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“Everything should be made as simple as
possible, but not simpler”

Attributed to Albert Einstein

This unit will cover the following topics:

Linear models and the modeling process

Cholesky factorization

Orthogonalization and QR decomposition

Iterative methods

Generalized linear models

The computational aspects of linear models will be novel
to most of you…

… but you should be already very familiar with linear
models!
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Old friends: linear models
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Car data (diesel or gas)

We consider data for  models of cars in

circulation in 1985 in the USA.

We want to predict the distance per unit of fuel
as a function of the vehicle features.

We consider the following variables:

The city distance per unit of fuel (km/L,
city.distance)

The engine size (L, engine.size)

The number of cylinders (n.cylinders)

The curb weight (kg, curb.weight)

The fuel type (gasoline or diesel, fuel).

n = 203

Home page

4 / 66

https://tommasorigon.github.io/datamining


Linear regression

Let us consider the variables city.distance ( ),

engine.size ( ) and fuel ( ).

A simple linear regression

could be easily fit by least squares…

… but the plot suggests that the relationship between
city.distance and engine.size is not well
approximated by a linear function.

… and also that fuel has a non-negligible effect on the
response.

y

x z

Y ​ =i β ​ +1 β ​x ​ +2 i ϵ ​, i =i 1, … ,n,
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Regression models

A general and more flexible formulation for modeling the relationship between a vector of fixed
covariates  and a random variable  is

where the “errors”  are iid random variables, having zero mean and variance .

x ​ =i (x ​, … ,x ​) ∈i1 ip
T Rp Y ​ ∈i R

Y ​ =i f(x ​;β) +i ϵ ​, i =i 1, … ,n,

ϵ ​i σ2

To estimate the unknown parameters , a possibility is to rely on the least squares criterion: we

seek the minimum of the objective function

using  pairs of covariates  and the observed realizations  of the random

variables , for . The optimal value is denoted by .

β

D(β) = ​{y ​ −
i=1

∑
n

i f(x ​;β)} ,i
2

n x ​ =i (x ​, … ,x ​)i1 ip
T y ​i

Y ​i i = 1, … ,n ​β̂

The predicted values are , for ​ ​ =ŷi E(Y ​) =i f(x ​; ​)i β̂ i = 1, … ,n.
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Linear models

Let us consider again the variables city.distance ( ), engine.size ( ) and fuel ( ).

Which function  should we choose?

y x z

f(x, z;β)

A first attempt is to consider a polynomial term combined with a dummy variable

which is a special instance of linear model.

f(x, z;β) = β ​ +1 β ​x +2 β ​x +3
2 β ​x +4

3 β ​I(z =5 gas),

In a linear model the response variable  is related to the covariates through the function

where  is a vector of covariates and  is the corresponding

vector of coefficients.

Definition (Linear model)

Y ​i

E(Y ​) =i f(x ​;β) =i β ​x ​ +1 i1 ⋯ + β ​x ​ =p ip x ​β,i
T

x ​ =i (x ​, … ,x ​)i1 ip
T β = (β ​, … ,β ​)1 p

T
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Matrix notation

The response random variables are collected in the random vector , whose

observed realization is .

The design matrix is a  matrix, comprising the covariate’s values, defined by

Y = (Y ​, … ,Y ​)1 n
T

y = (y ​, … , y ​)1 n
T

n × p

X = ​ ​ ​ ​ ​ .

x ​11

⋮
x ​n1

⋯

⋱
⋯

x ​1p

⋮
x ​np

The th variable (column) is denoted with , whereas the th observation (row) is :j ​x~j i x ​i

X = ( ​, … , ​) =x~1 x~p (x ​, … ,x ​) .1 n
T

Then, a linear model can be written using the compact notation:

where  is a vector of iid error terms with zero mean and variance .

Y = Xβ + ϵ,

ϵ = (ϵ ​, … , ϵ ​)1 n
T σ2
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Linear regression: estimation I

The optimal set of coefficients  is the minimizer of the least squared criterion

also known as residual sum of squares (RSS), where

denotes the Euclidean norm.

​β̂

D(β) = (y −Xβ) (y −T Xβ) = ∣∣y −Xβ∣∣ ,2

∣∣y∣∣ = ​,y ​ + ⋯ + y ​1
2

n
2

If the design matrix has full rank, that is, if , then the least square estimate has an

explicit solution:

Least square estimate (OLS)

rk(X X) =T p

​ =β̂ (X X) X y.T −1 T
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Linear regression: estimation II

In matrix notation, the predicted values can be obtained as

 is a  projection matrix matrix sometimes called hat matrix.

