (z −
β∈Rp
min (t) Xβ) W (z −T (t) (t) Xβ).
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Iteratively re-weighted least squares III 📖

The IRLS updates does not depend on the choice of , because it cancels in the multiplications, as

we would expect.

ϕ

The pseudo-responses have a nice interpretation, because they can be interpreted as a linear
approximation of the transformed responses:

Based on this approximation, a good initialization is

the least square solution for the transformed data. To avoid boundary issues, sometimes the data are
perturbed, as we did in Binomial regression.

g(y ​) ≈i g(μ ​) +i (y ​ −i μ ​)g (μ ​) =i
′

i η ​ +i (y ​ −i μ ​)g (μ ​) =i
′

i z ​.i

W =(1) I ​, z ​ =n i

(1)
g(y ​), ⟹i β =(2) (X X) X g(y),T −1 T
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Example: IRLS for logistic regression

Consider a logistic regression model for proportions  with probability of

success  and trials .

Initialize  where  is the empirical logit transform.

For  until convergence compute:

where the weights in  equals  and the pseudo-responses  are

with probabilities  for .

Y ​ ∈i {0, 1/m , … , 1}i

π ​ =i μ ​i m ​i

IRLS algorithm for logistic regression

β =(1) (X X) X logit( ​)T −1 T y~ logit( ​)y~

t = 1, 2, …

β =(t+1) (X W X) X W z ,T (t) −1 T (t) (t)

W (t) w ​ =i

(t)
m ​π ​(1 −i i

(t)
π ​)i

(t)
z(t)

z ​ =i
(t)

x ​β +i
T (t)

​ , i =
π ​(1 − π ​)i

(t)
i
(t)

y ​ − π ​i i

(t)

1, … ,n,

π ​ =i
(t) exp(x ​β )/(1 +i

T (t) exp(x ​β ))i
T (t) i = 1, … ,n
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Estimation of the dispersion 

In some GLMs, such as the Gaussian and the Gamma, there is a dispersion parameter  that we

need to estimate.

Instead of the maximum likelihood, because of numerical instabilities and lack of robustness it is
typically preferred a method of moments estimator. If  were known, the estimator

would be unbiased for , because . This motivates the estimator

This is a consistent estimator of  as long as  is consistent.

ϕ

ϕ

μ ​i

​ ​ω ​ ​

n

1

i=1

∑
n

i
v(μ ​)i

(y ​ − μ ​)i i
2

ϕ E{(Y ​ −i μ ​) } =i
2 (ϕ/ω ​)v(μ ​)i i

​ =ϕ̂ ​ ​ω ​ , ​ ​ =
n − p

1

i=1

∑
n

i
v( ​ ​)μ̂i

(y ​ − ​ ​)i μ̂i
2

μ̂i g (x ​ ​).−1
i
T β̂

ϕ ​β̂

When  is the identity link and , this coincides with the usual unbiased

estimator  of  for a Gaussian linear model.

g(μ ​) =i μ ​i v(μ ​) =i ω ​ =i 1
s2 σ2
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Inference and hypothesis testing
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Asymptotic distribution of 

The asymptotic distribution of the maximum likelihood estimator is

for large values of  and under mild regularity conditions on .

Under correct specification and mild conditions on , the maximum likelihood estimator is
asymptotically unbiased and with known asymptotic variance

In practice, since  depends on  and , we rely on the following approximation

where we plugged in the estimates  and  into  obtaining . The standard errors are:

​β̂

​ N ​ β, (X WX) ,β̂ ∼̇ p ( T −1)

n X

X

E( ​ −β̂ β) ≈ 0, var( ​) ≈β̂ (X WX) .T −1

W β ϕ

(
​
) =var β̂ (X X) ,TŴ −1

​β̂ ​ϕ̂ W Ŵ

Std. Error = [ ( )] ​ =se β̂ j ​[(X X) ] ​

TŴ −1
jj
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Example: Beetles data

Using the Beetles data, we specified a binomial logistic regression model for the counts 

 with mean .

We previously estimated . This means that the weights are estimated as

from which we obtain the estimated Fisher information matrix:

Hence, the estimated covariance matrix of the maximum likelihood estimator is

Therefore the estimated standard errors are

m ​Y ​ ∼i i

Binomial(m ​,π ​)i i μ ​ =i exp(β ​ +1 β ​x ​)/(1 +2 i exp(β ​ +1 β ​x ​))2 i

​ =β̂ (−60.717, 34.270)

=Ŵ diag(m ​ ​ ​(1 −1μ̂1 ​ ​), … ,m ​ ​ ​(1 −μ̂1 nμ̂n ​ ​)) =μ̂n diag(3.255, 8.227, … , 1.231).

X X =TŴ ​ ​
=(

​ m ​ ​ ​(1 − ​ ​)∑i=1
n

iμ̂i μ̂i
​ x ​m ​ ​ ​(1 − ​ ​)∑i=1

n
i iμ̂i μ̂i

​ x ​m ​ ​ ​(1 − ​ ​)∑i=1
n

i iμ̂i μ̂i
​ x ​m ​ ​ ​(1 − ​ ​)∑i=1

n
i
2

iμ̂i μ̂i
) ​ ​

.(
58.484
104.011

104.011
185.095)

(
​
) =var β̂ (X X) =TŴ −1

​ ​
.(

26.840
−15.082

−15.082
8.481 )

[ (
​
)]

​
=se β̂ j ​

⟹[(X X) ] ​

TŴ −1
jj (

​
) =se β̂ (5.181, 2.912).

Home page

63 / 119

https://tommasorigon.github.io/StatIII


Example: Aids data

In the Aids data, we specified a Poisson regression model with  and

estimated .

This means that the weights are estimated as

from which we obtain the estimated Fisher information matrix:

Hence, the estimated covariance matrix of the maximum likelihood estimator is

Therefore the estimated standard errors are

E(Y ​) =i exp(β ​ +1 β ​x ​)2 i

​
=β̂ (0.304, 0.259)

=Ŵ diag( ​ ​, … , ​ ​) =μ̂1 μ̂n diag(1.755, … , 50.863).

X X =TŴ ​ ​ =(
​ ​∑

i=1
n

μ̂i

​ x ​ ​ ​∑i=1
n

iμ̂i

​ x ​ ​ ​∑
i=1
n

iμ̂i

​ x ​ ​ ​∑i=1
n

i
2μ̂i

) ​ ​ .(
217
2387

2387
28279.05

)

( ​) =var β̂ (X X) =TŴ −1
​ ​ .(

0.06445
−0.00544

−0.00544
0.00049

)

[ ( ​)] ​ =se β̂ j ​ ⟹[(X X) ] ​

TŴ −1
jj ( ​) =se β̂ (0.254, 0.022).
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Wald test and confidence intervals

Consider the hypothesis  against the alternative . The Wald test

statistic , rejecting the hypothesis for large values of  is:

which is approximately distributed as a standard normal under .

