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We address the issue of divergent maximum likelihood estimates for logistic regression
models by considering a conjugate prior penalty which always produces finite estimates.
We show that the proposed method is closely related to the reduced-bias approach of
Firth (1993), and that the induced penalized likelihood can be expressed as a genuine
binomial likelihood, replacing the original data with pseudo-counts.
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1. Introduction

Logistic regression is arguably one of the most widely used generalized linear models in statistical practice. In such
model, it is assumed that each entry of the vector y = (y1, . . . , yn)T is a realization of independent binomial random
ariables with number of trials m1, . . . ,mn and success probabilities π1, . . . , πn. Moreover, suppose that each response
i is associated with a p-dimensional covariate vector xi = (1, xi2, . . . , xip)T, for i = 1, . . . , n. Then, a logistic regression

model for i = 1, . . . , n has

(yi | mi, πi) ∼ Bin(mi, πi), πi =
exp (xTi β)

1 + exp (xTi β)
, (1)

where β = (β1, . . . , βp)T is a p-dimensional vector of unknown regression coefficients; clearly, binary regression is a
special case of the binomial likelihood of Eq. (1), when mi = 1 for i = 1, . . . , n. We customarily assume that the n × p
design matrix X , whose rows are x1, . . . , xn, is of full rank, with p ≤ n. Thus, the log-likelihood function is

ℓ(β; y) =

n∑
i=1

yi(xTi β) −

n∑
i=1

mi log{1 + exp(xTi β)}, (2)

up to an additive constant not depending on β; the maximum likelihood (ml) estimate β̂ of β is the maximizer of (2).
nfortunately, the ml estimate may not exist, meaning that at least one component of the vector β̂ is infinite. It is well
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nown that such an unpleasant phenomenon occurs in presence of data separation, as carefully described in Albert and
nderson (1984). If separation occurs, standard optimization procedures may fail to converge, resulting in degenerate
redicted success probabilities and misleading inferential conclusions.
In a seminal paper, Firth (1993) showed that the maximizer of a suitable penalized likelihood has a smaller asymptotic

ias compared to the ml estimator, while Kosmidis and Firth (2021) proved that Firth’s bias-reduced estimates for logistic
egression always exist and solve the separability issue. Penalized methods have become increasingly popular in health
nd medical sciences, and numerous developments of the original approach of Firth (1993) have been proposed in such
pecialized literature (e.g., Greenland and Mansournia, 2015; Puhr et al., 2017).
In high-dimensional settings, that is when p and n are both large, existing implementations of Firth (1993) may

be computationally too demanding; refer for instance to Sur and Candès (2019). Thus, in this paper we propose a
regularization approach that share several similarities with Firth’s method but is much easier to implement, since it relies
on a simple perturbation of the data. Specifically, we penalize the logistic regression likelihood by the conjugate prior
of Diaconis and Ylvisaker (1979), resulting in the following penalized log-likelihood

ℓ̃(β; y) = ℓ(β; y) +
p
2m

n∑
i=1

mi(xTi β) −
p
m

n∑
i=1

mi log{1 + exp(xTi β)}, (3)

where m =
∑n

i=1 mi. The penalized log-likelihood (3) can be rewritten, up to a scaling factor depending on p and m, in
terms of a genuine log-likelihood, where the original data y are replaced with a vector of pseudo-counts ỹ = (ỹ1, . . . , ỹn)T,
defined as

ỹi =
p

p + m
mi

2
+

m
p + m

yi, i = 1, . . . , n. (4)

ach pseudo-count ỹi ∈ (0,mi) is a convex combination of the data yi and mi/2. This is equivalent to adding (pmi)/(2m)
successes and (pmi)/m trials to each yi and mi, respectively, therefore shrinking the success proportions towards
equiprobability. Importantly, it holds that ℓ̃(β; y) = (p/m+1)ℓ(β; ỹ) and therefore well-established algorithms for logistic
regression may be used to maximize (3) even in presence of large datasets. Adding small corrections to the response of a
binomial model is a common regularization strategy. In the simplest case p = n = 1, correction (4) reduces to the familiar
bias-reducing form of the empirical logit (Haldane, 1955; Anscombe, 1956). In more general settings, these penalties
have been referred to as data augmentation priors (e.g., Greenland and Mansournia, 2015). The scheme of Clogg et al.
(1991) is closely related to (4), albeit with several critical distinctions. Their correction amounts to adding (p

