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® This unit will cover the following

—~ T

® [inear models and the modeling process
® Cholesky factorization

® QOrthogonalization and QR decomposition
® |terative methods

® Generalized linear models

® The computational aspects of linear models will be novel
to most of you...

® . but you should be already with linear

“Everything should be made as simple as . 4elsl

possible, but not simpler”

Attributed to
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Old friends: linear models
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Car data (diesel or gas)
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®m \We consider data for n = 203 models of cars in
circulation in 1985 in the USA.

'&';A_ m \We want to predict the distance per unit of fuel
- as a function of the vehicle features.
- ® We consider the following variables:
Zye
P ® The city distance per unit of fuel (km/L,
city.distance)
- ® The engine size (L, engine.size)

® The number of cylinders (n.cylinders)
® The curb weight (kg, curb.weight)

m The fuel type (gasoline or diesel, fuel).
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Linear regression
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Let us consider the variables city.distance (y),
engine.size (z) and fuel (z).

A simple linear regression

Yi:/81+52$i+€i7 i:]-a"'ana

could be easily fit by least squares...

.. but the plot suggests that the relationship between
city.distance and engine.size is well
approximated by a function.

.. and also that fuel has a non-negligible effect on the
response.
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Regression models

A and for modeling the relationship between a vector of fixed
covariates ®; = (z1,...,Zip)’ € RP and a random variable ¥; € R is

Y;:f(wuﬂ)_'_em 7::]-7"'777’7

where the “errors” €; are iid random variables, having zero mean and variance 2.

® To estimate the unknown parameters (3, a possibility is to rely on the least squares criterion: we
seek the of the objective function

D(B) = Z{yz — f(wi;ﬂ)}2,

using n pairs of covariates &; = (x;1, . - - ,zc,-p)T and the observed realizations y; of the random
variables Y;, fori =1,...,n. The is denoted by £.

A

® The predicted values are §; = E(Y;) = f(x;8), fori=1,...,n.
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Linear models

m |et us consider again the variables city.distance (y), engine.size (x) and fuel (z).

= Which function f(z, z; 8) should we choose?
m A first attempt is to consider a combined with a dummy variable
f(z,2; 8) = B+ fax + B3z® + Pz’ + B51(z = gas),

which is a special instance of

Definition (Linear model)

In a linear model the response variable Y is related to the covariates through the function
E(Y;) = f(®i; 8) = iz + -+ + BpTip = 33;7’15,

where @; = (z;1,...,2;)" is a vector of and 8= (Bi,-..,B,)" is the corresponding

vector of

Home page én:ucl:%


https://tommasorigon.github.io/datamining

8 /66

Matrix notation

® The are collected in the random vector Y = (Y73,...,Y,)T, whose
observed realization is y = (yi,...,y,)"
® The design matrix is a n X p matrix, comprising the covariate's values, defined by
wll o o o mlp
X —

mnl e o o a'j‘np

® The jth variable (column) is denoted with &;, whereas the ith observation (row) is x;:

X = (il,...,ip) = (%1,...,wn)T.
® Then, a linear model can be written using the
Y = X3 +e,

where € = (e1,...,€,)T is a vector of iid error terms with zero mean and variance o?.
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Linear regression: estimation |

® The optimal set of coefficients B is the minimizer of the
D(B) = (y — XB) (y — XB) = |ly - XBII%,

also known as - where

lyll = y/v? + - + 22,

denotes the Euclidean norm.

Least square estimate (OLS)

If the design matrix has full rank, that is, if rk(XTX) — p, then the has an
explicit solution:

B=(XTX)1Xx"y.
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Linear regression: estimation ||

® |n matrix notation, the predicted values can be obtained as
y=XB=Hy, H=XX'X)'Xx"

m Hisanxn matrix sometimes called hat matrix.

It can be shown that tr(H) = rk(H) = p. Moreover, it holds H = H' and H? = H.

® The quantity D(B) is the so-called residual deviance, which is equal to

D(B) = |ly - 9| = y" (I, - H)y.

®m Moreover, a typical estimate for the o? is obtained as follows:
D(B) 1 Zn
2 T 3\2
S = —_— . — e .
n—p n—zt?i:l(yZ iP)
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Linear regression: inference

" : T iid
" Let us additionally assume that the errors follow a Gaussian distribution: €; ~ N (0, o?).