The p-value is defined in the usual way, namely

H ​ :0 β ​ =j β ​0 H ​ :1 β ​ =j  β ​0

z ​j ∣z ​∣j

z value = z ​ =j ​ =
[ (

​
)]

​se β̂ j

​ ​ − β ​β̂j 0
​ N(0, 1).
​[(X X) ] ​

TŴ −1
jj

​ ​ − β ​β̂j 0 ∼̇

H0

α ​ =obs P(Z ≥ ∣z ​∣) =j 2(1 − Φ(∣z ​∣)), Z ∼j N(0, 1).

By inverting the the Wald test, we obtain the associated confidence interval

of approximate level , where  is the quantile of a standard Gaussian.

​ ​ ±β̂j z ​ ​.1−α/2 [(X X) ] ​

TŴ −1
jj

1 − α z ​1−α/2
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Comparison with the Gaussian linear model

In a classical Gaussian linear model the weight matrix is , therefore

The Wald statistic  specializes to

which is the usual test statistic considered, e.g., in the output of lm in R.

However, in the Gaussian case there is no need of approximations. The distribution of  is a

Student’  under , which indeed converges to a  for large values of .

In GLMs we use procedures that are approximate rather than exact. Of course, whenever an exact
result is known, we should use it.

W = σ I ​

2
n

​ ∼β̂ N ​ β,σ (X X) .p ( 2 T −1)

z ​j

z ​ =j ​ =
[ ( ​)] ​se β̂ j

​ ​ − β ​β̂j 0
​ ,

s ​
[(X X) ]

​

T −1
jj

​ ​ − β ​β̂j 0

z ​j

t ​n−p H ​0 N(0, 1) n
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Example: Beetles data

The Wald test is the default choice in R for checking the hypotheses . In the Beetles

data we get the following familiar summary:

Many of the above quantities (estimates and standard errors) have been obtained before.

In this case, we reject the null hypothesis that . Indeed, even from the scatterplot there was

evidence of a relationship between the deaths proportion and the logdose.

H ​ :0 β ​ =j 0

z test of coefficients:

            Estimate Std. Error z value  Pr(>|z|)    

(Intercept) -60.7175     5.1807 -11.720 < 2.2e-16 ***

logdose      34.2703     2.9121  11.768 < 2.2e-16 ***

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

β ​ =2 0

For completeness, we also compute the associated Wald confidence intervals, which are:

                2.5 %    97.5 %
(Intercept) -70.87144 -50.56347

logdose      28.56265  39.97800
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Example: Aids data

The Wald tests for checking the hypotheses  in the Aids data are provided below.

In this case, we reject the null hypothesis that  because the p-value . Again,

this is not very surprising: the number of deaths was clearly increasing over time.

H ​ :0 β ​ =j 0

z test of coefficients:

            Estimate Std. Error z value Pr(>|z|)    

(Intercept) 0.303655   0.253867  1.1961   0.2317    

period      0.258963   0.022238 11.6448   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

β ​ =2 0 Pr(>|z|) ≈ 0

The associated Wald confidence intervals are:

                 2.5 %    97.5 %

(Intercept) -0.1939158 0.8012249

period       0.2153764 0.3025494
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General hypothesis testing

Suppose we wish to test multiple parameters at the same time. Let us organize the parameters into
two blocks:

where  is the number of constrained parameters. We want to test the hypothesis:

β = ​ , β ​ =(
β ​A

β ​B
) A ​ ​ ​ , β ​ =

β ​1

⋮
β ​p ​0

B ​ ​ ​ ,

β ​p ​+10

⋮
β ​p

q = p − p ​0

H ​ :0 β ​ =B β ​ against H ​ :0 1 β ​ =B  β ​.0

A common case is  (nested models), where we compare the reduced model 
against the full model . We verify if all the  variables associated with  can be omitted.

The case , that is  with  corresponds to the previously considered situation

where we test if a specific coefficient, say , is non-zero.

H ​ :0 β ​ =B 0 M ​0

M ​1 q β ​B

q = 1 β ​ =B β ​p H ​ :0 β ​ =p 0
β ​p
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Testing hypothesis in GLMs I

There are three classical tests that we could consider for such a testing problem: the Wald test 
, the Rao-score test , and the log-likelihood ratio test .

All these tests reject the null hypothesis for large values of the statistic.

Let  be the unrestricted maximum likelihood, the quantity

is called Wald test. Here  is the appropriate block of  and  is estimated
using  and . Under  this quantity is approximately distributed as

a  distribution with  degrees of freedom. The p-value is .

Clearly, in the  case we recover the Wald statistic with .

W ​e

W ​u W

Wald test (general case)

​ =β̂ ( ​ ​, ​ ​)β̂A β̂B

W ​ =e (
​
−β̂B β ​

) (
​ ​

) (
​ ​

−0
T var β̂B −1 β̂B β ​),0

( ​ ​)var β̂B (X X)TŴ −1 Ŵ

​β̂ ​ϕ̂ H ​0

W ​ χ ​,e ∼̇ q
2

χ2 q Pr(>Chi) = P(W ​ >e w ​)e, obs

q = 1 z ​ =j
2 W ​e
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Log-likelihood ratio test

Let  be the unrestricted maximum likelihood and let  the restricted

maximum likelihood estimate. The quantity

is called log-likelihood ratio test (LRT). Under  this quantity is approximately distributed as

a  distribution with  degrees of freedom. The p-value is .

When testing , we separately fit the full model, obtaining , and the reduced model,

obtaining . Then, we compare their log-likelihoods: .

The LRT is the default in R for comparing nested models.

When the dispersion parameter  is unknown, a variant uses separate estimates , based on , and

, based on . The anova R command uses a single , as described above.