It can be shown that . Moreover, it holds  and .

=ŷ X ​ =β̂ Hy, H = X(X X) X .T −1 T

H n × n

tr(H) = rk(H) = p H = HT H =2 H

The quantity  is the so-called residual deviance, which is equal to

Moreover, a typical estimate for the residual variance  is obtained as follows:

D( ​)β̂

D(
​
) =β̂ ∣∣y − ​∣∣ =ŷ 2 y (I ​ −T

n H)y.

σ2

s =2
​ =

n − p

D( ​)β̂
​ ​(y ​ −

n − p

1

i=1

∑
n

i x ​ ​) .i
T β̂ 2
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Linear regression: inference

Let us additionally assume that the errors follow a Gaussian distribution: .

This implies that the distribution of the estimator  is

Hence, the estimator  is unbiased and its variance can be estimated by

The standard errors of the components of  correspond to the square root of the diagonal of the
above covariance matrix.

ϵ ​i ∼iid N(0,σ )2

β̂

​ ∼β̂ N ​(β,σ (X X) ).p
2 T −1

​β̂

( ​) =var β̂ s (X X) .2 T −1

​β̂

Confidence interval and Wald’s tests can be obtained through classical inferential theory.

Ok, we are ready to get back to the original problem…

Home page

11 / 66

https://tommasorigon.github.io/datamining


Car data, a first model

Our first attempt for predicting city.distance ( ) via engine.size ( ) and fuel ( ) is:

Indeed, by looking at the plot of the data, it is plausible that we need a polynomial of degree  or 

It is also clear from the plot that fuel is a relevant variable. Categorical variables are encoded using
indicator variables.

y x z

f(x, z;β) = β ​ +1 β ​x +2 β ​x +3
2 β ​x +4

3 β ​I(z =5 gas).

3 4

To evaluate the goodness of fit, we can calculate the coefficient of determination:

R =2 1 − ​ =
(“Total deviance”)

(“Residual deviance”)
1 − ​ .

​(y ​ − ​)∑i=1
n

i ȳ 2

​(y ​ − ​ ​)∑i=1
n

i ŷi
2
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A first model: estimated coefficients

We obtain the following summary for the regression coefficients .

term estimate std.error statistic p.value

(Intercept) 28.045 3.076 9.119 0.000

engine.size -10.980 3.531 -3.109 0.002

engine.size^2 2.098 1.271 1.651 0.100

engine.size^3 -0.131 0.139 -0.939 0.349

fuel_gas -3.214 0.427 -7.523 0.000

Moreover, the coefficient  and the residual standard deviation  are:

r.squared sigma deviance

0.5973454 1.790362 634.6687

​β̂

R2 s
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A first model: fitted values
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A first model: graphical diagnostics
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Comments and criticisms

Is this a good model?

The overall fit seems satisfactory at first glance, especially if we aim at predicting the urban
distance of cars when average engine size (i.e., between  and ).1.5L 3L

However, the plot of the residuals  suggests that the homoscedasticity assumption, i.e. 

, might be violated.

r ​ =i y ​ −i ​ ​ŷi

var(ϵ ​) =i σ2

Also, this model is unsuitable for extrapolation. Indeed:

It has no grounding in physics or engineering, leading to difficulties when interpreting the trend
and to paradoxical situations.

For example, the curve of the set of gasoline cars shows a local minimum around  and then

rises again!

It is plausible that we can find a better one, so what’s next?

4.6L
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Linear models and non-linear patterns

A significant advantage of linear models is that they can describe non-linear relationships via variable
transformations such as polynomials, logarithms, etc.

This gives the statistician a lot of modeling flexibility. For instance, we could let:

log Y ​ =i β ​ +1 β ​ log x ​ +2 i β ​I(z ​ =3 i gas) + ϵ ​, i =i 1, … ,n.

This specification is linear in the parameters, it fixes the domain issues, and it imposes a monotone
relationship between engine size and consumption.

term estimate std.error statistic p.value

(Intercept) 3.060 0.047 64.865 0

log(engine.size) -0.682 0.040 -17.129 0

fuel_gas -0.278 0.038 -7.344 0
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Second model: fitted values
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Second model: graphical diagnostics
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Comments and criticisms

The goodness of fit indices are the following:

r.squared.original r.squared sigma deviance

0.5847555 0.6196093 0.1600278 5.121777

Do not mix apple and oranges! Compare s only if they refer to the same scale!R2

This second model is more parsimonious, and yet it reaches satisfactory predictive performance.

