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® This unit will cover the following
m Bias-variance trade-off
® Cross-validation
® |nformation criteria
® Optimism
® You may have seen these notions before...

m _but it is worth discussing the of these ideas once
again.

They are indeed the foundations of

“Pluralitas non est ponenda sine
necessitate.”
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Yesterday's and tomorrow’s data
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Yesterday’s data

055 . m |et us presume that we observed n =
e . 30 pairs of data (x;,y;).
* o m Data were generated according to
.............................. .... o. .o.o YZ:f(wz)_‘_E“ i:]_’._.’fn,,
0.50 R °
- . * with each y; being the realization of Y.

" The €,...,€, are iid “ " terms, such that
E(e;) = 0 and var(e;) = 02 = 1074,

0.45
m Here f(z) is a regression function (signal) that

we leave unspecified.

® Tomorrow we will get a new . We wish to
X Y using E(Y) = f(=).
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Polynomial regression

® The function f(z) is unknown, therefore, it should be estimated.

® A simple approach is using the tools of Unit A, such as
f(z;8) = Br+ Baz + Bsz® + -+ + Bpx? ™,

namely f(z) is with a polynomial of degree p — 1 (i.e., Taylor expansions).
® This model is linear in the parameters: ordinary least squares can be applied.
" How do we choose the degree of the polynomial p — 17
= Without clear guidance, in principle, any value of p € {1,...,n} could be appropriate.

m | et us compare the mean squared error (MSE) on yesterday’'s data ( )
1 < ;
MSEtrain — E Z{yz - f(wz, 6)}27
i=1

2

or alternatively R¢ .

for different values of p...
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Yesterday's data, polynomial regression
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Yesterday’'s data, goodness of fit
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Yesterday’s data, polynomial interpolation (p = n)
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Yesterday’'s data, tomorrow’s prediction

® The MSE decreases as the number of parameter increases; similarly, the R? increases as a function of
p. It can be that this using ordinary least squares.

® One might be tempted to let p as large as possible to make the model more flexible...

® Taking this reasoning to the extreme would lead to the choice p = n, so that

MSEj ain = 0, R2 =1,

train

i.e., a perfect fit. This procedure is called interpolation.

B However, we are interested in predicting data. Our goal is to predict tomorrow'’s data,
i.e. a new set of n = 30 points:

(wlagl)a ey (mnagn)7

using §; = f(xi; B), where 8 is obtained using yesterday’s data.

u . Tomorrow's r.v. Y7,...,Y, follow the same scheme as yesterday's data.
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Tomorrow’s data, polynomial regression

Number of parameters p: 2 Number of parameters p: 4 Number of parameters p: 6
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Tomorrow’s data, goodness of fit
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Comments and remarks

® The mean squared error on tomorrow's data (test) is defined as
1~ A
MSEtest — ﬁ Z{yz - f(xza B)}2a
i=1

and similarly the RZ ,. We would like the MSE;; to be

® For small values of p, an increase in the degree of the polynomial improves the fit. In other words,
at the beginning, both the MSE; ,;, and the MSE,.,; decrease.

m For of p, the improvement gradually ceases, and the polynomial follows

in yesterday's data, which are not observed in the new sample.

m An over-adaptation to yesterday's data is called , which occurs when the training MSE;,.in
is low but the test MSEye is high.

® Yesterday's dataset is available from the textbook (A&S) website:

m Dataset http://azzalini.stat.unipd.it/Book-DM /yesterday.dat
m True f(x) http://azzalini.stat.unipd.it/Book-DM /f_true.R
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= - Orthogonal polynomials

® When performing polynomial regression, the poly command computes an of the
original covariates (1,z,z?,...,zP 1) through the QR decomposition:
1 fit <- 1m(y.yesterday ~ poly(x, degree = 3, raw = FALSE), data = dataset)
2 X <- model.matrix(fit)
3 colnames(X) = c("Intercept","x1","x2","x3")
4 round(t(X) %x*% X, 8)
Intercept x1 x2 x3
Intercept 30 0 0 O
x1 O 1 0 O
x2 O 0 1 O
x3 O 0 0 1

® Polynomial regression becomes numerically unstable when p > 13 (raw = TRUE, original polynomials)
and p > 25 (raw = FALSE, orthogonal polynomials).
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«« - Lagrange interpolating polynomials

If the previous code does not work for p > 25, how was the plot of this slide computed?

