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® GLMs for binary data and are very common, whenever the
response variable is dichotomous (e.g., success/failure, yes/no, dead/alive,
diseased/healthy, etc.).

® This unit will cover a few additional topics related to binary and binomial
regression, including:

m grouped vs ungrouped data;

® the choice of the link function;

B interpretation of responses via latent “utilities”;

aanre Sp ‘e Shuttle: Orbiter, External- Tank, Solid Rocket Motors, . and more-"

. ® (Clearly, the most important aspects have been already covered in Unit B.
Original paper

The content of this Unit is covered in of Salvan et al. (2020). Alternatively, see Chapter
5 of Agresti (2015).
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Notation and recap

® |n a binomial regression model, we observe S; successes out of m;
ind . . T .
S; ~ Binomial(m;, m;), g(m) =n; = x; B, i=1,...,n.

We model the proportions Y; = S;/m;, whose mean is indeed 7; and Y; g ED(wi, pi(1 — pi)/m;).

® |n a binary regression model, we observe Y; € {0, 1}, which is a special case of the model above

with number of trials m; = 1 for all 7. Thus, we have

Y, % Bernoulli(;), g(m) =n =z} B, i=1,...,n.

In this unit, we distinguish between

® 3 measure m; for the number of Bernoulli trials that constitute a particular binomial observation;

B 3 measure n for the number of binomial observations.
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Grouped vs ungrouped data

= [fY;; € {0,1} are independent Bernoulli random variables with success probability 7;, for j =
1,...,m;andi=1,...,n, then

Si = Z YEj ~ Binomial(mi, 7'('2').
7=1

® Thus, any binomial regression model can be into a binary regression model with N =

Z?:l m; observations, by simply repeating the same response and covariate m; times.

On the other hand, a binary regression model can be grouped only if multiple subjects share the
same values for explanatory variables, which is common if they are all categorical.

The likelihood function of these two representation coincide up to a proportionality constant, which
means that the maximum likelihood 8 and the standard errors are identical.

However, the deviance and the residuals are different, which has implications for goodness-of-fit tests
and model diagnostics. The diagnostics for binary data are typically uninformative.
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Link functions |
= As discussed, the link function is usually set to g(-) = F~1(-) for some
F(-):R — (0,1). In other words,
g(mi) = F}(m;) = 2; B,
that is
pi =m = F(z] ).

The function F(-) is monotone increasing, differentiable, and maps the real line to the unit interval.

Logit link. The canonical link is the logistic link (or logit link), that is

: T
g(mi) = log ( 1 7_”@) =z, B, with inverse M= j—xifs(zw? 5’

Indeed, the function F'(z) = exp(z)/(1 + exp(z)) with z € R is the cdf of a
with mean 0 and variance 7%/3.
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Link functions Il

= Probit link. The probit link is based on the standard normal cdf ®(-), i.e.

g(m) = @& Y(m) = x! B, with inverse m; = ®(x! B).

The function ®(z) with z € R is usually computed numerically and equals

B(z) = /OO \/12_7Texp (-“;> du.

= Complementary log-log link. The complementary log-log (cloglog) link is

g(m) = log(—log(1 — m)) = ! B, with inverse mi = 1 — exp(— exp(z; B)).

The distribution function F'(z) = 1 — exp(— exp(z)) with z € R is called extreme value distribution.

This link function is

® Cauchy link. The Cauchy link is

1 tan(z]
g(m;) = tan(w(m; — 1/2)), with inverse M=+ e ar;r(azz ﬂ).

F(z) = 1/2 + arctan(z)/m with z € R is the cdf of a
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Link functions Il

Link function == logit === probit === cloglog === cauchit
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Link functions 1V

Link function === logit === probit === cloglog === cauchit
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Latent variable threshold models |

A latent variable threshold model is a useful way to interpret binary regression models and choosing
their link function g(-). Let Y;* be a and random variables such that

T iid
Y-*:miﬁ—i—ei, e ~ F.

]

A variable is called latent because we do not observe it directly. Instead, we observe only a binary
variable encoding whether it exceeds a certain threshold, i.e.

Y, =1(Y" > 1),

where I(-) is the indicator function and 7 is a threshold.

By construction, we have Y; ~ Bernoulli(7;), with

T =PY,=1)=PY>7)=Px]f+e>7)=1-Ple; <7 -2 B) =1— F(1 — { B).

The data contain about 7, so we can set 7 = 0 without loss of generality. Otherwise,

the value of 7 is incorporated into the intercept term.
Likewise, an equivalent model results if we multiply all parameters by any positive constant, so we
can take F' to have a standard form with fixed variance, such as the standard normal cdf.

Home page ;II:I]BI:%


https://tommasorigon.github.io/StatIII

10 / 17

Latent variable threshold models |l

® For most models F' corresponds to a pdf that is symmetric around 0, so F'(z) =1 — F(—z). Thus,
we obtain

m=1-—F(—z!p)=F(xl'8), and FY(m)=g(m)=2alp.