It is also more coherent with the nature of the data: the predictions cannot be negative, and the
relationship between engine size and the consumption is monotone.

Yet, there is still some heteroscedasticity in the residuals — is this is due to a missing covariate that
has not been included in the model?
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A third model: additional variables

Let us consider two additional variables: curb.weight ( ) and n.cylinders ( ).

A richer model, therefore, could be:

for . The estimates are:

w v

log Y ​ =i β ​ +1 β ​ log x ​ +2 i β ​ logw ​ +3 i β ​I(z ​ =4 i gas) + β ​I(v ​ =5 i 2) + ϵ ​,i

i = 1, … ,n

term estimate std.error statistic p.value

(Intercept) 9.423 0.482 19.549 0.000

log(engine.size) -0.180 0.051 -3.504 0.001

log(curb.weight) -0.943 0.072 -13.066 0.000

fuel_gas -0.353 0.022 -15.934 0.000

cylinders2_TRUE -0.481 0.052 -9.301 0.000
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A third model: graphical diagnostics
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Comments and criticisms

The goodness of fit greatly improved:

r.squared.original r.squared sigma deviance

0.869048 0.8819199 0.0896089 1.589891

In this third model, we handled the outliers appearing in the residual plots, which it turns out are
identified by the group of cars having 2 cylinders.

The diagnostic plots are also very much improved, although still not perfect.

The estimates are coherent with our expectations, based on common knowledge. Have a look at the
textbook (A&S) for a detailed explanation of !

The car dataset is available from the textbook (A&S) website:

Dataset 

Variable description 

β4

http://azzalini.stat.unipd.it/Book-DM/auto.dat

http://azzalini.stat.unipd.it/Book-DM/auto.names
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A tour inside old-fashioned statistics

The first part of the unit is a tour in the “old style” data modeling, the kind of culture that Leo
Breiman so heavily criticized in his 2001 Statistical Science paper.

However, this dataset was sufficiently small, meaning it could be “manually” analyzed and modeled.
We gained much understanding by doing so.

Hence, these old tools should not be considered useless or irrelevant.

The second half of the unit will have an entirely different flavor, though.

Given the vast amount of data we now have, it makes sense to focus on computations for fitting
linear models.

As we will see, the mathematical simplicity of linear models leads to extremely fast computations,
an important advantage in the era of big data.
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Normal equations
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How to obtain the least squares estimate?

In B.Sc. courses, it is often suggested that the least square estimate should be computed using the
formula

that is, using the R code solve(t(X) %*% X) %*% t(X) %*% y.

This approach works reasonably well in many simple cases.

​
=β̂ (X X) X y,T −1 T

Unfortunately, in more challenging scenarios, e.g., when we have a lot of data (large ) and

correlated variables, the above code is

computationally inefficient

numerically inaccurate

The main computational bottleneck is the calculation of the inverse of , which is very costly
and often numerically unstable, especially when the predictors are almost collinear.

n

X XT

Home page

26 / 66

https://tommasorigon.github.io/datamining


The normal equations

The least square estimate is the solution of the system of equations (normal equations):

This system could be solved using solve(crossprod(X), crossprod(X, y)).

This avoids the explicit computation of  and it is preferable compared to the “direct

solution.” However, it does not exploit the properties of the matrix .

X Xβ =T X y.T

(X X)T −1

X XT

Recall (from your favorite linear algebra textbook) that a symmetric matrix  is positive
definite if and only if one of the following properties is satisfied

The quadratic form  for all  such that .

The eigenvalues  of  are all strictly positive.

We now describe a strategy to compute  that exploits the fact that  is positive definite,
resulting in more efficient computations.

A ∈ Rp×p

x Ax >T 0 x ∈ Rp x = 0

λ ​, … ,λ ​1 p A

​β̂ X XT
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Cholesky factorization

Suppose  with  has full rank, that is . Then, the matrix

is symmetric and positive definite.

Proposition A.1

X ∈ Rn×p n ≥ p rk(X) = p

X XT

Let  be a symmetric and positive definite matrix. Then, there exists a unique upper
triangular  matrix  with positive entries such that

Theorem (Cholesky factorization)

A ∈ Rp×p

p× p R

A = R R.T
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Cholesky factorization and least squares

The Cholesky factorization is incredibly helpful for computing least squares. Indeed:

Let  be the Cholesky factorization of the matrix . Then, the normal equations can be
written as

This system can now solved in two steps:

R RT X XT

R Rβ =T X y.T

Step 1 (Forwardsolve). Solve with respect to  the system of equationsz

R z =T X y.T

Step 2 (Backsolve). Given , now solve with respect to  the system of equationsz β

Rβ = z.

