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“Pluralitas non est ponenda sine
necessitate.”

William of Ockham

This unit will cover the following topics:

Bias-variance trade-off

Cross-validation

Information criteria

Optimism

You may have seen these notions before…

…but it is worth discussing the details of these ideas once
again.

They are indeed the foundations of statistical learning.
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Yesterday’s and tomorrow’s data
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Yesterday’s data

Let us presume that yesterday we observed 

 pairs of data .

Data were generated according to

with each  being the realization of .

The  are iid “error” terms, such that

 and .

Here  is a regression function (signal) that

we leave unspecified.

Tomorrow we will get a new . We wish to

predict  using .

n =
30 (x ​, y ​)i i

Y ​ =i f(x ​) +i ϵ ​, i =i 1, … ,n,

y ​i Y ​i

ϵ ​, … , ϵ ​1 n

E(ϵ ​) =i 0 var(ϵ ​) =i σ =2 10−4

f(x)

x

Y E(Y ) = f(x)
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Polynomial regression

The function  is unknown, therefore, it should be estimated.f(x)

A simple approach is using the tools of , such as polynomial regression:

namely  is approximated with a polynomial of degree  (i.e., Taylor expansions).

Unit A

f(x;β) = β ​ +1 β ​x +2 β ​x +3
2 ⋯ + β ​x ,p

p−1

f(x) p − 1

This model is linear in the parameters: ordinary least squares can be applied.

How do we choose the degree of the polynomial ?p − 1

Without clear guidance, in principle, any value of  could be appropriate.p ∈ {1, … ,n}

Let us compare the mean squared error (MSE) on yesterday’s data (training)

or alternatively , for different values of …

MSE ​ =train ​ ​{y ​ −
n

1

i=1

∑
n

i f(x ​; ​)} ,i β̂ 2

R ​train
2 p
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Yesterday’s data, polynomial regression
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Yesterday’s data, goodness of fit
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Yesterday’s data, polynomial interpolation ( )p = n
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Yesterday’s data, tomorrow’s prediction

The MSE decreases as the number of parameter increases; similarly, the  increases as a function of

. It can be proved that this always happens using ordinary least squares.

R2

p

One might be tempted to let  as large as possible to make the model more flexible…p

Taking this reasoning to the extreme would lead to the choice , so that

i.e., a perfect fit. This procedure is called interpolation.

p = n

MSE ​ =train 0, R ​ =train
2 1,

However, we are not interested in predicting yesterday data. Our goal is to predict tomorrow’s data,
i.e. a new set of  points:

using , where  is obtained using yesterday’s data.

n = 30

(x ​, ​ ​), … , (x ​, ​ ​),1 y~1 n y~n

​ ​ =ŷi f(x ​; ​)i β̂ ​β̂

Remark. Tomorrow’s r.v.  follow the same scheme as yesterday’s data.​, … , ​Y
~

1 Y
~
n
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Tomorrow’s data, polynomial regression
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Tomorrow’s data, goodness of fit
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Comments and remarks

The mean squared error on tomorrow’s data (test) is defined as

and similarly the . We would like the  to be as small as possible.

MSE ​ =test ​ ​{ ​ ​ −
n

1

i=1

∑
n

y~i f(x ​; ​)} ,i β̂ 2

R ​test
2 MSE ​test

For small values of , an increase in the degree of the polynomial improves the fit. In other words,

at the beginning, both the  and the  decrease.

p

MSE ​train MSE ​test

For larger values of , the improvement gradually ceases, and the polynomial follows random

fluctuations in yesterday’s data, which are not observed in the new sample.

p

An over-adaptation to yesterday’s data is called overfitting, which occurs when the training 
is low but the test  is high.