∑n
i=1 yi)/(nm)

successes and p/n trials to each yi and mi, respectively. Thus, Clogg et al. (1991) approach shrinks the success proportions
towards the mean

∑n
i=1 yi/m rather than 1/2, which is a key aspect if one aims at reducing the bias (Cordeiro and

McCullagh, 1991; Firth, 1993). Furthermore, the correction of Clogg et al. (1991) depends on the specific aggregation
of the data and leads to a different amount of shrinkage compared to (4).

2. Conjugate Bayes for logistic regression

2.1. Diaconis and Ylvisaker conjugate priors

The penalized log-likelihood (3) has been obtained by leveraging conjugate priors for logistic regression. In this section,
we introduce several key quantities and we then discuss the Bayesian interpretation of Eq. (3). We recall that Bayesian
inference is based on the posterior law, obtained by updating the prior distribution through the likelihood exp{ℓ(β; y)}
ia Bayes theorem. Let τ > 0 and let β0 ∈ Rp be a vector of hyperparameters. Moreover, let us define a vector of real
umbers κ = (κ1, . . . , κn)T such that κi = mi exp(xTi β0)/{1 + exp(xTi β0)} ∈ (0,mi) for i = 1, . . . , n. Thus, the conjugate
rior of Diaconis and Ylvisaker (1979) for a logistic regression model is

p(β) = C exp
[
τ

n∑
i=1

κi(xTi β) − τ

n∑
i=1

mi log{1 + exp(xTi β)}
]
, (5)

where the normalizing constant 0 < C < ∞, albeit not available in closed form, is necessarily finite (Theorem 1, Diaconis
and Ylvisaker, 1979); additional considerations about (5) can be found in Chen and Ibrahim (2003) and Greenland (2003).
The location parameter β0 is the mode of the prior distribution and hence each ratio κi/mi ∈ (0, 1) can be interpreted as
he prior guess for the success probability πi. Instead, the parameter τ controls the variability and quantifies the strength
f our prior beliefs about β0. More precisely, when τ → 0 then (5) reduces to a uniform improper prior for β , whereas as
→ ∞ the prior converges to a point mass at β0. The choice τ = 1 places equal weight to the prior and the likelihood,

herefore one typically consider τ ∈ (0, 1). In the special case of a binomial model with p = n = 1, the law (5) induces
he usual conjugate prior on the probability π = exp(β)/{1+ exp(β)}, namely π ∼ Beta{τ

∑n
i=1 κi, τ (m−

∑n
i=1 κi)}, with

=
∑n m .
i=1 i

2
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Application of Bayes theorem to the binomial log-likelihood (2) under the prior (5) leads to the following posterior
istribution

p(β | y) = C(y) exp
[
(τ + 1)

n∑
i=1

y∗

i (x
T
i β) − (τ + 1)

n∑
i=1

mi log{1 + exp(xTi β)}
]
, (6)

where C(y) > 0 is the normalizing constant and y∗
= (y∗

1, . . . , y
∗
n)

T is a vector of pseudo-counts such that y∗

i =

iτ/(τ +1)+yi/(τ +1) ∈ (0,mi), for i = 1, . . . , n. The posterior is still in the class of Diaconis and Ylvisaker distributions,
with updated location y∗ and precision τ + 1. As we shall discuss in Section 3, in light of a connection with Firth (1993),
a natural default is β0 = (0, . . . , 0)T and τ = p/m, implying that κi = mi/2, for i = 1, . . . , n. This choice leads to the
pseudo-counts in Eq. (4).