That is, models for binary data naturally take the link function to be the
for a family of continuous distributions for a latent variable.

This dichotomization often corresponds to a real process — for instance, in medical diagnosis,
preterm birth can be seen as a dichotomization of gestational age at delivery.

However, there are cases where the existence of a latent quantity is more questionable, such as Y;*
corresponding to a notion of “ability” and Y; to “passing an exam”.
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Logistic regression

The likelihood equations of a binomial regression model are fairly simple:

n

mi\y; — T
E , ( )wﬂ‘f(lrh):oa ’I":]_,...,p,
7'('@(].

i=1 — i)

where f(z) is the density associated with F'(z), i.e. its derivative, and the is g(-) = F~1().

= |n logistic regression f(n;) = F(n;)(1 — F(n;)) = mi(1 — m;), therefore
E:mz ;)i = 0, r=1,...,p.

The solutions therefore has a nice interpretation as a method of moments estimator, in that

n

Z'Sixzr ZE xzrv r = 17"'7pa

i=1
Moreover, the estimated covariance matrix of 8 has a simple form:

var() = (XTWX) ! = (XTdiag[mi 71 (1 — 7y), ..., mpfta(1 — 7,)] X) 72
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Parameter interpretation

m \We wish to compare two estimated probabilities, corresponding to two different covariate vectors

T = (Z1,...,2p) and &' = (z7,...,x,), namely

n(z)=F(x'f) and  w(x')=F((x')"B).

This is useful to understand the effect of changing covariates on the response probability.
® There are several ways to compare them, listed below, each with its advantages and disadvantages:

® The absolute risk, namely the difference
(absolute risk) = w(x') — 7(x).

® The is the fraction

(relative risk) = ——.

m Both these indicators are quite interpretable but depend on the specific values of @ and @', which
makes it difficult to summarize the effect of a given covariate in a single number.
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Odds ratio

® The odds is another way of summarizing probabilities, familiar to those who gamble:

odds(x) = 17_T(—:()w)

The odds are non-negative, with odds(a) > 1 when a success is more likely than a failure.

® When 7(a) = 0.75 then odds(x) = 0.75/0.25 = 3; a success is three times as likely as a failure.
That is, we bet 3 to get 1 if we win. If instead odds(ax) = 1/3, we bet 1 to get 3 if we win.

® The is another popular risk measure for comparing the two probabilities
dds(x’ N1 -
(odds ratio) = odds(’) = (@) m(z) :
odds(z) w(x) 1—=(x')
= Lletx = (z1,...,25,...,2%p) and &' = (21,...,2; +¢,...,x,), i.e. we compare two situations in

which the jth covariate is increased by a fixed amount ¢, then in logistic regression:
(odds ratio) = exp(cp;),
which is a that does not depend on @. This is not true e.g. in probit.
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Odds ratio and logistic regression

m | et & be a generic covariate vector and consider its odds under a logistic regression model:

_oae) _ ew@s) (1 N
odds(z) = 3— m(x) 1+ exp(zLp) (1 + eXP(wTﬁ))

Thus, the odds of any predicted value is simply the exponential of the linear predictor 5.

= exp(z’ §).

® Consequently, in general the odds ratio is

(odds ratio) = %S((Z)) = exp{(z' — )75}

If the only change is in the jth covariate, from z; to z; + ¢, then the odds ratio becomes

(odds ratio) = exp{(z’ — ®)’ 8} = exp(cB;).

In particular, exp(3;) represents the odds ratio after a of the jth covariate.
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Residuals and diagnostics for binary data

® |n presence of , namely when m; = 1 and Y; ~ Bernoulli(r;), many the diagnostic tools

are and uninformative.

m For example, the fitted vs residuals plot, namely the dispersion plot of the points (7;, y; — 7;),
simply shows two parallel lines with slope —1, which is uninformative.

® As an extreme case, consider the null model in which 7; = --- = m,,, then the X? statistic is
n ~ 2
(yz - 7T)
X2 = : LA
Z (1 —7)
1=1

m A common solution is to group the data according to some criteria, although this introduces
approximations and some arbitrariness (i.e. the Hosmer-Lemeshow test).

® |n terms of prediction, there exists various indices and techniques that you will cover in Data Mining.
The simplest index is the , i.e. the fraction of correct predictions.
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Overdispersion

® |n binomial regression the main assumption is that S; ~ Binomial(m;, 7;), implying that

i(1—m
var(Y;) = M,
m;

where implicitly we have set ¢ = 1.

m However, from the analysis of the residuals or by computing the X? statistic we may realize that the

data present , namely the correct model is such that
(1 — m;
var(y) — 6T,
my;

with ¢ > 1. This implies that the binomial regression model is
® The two most common solutions to overdispersion are the following:

i. the usage of quasi-likelihoods;

ii. using another parametric distribution, beyond the class of exponential dispersion families; a
typical choice is the
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