Log-likelihood ratio test (LRT)

​ =β̂ ( ​ ​, ​ ​)β̂A β̂B ​ ​ =β̂0 ( ​ ​,β ​)β̂A,0 0

W = 2[ℓ( ​; ​) −β̂ ϕ̂ ℓ( ​ ​; ​)],β̂0 ϕ̂

H ​0

W χ ​,∼̇ q
2

χ2 q Pr(>Chi) = P(W > w ​)obs

H ​ :0 β ​ =B 0 ​β̂

​ ​
=β̂0 (

​ ​
, 0)β̂A,0 ℓ(

​
;

​
) −β̂ ϕ̂ ℓ(

​ ​
;

​
)β̂0 ϕ̂

ϕ ​ϕ̂ ​β̂

​ ​ϕ̂0 ​ ​β̂0 ​ϕ̂

Home page

71 / 119

https://tommasorigon.github.io/StatIII


Score or Rao test

Let  be the unrestricted maximum likelihood and let  the restricted

maximum likelihood estimate. Moreover, let

namely the block of the score function associated with . The quantity

is called Rao-score test. Here  is the appropriate block of  where  is
estimated using the restricted . Under  this quantity is approximately distributed as

a  distribution with  degrees of freedom. The p-value is .

The Rao-score test arguably the less common. When  is unknown, there are several variants

depending on how it is estimated.

Rao-score test

​ =β̂ ( ​ ​, ​ ​)β̂A β̂B ​ ​ =β̂0 ( ​ ​,β ​)β̂A,0 0

ℓ ​(β;ϕ) =B ​ ℓ(β,ϕ),
∂β ​B

∂

β ​B

W ​ =u ℓ
​
(

​ ​
;

​
) (

​ ​
) ℓ

​
(

​ ​
;

​
),B β̂0 ϕ̂ T var β̂B B β̂0 ϕ̂

( ​ ​)var β̂B (X X)TW
~ −1 W

~

​ ​β̂0 H ​0

W ​ χ ​,u ∼̇ q
2

χ2 q Pr(>Chi) = P(W ​ >u w ​)u, obs

ϕ
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A graphical representation when 

Figure taken from Azzalini (1996). This is also the cover of the book!

p = 1
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Three asymptotically equivalent tests

The Wald test, the Score test and the log-likelihood ratio test are asymptotically equivalent, that
is, these tests give the same number for large values of . We have that

where  is a quantity that goes to  in probability as .

1. Transforming the extremes of Wald confidence interval “works” in the sense that it produces a valid
confidence interval, but it is not the Wald interval in the trasformed scale.

n

W ​ =e W + o ​(1), W ​ =p u W + o ​(1),p

o ​(1)p 0 n → ∞

When , we can also invert ,  and  tests over  to obtain the corresponding

confidence interval. This is often done numerically for  and .

q = 1 W ​e W ​u W β ​0

W ​u W

The Wald test depends on the parametrization. When considering a transformation of , the variance

must be adjusted using the derivative of the transformation (delta method).1

On the other hand, both the LRT and the score are invariant, and therefore we can simply
transform the extremes of the original interval without further corrections.

β
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Comparison with the Gaussian linear model

In the Gaussian linear model all tests are equivalent if  is known. We have

The  distribution is exact and not an approximation thanks to Cochran theorem.

ϕ = σ2

W = W ​ =e W ​ =u ​ ∼
σ2

∣∣Y −X ​ ​∣∣ − ∣∣Y −X ​∣∣β̂0
2 β̂ 2

χ ​.q
2

χ ​q
2

Consider the log-likelihood ratio for testing . Suppose  is unknown, then:

where  is the usual Snedecor’s F. Indeed  is approximately distributed as  for large

values of .

H ​ :0 β ​ =B β ​0 σ2

​ ​

W = 2[ℓ( ​; ​) − ℓ( ​ ​; ​)] = ​ = q ​β̂ ϕ̂ β̂0 ϕ̂
​ϕ̂

∣∣Y −X ​ ​
∣∣ − ∣∣Y −X ​

∣∣β̂0
2 β̂ 2

∣∣y −X ​∣∣ /(n − p)β̂ 2

(∣∣Y −X ​ ​
∣∣ − ∣∣y − Y ​

∣∣ )/qβ̂0
2 β̂ 2

= qF ,

F ∼ F ​q,n−p qF χ ​q
2

n

The quantities , and  are the natural extension of the F-statistic for GLMs. They are

approximately distributed as  with  degrees of freedom.

W ,W ​e u W

χ ​q
2 q
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Example: Beetles data

We would like to use the Wald, the Rao-score and the log-likelihood ratio tests to verify the
hypothesis , that is the relevance of logdose in predicting the response.H ​ :0 β ​ =2 0

In this case, we have  ( ) because there is only one parameter under scrutiny.

Test for the hypothesis 

 - Wald test 138.488 1  0

 - Rao-score test 227.580 1  0

 - Log-likelihood ratio test 272.970 1  0

As one may expect, the test values are not identical. Here the sample size is , which is definitely

not a big number, therefore we are far from the asymptotic regime.

However, the practical conclusions are identical. All tests strongly reject the null hypothesis.

q = 1 Df

H ​ :0 β ​ =2 0 Chi Df Pr(>Chi)

W ​e ≈

Wu ≈

W ≈

n = 8

We previously obtained the Wald statistic  and indeed .z ​j z ​ =j
2 11.76811 =2 138.488 = W ​e
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Example: Beetles data

Any statistical test can be inverted, namely we find all the values  such that we do not reject the
null hypothesis. This generates a confidence interval.

β ​0

For the Wald test, the inversion is done analytically, producing the “usual” confidence interval.

For the Rao-score and the log-likelihood ratio we need numerical procedures.

In the Beetles data, the three tests produce the following confidence intervals for , associated to

logdose.

Confidence intervals for  at a  level 2.5% 97.5%

 - Wald test 28.563 39.978

 - Rao-score test 28.588 39.957

 - Log-likelihood ratio test 28.854 40.301

Wald interval was also computed before. The three tests produce nearly identical intervals.

Wald is always symmetric around , whereas Rao and the log-likelihood ratio are typically
asymmetric, depending on the shape of the likelihood function.

β ​2

β ​2 95%

W ​e

W ​u

W

​ ​β̂j
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Example: Aids data

Let us know perform the same analysis for the Aids data. Again, we test the null hypothesis 

, which is the relevance of period in predicting the response.

Test for the hypothesis 

 - Wald test 135.602 1  0

 - Rao-score test 163.586 1  0

 - Log-likelihood ratio test 178.551 1  0

As before, despite their numerical differences, all the tests reject the null hypothesis. We previously
obtained the Wald statistic  and indeed .