2.2. Posterior inference

The posterior distribution of Eq. (6) has several appealing properties, which are briefly discussed here. In the first place,
note that the posterior law can be expressed as p(β | y) = C(y) exp{(τ + 1)ℓ(β; y∗)}, that is, the posterior distribution
is a function of the log-likelihood evaluated on the set of pseudo-counts y∗. Hence, the maximum a posteriori coincides
with the maximizer of the log-likelihood ℓ(β; y∗). Heuristically, the pseudo-counts regularize the estimation problem, as
each y∗

i belongs to the open set (0,mi). Consequently, the mode of the posterior distribution always exists, effectively
solving the separability issue. This is formalized in the following Theorem 1, which refers to a general set of parameters
β0 and τ , but it applies also to the penalized log-likelihood (3), occurring when β0 = (0, . . . , 0)T and τ = p/m; refer to
the supplementary materials for a proof.

Theorem 1. Let X be of full rank. Then the mode of the posterior distribution (6), corresponding to the maximizer of the
penalized likelihood

ℓ∗(β; y) = (τ + 1)ℓ(β; y∗) = ℓ(β; y) + τ

n∑
i=1

κi(xTi β) − τ

n∑
i=1

mi log{1 + exp(xTi β)}

with respect to β , exists and is unique.

The posterior mode does not have, in general, a strong theoretical foundation. However, the maximizer of (6) has a
much more solid justification, due to the properties of exponential families with conjugate priors. In fact, in this special
case the posterior mode is a licit Bayesian estimator, being the minimizer of the posterior expectation of the entropy
loss; refer to Robert (1996) for a detailed discussion. By construction, Bayesian estimators obtained under such a loss are
invariant under reparametrizations. Thus, if β̂dy denotes the maximizer of (6), then exp(β̂dy) is the Bayesian estimator of
the odds-ratios under the entropy loss.

The optimal value β̂dy maximizing ℓ∗(β; y) = (τ + 1)ℓ(β; y∗) can be found through standard Fisher scoring or
expectation–maximization (Durante and Rigon, 2019) algorithms for logistic regression, considering the pseudo-counts y∗

in place of the original binomial data y. Alternative algorithms could be exploited, including quasi-Newton or conjugate
gradient ascent methods (e.g., Nocedal and Wright, 2006). In all settings, the existence and uniqueness of β̂dy are
guaranteed by Theorem 1. Furthermore, ℓ∗(β; y) is a concave function (Diaconis and Ylvisaker, 1979), which means that
its maximization is a fairly regular problem. For instance, concavity implies that there exists a single stationary point,
i.e. the global maximum.

3. Penalized maximum likelihood

3.1. Shrinkage, bias reduction and data aggregation

The conjugate prior for logistic regression in (5) requires the elicitation of κ and τ . We now show that a careful choice
of these hyperparameters leads to a connection with Firth (1993) method for bias reduction.

We recall that the ml estimates of β in a logistic regression model are biased away from the point β = 0; refer for
example to McCullagh and Nelder (1989) and Cordeiro and McCullagh (1991). Thus, bias correction requires a certain
amount of shrinkage towards that point. In Firth (1993) this is achieved through a Jeffrey’s prior penalty, whose mode
is indeed equal to 0 (Kosmidis and Firth, 2021). In a similar fashion, we set the mode β0 = (0, . . . , 0)T in the prior
specification (5), which implies that κi = mi/2, for i = 1, . . . , n. The amount of shrinkage is regulated by the precision
parameter τ , whose choice is more delicate. Heuristically, one may set τ proportional to m−1, so that for m large enough
the contribution of the prior becomes negligible compared to the weight of the likelihood in (6). In particular, if τ = p/m
then the amount of shrinkage is proportional to the model complexity, which seems desirable. These choices lead to the
penalized log-likelihood (3) and the pseudo-counts (4). Such an intuitive choice resonates with the principles behind
reduced-bias estimators of Firth (1993), and ensures that the resulting prior distribution is invariant under different
aggregation of the data, in contrast with (Clogg et al., 1991). A more precise argument to this claim is offered in the
next section.
3
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.2. Penalized score equations and connection with Firth (1993)

The relationship between Firth (1993) method and our proposal can be formally investigated by comparing the
orresponding score functions. Firth’s estimate is obtained as the solution of the system of penalized score equations
r,fi(β) = 0 for r = 1, . . . , p, where