MSE ​train

MSE ​test

Yesterday’s dataset is available from the textbook (A&S) website:

Dataset http://azzalini.stat.unipd.it/Book-DM/yesterday.dat

True  f(x) http://azzalini.stat.unipd.it/Book-DM/f_true.R

Home page

12 / 55

http://azzalini.stat.unipd.it/Book-DM/yesterday.dat
http://azzalini.stat.unipd.it/Book-DM/f_true.R
https://tommasorigon.github.io/datamining


☠️ - Orthogonal polynomials

When performing polynomial regression, the poly command computes an orthogonal basis of the
original covariates  through the QR decomposition:

Polynomial regression becomes numerically unstable when  (raw = TRUE, original polynomials)

and  (raw = FALSE, orthogonal polynomials).

(1,x,x ,… ,x )2 p−1

fit <- lm(y.yesterday ~ poly(x, degree = 3, raw = FALSE), data = dataset)1
X <- model.matrix(fit)2

colnames(X) = c("Intercept","x1","x2","x3")3
round(t(X) %*% X, 8)4

          Intercept x1 x2 x3
Intercept        30  0  0  0
x1                0  1  0  0
x2                0  0  1  0

x3                0  0  0  1

p ≥ 13
p ≥ 25
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☠️ - Lagrange interpolating polynomials

If the previous code does not work for , how was the plot of  computed?

It turns out that for  there exists an alternative way of finding the ordinary least square

solution, based on Lagrange interpolating polynomials, namely:

Interpolating polynomials are clearly unsuitable for regression purposes, but may have interesting
applications in other contexts.

p ≥ 25 this slide

p = n

​(x) =f̂ ​ ℓ ​(x)y ​, ℓ ​(x) =
i=1

∑
n

i i i ​ ​ .
k=i

∏
x ​ − x ​i k

x − x ​k
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Errors, trade-offs, and optimism
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Summary and notation (fixed- )X

In the previous example, we consider two sets of random variables:

The training set (yesterday) , whose realization is .Y ​, … ,Y ​1 n y ​, … , y ​1 n

The test set (tomorrow) , whose realization is .​, … , ​Y
~

1 Y
~
n ​ ​, … , ​ ​y~1 y~n

The covariates  in this scenario are deterministic. This is the so-called fixed-
design, which is a common assumption in regression models.

x ​ =i (x ​, … ,x ​)i1 ip
T X

We also assume that the random variables  and  are independent.Y ​i ​Y
~
i

In regression problems we customarily assume that

where  and  are iid “error” terms, with  and .

Y ​ =i f(x ​) +i ϵ ​, ​ =i Y
~
i f(x ​) +i ​, i =ϵ~i 1, … ,n,

ϵ ​i ​ϵ~i E(ϵ ​) =i 0 var(ϵ ​) =i σ2

In classification problems the relationship between  and the Bernoulli r.v.  is

where  is monotone transformation, such as the inverse logit.

x ​i Y ​ ∈i {0, 1}

P(Y =i 1) = p(x ​) =i g{f(x ​)}, i =i 1, … ,n,

g(x) : R → (0, 1)

Home page

16 / 55

https://tommasorigon.github.io/datamining


The in-sample prediction error

The training data is used to estimate a function of the covariates . We hope our predictions
work well on the test set.

​(x ​)f̂ i

A measure of quality for the predictions is the in-sample prediction error:

where  is a loss function. The “F” is a reminder of the fixed-  design.

ErrF = E ​ ​ L { ​; ​(x ​)} ,[
n

1

i=1

∑
n

Y
~
i f̂ i ]

L { ​; ​(x ​)}Y
~
i f̂ i X

The expectation is taken with respect to training random variable , implicitly appearing in

, and the new data points .

Y ​, … ,Y ​1 n

​(x)f̂ ​, … , ​Y
~

1 Y
~
n

The in-sample prediction error is measuring the average “discrepancy” between the new data points
and the corresponding predictions based on the training.
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Loss functions

Examples of loss functions for regression problems  are:Y ∈ R

The quadratic loss , leading to the MSE.L {
​
;

​
(x ​

)} =Y
~
i f̂ i { ​ −Y

~
i ​

(x ​
)}f̂ i

2

The absolute loss , leading to the MAE.L { ​; ​(x ​)} =Y
~
i f̂ i ∣ ​ −Y

~
i ​(x ​)∣f̂ i

Examples of loss functions for binary classification problems  are:Y ∈ {0, 1}

The misclassification loss, which is defined as

The predictions are obtained by dichotomizing the probabilities .