Confidence intervals for  at a  level 2.5% 97.5%

 - Wald test 0.2154 0.3025

 - Rao-score test 0.2155 0.3025

 - Log-likelihood ratio test 0.2165 0.3037

H ​ :0

β ​ =2 0

H ​ :0 β ​ =2 0 Chi Df Pr(>Chi)

W ​e ≈

Wu ≈

W ≈

z ​ =j 11.645 z ​ =j
2 11.645 =2 135.6 = W ​e

β ​2 95%

W ​e

W ​u

W
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Example: Aids data

We are actually interested in a confidence interval for the quantity , which is the

percentage increase of deaths after each period.

Thanks to invariance property of the Rao-score and the log-likelihood ratio tests, we can simply
transform the original intervals for .

If the extremes of the log-likelihood ratio interval are , then the new interval is

and similarly for the Rao-score case. These are reported below.

Confidence intervals for  at a  level 2.5% 97.5%

 - Rao-score test 24.04 35.32

 - Log-likelihood ratio test 24.17 35.49

100 × (exp(β ​) −2 1)

β ​2

C ​,C ​low high

[100 × (exp(C ​) −low 1), 100 × (exp(C ​) −high 1)].

100[exp(β ​) −2 1] 95%

W ​u

W

The average percentage increase is between  and  each period, with a  confidence.

These confidence intervals are always positive, which is desirable because they are percentages.

24% 35% 95%
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Example: Aids data

In the Wald case, we cannot simply transform the extremes of the intervals. Indeed, that would lead
to a valid confidence interval that is not anymore of Wald type (Lo sbagliato 🥃).

Instead, we first need to adjust the variance according to the delta method, obtaining

The Wald confidence interval for  therefore is

Confidence intervals for  at a  level 2.5% 97.5%

 - Wald test 23.91 35.21

“Lo sbagliato” - transformed Wald 24.03 35.33

Whenever there are restrictions on the parametric space, as in this case, Wald is typically
problematic. Here, it could lead to negative values, which is absurd.

{100[exp( ​ ​) −var β̂2 1]} = 100 exp(2 ​ ​)var( ​ ​) =2 β̂2 β̂2 8.301184.

100[exp( ​ ​) −β̂2 1]

100[exp( ​ ​) −β̂2 1] ± z ​ {100[exp( ​ ​) −1−α/2se β̂2 1]}.

100[exp(β ​) −2 1] 95%

W ​e
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Deviance, model checking, residuals

Home page

81 / 119

https://tommasorigon.github.io/StatIII


Deviance: some intuitions

In a Gaussian linear model, we called deviance the residual sum of squares, that is

The residual sum of squares  is a goodness of fit measure. The lower the deviance, the

higher the quality of the predictions.

D(y; ​) =μ̂ ​(y ​ −
i=1

∑
n

i x ​ ​) =i
T β̂ 2

​(y ​ −
i=1

∑
n

i ​ ​) .μ̂i
2

D(y; ​)μ̂

When  is known, the distribution of the scaled deviance is

When  is known, the difference of scaled deviances of two nested models is:

The natural question is: what is a natural generalization of the deviance for GLMs?

σ2

​ =
σ2

D(Y ; ​)μ̂
​ ​(Y ​ −

σ2

1

i=1

∑
n

i x ​ ​) ∼i
T β̂ 2 χ ​.n−p

2

σ2

W = =
σ2

D(Y ; ​ ​) − D(Y ; ​)μ̂0 μ̂
​ ∼

σ2

∣∣Y −X ​ ​∣∣ − ∣∣Y −X ​∣∣β̂0
2 β̂ 2

χ ​.q
2
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Example: Beetles data, saturated model

Let us consider again the Beetles data and the predictions , based on  parameters. These

predictions are not perfect but that may be due to chance.

deaths ( ) logdose ( )

59 6 1.691 0.102 0.059

60 13 1.724 0.217 0.164

62 18 1.755 0.290 0.362

56 28 1.784 0.500 0.605

63 52 1.811 0.825 0.795

59 53 1.837 0.898 0.903

62 61 1.861 0.984 0.955

60 60 1.884 1.000 0.979

The empirical proportions  can be seen as estimates of the most flexible model, in which

every observation  has its own mean . We call it saturated model because .

​ ​μ̂i p = 2

mi S ​i x ​i Y ​ =i S ​/m ​i i ​μ̂i

s ​/m ​i i

Y ​i μ ​i p = n
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Saturated model

Let us express the log-likelihood of a GLM as a function of the mean .

When evaluated in the maximum likelihood, this gives:

The maximum likelihood for each  is restricted, in the sense that depends on the  parameters of

the linear predictor  through the link function .

μ = (μ ​, … ,μ ​)1 n

ℓ ​( ​,ϕ) =M μ̂ ​ω ​ ​ +
i=1

∑
n

i
ϕ

y ​θ( ​ ​) − b(θ( ​ ​))i μ̂i μ̂i
c(y ​,ϕ).i

μ ​i p

x ​βi
T g(μ ​) =i x ​βi

T

In the saturated model the means  are unrestricted: each parameter is estimated separately,

giving the maximum likelihood estimate . This happens whenever .

When evaluated in the maximum, the log-likelihood of the saturated model is

The saturated model is the most complex model we can think of.

μ ​i

​ ​ =μ̂i,sat y ​i p = n

ℓ ​(y,ϕ) =M ​ω ​ ​ +
i=1

∑
n

i
ϕ

y ​θ(y ​) − b(θ(y ​))i i i
c(y ​,ϕ).i
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Deviance

The deviance of a GLM is defined as

The quantity  is called scaled deviance and it corresponds to a log-likelihood ratio test
 in which the current model is tested against the saturated model.

By definition, the deviance is positive: , because .

The deviance of the saturated model is .

​ ​

D(y; ​)μ̂ := ϕW = ϕ 2[ℓ ​(y,ϕ) − ℓ ​( ​,ϕ)]M M μ̂

= 2 ​ω ​ y ​[θ(y ​) − θ( ​ ​)] − [b(θ(y ​)) − b(θ( ​ ​))] .
i=1

∑
n

i { i i μ̂i i μ̂i }

D(y; ​)/ϕμ̂

W

D(y; ​) ≥μ̂ 0 ℓ ​(y,ϕ) ≥M ℓ ​( ​,ϕ)M μ̂

D(y;y) = 0

The deviance describes a lack of fit: the higher the deviance, the poorer the fit.

It measures the discrepancy between the saturated model and a model using  parameters.p < n

The deviance is a function of , therefore its definition does not depend on the link function .μ g(⋅)
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Deviance and log-likelihood ratio test

Let us consider two nested models . The reduced model  has  parameters and

predictions . The full model  has  parameters .

The log-likelihood ratio test  for testing model  against model 1 can be written as

where  are the degrees of freedom.

