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GLMs for binary data and binomial data are very common, whenever the
response variable is dichotomous (e.g., success/failure, yes/no, dead/alive,
diseased/healthy, etc.).

This unit will cover a few additional topics related to binary and binomial
regression, including:

grouped vs ungrouped data;

the choice of the link function;

interpretation of responses via latent “utilities”;

and more…

Clearly, the most important aspects have been already covered in .

The content of this Unit is covered in Chapter 3 of Salvan et al. ( ). Alternatively, see Chapter
5 of Agresti ( ).
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Notation and recap

In a binomial regression model, we observe  successes out of  trials

We model the proportions , whose mean is indeed  and .

In a binary regression model, we observe , which is a special case of the model above

with number of trials  for all . Thus, we have

In this unit, we distinguish between two sample size measures:

a measure  for the number of Bernoulli trials that constitute a particular binomial observation;

a measure  for the number of binomial observations.

S ​i m ​i

S ​i ∼ind Binomial(m ​,π ​), g(π ​) =i i i η ​ =i x ​β, i =i
T 1, … ,n.

Y ​ =i S ​/m ​i i π ​i Y ​i ∼ind ED(μ ​,μ ​(1 −i i μ ​)/m ​)i i

Y ​ ∈i {0, 1}
m ​ =i 1 i

Y ​i ∼ind Bernoulli(π ​), g(π ​) =i i η ​ =i x ​β, i =i
T 1, … ,n.

m ​i

n
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Grouped vs ungrouped data

If  are independent Bernoulli random variables with success probability , for 

 and , then

Thus, any binomial regression model can be ungrouped into a binary regression model with 

 observations, by simply repeating the same response and covariate  times.

On the other hand, a binary regression model can be grouped only if multiple subjects share the
same values for explanatory variables, which is common if they are all categorical.

The likelihood function of these two representation coincide up to a proportionality constant, which
means that the maximum likelihood  and the standard errors are identical.

However, the deviance and the residuals are different, which has implications for goodness-of-fit tests
and model diagnostics. The diagnostics for binary data are typically uninformative.

Y ​ ∈ij {0, 1} π ​i j =
1, … ,m ​i i = 1, … ,n

S ​ =i ​Y ​ ∼
j=1

∑
m ​i

ij Binomial(m ​,π ​).i i

N =
​ m ​∑i=1

n
i m ​i

​β̂
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Link functions I

As discussed, the link function is usually set to  for some continuous cumulative

distribution function . In other words,

that is

The function  is monotone increasing, differentiable, and maps the real line to the unit interval.

Logit link. The canonical link is the logistic link (or logit link), that is

Indeed, the function  with  is the cdf of a logistic distribution
with mean  and variance .

g(⋅) = F (⋅)−1

F (⋅) : R → (0, 1)

g(π ​) =i F (π ​) =−1
i x ​β,i

T

μ ​ =i π ​ =i F (x ​β).i
T

F (⋅)

g(π ​) =i log ​ =(
1 − π ​i

π ​i ) x ​β,  with inverse π ​ =i
T

i ​ .
1 + exp(x ​β)i

T

exp(x ​β)i
T

F (z) = exp(z)/(1 + exp(z)) z ∈ R
0 π /32
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Link functions II

Probit link. The probit link is based on the standard normal cdf , i.e.

The function  with  is usually computed numerically and equals

Complementary log-log link. The complementary log-log (cloglog) link is

The distribution function  with  is called extreme value distribution.

This link function is asymmetric.

Cauchy link. The Cauchy link is

 with  is the cdf of a standard Cauchy distribution.