L { ​; ​(x ​)} =Y
~
i f̂ i I( ​ =Y

~
i  ​ ​).ŷi

​ ​ =ŷi I( ​(x ​) >p̂ i 1/2)

The deviance or cross-entropy loss functions are defined as

L { ​; ​(x ​)} =Y
~
i f̂ i −2 I(Y ​ = 1) log ​(x ​) + I(Y ​ = 0) log {1 − ​(x ​)} .[ i p̂ i i p̂ i ]
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Regression under quadratic loss I

In a regression problem, under a quadratic loss, each element of the in-sample prediction error
admits the following decomposition

recalling that  and for any .

Error decomposition (reducible and irreducible)

​ ​

E { ​ − ​(x ​)}[ Y
~
i f̂ i

2] = E {f(x ​) + ​ − ​(x ​)}[ i ϵ~i f̂ i
2]

= E {f(x ​) − ​(x ​)} + E( ​) + 2 E ​ {f(x ​) − ​(x ​)}[ i f̂ i
2] ϵ~i

2 [ϵ~i i f̂ i ]

= ​ + ​,

reducible

​E { ​(x ​) − f(x ​)}[ f̂ i i
2]

irreducible

​σ2

E( ​) =ϵ~i
2 var( ​) =ϵ~i σ2 i = 1, … ,n
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Regression under quadratic loss II

We would like to make the mean squared error as small as possible, e.g., by choosing an “optimal”
degree of the polynomial  that minimizes it.p − 1

Let us recall the previous decomposition

E { ​ − ​(x ​)} =[ Y
~
i f̂ i

2] ​ +

reducible

​E { ​(x ​) − f(x ​)}[ f̂ i i
2] ​, i =

irreducible

​σ2 1 … ,n.

The best case scenario is when the estimated function coincides with the mean of , i.e. 

but even in this (overly optimistic) situation, we would still commit mistakes, due to the presence of
 (unless ). Hence, the variance  is called the irreducible error.

​Y
~
i

​(x ​) =f̂ i f(x ​) =i E( ​),Y
~
i

​ϵ~i σ =2 0 σ2

Since we do not know , we seek for an estimate , in the attempt of minimizing

the reducible error.
f(x ​)i ​(x ​) ≈f̂ i f(x ​)i
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Classification under misclassification loss

In classification problems, under a misclassification loss, the in-sample prediction error is

ErrF = E ​ ​ L { ​; ​(x ​)} =[
n

1

i=1

∑
n

Y
~
i f̂ i ] ​ ​ E{I( ​ =

n

1

i=1

∑
n

Y
~
i  ​ ​)} =ŷi ​ ​ P( ​ =

n

1

i=1

∑
n

Y
~
i  ​ ​).ŷi

The above error is minimized whenever  corresponds to Bayes classifier

which depends on the unknown probabilities .

​ ​ŷi

​ ​ =ŷi,bayes arg ​ P( ​ =
y∈{0,1}
max Y

~
i y) = I(p(x ​) >i 0.5),

p(x ​)i

We call the Bayes rate the optimal in-sample prediction error:

E ​ ​ L { ​; p(x ​)} =[
n

1

i=1

∑
n

Y
~
i i ] ​ ​ min{p(x ​), 1 −

n

1

i=1

∑
n

i p(x ​)}.i

The Bayes rate is the error rate we would get if we knew the true  and can be regarded as the

irreducible error for classification problems.

p(x)
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Bias-variance trade-off

In many textbooks, including A&S, the starting point of the analysis is the reducible error, because
it is the only one we can control and has a transparent interpretation.