It turns out that for p = n there exists an alternative way of finding the ordinary least square

solution, based on Lagrange interpolating polynomials, namely:

n
A~ T — T
f@) =) by, =) =]]
3 - Ly — T
i=1 ki
Interpolating polynomials are clearly for regression purposes, but may have interesting

applications in other contexts.
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Errors, trade-offs, and optimism
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Summary and notation (fixed-X)

® |n the previous example, we consider two sets of random variables:

m The (yesterday) Y7, ...,Y,, whose realization is y1, ..., Yy.
® The test set (tomorrow) Yi,...,Y,, whose realization is g1, . . . , n.
= The covariates ®; = (z1,...,Zip)’ in this scenario are deterministic. This is the so-called fixed-X

design, which is a common assumption in regression models.

= \We also assume that the random variables Y; and Y; are independent.
m |n problems we customarily assume that
Yi:f(wi)—l—ei, YEZf(iBﬂ—i—Eh 1=1,...,n,

where ¢€; and ¢€; are iid “ " terms, with E(¢;) = 0 and var(e;) = o2,

® |n classification problems the relationship between x; and the rv. Y; € {0,1} is
P(Y; = 1) = p(x;) = g{f(x;)}, 1=1,...,n,

where g(z) : R — (0,1) is monotone transformation, such as the inverse logit.
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The in-sample prediction error

® The is used to estimate a function of the covariates f(zcz) We hope our predictions
work well on the test set.

®m A measure of quality for the predictions is the in-sample prediction error:
B - £ | L 3" (T f(e)
rk = — iy J (L4 )
g

where Z{Y;; f(x;)} is a . The “"F" is a reminder of the fixed-X design.

® The expectation is taken with respect to training random variable Y3, ...,Y,,, implicitly appearing in
F(x), and the new data points Y3, ..., Y.

® The in-sample prediction error is measuring the average “discrepancy” between the
and the corresponding predictions based on the training.
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Loss functions

®m Examples of loss functions for regression problems Y € R are:
m The LLY;; f(x:)} = {Yi — f(2:)}?, leading to the MSE.
m The L{Y;; f(=:)} = |Yi — f(x;)], leading to the MAE.
m Examples of loss functions for binary classification problems Y € {0, 1} are:
® The - which is defined as
LIV f(@0)} = L(F; # 9,).
The predictions are obtained by dichotomizing the probabilities ¢; = I(p(x;) > 1/2).
= The or loss functions are defined as

LIV (@)} = —2 [I(Y; = 1) log (=) + 1(Y; = 0) log {1 — p(z:)}] .
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Regression under quadratic loss |

Error decomposition (reducible and irreducible)

In a regression problem, under a quadratic loss, of the in-sample prediction error
admits the following decomposition

E (¥ - f(@)Y] =E [{f(=:) + & - f(@))’]
= B [{f(2:) ~ f(@)P] + E@) +2E [& {f(2:) - f(@)}]
—E|[{{@) - f@)Y|+ & |

~—~

~~ “  irreducible
reducible

recalling that E(€?) = var(¢;) = 0 and for any i = 1,...,n.
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Regression under quadratic loss ||

® \We would like to make the as as possible, e.g., by choosing an “optimal”
degree of the polynomial p — 1 that minimizes it.

m | et us recall the previous decomposition

B[ (¥~ f@)F| = E[{f@) - f@)¥|+ & . i=1..n

~~ o irreducible
reducible

® The best case scenario is when the estimated function coincides with the mean of 17; i.e.