The log-likelihood ratio can be interpreted as a difference of scaled deviances. This explains why it is
popular in GLMs for comparing nested models.

This is also strong parallelism with the Gaussian linear model.

1. More formally, we should say that we are testing the hypothesis  against the alternative

. I hope you can tolerate this slight linguistic abuse.

M ​ ⊂0 M ​1 M ​0 p ​0

​ ​μ̂0 M ​1 p ​ ​μ̂1

W M ​0 M ​1

W = 2[ℓ ​( ​, ​) −M μ̂ ϕ̂ ℓ ​( ​ ​, ​)] =M μ̂0 ϕ̂ ​ χ ​.
​ϕ̂

D(Y ; ​ ​) − D(Y ; ​)μ̂0 μ̂
∼̇ q

2

q = p − p ​0

H ​ :0 β ​ =B 0
H ​ :1 β ​ =B  0
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The null model

Let us consider a model  with no covariates and one parameter ( ), i.e. the intercept.

The predicted values are all equals to

We call  the null model and  the null deviance.

The null model is the “opposite” of the saturated model. It is the simplest among all models and the
one having the highest deviance.

Indeed, the following inequalities hold:

It is sometimes useful to test the current model against the null model:

If the  is not rejected, it means all the covariates are regarded as irrelevant.

M ​null p = 1

​ ​ =μ̂null (g ( ​ ​), … , g ( ​ ​)).−1 β̂1
−1 β̂1

M ​null D(y; ​ ​)μ̂null

0 = D(y;y) ≤ D(y; ​) ≤μ̂ D(y; ​ ​).μ̂null

W = ​ χ ​.
​ϕ̂

D(Y ; ​ ​) − D(Y ; ​)μ̂null μ̂
∼̇ p−1

2

H ​0
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Pearson  statistic

The deviance is a log-likelihood ratio test between a given model and the saturated model, rescaled
by .

Hence, we may consider another test, like the Rao-Score, to obtain an alternative definition.

X2

ϕ

Let  be the Rao-Score test comparing model  with the saturated model. Then, it holds:

which is known as generalized Pearson chi-squared statistic.

Karl Pearson introduced  in 1900 for testing various hypotheses using the chi-squared distribution,

such as the hypothesis of independence in contingency tables.

Since  and  are asymptotically equivalent, so will be the chi-squared statistic  and the

deviance  for large values of .

W ​u M

ϕW ​ =u X =2 ω ​ ​ ,
i=1

∑
n

i
v( ​ ​)μ̂i

(y ​ − ​ ​)i μ̂i
2

X2

W ​u W X2

D(Y ; ​)μ̂ n
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Deviance of a Gaussian linear model

In the classical Gaussian linear model, we have that  and . Thus  and

In the Gaussian case, the deviance is the residuals sum of squares and .

θ ​ =i μ ​i b(θ ​) =i θ ​/2i
2 θ(y ​) =i y ​i

​ ​

D(y; ​)μ̂ = 2 ​ω ​ y ​[θ(y ​) − θ( ​ ​)] − [b(θ(y ​)) − b(θ( ​ ​))]
i=1

∑
n

i { i i μ̂i i μ̂i }

= 2 ​{y ​(y ​ − ​ ​) − y ​/2 + ​ ​/2}
i=1

∑
n

i i μ̂i i
2 μ̂i

2

= ​(y ​ − 2y ​ ​ + ​ ​) = ​(y ​ − ​ ​) .
i=1

∑
n

i
2

iμ ​î μ̂i
2

i=1

∑
n

i μ̂i
2

D(y; ​) =μ̂ X2

Note that the null deviance is obtained with  so that

namely the so-called total deviance.

​ ​ =μ̂null ( ​, … , ​)ȳ ȳ

D(y; ​ ​) =μ̂null ​(y ​ −
i=1

∑
n

i ​) ,ȳ 2
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Deviance of a Poisson model

Let us consider a Poisson regression model, that is  and . Then

 and

with the convention that  whenever .

The  statistic in this case has a very simple form

As discussed in Salvan et al. ( ), Example 2.12, this can be seen as a quadratic approximation
of the deviance, which is valid for large values of .

θ ​ =i logμ ​i b(θ ​) =i exp(θ ​) =i μ ​i

θ(y ​) =i log y ​i

​ ​

D(y; ​)μ̂ = 2 ​{y ​(log y ​ − log ​ ​) − y ​ + ​ ​}
i=1

∑
n

i i μ̂i i μ̂i

= 2 ​{y ​ log(y ​/ ​ ​) − y ​ + ​ ​},
i=1

∑
n

i i μ̂i i μ̂i

y ​ log(y ​/ ​ ​) =i i μ̂i 0 y ​ =i 0

X2

X =2
​ ​ =

i=1

∑
n

​ ​μ̂i

(y ​ − ​ ​)i μ̂i
2

​ ​ .
i=1

∑
n

fitted ​i

(observed ​ − fitted ​)i i
2

2020
n
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Deviance of a binomial model I

Let us consider a Binomial regression model  with . Then

Therefore, under the convention  as before, the deviance is

The quantities  and  can be interpreted as the number of observed successes and

failures, respectively. Similarly,  and  represent their predictions. Hence, we can write

m ​Y ​ =i i S ​ ∼i Bimonial(m ​,π ​)i i μ ​ =i π ​i

ℓ ​( ​) =M μ̂ ​{m ​y ​ log ( ​ ​) +
i=1

∑
n

i i μ̂i m ​(1 −i y ​) log (1 − ​ ​)}.i μ̂i

x log(x) = 0

​ ​

D(y; ​)μ̂ = 2 ​m ​ y ​ log ​ + (1 − y ​) log ​

i=1

∑
n

i { i (
​ ​μ̂i

y ​i ) i (
1 − ​μ̂i

1 − y ​i )}

= 2 ​ m ​y ​ log ​ + (m ​ − m ​y ​) log ​ .
i=1

∑
n

{ i i (
m ​ ​ ​iμ̂i

m ​y ​i i ) i i i (
m ​ − m ​ ​ ​i iμ̂i

m ​ − m ​y ​i i i )}

m ​y ​i i m ​ −i m ​y ​i i

m ​ ​ ​iμ̂i m ​ −i m ​ ​ ​iμ̂i

D(y; ​) =μ̂ 2 ​ observed ​ log ​

j=1

∑
2n

j (
fitted ​j

observed ​j )
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Deviance of a binomial model II

The  statistic of a binomial model, recalling that , equals to

The second representation follows after some algebra.