Ur,fi(β) =

n∑
i=1

(yi − miπi)xir − p
n∑

i=1

(
hi

p

)
(πi − 1/2)xir ,

nd where h1, . . . , hn represent the diagonal elements of the n × n projection matrix

H(β) = W (β)1/2X{X TW (β)X}
−1X TW (β)1/2,

ith W (β) = diag{m1π1(1−π1), . . . ,mnπn(1−πn)}. On the other hand, the maximizer of the penalized log-likelihood (3)
corresponds to the solution of the system of penalized score equations Ur,dy(β) = 0 for r = 1, . . . , p, where

Ur,dy(β) =
∂

∂βr
ℓ̃(β; y) =

n∑
i=1

(yi − miπi)xir − p
n∑

i=1

(mi

m

)
(πi − 1/2)xir .

Thus, the penalized scores Ur,fi(β) and Ur,dy(β) differ only in their penalty term. Broadly speaking, the two approaches
lead to similar estimates whenever the following approximation holds

n∑
i=1

(
hi

p

)
(πi − 1/2)xir ≈

n∑
i=1

(mi

m

)
(πi − 1/2)xir . (7)

Note that the matrix H(β) has rank p and is idempotent and symmetric, implying that the sum of its diagonal terms is∑n
i=1 hi = p. Hence, our method considers the mean of the values (πi − 1/2)xir , with weights mi/m, instead of the mean

of the same quantities but with weights hi/p, as in Firth (1993). The following Theorem sheds some light on the driving
factors of this approximation; refer to the supplementary materials for a proof.

Theorem 2. Let X be of full rank and let xir ∈ [−1, 1] for i = 1, . . . , n and r = 1, . . . , p. Then it holds:

|Ur,fi(β) − Ur,dy(β)| ≤ p dtv (wfi, wdy) =
p
2

n∑
i=1

⏐⏐⏐⏐hi

p
−

mi

m

⏐⏐⏐⏐ ,
for r = 1, . . . , p, where dtv denotes the total-variation distance and wfi = (h1/p, . . . , hn/p)T and wdy = (m1/m, . . . ,mn/m)T .
Moreover, the following inequality holds:

dtv(wfi, wdy) ≤

(
1 − p

m(1)

m

)
,

where m(1) = min{m1, . . . ,mn}.

Theorem 2 clarifies that the quality of the approximation is directed by the closeness between the two set of weights
fi and wdy. In other terms, in the binary regression case, i.e. mi = 1, the discrepancy is low whenever the leverages
i ≈ p/m are approximately constant. The latter assumption is known as approximate quadratic balance and has been
xploited by Cordeiro and McCullagh (1991) to obtain the reduced bias estimate (1 − p/m)β̂ , which indeed deflates
he maximum likelihood estimate towards zero by the factor 1 − p/m. This assumption appears in seemingly unrelated
ettings, for example for the definition of the generalized cross-validation index (Craven and Wahba, 1978). The quadratic
alance condition holds exactly true in some special cases, as clarified by Theorem 2. For instance, when p = n = 1 then
oth Firth (1993) and our approach correspond to a Beta(1/2, 1/2) prior penalty for π and coincide with the empirical
ogit correction. More generally, in any saturated model with p = n and with balanced number of trials m1 = · · · = mn
he two approaches formally agree, i.e. |Ur,fi(β) − Ur,dy(β)| = 0. Finally, Theorem 2 shows that the absolute difference
etween Ur,fi(β) and Ur,dy(β) is upper bounded by p.
From a computational perspective, Firth’s modified score equations can be solved numerically via quasi-Fisher

coring (e.g. Kosmidis and Firth, 2010), in which at each iteration one must compute an adjusted response based on
he current parameter value, and update the coefficients accordingly (Kosmidis and Firth, 2021, Section 4). This approach
an be computationally challenging especially in settings with large n and p, since each iteration requires to re-obtain the
eights h1, . . . , hn. In contrast, the proposed penalized score requires to compute the pseudo-responses only once and

t can be directly solved with any algorithm for standard logistic likelihood optimization, without further adjustments.
ence, it provides a computationally convenient option to approximate Firth’s scores in large dimensions.
4
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Table 1
Estimated regression coefficients on the endometrial cancer study (with standard errors in parentheses).
ml: maximum likelihood.