A

f(®:) = f(®:) = E(Y2),

but even in this (overly optimistic) situation, we would still commit mistakes, due to the presence of

€ (unless 0 = 0). Hence, the variance o? is called the

= Since we do not know f(;), we seek for an estimate f(x;) ~ f(;), in the attempt of minimizing
the reducible error.
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Classification under misclassification loss

® |n , under a misclassification loss, the in-sample prediction error is

EnF — [% S 2{¥; f(wi)}] = SR #£9)) = - P #9).
=1 1=1 1=1

n“

®m The above error is whenever ¢; corresponds to

Ui bayes = arg max IP’(?, =y) = [(p(x;) > 0.5),
y€{0,1}

which depends on the unknown probabilities p(x;).

® \We call the Bayes rate the optimal in-sample prediction error:

E

! Zg{ié;p(wi)}] = ) minp(@), 1 - pla)}:

= The Bayes rate is the error rate we would get if we knew the true p(x) and can be regarded as the
for classification problems.
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Bias-variance trade-off

® |n many textbooks, including A&S, the starting point of the analysis is the reducible error, because
it is the only one we can control and has a transparent interpretation.

® The reducible error measures the between the unknown function f(x) and its estimate
F(2) and therefore it is a of the goodness of fit.
® \What follows holds both for regression and problems.

Bias-variance decomposition

For any covariate value @, it holds the following bias-variance decomposition:

5 [(7@) ~ f@)] = E [f@) - f(@)] +yarli@),

N :
variance
Bias?
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Example: bias-variance in linear regression models

® |n regression problems the under squared loss is

BiF = o+ 3 (@)~ f@)] + 5 3 var{fe)}:

® |n ordinary least squares the above quantity can be computed in closed form, since each element of

the term equals

A

E | f(2i:8) - f(2:)] = 2] (X" X) ' X"f - f(2).

where f = (f(®1),..., f(2,))?. Note that if f(x) = &3, then the bias is zero.

®m Moreover, in ordinary least squares the term equals

2
g 2P

1 n A 9 N -
= ;var{f(wi;ﬁ)} - % ;wg’(xTX) ‘o = —tr(H) = 0" .
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If we knew f(z)...
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Bias-variance trade-off

® When p grows, the mean squared error first decreases and then it increases. In the example, the
is p = 6 (5th degree polynomial).

® The measures the ability of f(a:) to reconstruct the true f(). The bias is due to lack of
knowledge of the data-generating mechanism. It equals zero when E{f(x)} = f ().

®m The term can be reduced by increasing the flexibility of the model (e.g., by considering a high
value for p).

®m The variance measures the variability of the estimator f(ar:) and its tendency to follow random
fluctuations of the data.

® The variance increases with the model complexity.
B |t is not possible to minimize both the bias and the variance, there is a

® \We say that an estimator is the data if an increase in variance comes without important
gains in terms of bias.
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But since we do not know f(z)...

m \We just concluded that we must expect a trade-off between error and variance components. In
practice, however, we cannot do this because, of course, f(x) is

® A simple solution consists indeed in the observations in two parts: a
(y1,---,Ys) and a test set (¢y,...,Jn), having the same covariates x1, ..., z,.

m \We fit the model f using n observations of the training and we use it to predict the n observations
on the test set.

® This leads to an of the in-sample prediction error, i.e.:

B = Y (i fla).

1=1

® This is precisely what we already did with yesterday's and tomorrow’s datal
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MSE on training and test set (recap)

Error term -e- MSE train (yesterday's data) —®—- MSE test (tomorrow's data)

6e-04

4e-04

Error

2e-04

Oe+00

5 10 15 20 25
Model complexity (p)

Home page ;H:lll:l:%


https://tommasorigon.github.io/datamining

Optimism |

® |et us investigate this discrepancy between training and test more in-depth.