The second equation shows that we can write

As already mentioned, the  statistic can be seen as a quadratic approximation of the deviance.

X2 v(μ ​) =i μ ​(1 −i μ ​)i

​

X2 = ​ ​

i=1

∑
n

​ ​(1 − ​ ​)/m ​μ̂i μ̂i i

(y ​ − ​ ​)i μ̂i
2

= ​ ​ + ​ ​ .
i=1

∑
n

m ​ ​ ​iμ̂i

(m ​y ​ − m ​ ​ ​)i i iμ̂i
2

i=1

∑
n

m ​ − m ​ ​ ​i iμ̂i

[(m ​ − m ​y ​) − (m ​ − m ​ ​ ​)]i i i i iμ̂i
2

X =2
​ ​ .

j=1

∑
2n

fitted ​j

(observed ​ − fitted ​)j j
2

X2
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Deviance as goodness of fit measure I

The deviance is useful a descriptive measure for the goodness of fit.

It is tempting to use the deviance as a formal statistical test, to verify if the current model is
adequate compared to the saturated model.

Suppose  were known, then in the Gaussian case we would have , which would

allow us to check the adequacy of the model.

Unfortunately, whenever  is estimated we obtain , and exactly  in the

Gaussian case, so this strategy can not be used.

ϕ D(y; ​)/ϕ ∼μ̂ χ ​n−p
2

​ϕ̂ D(y; ​)/ ​ ≈μ̂ ϕ̂ n − p n − p

On the other hand, for example in Poisson e binomial regression, we have . Hence, the intuition

tells us that, at least approximately, we should have

Unfortunately, this is not the case: the saturated model is an “irregular case” in that the number of
parameters  grows with the sample size.

The usual “large ” approximation does not hold in general, e.g. because  itself depends on .

ϕ = 1

D(y; ​) χ ​.μ̂ ∼̇ n−p
2

p = n

n χ ​n−p
2 n
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Deviance as goodness of fit measure II

Despite these bad news, it turns out that in some special cases, the  approximation is still valid

even for fixed values of .

Then the deviance  and the  Pearson statistic are approximately distributed as a 

in the following cases:

In binomial regression, for large values of  (small-dispersion asymptotics);

In Poisson regression, for large values of the estimated means  (say );

When  is known and  (small-dispersion asymptotics).

Small-dispersion asymptotics describe an alternative limiting regime in which the variance of the
observations tends to .

In binomial regression the  statistic converges to  more quickly than the deviance and has a

more trustworthy p-value when some expected success or failure totals are less than about five.

The  approximation is very poor for binary regression, i.e. when .

χ ​n−p
2

n

D(y; ​)μ̂ X2 χ ​n−p
2

m ​i

​ ​μ̂i ​ ​ ≥μ̂i 5

ϕ ϕ → 0

0

X2 χ ​n−p
2

χ ​n−p
2 m ​ =i 1
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On pseudo-

There exist several generalizations of the  statistic for linear models, called pseudo-
(e.g. McFadden, Cox & Snell, Nagelkerke, Tjur, etc.).

These indices are difficult to interpret and could mislead those accustomed with standard  A

pseudo-  may indicate a nearly perfect fit (i.e. Beetles data), which is confusing.

On top of this, these pseudo-  produce different answers depending on the aggregation of the

data.

R2

R2 R2

R .2

R ≈2 0.4

R2

The recommendation is to rely on indices tailored for the data at hand, such as the ROC curve for
binary data, or the correlation between  and .

The residual deviance is also a useful tool, especially for comparing models.

y ​μ̂

Pseudo-  are often shown by default in other software, such as SAS or SPSS.R2
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Example: Beetles data, output of summary

This is how the summary of a GLM looks like. It is very similar to the summary of lm. At this stage of
the course, you should be able to understand almost everything.

Null deviance corresponds to the null deviance .

Residual deviance corresponds to the deviance  of the current model.

Call:

glm(formula = cbind(deaths, m - deaths) ~ logdose, family = "binomial", 

    data = Beetles)

Coefficients:

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -60.717      5.181  -11.72   <2e-16 ***

logdose       34.270      2.912   11.77   <2e-16 ***

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 284.202  on 7  degrees of freedom

Residual deviance:  11.232  on 6  degrees of freedom
AIC: 41.43

Number of Fisher Scoring iterations: 4

D(y; ​ ​)μ̂null

D(y; ​)μ̂
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Example: Beetles data, output of anova

anova(model0, model1) computes log-likelihood ratio test comparing two nested models: the

reduced model  with  parameters and the full model  with  parameters.M ​0 p ​0 M1 p

Analysis of Deviance Table

Model 1: cbind(deaths, m - deaths) ~ 1

Model 2: cbind(deaths, m - deaths) ~ logdose

  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    

1         7    284.202                          

2         6     11.232  1   272.97 < 2.2e-16 ***
---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Resid Df are the degrees of freedom of the deviances, that is  and , respectively.

Resid. Dev are the deviances of the reduced model  and the full model . In this

example, the reduced model is also the null model.

Df refers to the degrees of freedom  of the test, which is  in this case.

Deviance indicates the change in deviance, that is .

Pr(>Chi) is the p-value of the log-likelihood ratio test .

n − p ​0 n − p

D(y; ​ ​)μ̂0 D(y; ​)μ̂

q = p − p ​0 q = 1

ϕW = D(y; ​ ​) −μ̂0 D(y; ​)μ̂

W
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Example: Beetles data, goodness of fit

The deviance equals , with  degrees of freedom. The observed

 Pearson statistic equals .

Using the  statistic with  degrees of freedom, we obtain the p-value , as

pictured above, which can be interpreted as a slight lack of fit.

D(y; ​) =μ̂ 11.232 n − p = 8 − 2 = 6
X2 10.027

X2 6 P(X >2 10.027) = 0.124
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Example: Aids data, output of summary

Below is shown the summary of the Poisson regression model with the Aids data.

Call:

glm(formula = deaths ~ period, family = "poisson", data = Aids)

Coefficients:

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.30365    0.25387   1.196    0.232    

period       0.25896    0.02224  11.645   <2e-16 ***

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 208.754  on 13  degrees of freedom

Residual deviance:  30.203  on 12  degrees of freedom
AIC: 86.949

Number of Fisher Scoring iterations: 5
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Example: Aids data, output of anova and lrtest

The use of the term deviance to indicate the difference between two deviances is a bit misleading.
I do not know the the reason, but the lrtest function of the lmtest package changed it.