A

® This implies that the of the B is
B~ N,(B,0*(XTX)).
® Hence, the estimator B is and its variance can be estimated by
var(f) = s2(XTX) L.

®m The of the components ofB correspond to the square root of the diagonal of the
above covariance matrix.

® Confidence interval and Wald's tests can be obtained through classical inferential theory.
m Ok, we are ready to get back to the original problem...
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Car data, a first model

m Qur first attempt for predicting city.distance (y) via engine.size (x) and fuel (z) is:
f(z,2;8) = b1 + Bam + Bsz® + Baz’ + Bs1(z = gas).

® |ndeed, by looking at the plot of the data, it is plausible that we need a of degree 3 or 4

® |t is also clear from the plot that fuel is a relevant variable. Categorical variables are using

indicator variables.

® To evaluate the goodness of fit, we can calculate the

(“Residual deviance”) -
R*=1- —=1- ==
(“Total deviance”) >
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A first model: estimated coefficients

m \WVe obtain the following for the regression coefficients B
term estimate std.error statistic p.value
(Intercept) 28.045 3.076 9.119 0.000
engine.size -10.980 3.531 -3.109 0.002

engine.size”2 2.098 1.271 1.651 0.100
engine.size”3 -0.131 0.139 -0.939 0.349
fuel_gas -3.214 0.427 -7.523 0.000

m Moreover, the coefficient R? and the residual standard deviation s are:

r.squared sigma deviance

0.5973454 1.790362 634.6687
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A first model: fitted values
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A first model: graphical diagnostics

°
5
Y ® ™
°
°
° °
¢ ° °
® ° ° fuel
S o © 3 : o’ ® :.
o o o’ o o ¢ d ® o o : ° ° ® diesel
N O ..... ....... ...... 9 .-....... .................. ....- ...... q ....... . ......................................
cCIKJ ° ® ° :: ® gas
.. .. L P > 0 @ Py ®
LT ®
o ®
°
-5
°
°
6 8 10 12 14 16

Fitted values

Home page %wunn%


https://tommasorigon.github.io/datamining

16 / 66

Comments and criticisms

® |s this a good model?

® The overall fit seems satisfactory at first glance, especially if we aim at predicting the urban
distance of cars when average engine size (i.e., between 1.5L and 3L).

®m However, the plot of the r; = Y; — ¥; suggests that the homoscedasticity assumption, i.e.

2

var(e;) = o, might be violated.

® Also, this model is unsuitable for . Indeed:

® |t has no grounding in physics or engineering, leading to difficulties when interpreting the trend
and to paradoxical situations.

® For example, the curve of the set of gasoline cars shows a local minimum around 4.6L and then
rises again!

® |t is plausible that we can find a better one, so what's next?
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Linear models and non-linear patterns

® A significant advantage of linear models is that they can describe non-linear relationships via variable
transformations such as polynomials, logarithms, etc.

m This gives the statistician a lot of modeling flexibility. For instance, we could let:

logYi:/81+ﬂ210gwi+ﬁ3-[(zi:gas)+6i7 1=1,...,n.

® This specification is , it fixes the domain issues, and it imposes a monotone
relationship between engine size and consumption.

term estimate std.error statistic p.value
(Intercept) 3.060 0.047  64.865 0
log(engine.size) -0.682 0.040 -17.129 0
fuel_gas -0.278 0.038 -7.344 0
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Second model: fitted values
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Second model: graphical diagnostics
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Comments and criticisms

® The goodness of fit indices are the following:

r.squared.original r.squared sigma deviance

0.5847555 0.6196093 0.1600278 5.121777

® Do not mix apple and | Compare R?s only if they refer to the same scale!

® This second model is more parsimonious, and yet it reaches satisfactory predictive performance.

® |t is also more coherent with the nature of the data: the predictions cannot be negative, and the
relationship between engine size and the consumption is monotone.

® Yet, there is still some heteroscedasticity in the residuals — is this is due to a missing covariate that
has not been included in the model?
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A third model: additional variables

m |et us consider two additional variables: curb.weight (w) and n.cylinders (v).