® |n regression problems, under a squared loss function, the is

ErrF = E(MSEest) = % En: E [{fﬁ; - f (wi)}z}

Similarly, the can be defined as follows
1 — R
EMSErain:_ E[E_ l 2i|-
(MSBawn) = - SE (%~ fa)

= We already know that E(MSE;,,;,) provides a very optimistic assessment of the model performance.
For example when p = n then E(MSE;;.;,) = 0.

= We call the difference between these two quantities:

Opt = E(MSEteSt) — E(MSEtrain).
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Optimism ||

m |t can be proved (see Exercises) that the has a very simple form:

Opt = % > cov(Y;, f(:))
i=1

m |f ordinary least squares are employed, then the predictions are HY , therefore

2 2 202 202
Opty, = ~tr{cov(Y, HY)} = ~tr{cov(Y,Y)H"} = %tr(H) - ‘;p .

® This leads to an estimate for the in-sample prediction error, known as C, of Mallows:

2ap

ErrF = MSE;ain + Optols = Z{yz wza }2

m |f o2 is unknown, then it must be using for instance s2.
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Cross-validation
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Another example: cholesterol data

120

. ® A drug called “cholestyramine” is administered to
. . ' n = 164 men.
. 4 - = \We observe the pair (z;,y;) for each man.
80 e °
] :

@ Lt cee e g ® The response y; is the
8 4 &) s : .
5 “« *, e J over the experiment.
9 . :O.. L * . . .
S 4 . ol *o, . ‘ ® The covariate x; is a measure of compliance.
® ° ° .30.. o °
§ * el e o = t . ® \We assume, as before, that the data are
(@] L4 [ ] e o ©® ° ® i -

. . :. . ., generated according to

e 03.0 .%..0 ° °
0 ° %, o Y | .
. . ot e Y, = f(z;) +e, i=1,...,n.
* ) ) ® The original data can be found here.
2 -1 0 1 2
Compliance
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Summary and notation (random-X)

m A slight change to the previous setup is necessary. In fact, there are no reasons to believe that the
compliance is a fixed covariate.

= \We consider a set of iid random variables (X1,Y7),...,(X,,Y,), whose realization is
(®1,Y1),---, (®n,yp). This time, the covariates are
® The main assumption is that these pairs are iid, namely:

iid

(X, Y,) S P, i=1,...,n

Conditionally on X; = @;, in we let as before

l/'L:.f(w't)—'_‘s’w 1=1,...,n,

where ¢€; are iid “ " terms with E(¢;) = 0 and var(e;) = o
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Expected prediction error

® |n this setting with random covariates, we want to minimize the
Brr = E | 2{7; f(X)}],
where (X,Y) ~ P is a new data point and f is an estimate using n observations.
= We can split the original set of data {1,...,n} into two groups Vipaim and Vie.
m \We call ftrain the estimate based on the data in Viain.
® Then, we obtain a (slightly biased) estimate of Err by using the empirical quantity:

1 Z g{gi;ftrain(wi)}'

| WeSt ‘ ie‘/test

Err =

®m The data-splitting strategy we used before is an effective tool for assessing the error. However, its
interpretation is changed: we are now estimating Err and not ErrF.
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MSE on training and test (cholesterol data)

Error
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Training, validation, and test |

® On many occasions, we may need to select several complexity parameters and compare hundreds of
models.

®m |f the same test set is used for such a task, the final assessment of the error is somewhat biased and
, because we are “learning” from the test set.

m |[f we are in a data-rich situation, the best approach is to divide the dataset into three parts randomly:
LI - used for the models:
® 3 validation set, used to estimate prediction error and perform model selection;
m g  for of the final chosen model.

m |deally, the test set should be kept in a “vault” and be brought out only at the end of the data
analysis.
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® There is no precise rule on how to select the size of these sets; a rule of thumb is given in the picture
below.

