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Poisson regression
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® GLMs for count data are very common and have theoretical
connections with binary and binomial models.

® This unit focuses on Poisson regression models.

® | will not cover the analysis of contingency tables.

® Such a topic is nonetheless discussed in the textbook but is not part

of the exam.

Alan Agresti _ : :
& ® The most important aspects have been already covered in Unit B.

Distinguished Professor
Emeritus, University of Florida

The content of this Unit is covered in Chapter 5 of Salvan et al. (2020). Alternatively, see Chapter
7 of Agresti (2015).
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Notation and recap

® |n a Poisson regression model, we observe Y; independent Poisson random variables, so that

lfi ifrigl POiSSOl’l(,U,Z'), g(:u“z) =N = w?ﬂ7 1= 17 ceey T

= The is g(-) = log(-), which implies a multiplicative structure
P
i = exp(l B) = exp(B1)™ x -+ x exp(By)™ = [[ o, ay = exp(B;).
j=1

® Under the canonical link, the likelihood equations are

n

Z(yi_:ulz)xzrzoa Tzl,...,p.

1=1

The solution therefore has a nice interpretation as a method of moments estimator, in that

n
Zyiwzr ZE wzra 7“:1,...,]?.
1=1
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Interpretation of the regression coefficients

m Under the , the mean has a multiplicative structure, namely
p
pi = exp(x] B) = exp(B1)™" x -+ x exp(B,)"r = [[]”, ;= exp(B;).
j=1

® As a result, a unitary increase of the jth covariate from z;; to x;; + 1 has the following impact on

the new mean, say pnew

."L’ij—i—].

LTip — oy L1 Tip ) — vl
S xagr = ag (o X X apr) = o

— il
:u‘new—afx"'xa D

In other words, the regression parameters, once exponentiated, can be interpreted as
of the mean, namely

_ Mnew — b

a; —1 =exp(B;) —1 ”

The interpretation in terms of relative changes is a consequence of the logarithmic link function.
Therefore, the same interpretation applies whenever this link is used, including the Gamma GLM.
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Exposure rate

® Often the expected value of a response count Y; is proportional to an index t;, the

® For instance, t; might be an amount of time and/or a population size, such as in modeling crime
counts for various cities. Or, it might be a spatial area, such as in modeling counts of plant species.

® |n these case, the sample rate is Y;/t;, with expected value u;/t;. With explanatory variables, a
model for the expected rate under a has the form

1

log (?—) = ; B, —  logui =z B +logt,

Because log(u;/t;) = log u; — logt;, the model makes the adjustment logt; to the linear predictor.
This adjustment term is called an , implemented in R using the offset option.

m The fit corresponds to using logt; as an explanatory variable in the linear predictor for log(u;) and
to equal 1.

® Summarising, for this model, the response counts Y; ~ Poisson(u;) satisfy
_ T
pi = tiexp(x; B).
The mean has a proportionality constant for £; that depends on the values of the covariates.
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Overdispersion

= |n Poisson regression the main assumption is that Y; ~ Poisson(y;), implying that
Var(}fi) = His

where implicitly we have set ¢ = 1.

m However, from the analysis of the residuals or by computing the X? statistic we may realize that the
data present , namely the correct model is such that

Var(Y;-) — ¢:u’z7
with ¢ > 1. This implies that the Poisson regression model is

® The two most common solutions to overdispersion are the following:

i. the usage of quasi-likelihoods;

ii. using another parametric distribution; a typical choice is the
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Zero-inflation

® |n practice, the frequency of is often under a Poisson
regression.
® Because the of a Poisson distribution is the integer part of its mean, a Poisson GLM can be

inadequate when the mean is relatively large but the modal response is O.
® Such data are called zero-inflated. This often occurs when:
® many subjects have a true zero response (structural zeros), and
B many others have positive counts, so the overall mean is not near zero.
m Example: the number of times individuals report exercising (e.g., going to a gym) in the past week:
B some people exercise frequently,
® some exercise occasionally but not in the past week (a random zero),
m others never exercise (a structural zero),
® The two most common solutions to zero-inflation are the following:
i. Zero-inflated Poisson (ZIP) model, a mixture model;

ii. Hurdle models (model zero vs nonzero first, then model the remaining data).

Home page én:ucn%


https://tommasorigon.github.io/StatIII

8/8

References

Agresti, A. (2015), Foundations of Linear and Generalized Linear Models, Wiley.
Salvan, A., Sartori, N., and Pace, L. (2020), Modelli lineari generalizzati, Springer.

Home page Eu:ucn%



https://tommasorigon.github.io/StatIII