Φ(⋅)

g(π ​) =i Φ (π ​) =−1
i x ​β, with inverse π ​ =i

T
i Φ(x ​β).i

T

Φ(z) z ∈ R

Φ(z) = ​ ​ exp − ​ du.∫
−∞

z

​2π

1
(

2
u2

)

g(π ​) =i log(− log(1 − π ​)) =i x ​β, with inverse π ​ =i
T

i 1 − exp(− exp(x ​β)).i
T

F (z) = 1 − exp(− exp(z)) z ∈ R

g(π ​) =i tan(π(π ​ −i 1/2)), with inverse π ​ =i ​ +
2
1

​ .
π

arctan(x ​β)i
T

F (z) = 1/2 + arctan(z)/π z ∈ R
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Link functions III
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Link functions IV
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Latent variable threshold models I

A latent variable threshold model is a useful way to interpret binary regression models and choosing
their link function . Let  be a latent and continuous random variables such that

A variable is called latent because we do not observe it directly. Instead, we observe only a binary
variable encoding whether it exceeds a certain threshold, i.e.

where  is the indicator function and  is a threshold.

By construction, we have , with

The data contain no information about , so we can set  without loss of generality. Otherwise,

the value of  is incorporated into the intercept term.

Likewise, an equivalent model results if we multiply all parameters by any positive constant, so we
can take  to have a standard form with fixed variance, such as the standard normal cdf.

g(⋅) Y ​i
∗

Y ​ =i
∗ x ​β +i

T ϵ ​, ϵ ​i i ∼iid F .

Y ​ =i I(Y ​ >i
∗ τ),

I(⋅) τ

Y ​ ∼i Bernoulli(π ​)i

​ ​

π ​i = P(Y ​ = 1) = P(Y ​ > τ) = P(x ​β + ϵ ​ > τ) = 1 − P(ϵ ​ ≤ τ − x ​β) = 1 − F (τ − x ​β).i i
∗

i
T

i i i
T

i
T

τ τ = 0
τ

F
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Latent variable threshold models II

For most models  corresponds to a pdf that is symmetric around 0, so . Thus,

we obtain

That is, models for binary data naturally take the link function to be the inverse of the standard
cdf for a family of continuous distributions for a latent variable.

This dichotomization often corresponds to a real process — for instance, in medical diagnosis,
preterm birth can be seen as a dichotomization of gestational age at delivery.

However, there are cases where the existence of a latent quantity is more questionable, such as 

corresponding to a notion of “ability” and  to “passing an exam”.

F F (z) = 1 − F (−z)

​

π ​ = 1 − F (−x ​β) = F (x ​β), and F (π ​) = g(π ​) = x ​β.i i
T

i
T −1

i i i
T

Y ​i
∗

Y ​i
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Logistic regression

The likelihood equations of a binomial regression model are fairly simple:

where  is the density associated with , i.e. its derivative, and the link is .

In logistic regression , therefore

The solutions therefore has a nice interpretation as a method of moments estimator, in that

Moreover, the estimated covariance matrix of  has a simple form:

​ ​x ​f(η ​) =
i=1

∑
n

π ​(1 − π ​)i i

m ​(y ​ − π ​)i i i
ir i 0, r = 1, … , p,

f(z) F (z) g(⋅) = F (⋅)−1

f(η ​) =i F (η ​)(1 −i F (η ​)) =i π ​(1 −i π ​)i

​m ​(y ​ −
i=1

∑
n

i i π ​)x ​ =i ir 0, r = 1, … , p.

​s ​x ​ =
i=1

∑
n

i ir ​ E(S ​)x ​, r =
i=1

∑
n

i ir 1, … , p,

​β̂

( ​) =var β̂ (X X) =TŴ −1 (X diag[m ​ ​(1 −T
1π̂1 ​), … ,m ​ ​(1 −π̂1 nπ̂n ​)]X)π̂n

−1
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Parameter interpretation

We wish to compare two estimated probabilities, corresponding to two different covariate vectors
 and , namely

This is useful to understand the effect of changing covariates on the response probability.