β1 β2 β3 β4

Maximum likelihood β̂ 4.305 (1.637) +∞ (+∞) −0.042 (0.044) −2.903 (0.846)
Penalized ml β̂dy 3.579 (1.459) 3.431 (1.893) −0.034 (0.040) −2.458 (0.748)
Clogg et al. (1991) 3.622 (1.471) 3.223 (1.722) −0.034 (0.040) −2.511 (0.761)
Firth (1993) 3.775 (1.489) 2.929 (1.551) −0.035 (0.040) −2.604 (0.776)
Kenne Pagui et al. (2017) 3.969 (1.552) 3.869 (2.298) −0.039 (0.042) −2.708 (0.803)

Table 2
Simulation study on the low birthweight study. rmse: root mean squared error; ml: maximum likelihood.

β1 β2 β3 β4 β5 β6 β7

Bias Maximum likelihood β̂ −1.42 −0.01 0.09 −0.04 −0.18 −0.12 0.34
Penalized ml β̂dy −0.08 0.00 −0.01 0.03 −0.01 0.03 0.00
Clogg et al. (1991) −0.22 0.00 0.00 0.02 −0.01 0.03 0.05
Firth (1993) −0.08 0.00 0.01 0.00 0.00 0.00 0.02
Kenne Pagui et al. (2017) −0.38 0.00 0.03 −0.01 −0.06 −0.03 0.10

rmse Maximum likelihood β̂ 6.88 0.06 0.64 0.65 0.81 1.12 1.49
Penalized ml β̂dy 5.71 0.05 0.54 0.56 0.71 0.96 1.22
Clogg et al. (1991) 5.83 0.05 0.55 0.57 0.70 0.97 1.25
Firth (1993) 5.94 0.05 0.57 0.58 0.71 0.95 1.28
Kenne Pagui et al. (2017) 6.12 0.06 0.58 0.60 0.78 1.01 1.31

4. Illustrations

4.1. Endometrial cancer study

To empirically assess the performance of our proposal, we consider the endometrial cancer grade dataset (Heinze and
chemper, 2002), a study on n = 79 patients which aims at evaluating the relationship between the histology of the
ndometrium (low against high), and three risk factors. A logistic regression model was fitted with parameter vector
= (β1, β2, β3, β4)T, with the first coefficient corresponding to an intercept term and the remaining to neovasculation,

pulsatility index of arteria uterina and endometrium height, respectively. As shown in Heinze and Schemper (2002), the
ml estimate does not exist since the estimated value for the coefficient β2 associated with neovasculation is divergent.
The omission of the neovasculation information from the set of covariates is inappropriate, as the other factors would not
be properly adjusted for this highly informative risk factor. We therefore compare the proposed penalized estimate β̂dy
with the approaches of Clogg et al. (1991) and Firth (1993). We also consider the median unbiased estimators of Kenne
Pagui et al. (2017).

Estimates for the regression coefficients (β1, β2, β3, β4)T and the corresponding Wald standard errors are reported
n Table 1. As expected, all the reducing-bias methods produce finite estimates for β2 and indicate a strong effect of
neovasculation on the response probability. Point estimates and standard errors for the remaining coefficients are also
quite similar. The approach of Clogg et al. (1991) and our penalized method lead to similar estimates since the former
shrinks the estimated probabilities towards the sample proportion, which in this case is

∑n
i=1 yi/m = 0.38. Despite the

stated aim of Clogg et al. (1991) was not performing bias reduction, it performs reasonably well in this example, and the
reasons for its good empirical performance are likely due to its similarity with our approach, which in turn approximates
the one of Firth (1993).