Why is this procedure computationally more efficient than the naïve solution?
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Forward and backward substitutions

The key observation is that the solution of triangular systems is computationally straightforward.

As an example, consider the following  lower triangular system:3 × 3

​ ​ ​ ​ ​ ​ ​ ​ =
l ​11

l ​21
l ​31

0
l ​22
l ​32

0
0
l ​33

x ​1

x ​2
x ​3

​ ​ ​ .
b ​1

b ​2
b ​3

The solution for  can be found sequentially:x ​,x ​,x ​1 2 3

x ​ =1 ​ , x ​ =
l ​11

b ​1
2 ​ , x ​ =

l ​22

b ​ − l ​x ​2 21 1
3 ​ .

l ​33

b ​ − l ​x ​ − l ​x ​3 31 1 32 2

Finding the inverse  is simple, again because  is upper triangular. Also, note thatR−1 R

(X X) =T −1 (R R) =T −1 R (R ) .−1 −1 T
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Computational complexity

The solution via Cholesky factorization is a fast direct approach for finding .​β̂

The expensive steps are:

The formation of the matrix  requires  elementary operationsX XT ∼ np2

The Cholesky factorization of  requires  elementary operations.X XT ∼ p /33

This gives an overall computational complexity of order

which corrects the typographical error of the A&S textbook.

∼ np +2 p /3,3

This means, unfortunately, that in high-dimensional settings (large ) computations become very

costly, since the complexity is cubic in .

p

p
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Error propagation in normal equations

The normal equations method is typically quicker than other algorithms, as it removes the
dependency on , but it is in general numerically more unstable.n

Consider, for example, the following matrix:

for a small value . Then, we obtain that

X = ​ ​ ​ ​ ,
1
ϵ

0

1
0
ϵ

ϵ > 0

X X =T
​ ​ .[

1 + ϵ2

1
1

1 + ϵ2]

The numerical computation of  in  requires a higher precision compared to , leading to

numerical instabilities and/or a loss in accuracy.

ϵ2 X XT ϵ
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Condition numbers and normal equations

Suppose  with  has full rank and singular values . Then its

condition number is

where  is the Moore-Penrose pseudo-inverse. Note that .

X ∈ Rn×p n ≥ p d ​ ≥1 d ​ ≥2 ⋯ ≥ d ​p

κ(X) = ∣∣X∣∣ ⋅ ∣∣X ∣∣ =+
​ ,

d ​p

d ​1

X+ κ(X) ≥ 1

If  is small, the matrix  is well conditioned. Otherwise, we say it is ill conditioned.κ(X) X

The condition number determines how accurately we can solve linear systems.

An important fact is:

implying that there is an evident loss of numerical accuracy when using normal equations.

κ(X X) =T κ(X) ,2
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The QR decomposition
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Orthogonal predictors

Another approach for computing least squares is based on the notion of orthogonality.

If the predictors were mutually orthogonal, the problem would be much simpler.

In other words, consider a linear model of the form

where . Orthogonality means that .

Y = Zβ + ϵ,

Z = ( ​, … , ​)z~1 z~p Z Z =T diag( ​ ​, … , ​ ​)z~1
Tz~1 z~p

Tz~p

The least square estimate  with orthogonal predictors is

Proposition A.2. OLS with orthogonal predictors

​ =β̂ ( ​ ​, … , ​ ​)β̂1 β̂p
T

​ ​
=β̂j ​ , j =

​ ​z~j
Tz~j

​yz~j
T

1, … , p.
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Regression by successive orthogonalization

Clearly, the predictors in  are generally not orthogonal. Hence, we want to find a suitable
transformation  that orthogonalizes the predictors.

X

Z = XΓ−1

Suppose, for example, that . We set first orthogonal predictor .p = 2 ​ =z~1 ​x~1

We then consider the following univariate regression problem

​ =x~2 γ ​ +z~1 ϵ, which leads ​ =γ̂ ​ .
​z~1

Tz~1

​ ​z~1
Tx~2

The second orthogonal predictor is obtained as the residual term:

​ =z~2 ​ −x~2 ​ ​.γ̂z~1

The geometry of linear models guarantees that .​ ​ =z~1
Tz~2 0
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Gram-Schmidt algorithm