Analysis of Deviance Table

Model 1: deaths ~ 1

Model 2: deaths ~ period

  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    

1        13    208.754                          

2        12     30.203  1   178.55 < 2.2e-16 ***

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Likelihood ratio test

Model 1: deaths ~ 1

Model 2: deaths ~ period

  #Df   LogLik Df  Chisq Pr(>Chisq)    

1   1 -130.750                         

2   2  -41.475  1 178.55  < 2.2e-16 ***
---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Example: Aids data, goodness of fit

The deviance equals , with  degrees of freedom. The

observed  Pearson statistic equals .

Using the  statistic with  degrees of freedom, we obtain the p-value ,

therefore rejecting the hypothesis that this model has a comparable fit with the saturated model.

D(y; ​) =μ̂ 30.203 n − p = 14 − 2 = 12
X2 29.92

X2 12 P(X >2 29.92) = 0.0028

The  goodness of fit test indicates a potential issue with the model, but it does not explain why.

A few remedies could be:

a. Choosing a different link function;

b. Including an additional covariate (if available), and/or considering non-linear transformations
of the available ones;

c. Choosing a different distribution instead of the Poisson, such as the negative binomial;

d. Accounting for overdispersion using quasi-likelihoods, that is, estimating  from the data rather

than fixing it to .

X2

ϕ

ϕ = 1

It turns out that selecting the link function  yields a much better fit with ,

whose p-value is . This is not the only possible solution.

g(μ ) =i ​μ ​i X =2 17.09
0.146
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Residuals

Linear models have an additive structure  therefore the residuals can be estimated as

We call these the response residuals.

y ​ =i x ​β +i
T ϵ ​i

r ​ =i y ​ −i ​ ​.μ̂i

GLMs do not have an additive decomposition, therefore we need define a good generalization of
residuals. There are at least  alternatives: Pearson and deviance residuals.

Ideally, we would like residuals to have approximately  mean and unitary variance, but these
properties will not hold exactly.

2

0

The analysis of the residuals is very helpful for identifying any misspecification as well as hinting the
solution. In particular, it is useful for instance to:

a. Choosing the correct variance function , i.e. the correct response distribution;

b. Choosing the correct link function;

c. Identifying latent patterns, often an indication of an omitted variable;

d. Identifying potential outliers and leverage points.

v(μ ​)i
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Pearson residuals

For a GLM with variance function , we call Pearson residuals the following quantities:

Pearson residuals rescale the response residuals, accounting for heteroschedasticity.

Pearson residuals own their name to the fact that the  statistic is obtained as

Moreover, the dispersion parameter, when present, can be estimated as

v(μ )i

r ​ =i,P ​ , i =
​v( ​ ​)/ω ​μ̂i i

y ​ − ​ ​i μ̂i 1, … ,n.

X2

X =2
​r ​ =

i=1

∑
n

i,P
2

​ω ​ ​ .
i=1

∑
n

i
v(μ ​)i

(y ​ − ​ ​)i μ̂i
2

​ =ϕ̂ ​ ​r ​.
n − p

1

i=1

∑
n

i,P
2
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Deviance residuals

The deviance of a GLM can be written as a sum of individual contributions  and

We call deviance residuals the following quantities:

By definition, the deviance is obtained as

Deviance residuals are the default choice in the residuals R function.

Pearson residuals are an asymptotic approximation of deviance residuals, therefore these two
quantities are often very similar in practice.

D(y; ​) =μ̂ ​ d ​∑
i=1
n

i

d ​ =i 2ω ​ y ​[θ(y ​) − θ( ​ ​)] − [b(θ(y )) − b(θ( ​))] , i =i { i i μ̂i i μ̂i } 1, … ,n.

r ​ =i,D sign(y ​ −i ​ ​) ​, i =μ̂i d ​i 1, … ,n.

D(y; ​) =μ̂ ​r ​
.

i=1

∑
n

i,D
2

Home page

104 / 119

https://tommasorigon.github.io/StatIII


A weighted projection matrix

In linear models, we considered the hat matrix , whose diagonal elements 

are called leverages and it holds .

H =X(X X) XT −1 T h ​i

var(r ​) =i σ (1 −2 h ​)i

Several arguments can be invoked to justify the following weighted hat matrix in GLMs

This matrix is symmetric  and idempotent ( ), i.e. a projection matrix.

We denote with  the diagonal elements of , which are the leverages of a GLM. In practice

 is estimated from the data, therefore the leverages will depend on the response.

It can be shown, as in Agresti ( ), Section 4.4.5, that

H ​ =W W X(X WX) XW .1/2 T −1 1/2

(H ​ =W H ​)W
T H ​ =W

2 H ​W

h ​i,W H ​W

W

2015

var(y ​ −i ​ ​) ≈μ̂i ϕ/ω ​v(μ ​)(1 −i i h ​) ⟹i,W var(r ​) ≈i,P ϕ(1 − h ​).i,W

A technical but deeper discussion about  can be found in the Appendix of Chapter 4 of Agresti

( ), where stronger analogies with linear models are shown.

H ​W

2015
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Standardized residuals

In analogy of what has been done for GLMs, we can consider the standardized version of Pearson
and deviance residuals.

Standardized Pearson residuals are defined as

where  is an estimate of  (if unknown) and  is an estimate of the leverages.

Standardized deviance residuals are defined as

We can also obtain an approximate Cook’s distance by considering

​ =r~i,P ​ =
​​

(1 −
​
)ϕ̂ ĥi,W

r ​i,P
​ , i =
​​

/ω ​v(
​ ​
)(1 − )ϕ̂ i μ̂i ĥi,W

y ​ − ​i μ ​î 1, … ,n,

​ϕ̂ ϕ ​ĥi,W

​ =r~i,D ​ , i =
​​(1 − ​)ϕ̂ ĥi,W

r ​i,D 1, … ,n.

c ​ =i ​ ​ , i =r~i,P
2

p(1 − ​)ĥi,W

​ĥi,W 1, … ,n.
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On Q-Q plots and other practicalities

It is sometimes recommended to check the normality of the Pearson/deviance residuals using Q-Q
plots. Such a plot is also provided in R.

Indeed, for example under small dispersion asymptotics or other specific, Pearson residuals are
approximately Gaussian.

However, these conditions are often not met. For example, in binary data the response 

can only assume two values and the residuals will not be Gaussian distributed, even for large .

Actually, the analysis for the residuals in binary data do not provide useful information; see e.g.
Salvan et al. ( ), Section 3.6.

y ​ ∈i {0, 1}
n

2020

The analysis of residuals in GLMs is often useful but should be taken cum grano salis, particularly
when dealing with discrete responses that take only a few distinct values.