Trainingset  Validationset  Test set

N

Q \9 ,-»Q ’BQ N <,)Q o D BN QQ S

Made with Flourish < Create a chart

® The training, validation, and test setup reduces the number of observations we can use to fit the
models. It could be problematic if the sample size is relatively small.
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Cross-validation |

m A way to partially overcome the loss of efficiency of the training / test paradigm consists in
randomly splitting the data {1,...,n} in equal parts, say Vi,...,Vk.

® |n the K-fold cross-validation method we use the observations ¢ ¢ V}, to train the model and the

remaining observations ¢ € Vi to perform model selection.

® |n the following scheme, we let K = 5.

Made with Flourish « Create a hierarchy graph
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Cross-validation |l

® |n the K-fold cross validation we compute for each fold k we fit a model f_Vk(a:) without using the
observations of V.

® Hence, the model must be estimated , which could be computationally challenging.

® The error of each on the kth folds is computed as

— 1 A
Erry, = W Zg{yza f-vi (=)},

1€V

where |Vi| is the cardinality of V4, i.e. Vi =& n/K.

B \We summarize the above errors using the mean, obtaining the following for the
1 o 1o 1
Err=— Y Erry, = — — N Py v (s
= = k

Home page %wucn%


https://tommasorigon.github.io/datamining

40 / 55

Cross-validation 111

® An advantage of CV is that variance of the Monte Carlo estimate Err can be quantified.

® | et us define cross-validated “ " of our procedure as follows
ri =Ly fv(z)y, i=1,...,n

so that Err = 7. Does it coincide with the estimate Err presented in the previous slide? Recall that

= Then, a simple estimate for the standard error of Ert is

1 1|1 N
se:%sd(r):\/ﬁ n_liz:;(ri—r).

®m The above formula is often criticized for producing intervals that are |

= |ndeed, the estimate §€ of the standard deviation of Err assumes that the observed errors 71, ..., 7,
are independent, but this is false!
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Cross-validation IV (cholesterol data)

Error term —$- 10-fold MSE

600

9]
a
o

Mean Squared Error (MSE)
(@)1
o
o

450

: 3 12
Model complexity (p)
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Leave-one-out cross-validation

® The maximum possible value for K is n, the cross-validation (LOO-CV).
® The LOO-CV is hard to implement because it requires the estimation of n different models.

® However, in ordinary least squares there is a brilliant

LOO-CV (Ordinary least squares)
Let §_; = az'fB_Z be the leave-one-out predictions of a linear model and let h; = [H]|; and g; be

the leverages and the predictions of the full model. Then:

oA ':yi_@i
Yi —Y—i ]-_hz"

Therefore, the leave-one-out mean squared error is

= _INgs I (oG
Err =~ Y Erry, = —
w1 By nz(l_hz_)
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Generalized cross-validation

® An alternative to LOO-CV is the so-called (GCV), defined as

® The GCV is an approximate LOO-CV for ordinary least squares, in which the leverages h; are
replaced by their mean:

1 nh_p
w2

= For small > 0 it holds that (1 — z) 2 ~ 1 + 2z. Then, we will write

n . ~9 n .
GCV ~ % S {wi — f(@i H)Y + 22[’, 67 = %Z{yi — f(z:38)},
=1 1=1

revealing a sharp connection with the C, of Mallows.
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LOO-CV and GCV (cholesterol data)

Error term - GCV -e- LOO-CV
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On the choice of K

® Common choices are K =5 or K = 10. It is quite evident that a larger K requires more

computations.

m A K-fold CV with K =5 or K =10 is a (upwords) of Err because it uses less
observations than those available (either 4/5 or 9/10).

® The LOO-CV has a very small bias, since each fit uses n — 1 observations, but it has
being the average of n highly positively correlated quantities.

® |ndeed, the estimates f_i and f_i/ have n — 2 observations in common. Recall that the variance of

the sum is:
var(X +Y) = var(X) + var(Y) + 2cov(X,Y).