Let us now consider the general case, valid for any value of .p

Initialization. Set .​ =z~1 ​x~1

For . Consider the regression problem with  orthogonal predictors

Then, compute the new vector  as the residual term

j = 2,… , p j − 1

​ =x~j ​γ ​ ​ +
k=1

∑
j−1

kjz
~
k ϵ ​, which leads ​ ​ =j γ̂kj ​ , k =

​ ​z~k
Tz~k

​ ​z~k
Tx~j 1, … , j − 1,

z ​j

​ =z~j ​ −x~j ​ ​ ​ ​

k=1

∑
j−1

γ̂kjz
~
k

The geometry of linear models guarantees orthogonality, that is  for any .​ ​ =z~j
Tz~j′ 0 j = j′
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The QR decomposition I

By construction, the Gram-Schmidt algorithm produces the following decomposition

X = ZΓ, Γ = ​ ​ ​ ​ ​ ​ ​ , Z =

1
0

⋮
0

​ ​γ̂12

1

⋮
0

​ ​γ̂13
​ ​γ̂23

⋮
0

⋯
⋯

⋱
⋯

​ ​γ̂1p
​ ​γ̂2p

⋮
1

( ​, … , ​).z~1 z~p

The  matrix  is upper triangular, whereas the columns of the  matrix  are mutually
orthogonal, due to the properties of the residuals of a linear model.

p × p Γ n × p Z

It is often convenient to standardize the columns of , dividing them by their norm . Let 
, then in matrix notation:

Z ∣∣ ​∣∣z~j D =
diag(∣∣ ​∣∣, … , ∣∣ ​∣∣)z~1 z~p

X = ZΓ = ZD DΓ =−1 QR, with Q = ZD and R =−1 DΓ.

Remark. Note that , i.e. the columns of  are orthonormal.Q Q =T I ​p Q
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The QR decomposition II

Suppose  with  has full rank, that is . Then, there exists a factorization of

the form

where  has orthonormal columns and  is an upper triangular matrix.

Theorem (QR factorization)

X ∈ Rn×p n ≥ p rk(X) = p

X = QR,

Q ∈ Rn×p R ∈ Rp×p

The QR decomposition is unique up to sign flips of the columns of  and the rows of .
Moreover, if  has positive diagonal entries, as the one obtained using Gram-Schmidt, then it

coincides with the Cholesky factor of .

Corollary (QR factorization)

Q R

R

X XT
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The QR decomposition and least squares

The QR decomposition greatly facilitates computations for linear models. Indeed:

​ ​

​β̂ = (X X) X y = [(QR) QR] (QR) yT −1 T T −1 T

= (R Q QR) R Q yT T −1 T T

= R (R ) R Q y−1 T −1 T T

= R Q y.−1 T

Hence, the least square estimate is obtained as the solution of the triangular system

which can be easily solved via backward substitution.

Rβ = Q y,T

As a particular case of the above equation, one gets .​ ​
=β̂p (

​y)/(
​ ​

)z~p
T z~p

Tz~p
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The QR decomposition and linear models

An important advantage of the QR factorization is that many other useful quantities can be readily
computed. For example, the covariance matrix is obtained as:

s (X X) =2 T −1 s R (R ) .2 −1 −1 T

The predicted values and the projection matrix are also easily obtained as

​ =ŷ Hy = QQ y.T

The diagonal elements  of the hat matrix  are called leverages and one may want to

compute them without evaluating the full  matrix, using

where  are the entries of .

h ​ =i [H] ​ii H

n × n

h ​ =i ​q ​, i =
j=1

∑
p

ij
2 1, … ,n,

q ​ij Q
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Computational complexity

The solution via QR factorization is numerically reliable and it facilitates the computation of other
quantities of interest.

In practice, the QR is computed via a modified Gram-Schmidt, that fixes the instabilities of the
naïve Gram-Schmidt algorithm, or via Householder reflections.

The expensive step is the QR factorization. The overall computational complexity is

which is about twice that of the Cholesky, when  is much larger than , and about the same when

.

∼ 2np ,2

n p

p ≈ n

Depending on the context and assuming we only care about , we may prefer the Cholesky (fast but
imprecise) or the QR (slower but more reliable).

​β̂

The default approach in R, i.e., the one implemented in the lm function is the QR factorization
because one typically also needs to compute , or the leverages.H
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☠️ - Pivoting and rank deficiencies

If  (rank deficiency) then it is still possible to obtain a “QR” factorization of the

form

where  is a  permutation matrix and  is an  upper triangular and non-singular

matrix.

rk(X) = k < p

XP = Q ​ ​ ,[
R ​11

0
R ​12

0
]

P p × p R ​11 k × k

This operation is sometimes called pivoting, and it is particularly important even when  to

prevent numerical issues when the condition number  is high.

rk(X) = p

κ(X)

In the presence of perfect collinearity, the implementation of the QR decomposition in R (qr) relies
on pivoting. This is why the lm function can automatically “omit” a predictor.
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Iterative methods
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When  is very large…n

When the sample size  is extremely large, as it is common in data mining problems, then the QR

factorization cannot be computed.

n

Indeed, even loading  into memory could be problematic.X

In the normal equations approach, we only need to compute the sufficient statistics:

which are of dimension  and , respectively.