® A richer model, therefore, could be:

logY; = p1 + B2logx; + B3logw; + Bal(z = gas) + BsI(vi = 2) + €,

fort =1,...,n. The estimates are:
term estimate std.error statistic p.value
(Intercept) 9.423 0.482 19.549 0.000
log(engine.size) -0.180 0.051 -3.504 0.001
log(curb.weight) -0.943 0.072 -13.066 0.000
fuel_gas -0.353 0.022 -15.934 0.000
cylinders2_TRUE -0.481 0.052 -0.301 0.000
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A third model: graphical diagnostics
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Comments and criticisms

® The goodness of fit greatly improved:

r.squared.original r.squared sigma deviance
0.869048 0.88319199 0.0896089 1.589891

® |n this third model, we handled the appearing in the residual plots, which it turns out are
identified by the group of cars having 2 cylinders.

® The diagnostic plots are also very much improved, although still not perfect.

® The estimates are coherent with our expectations, based on common knowledge. Have a look at the
textbook (A&S) for a detailed explanation of S4!

® The car dataset is available from the textbook (A&S) website:

m Dataset http://azzalini.stat.unipd.it/Book-DM /auto.dat
m Variable description http://azzalini.stat.unipd.it/Book-DM /auto.names
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A tour inside old-fashioned statistics

® The first part of the unit is a tour in the “old style” data modeling, the kind of culture that Leo
Breiman so in his 2001 Statistical Science paper.

® However, this dataset was sufficiently small, meaning it could be “manually” analyzed and modeled.
We gained much understanding by doing so.

B Hence, these old tools should not be considered useless or irrelevant.

® The second half of the unit will have an entirely different flavor, though.

® Given the vast amount of data we now have, it makes sense to focus on for fitting
linear models.

m As we will see, the mathematical simplicity of linear models leads to extremely fast computations,
an important advantage in the era of big data.
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Normal equations
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How to obtain the least squares estimate?

® |n B.Sc. courses, it is often suggested that the least square estimate should be computed using the
formula

f=(X"X)"X"y,
that is, using the R code solve (t (X) %*% X) %x% t(X) %*% y.

® This approach works reasonably well in many simple cases.

= Unfortunately, in more challenging scenarios, e.g., when we have a lot of data (large n) and
correlated variables, the above code is

|
® pumerically inaccurate

m The main computational bottleneck is the calculation of the inverse of XT X, which is very costly
and often numerically unstable, especially when the predictors are almost collinear.
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The normal equations

The least square estimate is the solution of the system of equations ( ):
xXT'xp=Xx"y.

® This system could be solved using solve(crossprod(X), crossprod(X, y)).

® This avoids the explicit computation of (XTX)_1 and it is preferable compared to the “direct
solution.” However, it does not exploit the properties of the matrix x'x.

m Recall (from your favorite linear algebra textbook) that a symmetric matrix A € RP*? is

if and only if one of the following properties is satisfied

® The quadratic form T Az > 0 for all £ € RP such that & # 0.
® The eigenvalues Ay, ..., A, of A are all strictly positive.

® \We now describe a strategy to compute B that exploits the fact that XTX is ,
resulting in more efficient computations.
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Cholesky factorization

Proposition A.1
Suppose X € R™ P with n > p has full rank, that is rk(X) = p. Then, the matrix

X'x

is symmetric and

Theorem (Cholesky factorization)

Let A € RP*P be a symmetric and positive definite matrix. Then, there exists a unique
p X p matrix R with positive entries such that

A=R'R.
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Cholesky factorization and least squares

® The Cholesky factorization is incredibly helpful for computing least squares. Indeed:

» Let RT R be the Cholesky factorization of the matrix X~ X. Then, the can be
written as

RTRS = X"y.

This system can now solved in

m Step 1 (Forwardsolve). Solve with respect to z the system of equations
RYz = XTy.
m Step 2 (Backsolve). Given z, now solve with respect to 8 the system of equations
RS = z.
®m Why is this procedure computationally more efficient than the naive solution?
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Forward and backward substitutions

® The key observation is that the solution of triangular systems is computationally

® As an example, consider the following 3 x 3 lower triangular system:

l11 0 0 I b1
log loa O |z2| = | b2
31 lso 33| |3 b3

® The solution for 1, 29, 3 can be found sequentially:

b1 by — lo1y by — l3121 — l322
L1 — 7, Loy = ) L3 = .
l11 l22 I33
® Finding the R'is simple, again because R is upper triangular. Also, note that

(X'X)'=(R'R) ' =R (R 1.
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Computational complexity

® The solution via Cholesky factorization is a fast direct approach for finding B
B The expensive steps are:

= The formation of the matrix X* X requires ~ np? elementary operations

® The Cholesky factorization of xT'x requires ~ p3/3 elementary operations.

