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GLMs for count data are very common and have theoretical
connections with binary and binomial models.

This unit focuses on Poisson regression models.

I will not cover the analysis of contingency tables.

Such a topic is nonetheless discussed in the textbook but is not part
of the exam.

The most important aspects have been already covered in .

The content of this Unit is covered in Chapter 5 of Salvan et al. ( ). Alternatively, see Chapter
7 of Agresti ( ).
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Notation and recap

In a Poisson regression model, we observe  independent Poisson random variables, so that

The canonical link is , which implies a multiplicative structure

Under the canonical link, the likelihood equations are

The solution therefore has a nice interpretation as a method of moments estimator, in that

Y ​i

Y ​i ∼ind Poisson(μ ​), g(μ ​) =i i η ​ =i x ​β, i =i
T 1, … ,n.

g(⋅) = log(⋅)

μ ​ =i exp(x ​β) =i
T exp(β ​) ×1

x ​i1 ⋯ × exp(β ​) =p
x ​ip
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j exp(β ​).j

​(y ​ −
i=1

∑
n

i μ ​)x ​ =i ir 0, r = 1, … , p.
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Interpretation of the regression coefficients

Under the logarithmic link, the mean has a multiplicative structure, namely

As a result, a unitary increase of the th covariate from  to  has the following impact on

the new mean, say 

In other words, the regression parameters, once exponentiated, can be interpreted as relative
changes of the mean, namely

The interpretation in terms of relative changes is a consequence of the logarithmic link function.
Therefore, the same interpretation applies whenever this link is used, including the Gamma GLM.

μ ​ =i exp(x ​β) =i
T exp(β ​) ×1

x ​i1 ⋯ × exp(β ​) =p
x ​ip

​α ​, α ​ =
j=1

∏
p

j

x ​ij
j exp(β ​).j

j x ​ij x ​ +ij 1
μ ​new

μ ​ =new α ​ ×1
x ​i1 ⋯ × α ​ ×j

x ​+1ij ⋯ × α ​ =p
x ​ip α ​ α ​ × ⋯ × α ​ =j ( 1

x ​i1
p
x ​ip) α ​μ ​.j i

α ​ −j 1 = exp(β ​) −j 1 = ​ .
μ ​i

μ ​ − μ ​new i
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Exposure rate

Often the expected value of a response count  is proportional to an index , the exposure.

For instance,  might be an amount of time and/or a population size, such as in modeling crime

counts for various cities. Or, it might be a spatial area, such as in modeling counts of plant species.

In these case, the sample rate is , with expected value . With explanatory variables, a

model for the expected rate under a logarithmic link has the form

Because , the model makes the adjustment  to the linear predictor.

This adjustment term is called an offset, implemented in R using the offset option.

The fit corresponds to using  as an explanatory variable in the linear predictor for  and

forcing its coefficient to equal .

Summarising, for this model, the response counts  satisfy

The mean has a proportionality constant for  that depends on the values of the covariates.

Y ​i t ​i

t ​i

Y /t ​i i μ ​/t ​i i

log ​
=(

t ​i

μ ​i ) x ​β, ⟹i
T logμ ​ =i x ​β +i

T log t ​,i

log(μ ​/t ​) =i i logμ ​ −i log t ​i log t ​i

log t ​i log(μ ​)i
1

Y ​ ∼i Poisson(μ ​)i

μ ​ =i t ​ exp(x ​β).i i
T

t ​i
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Overdispersion

In Poisson regression the main assumption is that , implying that

where implicitly we have set .

However, from the analysis of the residuals or by computing the  statistic we may realize that the

data present overdispersion, namely the correct model is such that

with . This implies that the Poisson regression model is misspecified.

The two most common solutions to overdispersion are the following:

i. the usage of quasi-likelihoods;

ii. using another parametric distribution; a typical choice is the negative-binomial.

Y ​ ∼i Poisson(μ ​)i

var(Y ​) =i μ ​,i

ϕ = 1

X2

var(Y ​) =i ϕμ ​,i

ϕ > 1
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Zero-inflation

In practice, the frequency of zero outcomes is often larger than expected under a Poisson
regression.

Because the mode of a Poisson distribution is the integer part of its mean, a Poisson GLM can be
inadequate when the mean is relatively large but the modal response is 0.

Such data are called zero-inflated. This often occurs when:

many subjects have a true zero response (structural zeros), and

many others have positive counts, so the overall mean is not near zero.

Example: the number of times individuals report exercising (e.g., going to a gym) in the past week:

some people exercise frequently,

some exercise occasionally but not in the past week (a random zero),

others never exercise (a structural zero),

The two most common solutions to zero-inflation are the following:

i. Zero-inflated Poisson (ZIP) model, a mixture model;

ii. Hurdle models (model zero vs nonzero first, then model the remaining data).
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