There are several ways to compare them, listed below, each with its advantages and disadvantages:

The absolute risk, namely the difference

The relative risk is the fraction

Both these indicators are quite interpretable but depend on the specific values of  and , which
makes it difficult to summarize the effect of a given covariate in a single number.

x = (x ​, … ,x ​)1 p x =′ (x ​, … ,x ​)1
′

p
′

π(x) = F (x β) and π(x ) =T ′ F ((x ) β).′ T

(absolute risk) = π(x ) −′ π(x).

(relative risk) = ​ .
π(x)
π(x )′

x x′
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Odds ratio

The odds is another way of summarizing probabilities, familiar to those who gamble:

The odds are non-negative, with  when a success is more likely than a failure.

When  then ; a success is three times as likely as a failure.

That is, we bet 3 to get 1 if we win. If instead , we bet 1 to get 3 if we win.

The odds ratio is another popular risk measure for comparing the two probabilities

Let  and , i.e. we compare two situations in

which the th covariate is increased by a fixed amount , then in logistic regression:

which is a constant number that does not depend on . This is not true e.g. in probit.

odds(x) = ​ .
1 − π(x)
π(x)

odds(x) > 1

π(x) = 0.75 odds(x) = 0.75/0.25 = 3
odds(x) = 1/3

(odds ratio) = ​ =
odds(x)
odds(x )′

​ ⋅
π(x)
π(x )′

​ .
1 − π(x )′
1 − π(x)

x = (x ​, … ,x ​, … ,x ​)1 j p x =′ (x ​, … ,x ​ +1 j c, … ,x ​)p
j c

(odds ratio) = exp(cβ ​),j

x
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Odds ratio and logistic regression

Let  be a generic covariate vector and consider its odds under a logistic regression model:

Thus, the odds of any predicted value is simply the exponential of the linear predictor .

Consequently, in general the odds ratio is

If the only change is in the th covariate, from  to , then the odds ratio becomes

In particular,  represents the odds ratio after a unitary increase of the th covariate.

x

odds(x) = ​ =
1 − π(x)
π(x)

​ ⋅
1 + exp(x β)T

exp(x β)T

​ =(
1 + exp(x β)T

1
)

−1

exp(x β).T

x βT

(odds ratio) = ​ =
odds(x)
odds(x )′

exp{(x −′ x) β}T

j x ​j x ​ +j c

(odds ratio) = exp{(x −′ x) β} =T exp(cβ ​).j

exp(β ​)j j
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Residuals and diagnostics for binary data

In presence of binary data, namely when  and , many the diagnostic tools

are degenerate and uninformative.

For example, the fitted vs residuals plot, namely the dispersion plot of the points ,

simply shows two parallel lines with slope , which is uninformative.

As an extreme case, consider the null model in which , then the  statistic is

A common solution is to group the data according to some criteria, although this introduces
approximations and some arbitrariness (i.e. the Hosmer-Lemeshow test).

In terms of prediction, there exists various indices and techniques that you will cover in Data Mining.
The simplest index is the accuracy, i.e. the fraction of correct predictions.

m ​ =i 1 Y ​ ∼i Bernoulli(π ​)i

( ​, y ​ −π̂i i ​)π̂i

−1

π ​ =1 ⋯ = π ​n X2

X =2
​ ​ =

i=1

∑
n

(1 − )π̂ π̂

(y ​ − )i π̂ 2

n.
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Overdispersion

In binomial regression the main assumption is that , implying that

where implicitly we have set .

However, from the analysis of the residuals or by computing the  statistic we may realize that the

data present overdispersion, namely the correct model is such that

with . This implies that the binomial regression model is misspecified.

The two most common solutions to overdispersion are the following:

i. the usage of quasi-likelihoods;

ii. using another parametric distribution, beyond the class of exponential dispersion families; a
typical choice is the beta-binomial.

S ​ ∼i Binomial(m ​,π ​)i i

var(Y ​) =i ​ ,
m ​i

π ​(1 − π ​)i i

ϕ = 1

X2

var(Y ​) =i ϕ ​ ,
m ​i

π ​(1 − π ​)i i

ϕ > 1
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