® This gives an overall computational complexity of order
~np’ +p°/3,

which corrects the typographical error of the A&S textbook.

® This means, unfortunately, that in high-dimensional settings (large p) computations become

, since the complexity is cubic in p.
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Error propagation in normal equations

® The normal equations method is typically quicker than other algorithms, as it removes the
dependency on n, but it is in general numerically more

® Consider, for example, the following matrix:

1 1
X =|e 0],
0 €
for a small value € > 0. Then, we obtain that
T |14 € 1
XX = [ 1 1+ €2

= The numerical computation of €2 in X7 X requires a higher precision compared to €, leading to

numerical instabilities and/or a
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Condition numbers and normal equations

® Suppose X € R™*? with n > p has full rank and singular values d; > dy > --- > d,,. Then its
IS

dy
R(X) = [1X1]- IX] = =
P
where X is the Moore-Penrose pseudo-inverse. Note that x(X) > 1.
= |f k(X)) is small, the matrix X is well conditioned. Otherwise, we say it is

® The condition number determines how accurately we can solve linear systems.

® An important fact is:
K(XTX) = r(X)?,

implying that there is an evident loss of numerical accuracy when using normal equations.
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The QR decomposition
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Orthogonal predictors

® Another approach for computing least squares is based on the notion of orthogonality.

m |f the predictors were mutually

® |n other words, consider a linear model of the form

Y =28 +e,

~

where Z = (21,...,2,).

Proposition A.2. OLS with orthogonal predictors

The least square estimate B = (Bl, . ,Bp)T with orthogonal predictors is
=T
n zZ:y
j
ﬁj_,,T..a J=1...,p

Home page
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Regression by successive orthogonalization

® (Clearly, the predictors in X are generally not orthogonal. Hence, we want to find a suitable
transformation Z = XTI ! that orthogonalizes the

® Suppose, for example, that p = 2. We set Z] = @;.

® \We then consider the following univariate regression problem

Ty = Y21 + €, which leads =

® The is obtained as the residual term:
Zy = &y — YZ1.

® The geometry of linear models guarantees that 21T22 = 0.
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Gram-Schmidt algorithm

® et us now consider the , valid for any value of p.

® |nitialization. Set z; = x;.

m For j = 2,...,p. Consider the regression problem with 5 — 1 orthogonal predictors
j—1 i%fzﬂiié
~ ~ . ~ k .
T; = Z’ykak +€;, whichleads A = ~T~J, k=1,...,7 —1,
k=1 2k #k
Then, compute the new vector z; as the term
j—1
Z=& — > Az
k=1
T /

® The geometry of linear models guarantees , that is Z;

Home page
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The QR decomposition |

® By construction, the Gram-Schmidt algorithm produces the following decomposition

1 A2 ?13 e 71})-
X=2I, T= (,) 1 7.23 7.21, , Z=(21,...,%)
00 0 - 1
B The p X p matrix I' is , Whereas the columns of the n X p matrix Z are mutually

orthogonal, due to the properties of the residuals of a linear model.

m |t is often convenient to the columns of Z, dividing them by their norm ||2;||. Let D =
diag(||21]],.-.,||Zp]]), then in matrix notation:

X=2Zr=ZD 'DI =QR, with Q=2ZD ' and R = DT.
u . Note that QT Q = I,, i.e. the columns of Q are orthonormal.
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The QR decomposition Il

Theorem (QR factorization)

Suppose X € R™™P with n > p has full rank, that is rk(X) = p. Then, there exists a factorization of
the form

X = QR,

where Q € R™™? has and R € RP*P is an upper triangular matrix.

Corollary (QR factorization)

The QR decomposition is unique up to sign flips of the columns of @Q and the rows of R.
Moreover, if R has positive diagonal entries, as the one obtained using Gram-Schmidt, then it
coincides with the of XTX.
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The QR decomposition and least squares

B The QR decomposition greatly facilitates computations for linear models. Indeed:
f=(X"X)"'X"y=[(QR)QRI"(QR)"y
=(R'Q'QR)'R'Q"y
_ R—l(RT)—lRTQTy
= R_lQTy.
® Hence, the least square estimate is obtained as the solution of the triangular system

RB =Q"y,

which can be easily solved via

= As a particular case of the above equation, one gets 3, = (égy)/(igép).
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The QR decomposition and linear models

® An important advantage of the QR factorization is that many other useful quantities can be readily
computed. For example, the is obtained as:

SXTX) =R YR .