W = X X, u =T X y,T

p × p p × 1

If we knew  and , then we could obtain the least square estimate  using the Cholesky

factorization.

W u ​β̂

However, when  is extremely large, the difficult part is indeed computing  and !n W u
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Recursive data import

Using matrix notation, we express  and  as followsW = W ​(n) u = u ​(n)

W ​ =(n) ​x ​x ​, u ​ =
i=1

∑
n

i i
T

(n) ​x ​y ​.
i=1

∑
n

i i

Let us define the initial conditions  and .W =(1) x ​x ​1 1
T u ​ =(1) x ​y ​1 1

Then, the following recursive relationship holds:

where  is the matrix formed by the first  summands of  and analogously .

W ​ =(i) W ​ +(i−1) x ​x ​, u ​ =i i
T

(i) u ​ +(i−1) x ​y ​, i =i i 2, … ,n,

W ​(i) i W ​(n) u ​(i)

Hence  and  can be calculated by importing a single record at a time, which does not

create memory issues.

W ​(n) u ​(n)

Home page

46 / 66

https://tommasorigon.github.io/datamining


Recursive estimates

In many occasions, the data flows continuously, meaning that we get a new pair of observations
 every minute, or even every second.(x ​, y ​)n+1 n+1

In these cases, we would like to update the current least square estimate  with the new

information , but ideally without re-doing all the calculations.

​ ​β̂(n)

(x ​, y ​)n+1 n+1

The recursive data import of the  is partially unsatisfactory, because one would need
to invert (or factorize) a  matrix every time, which could be costly.

previous slide
p × p

Let us define some useful quantity:

where  denotes the design matrix with  observations and analogously .

V ​ =(n) W ​ =(n)
−1 (X ​X ​

) ,(n)
T

(n)
−1

X ​(n) n y ​(n)

Home page

47 / 66

https://tommasorigon.github.io/datamining


Sherman-Morrison formula

When the new data points arrive, we can write the updated quantities

The difficult part is to efficiently compute . The following result of linear algebra is

of incredible help in this regard.

X ​ =(n+1) (X ​,x ​) , W ​ =(n) n+1
T

(n+1) (X ​X ​) =(n+1)
T

(n+1) (X ​X ​ +(n)
T

(n) x ​x ​).n+1 n+1
T

V ​ =(n+1) W ​(n+1)
−1

Let  be an invertible matrix and let  be -dimensional vectors. Then

Sherman-Morrison formula

A ∈ Rp×p b,d p

(A+ bd ) =T −1 A −−1
​A bd A .

1 + d A bT −1

1 −1 T −1
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The recursive least squares algorithm I

Using the Sherman-Morrison formula, then we can express the new matrix  as a function of

previously computed quantities:

V ​(n+1)

V ​ =(n+1) V ​ −(n) v ​V ​x ​x ​V ​, v ​ =n (n) n+1 n+1
T

(n) n ​ .
(1 + x ​V ​x ​)n+1

T
(n) n+1

1

The updated least square estimate therefore becomes

​ ​

​ ​β̂(n+1) = V ​(X ​y ​ + x ​y ​)(n+1) (n)
T

(n) n+1 n+1

= ​ ​ + ​ ​β̂(n)

k ​n

​v ​V ​x ​n (n) n+1

e ​n+1

​(y ​ − x ​ ​ ​)n+1 n+1
T β̂(n)

= ​ ​ + k ​e ​.β̂(n) n n+1

The quantity  is the prediction error of  based on the previous estimate .e ​n+1 y ​n+1 ​ ​β̂(n)
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The recursive least squares algorithm II

The recursive estimation  takes the form of a linear filter, in which the new

estimate  is obtained by modifying the old one .

This is performed according to the prediction error  and the gain  of the filter.

Using a terminology typical of the machine learning field, we say that the estimator “learns from its
errors.”

If  is sufficiently high, it is also possible to get an approximate solution by initializing the algorithm

by setting , to avoid any matrix inversion / factorization.