Overreliance on residual analysis can encourage automatic decisions rather than thoughtful, critical
judgment. A good model should not be discarded solely on the basis of a “bad” diagnostic plot.

Home page

107 / 119

https://tommasorigon.github.io/StatIII


On identifying and removing outliers

The analysis of the residuals can also help in identifying outliers and influence points. However, we
must be careful in drawing conclusions.

An outlier might be detected as such simply as the consequence of model misspecification, e.g. an
omitted variable.

In the vast majority of cases, the presence of outliers should be carefully dealt with by carefully
modifying the model.

There are instances in which outliers are actually contaminated data points (e.g. age = -3). If

there is strong and contextual evidence that this might be the case, then these points should be
removed. Otherwise, removing data points is a bad practice.

In statistical modelling, we wish to find a model that fits our data, not a dataset that is aligned with
our prescribed model.

Discarding observations until the hypoteshes are reasonable it skews the overall analysis and does not
answer any meaningful scientific or business question.
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Example: Beetles data

A formal test already confirmed that there are no noticeable differences between this model and the
saturated model. The analysis of the residuals confirms it.

Deviance residuals and Pearson residuals are very similar, as expected.
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Example: Beetles data

The Cook’s distance also confirms that there are not strong influence points.
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Example: Aids data

From both residuals plots it is evident that three observations are highly underestimated, while the
others are slightly underestimated.

The lack of fit can be solved, in this case, by using a different link function.
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Example: Aids data

We estimated a Poisson regression model with a non-canonical link function .

This yields a much better fit, as we previously discussed. The residuals are also better behaved.

g(μ ​) =i ​μ ​i
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Model selection

Home page

113 / 119

https://tommasorigon.github.io/StatIII


Model selection process

Model selection for GLMs faces the same issues as for linear models.

The selection process becomes more difficult as the number of explanatory variables  increases,

because of the growth in possible effects and interactions. There are two competing goals:

a. The model should be complex enough to fit the data well;

b. On the other hand, it should smooth rather than overfit the data and ideally remain simple to
interpret.

p

Most research studies are designed to answer certain questions, which guide the choice.

Confirmatory analyses use a restricted set of models, e.g. for testing a study hypothesis about an
effect by comparing models with and without that effect.

Exploratory studies, instead, search among possible models which may provide clues about the
structure of effects or can raise questions for future research.

In either case, it is helpful first to study the marginal effect of each predictor. Use descriptive
statistics and a scatterplot matrix to get a feel for those effects.
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Automatic model selection

With  explanatory variables, the number of potential models is the huge number

Best subset selection identifies the model that optimizes an information criterion e.g. AIC or BIC,
which are defined as

where  is the number of parameters in the model.

Best subset selection is computationally intensive when  is large, to the extent that it is not even

feasible in most cases, but approximations such as forward and backward selection are possible.

p

​ ​ =
k=1

∑
p

(
k

p
) 2 .p

AIC = −2ℓ( ​) +β̂ 2k, BIC = −2ℓ( ​) +β̂ k logn,

k

p

In exploratory studies, these methods are useful if applied cautiously.

As we shall discuss, an excess of automatism may lead to good predictive performance, but it may
fail in making the model simple or interpretable.
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Stepwise procedures: forward and backward selection

Forward selection adds terms sequentially. At each stage it selects the term giving the greatest
improvement in terms of deviance or other goodness of fit measures.

The process stops when further additions do not improve the it, according to statistical significance
(i.e. a log-likelihood ratio test) or a criterion for judging the model fit (such as the AIC or BIC).

A stepwise variation of this procedure rechecks, at each stage, whether terms added at previous
stages are still needed.

Backward elimination begins with a complex model and sequentially removes terms.

At each stage, it selects the term whose removal has the least damaging effect on the model, such as
the largest p-value in a test or the least deterioration in a criterion for judging the model fit.

The process stops when any further deletion leads to a poorer it.

Whenever possible, i.e. when  is not too large, we recommend manually performing each stage of

forward or backward procedures and avoid fully automatic procedures.
p
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Comments on forward/backward selection I

An interaction term should not be included without its main effects.

For qualitative predictors with  categories: add/drop the entire variable, not just one indicator.
Otherwise, results depend on the reference category used in coding.

> 2

Some statisticians prefer backward elimination over forward selection. It is safer to delete terms
from an overly complex model than to add to an overly simple one.

Forward selection based on significance tests:

a. May stop prematurely if a test has low power.

b. Early-stage comparisons often involve inadequate models, making tests questionable.

Neither backward nor forward strategies guarantee a meaningful model.

Evaluating many terms increases risk of chance findings. If true effects are weak, the largest sample
effect likely overestimates the truth.

Use of standard significance tests in selection lacks theoretical justification. Distribution of
minimum or maximum -values at each stage is not the same as the distribution of a pre-selected

variable. This issue is called multiple testing and leads to overconfident conclusions.

p
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Comments on forward/backward selection II

Statistical significance is not the same as practical significance; do not rely only on significance
tests.

The price to pay for adding an irrelevant variable is an increase in variance of the estimates. The
price to pay for dropping a relevant variable is an increase in bias.

It is possible to include variables central to the study goals even if not significant:

It enables comparisons with other studies where the effect is significant, perhaps because of a
larger sample size;

If the variable is a potential confounder, i.e. possibly relevant for predicting the response, but
not of direct interest, including it in the model may help to reduce bias in estimating relevant
effects of key explanatory variables.

Do not keep variables just because they are significant.

As an example, consider an adjusted  in a linear model with interactions vs. 

without. The simpler model may be preferable being more interpretable.

R =2 0.39 0.38

Algorithmic selection methods are no substitute for careful thought in model building.

Home page

118 / 119

https://tommasorigon.github.io/StatIII


References

Agresti, A. (2015), Foundations of Linear and Generalized Linear Models, Wiley.
Azzalini, A. (2008), Inferenza statistica, Springer Verlag.
Efron, B. (2023), Exponential Families in Theory and Practice, Cambridge University Press.
Fisher, R. A. (1934), “Two new properties of mathematical likelihood,” Proceedings of the Royal

Society of London. Series A, 144, 285–307.
Nelder, J. A., and Wedderburn, R. W. M. (1972), “Generalized linear models,” Journal of the Royal

Statistical Society. Series A: Statistics in Society, 135, 370–384.
Salvan, A., Sartori, N., and Pace, L. (2020), Modelli lineari generalizzati, Springer.

Home page

119 / 119

https://tommasorigon.github.io/StatIII