®m The and the projection matrix are also easily obtained as
§=Hy=QQ"y.
m The diagonal elements h; = [H];; of the hat matrix H are called and one may want to

compute them without evaluating the full n X n matrix, using

p
:E : 2 S

hZ: qZ]’ Z—].,...,n,
j=1

where g;; are the entries of Q.
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Computational complexity

® The solution via QR factorization is and it facilitates the computation of other
quantities of interest.

® |n practice, the QR is computed via a modified Gram-Schmidt, that fixes the instabilities of the
naive Gram-Schmidt algorithm, or via

® The expensive step is the QR factorization. The overall computational complexity is
~ an27
which is about twice that of the Cholesky, when n is much larger than p, and about the same when
PR n.

® Depending on the context and assuming we only care about B we may prefer the Cholesky (fast but
) or the QR ( but more reliable).

® The default approach in R, i.e., the one implemented in the 1m function is the QR factorization
because one typically also needs to compute H, or the leverages.

Home page ;II:I]BI:%


https://tommasorigon.github.io/datamining

43 / 66

«« - Pivoting and rank deficiencies

m frk(X)=k<p( ) then it is still possible to obtain a “"QR" factorization of the
form

Ri1 R
XP:Q[OH 012]’

where P is a p X p permutation matrix and R1; is an k X k upper triangular and non-singular
matrix.

= This operation is sometimes called pivoting, and it is particularly important even when rk(X) = p to
prevent numerical issues when the condition number k(X)) is high.

® |n the presence of perfect collinearity, the implementation of the QR decomposition in R (qr) relies
on pivoting. This is why the 1m function can automatically “omit” a predictor.
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Iterative methods
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When n is very large...

B \When the sample size n is , as it is common in data mining problems, then the QR

factorization cannot be computed.

® |ndeed, even X into could be problematic.

® |n the normal equations approach, we only need to compute the sufficient statistics:
W=X"X wu=X"y,

which are of dimension p X p and p X 1, respectively.

m |f we knew W and u, then we could obtain the least square estimate B using the Cholesky
factorization.

®m However, when n is extremely large, the difficult part is indeed computing W and wu!
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Recursive data import

= Using matrix notation, we express W = W,y and u = u,) as follows

W) = Z :ciacgp, U(y) = Z T;Y;.
i=1 i=1

® | et us define the initial conditions W(l) = a:lale and U = T1Y1.
® Then, the following holds:
Wi =W +az], U = W(—1) + Y, 1=2,...,n,

where W ;) is the matrix formed by the first ¢ summands of W, and analogously w;.

= Hence W, and u,) can be calculated by importing a single record at a time, which does not

create memory issues.
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Recursive estimates

® |n many occasions, the data flows continuously, meaning that we get a new pair of observations
(Tn+1,Ynt1) every minute, or even every second.

® |n these cases, we would like to the current least square estimate B(n) with the new
information (@, 1, Yn+1), but ideally without re-doing all the calculations.

® The recursive data import of the previous slide is partially unsatisfactory, because one would need
to invert (or factorize) a p X p matrix every time, which could be costly.

m | et us define some useful quantity:
~1 T ~1
Vi =W = (XnXw)

where X ;) denotes the design matrix with n observations and analogously y ).
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Sherman-Morrison formula

® \WWhen the new data points arrive, we can write the updated quantities

Xy = (Xep2ar)'s Wity = (X X nrn) = (XX ) + Bop1@pgg)-

® The difficult part is to compute V1) = W(_nlﬂ). The following result of linear algebra is

of incredible help in this regard.

Sherman-Morrison formula

Let A € RP*P be an invertible matrix and let b, d be p-dimensional vectors. Then

1

1+wa*bA4th4'

(A+bd)1=A4"1—
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The recursive least squares algorithm |

= Using the Sherman-Morrison formula, then we can express the new matrix V', ) as a function of
previously computed quantities:
1
(1 + wn—i—lv(n)wn-i-l) .