​ ​ =β̂(n+1) ​ ​ +β̂(n) k ​e ​n n+1

​ ​β̂(n+1) ​ ​β̂(n+1)

ϵ ​n+1 k ​n

n

V ​ =(0) I ​p

With further algebraic steps, we also obtain a recursive formula for the deviance

The complete algorithm is provided in A&S, Algorithm 2.2.

∣∣y ​ −(n+1) X ​ ​ ​
∣∣ =(n+1)β̂(n+1)

2 ∣∣y ​ −(n) X ​ ​ ​
∣∣ +(n)β̂(n)

2 v ​e ​.n n+1
2
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Generalized linear models
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The heart dataset

Let us consider the South African heart , described

is Section 4.4.2 of HTF (2009).

We want to predict the insurgence of coronary heart
disease (chd) as a function of known risk factors:

Cholesterol level (ldl) and obesity (obesity)

Consumption of tobacco (tobacco) and alcohol
(alcool)

Systolic blood pressure (sbp)

Age (age) and family history (famhist)

The response variable is binary: we cannot rely on linear
regression models.

dataset
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The heart dataset

Home page

53 / 66

https://tommasorigon.github.io/datamining


Generalized linear models

If the outcome is binary, a count, or if the errors are heteroscedastic, then the Gaussian linear
regression model might be inappropriate.

We let  be iid draws from an exponentialy dispersion family, which includes the Binomial, the

Poisson, and the Gaussian distribution as special cases.

The canonical statistical solution are generalized linear models, which are usually taught in
undergraduate courses (e.g.  ). This is just a short recap.

Y ​i

Statistica III

In a generalized linear model, the response variable is related to the covariates through:

where  is the so-called link function, which is known and invertible.

Generalized linear model (GLMs)

E(Y ​) =i g {f(x ​;β)} =−1
i g (β ​x ​ +−1

1 i1 ⋯ + β ​x ​) =p ip g (x ​β),−1
i
T

g(⋅)
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Likelihood-based inference

Let  be the density associated to each . Here  is a vector of parameters.π(y;x, θ) Y ​i θ

The log-likelihood of a GLM is

where  is an additive constant not depending on .

ℓ(θ) = ℓ(θ;y) = ​ log π(y ​;x ​, θ) +
i=1

∑
n

i i c,

c β

The maximum likelihood estimate for the regression coefficients  isβ

=θ̂ arg ​ ℓ(θ).
θ

max

Standard errors, tests, and confidence intervals can be easily obtained from (derivatives of) the log-
likelihood, as you have seen in undergraduate courses (e.g., Statistica II and III).

The aforementioned inferential results are often grounded on asymptotic theory and quadratic
approximations of the log-likelihood.
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Linear models with Gaussian errors

When  are Gaussian random variables, then the log-likelihood is

where  is the same quantity we have defined before.

Y ​i

ℓ(β,σ ) =2 − ​ log σ −
2
n 2

​D(β),
2σ2

1

D(β)

Hence, the ordinary least squares estimate  is also the maximum likelihood estimate. Indeed, the
maximizer of the log-likelihood with respect to  is also the minimizer of .

​β̂

β D(β)

Instead, the maximum likelihood estimate for the variance is .=σ̂2 D( ​)/nβ̂

Note in addition that the log-likelihood, evaluated at its maximum, is

a quantity that will turn useful in .

−2ℓ( ​, ) =β̂ σ̂2 n log{D( ​)/n} +β̂ n,

Unit B
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Binary classification via logistic regression

The heart dataset presents a classification problem, in which we assume that

Y ​i ∼ind Bern{p(x ​;β)}, i =i 1, … ,n.

The canonical link function  leads to the GLM

known as logistic regression. Note that in this model .

g (x) =−1 e /(1 +x e )x

P(Y ​ =i 1) = p(x ​;β) =i ​ =
1 + exp{f(x ​;β)}i

exp{f(x ​;β)}i
​ ,

1 + exp(β ​x ​ + ⋯ + β ​x ​)1 i1 p ip

exp(β ​x ​ + ⋯ + β ​x ​)1 i1 p ip

E(Y ​) =i P(Y ​ =i 1)

After some algebra, it can be shown that the log-likelihood is

ℓ(β) = ​y ​(x ​β) −
i=1

∑
n

i i
T log{1 + exp(x ​β)}.i

T

Moreover, the predicted values  are probabilities and they belong to .p(x ​
;

​
)i β̂ (0, 1)
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Iteratively re-weighted least squares I

Let us define the so-called score function:

ℓ (β) =′
​ ℓ(β) =

∂β
∂

​x ​{y ​ −
i=1

∑
n

i i p(x ​;β)},i

Moreover, the so-called observed information matrix is

j(β) = − ​ ℓ(β) =
∂β∂βT

∂2

− ​x ​x ​w ​(β), w ​(β) =
i=1

∑
n

i i
T

i i p(x ​;β){1 −i p(x ​;β)}.i

In matrix notation, we will write

where  and .