® Qverall, the choice is very much context-dependent.
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Information criteria
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Goodness of fit with a penalty term

®m The main statistical method for estimating unknown parameters of a model is the maximize the
log-likelihood £(0) = £(0;y1, ..., yn).

m However, we cannot pick the value of p that maximizes the log-likelihood (why not?)

® \We must consider the different number of parameters, introducing a
IC(p) = —2£(0) + penalty(p),

® The IC is called an . We select the number of parameters minimizing the IC.
® The choice of the specific penalty identifies a particular criterion.

® An advantage of IC is that they are based on the full dataset.
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The Akaike information criterion |

m Akaike suggested minimizing over p the expectation of the
KL(p(-; 60) || p(-50)) = / (Y';60) log p(Y'; 60)dY — / 0) log p(Y';0)dY,

between the “true” model p(Y;6y) with parameter 6y and the estimated model p(Y; 9).

® |n the above Kullback-Leibler, for any fixed p, the parameter 6 is replaced with its maximum
likelihood estimator § = §(Y), using the data Y = (Y1,...,Y,).

u , we can select p such that the expectation w.r.t. p(Y;6p)

A(p) = 24, [KL(p(360) | p(36)] 2 [ p(7560) log (¥ 60)a¥

\ 7

Does not depend on p

= —2 [y, [/P(f/; 0o) logp(f/;é)df,]
is . Unfortunately, we cannot compute nor minimize A(p) because 6y is unknown.
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The Akaike information criterion |l

® The theoretical quantity A(p) cannot be obtained. However, the quantity
AIC = —2¢4(6) + 2p,

namely the , is a good estimator of A(p).

® More formally, it can be proved that under technical conditions:
Eg,(AIC) + o(1) = A(p),

for n — oo.
® |n practice, we will select the value of p minimizing the AIC, which is typically quite easy.

m The factor 2 is just a convention, introduced to match the quantities of the usual asymptotic theory.
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The AIC for Gaussian linear models

m Let us assume that o2 is . Then the AIC for a Gaussian linear model is
. 1 <& .
AIC = —24(B) +2p = —2 {—— log (2mc?) — 252 (yi — w?ﬁ)z} + 2p
o

1=1

1 - 2po?

—nl 9 o2 4 . T2 , “P9

nlog (2ma?) + { ;(y z B) + = }

implying that for fixed values o2 the C, of Mallows and the Akaike's AIC are equivalent, i.e. they
lead to the same

m When o2 is unknown, then it is estimated, and the C, and AIC may be slightly different.
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AIC, AlICc, BIC

m Several other proposals followed Akaike's original work, differing in their assumptions and the way

they approximate certain quantities.

Criterion Author Penalty
AIC Akaike 2p
AIC, Sugiura, Hurvich-Tsay 2p + (gjrll))
BIC Akaike, Schwarz plogn
® The AIC, is an of the AIC and the differences tend to be negligible for

high values of n.
® The justification of BIC is comes from Bayesian statistics.

® Since logn > 2 for any n > 7, it means that the BIC penalty is typically than the one of

AIC and it favors more parsimonious models.
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AIC and BIC (cholesterol data)

Criterion —e= AIC -e— AlCc Criterion —e— BIC
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An optimistic summary

® |n the cholesterol dataset, the various indices produced !

® The BIC and and the 10—fold cross-validation selected p = 2 (linear model);

® The training/test split suggested p = 3 (quadratic model);
= All the others (LOO-CV, GCV, AIC and AIC,) concluded that p = 4 (cubic model).

® The good news is that all the above methods produced similar findings. For example, we are sure we
should choose p < 6.

® On the other hand, there is some , which is quite a common situation.

® |n this specific case, we may prefer p = 4, since it is based on the less-biased estimates of Err, such
as the LOO-CV.,

® However, this choice is debatable: another statistician may prefer the simpler linear model with p =
2.
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The cholesterol data: final model (p = 4)
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