Vi) = Vi) = Vi @iy Vi, n =

® The therefore becomes

Bint1) = V1) (X Ymy + Tns1¥ns1)
— 5 + Un (n)Ln+1 (yn+1 - ngtl/B(n))
E; 6211

— B(n) =+ kne’rH—l-

® The quantity e, is the prediction error of y, .1 based on the previous estimate B(n)
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The recursive least squares algorithm ||

® The recursive estimation B(n+1) = B(n) + k,e,.1 takes the form of a , in which the new
estimate B(n—H) is obtained by modifying the old one B(n+1).

® This is performed according to the prediction error €,,1 and the k,, of the filter.

m Using a terminology typical of the machine learning field, we say that the estimator “learns from its
errors.”

m |f n is sufficiently high, it is also possible to get an solution by initializing the algorithm

by setting V' (g) = I, to avoid any matrix inversion / factorization.

m \With further algebraic steps, we also obtain a recursive formula for the deviance

1Ymr1) = X i) B = 1Yy — X w)BmlI” + vnep .

® The complete algorithm is provided in A&S, Algorithm 2.2.
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Generalized linear models
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The heart dataset

chd & 0 o 1 ® | et us consider the South African heart dataset, described

———— is Section 4.4.2 of HTF (2009).
0T g Fla e m \We want to predict the insurgence of coronary heart
5. CLFE =y SRR ) disease (chd) as a function of known risk factors:
;% °~‘;'3':.= . . m Cholesterol level (1d1) and obesity (obesity)
éi e ! = Consumption of tobacco (tobacco) and alcohol
R T (alcool)
° PRl ST .
i Y 2P m Systolic blood pressure (sbp)

e 1 m Age (age) and family history (famhist)

Cumulative tobacco (kg)

® The response variable is binary: we cannot rely on linear
regression models.
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The heart dataset
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Generalized linear models

® |f the outcome is binary, a count, or if the errors are heteroscedastic, then the Gaussian linear
regression model might be inappropriate.
m \We let Y; be iid draws from an exponentialy dispersion family, which includes the Binomial, the

Poisson, and the Gaussian distribution as special cases.

® The canonical statistical solution are , which are usually taught in
undergraduate courses (e.g. Statistica Ill). This is just a

Generalized linear model (GLMs)

In a generalized linear model, the response variable is related to the covariates through:

E(Y;) =g H{f(zs58)} =g '(Bizis + -+ + Bozip) = g (=] B),

where g(+) is the so-called , which is known and invertible.
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Likelihood-based inference

m |et w(y; @, 0) be the density associated to each Y;. Here 6 is a vector of parameters.

® The of a GLM is
00) = £(6;y) = Y _logm(ys;2:,0) +c,
i=1

where c is an additive constant not depending on £.

® The for the regression coefficients 3 is

f = arg max £(0).

m Standard errors, tests, and confidence intervals can be easily obtained from (derivatives of ) the log-
likelihood, as you have seen in undergraduate courses (e.g., Statistica Il and IlI).

® The aforementioned inferential results are often grounded on and quadratic
approximations of the log-likelihood.
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Linear models with Gaussian errors

When Y; are Gaussian random variables, then the log-likelihood is

B, 0%) = —gloga2 — #D(ﬁ),

where D(f) is the same quantity we have defined before.

® Hence, the ordinary least squares estimate B is also the
maximizer of the log-likelihood with respect to § is also the minimizer of D([3).

" Instead, the maximum likelihood estimate for the variance is 62 = D(j) /n.

® Note in addition that the log-likelihood, evaluated at its maximum, is
—2((8,6%) = nlog{D(B)/n} +n,

a quantity that will turn useful in Unit B.
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Binary classification via logistic regression

® The heart dataset presents a classification problem, in which we assume that
Y; £ Bern{p(z;; 8)}, i=1,...,n.

m The canonical link function g7!(z) = /(1 + €%) leads to the GLM

1y LAy exp{f(z:;;8)} exp(Bizii + - + BpTip)
PY; =1) =p(x:;8) = 1+exp{f(®;B)} 1+exp(Brizin+ -+ Bpzip)’
known as . Note that in this model E(Y;) = P(Y; = 1).

m After some algebra, it can be shown that the log-likelihood is

UB) = 3_vi(@iB) —log{1 + exp(]5)}

A

® Moreover, the p(x;; B) are probabilities and they belong to (0,1).
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Iteratively re-weighted least squares |