ℓ (β) =′ X (y −T p), j(β) = X WX,T

p = (p(x ​;β), … , p(x ​;β))1 n W = diag(w ​(β), … ,w ​(β))1 n

Unfortunately, a closed-form expression for , solving the likelihood equations , is
not available. We need to use iterative algorithms.

​β̂ X (y −T p) = 0
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Iteratively re-weighted least squares II

As you , in the Newton-Raphson iterative method we consider a quadratic
approximation of the log-likelihood on , so that:

may remember
β ​0

ℓ(β) ≈ ℓ(β ​) +0 ℓ (β ​) (β −′
0

T β ​) −0 ​ (β −
2
1

β ​) j(β)(β −0
T β ​).0

By maximizing the quadratic approximation, in logistic regression we get the update

where , which we cycle repeatedly until convergence.

​ ​

β(new) = β + j(β ) ℓ (β ) = β + (X WX) X (y − p)(old) old −1 ′ old (old) T −1 T

= (X WX) X Wz,T −1 T

z = Xβ +(old) W (y −−1 p)

This algorithm is sometimes called iteratively re-weighted least squares (IRLS), because each
step can be seen as the solution of the weighted least squares problem

β =(new) arg ​(z −
β

min Xβ) W (z −T Xβ).
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Computational considerations

Each step of the IRLS algorithm finds the solution of the likelihood equations

(X WX)β =T X Wz.T

Once again, the Cholesky and the QR decomposition can be exploited to speed up computations. See
Section 5.4 of Arnold et al. (2019) for further details.

It can be shown that  is a good starting point for the initialization.β = (0,… , 0)T

Unfortunately, the IRLS is not guaranteed to converge nor to increase the log-likelihood at every
step, but there are easy fixes.

See this  for an example of the failure of IRLS.tutorial

These considerations and the IRLS algorithm can be easily generalized to all GLMs.
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The estimated model

term estimate std.error statistic p.value

(Intercept) -4.130 0.964 -4.283 0.000

sbp 0.006 0.006 1.023 0.306

tobacco 0.080 0.026 3.034 0.002

ldl 0.185 0.057 3.219 0.001

famhist_Present 0.939 0.225 4.177 0.000

obesity -0.035 0.029 -1.187 0.235

alcohol 0.001 0.004 0.136 0.892

age 0.043 0.010 4.181 0.000

Results of the IRLS algorithm applied to the logistic regression model using heart data.

The coefficient of the variable obesity is negative. Why do you think this is the case?
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Prediction and model assessment I

The predicted probabilities  are often thresholded, to obtain 0-1 predicted values, mostly

useful for interpretative reasons

for some threshold , which is usually set equal to .

We can then compare the responses with the predicted values using the confusion matrix:

Actual response

Prediction 0 1 Total

0

1

Total

p(x ​; ​)i β̂

​ ​ =ŷi I(p(x ​; ​) >i β̂ c), i = 1, … ,n

c 1/2

n ​00 n ​01 n ​0.

n ​10 n ​11 n ​1.

n ​.0 n ​.1 n
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Prediction and model assessment II

In the heart dataset, using , we get the following confusion matrix:

Actual 0 Actual 1 Actual total

Predicted 0 255 78 333

Predicted 1 47 82 129

Predicted total 302 160 462

Hence, the overall accuracy is .

c = 0.5

(255 + 82)/462 ≈ 0.72

The true positive rate (specificity) is defined as

On the other hand, the true negative rate (sensitivity) is defined as

specificity = 1 − P(‘‘false positive") ≈ ​ =
n ​ + n ​00 10

n ​00
​ =

255 + 47
255

0.844.

sensitivity = 1 − P(‘‘false negative") ≈ ​ =
n ​ + n ​01 11

n ​11
​ =

72 + 82
82

0.532.
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The ROC curve
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Other topics

When the number of responses labels , we cannot use any more logistic regression.

The natural extension is called multinomial regression, in which we model the probabilities

for example, using multinomial logit. The ideas of GLMs can be easily borrowed.

An alternative and straightforward approach is linear discriminant analysis, which is based on Bayes
theorem.

You can find these topics in the textbook A&S (2011), although you have likely seen these models in
the previous courses.

K > 2

P(Y ​ =i k) = p ​(x ​,β), k =k i 1, … ,K,
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