4.2. Infant birthweight study

In this second empirical study, we replicate an example presented in Kosmidis et al. (2020), which considers a study
of low birthweight. Data comprises n = 100 births and the binary outcome of interest is a dichotomization of infant
birthweight (below or above 2.5 kilograms). The probability of low birthweight is modeled as a function of an intercept and
six covariates about the mother. The maximum likelihood estimate β̂ of the regression coefficients β = (β1, . . . , β7)T exists
nd is finite. We simulate 10 000 datasets from a logistic regression model with parameter β̂ and evaluate the inferential

properties of the proposed estimator, comparing them with popular bias-correction methods in a regular scenario.
Results are presented in Table 2. The values for the maximum likelihood are computed excluding samples with data

separation, occurring in 100 replications out of 10 000. Theml estimator performs significantly worse than all the reduced-
bias methodologies in terms of bias and root mean squared error. Moreover, we observe a striking empirical similarity
in terms of bias between the proposed penalized estimator β̂dy and the one of Firth (1993); this finding is in line with
he considerations discussed in Section 3.2. Empirical results also confirm a limitation of Clogg et al. (1991), which fails
5
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Fig. 1. Bias and root mean squared error (rmse) of maximum likelihood and reduced-bias estimates, for the parameters of a logistic regression
model. Boxplots indicate variability across groups of regression coefficients.

Table 3
Computational times (milliseconds) of different estimation procedures using different implemen-
tations, on a single high-dimensional synthetic dataset with n = 1000 and p = 200. The reported
computational times corresponds to the average times over 100 executions.
R implementation RcppNumerical glm brglm2
Estimate ml dy ml dy Firth (1993)

Computational time (ms) 1.746 1.658 150.875 126.308 1168.211

at reducing the bias for the intercept parameter β1, since it shrinks the response towards the empirical proportion of
successes rather than 1/2. Finally, the approach of Kenne Pagui et al. (2017) is designed for correcting median bias and
herefore is expected to perform worse, in terms of bias, than (Firth, 1993). The proposed penalized estimator β̂dy slightly
mproves the root mean squared error compared to Firth (1993). This aspect seems to be empirically confirmed also in
he next illustrative example.

.3. High dimensional synthetic dataset

We finally consider a synthetic dataset that mimicks the high dimensional scenario described in Sur and Candès (2019).
n particular, we simulate 5000 datasets from a binary logistic regression model with n = 1000 observations and p = 200.
ovariates are sampled from a normal distribution with mean 0 and variance 1/n. Moreover, regression coefficients are
ivided in 5 blocks of size 40, whose values are {−3, −3/2, 0, 3/2, 3}. The purpose of this study is to investigate the

performance of the proposed estimator in computationally challenging scenarios.
In first place, we shall note that the execution times of the estimation procedure for β̂dy, obtained via scalable

algorithms for logistic regression, such as the limited-memory bfgs implemented in the package RcppNumerical (Qiu
et al., 2019), are orders of magnitude faster than the brglm2 implementation of Firth (1993). These considerations are
valid even when compared with the standard glm R function. For instance, a single replication with n = 1000 and p = 200
required an average elapsed time of 1.7 ms in the former case, against approximately a second in the latter, on a 2019
Macbook Pro. A summary of the computational times is provided in Table 3. Moreover, the differences are even more
marked for larger values of n and p, to the extent that Firth (1993) estimates could not be obtained within hours of
running time with n = 10 000, p = 2000 and correlated design matrix X .

Secondly, we computed the bias and the root mean squared error of ml and reduced-bias estimators, which are
depicted in Fig. 1. Current empirical findings confirm the poor behavior of ml estimates, consistently with the existing
iterature (Kosmidis and Firth, 2021). The proposed correction provides an important improvement in terms of bias
eduction compared to the ml estimator, although the bias is slightly larger than that of Firth (1993). This is expected and
onsistent with the findings of Sections 3.2 and 4.2. Furthermore, our penalized procedure achieves a lower mean squared
rror compared to both the maximum likelihood and the approach of Firth (1993). This does not come as a contradiction,
ince Firth (1993) approach does not explicitly reduce the mean squared error. This empirical finding is likely due to the
ifferent tail behavior of Diaconis and Ylvisaker (1979) priors compared to Jeffrey’s priors, the latter being more dispersed
nd displaying heavier tails.

ata availability

Data and code are available at the repository: https://github.com/tommasorigon/logistic-bias-reduction.
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