Let us define the so-called score function:
¢ (B) sz{yz —p(zi;8)},

® Moreover, the so-called observed information matrix is

5(0) =~ l(8) = = walwi(B), wi(B) = plass {1 — (e )}

0p0opT

® |n . we will write

{B)=X"(y—p), iB)=X"WX,

where b= (p(wl;ﬁ)a te 7p(wn;ﬂ)) and W = diag(“’l(ﬁ)) T 7wn(6))

m Unfortunately, a closed-form expression for B solving the likelihood equations XT(y —p)=0,is

not available. We need to use
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Iteratively re-weighted least squares ||

® As you may remember, in the Newton-Raphson we consider a quadratic
approximation of the log-likelihood on fy, so that:

1 :
£(B) ~ £(Bo) +£'(Bo)" (B — Bo) — 5(/3 — Bo)" 5(B)(B — Bo)-
® By maximizing the quadratic approximation, in logistic regression we get the update

/B(HeW) _ 6(01(1) —|—j(ﬂ01d)_1£/(501d) _ B(Old) + (XTWX)—IXT(y _p)
= (X"WX)'XTwz,

where z = X809 4+ W1(y — p), which we until convergence.

m This algorithm is sometimes called iteratively re-weighted least squares (IRLS), because
can be seen as the solution of the weighted least squares problem

BEeY) — arg mﬁin(z —~XB)TW(z - Xp).
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Computational considerations

m Each of the IRLS algorithm finds the solution of the likelihood equations
(XTWX)p=X"W-.
® Once again, the Cholesky and the QR decomposition can be exploited to speed up computations. See

Section 5.4 of Arnold et al. (2019) for further details.

® |t can be shown that 8 = (0,...,0)7 is a good starting point for the initialization.

® Unfortunately, the IRLS is guaranteed to nor to increase the log-likelihood at every
step, but there are easy fixes.

m See this tutorial for an example of the of IRLS.

® These considerations and the IRLS algorithm can be easily generalized to all GLMs.
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The estimated model

term estimate std.error statistic p.value
(Intercept) -4.130 0.964 -4.283 0.000
sbp 0.006 0.006 1.023 0.306
tobacco 0.080 0.026 3.034 0.002
1d1 0.185 0.057 3.219 0.001
famhist Present 0.939 0.225 4.177 0.000
obesity -0.035 0.029 -1.187 0.235
alcohol 0.001 0.004 0.136 0.892
age 0.043 0.010 4.181 0.000

® Results of the IRLS algorithm applied to the logistic regression model using heart data.

® The coefficient of the variable obesity is

. Why do you think this is the case?
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Prediction and model assessment |

A

® The p(x;; B) are often thresholded, to obtain 0-1 predicted values, mostly

useful for interpretative reasons

gi = I(p(zs; B) > ),

for some threshold ¢, which is

® \\Ve can then compare the responses with the predicted values using the confusion matrix:

A

set equal to 1/2.

Actual response

i=1,...

,

Prediction 0 1 Total
0 Moo Nop1  No.

1 n10 nip N,
Total 7.0 ni n
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Prediction and model assessment ||

® |n the heart dataset, using ¢ = 0.5, we get the following confusion matrix:

® Hence, the

Actual 0 Actual 1 Actual total

Predicted 0 255 78 333
Predicted 1 47 82 129
Predicted total 302 160 462

is (255 + 82) /462 ~ 0.72.

® The true positive rate ( ) is defined as
o . 00 255
ficity = 1 — P(“‘fal tive”) ~ = = 0.844.
specificity (“false positive”) ot m 255447
® On the other hand, the true negative rate ( ) is defined as
2
sensitivity = 1 — P(‘‘false negative”) =~ 2 8 = 0.532.

no1 + N11 72 + 82
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The ROC curve

Receiver Operating Characteristic Curve (ROC) - AUC: 0.78
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Other topics

® When the number of responses labels K > 2, we cannot use any more logistic regression.

® The natural extension is called , in which we model the probabilities

P(Yzzk):pk(wzwg)a k=1,..., K,

for example, using . The ideas of GLMs can be easily borrowed.

m An alternative and straightforward approach is linear discriminant analysis, which is based on Bayes
theorem.

® You can find these topics in the textbook A&S (2011), although you have likely seen these models in
the previous courses.
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