The reducible error measures the discrepancy between the unknown function  and its estimate

 and therefore it is a natural measure of the goodness of fit.

What follows holds both for regression and classification problems.

f(x)
​(x)f̂

For any covariate value , it holds the following bias-variance decomposition:

Bias-variance decomposition

x

E { ​(x) − f(x)} =[ f̂ 2] ​ +

Bias2

​E ​(x) − f(x)[f̂ ]
2

​.

variance

​var{ ​(x)}f̂
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Example: bias-variance in linear regression models

In regression problems the in-sample prediction error under squared loss is

​

ErrF = σ + ​ ​ E ​(x ) − f(x ​) + ​ ​ var{ ​(x ​)}.2

n

1

i=1

∑
n

[f̂ i i ]
2

n

1

i=1

∑
n

f̂ i

In ordinary least squares the above quantity can be computed in closed form, since each element of
the bias term equals

where . Note that if , then the bias is zero.

E f(x ​; ​) − f(x ​) =[ i β̂ i ] x ​
(X X) X f −i

T T −1 T f(x ​).i

f = (f(x ​), … , f(x ​))1 n
T f(x) = x βT

Moreover, in ordinary least squares the variance term equals

​ ​ var{f(x ​; ​)} =
n

1

i=1

∑
n

i β̂ ​ ​x ​(X X) x ​ =
n

σ2

i=1

∑
n

i
T T −1

i ​ tr(H) =
n

σ2
σ ​ .2

n

p

Home page

23 / 55

https://tommasorigon.github.io/datamining


If we knew …f(x)
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Bias-variance trade-off

When  grows, the mean squared error first decreases and then it increases. In the example, the

theoretical optimum is  (5th degree polynomial).

p

p = 6

The bias measures the ability of  to reconstruct the true . The bias is due to lack of
knowledge of the data-generating mechanism. It equals zero when .

​(x)f̂ f(x)
E{ ​(x)} =f̂ f(x)

The bias term can be reduced by increasing the flexibility of the model (e.g., by considering a high
value for ).p

The variance measures the variability of the estimator  and its tendency to follow random
fluctuations of the data.

​(x)f̂

The variance increases with the model complexity.

It is not possible to minimize both the bias and the variance, there is a trade-off.

We say that an estimator is overfitting the data if an increase in variance comes without important
gains in terms of bias.
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But since we do not know …f(x)

We just concluded that we must expect a trade-off between error and variance components. In
practice, however, we cannot do this because, of course,  is unknown.f(x)

A simple solution consists indeed in splitting the observations in two parts: a training set
 and a test set , having the same covariates .(y ​, … , y ​)1 n ( ​ ​, … , ​ ​)y~1 y~n x ​, … ,x ​1 n

We fit the model  using  observations of the training and we use it to predict the  observations

on the test set.

​f̂ n n

This leads to an unbiased estimate of the in-sample prediction error, i.e.:

=ErrF ​ ​ L {
​ ​
;

​
(x ​

)}.
n

1

i=1

∑
n

y~i f̂ i

This is precisely what we already did with yesterday’s and tomorrow’s data!
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MSE on training and test set (recap)
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Optimism I

Let us investigate this discrepancy between training and test more in-depth.

In regression problems, under a squared loss function, the in-sample prediction error is

ErrF = E(MSE ​) =test ​ ​ E { ​ − ​(x ​)}
n

1

i=1

∑
n

[ Y
~
i f̂ i

2]

Similarly, the in-sample training error can be defined as follows

E(MSE ​) =train ​ ​
E {Y ​ − ​(x ​)} .

n

1

i=1

∑
n

[ i f̂ i
2]

We already know that  provides a very optimistic assessment of the model performance.
For example when  then .

E(MSE ​)train

p = n E(MSE ​) =train 0

We call optimism the difference between these two quantities:

Opt = E(MSE ​) −test E(MSE ​).train
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Optimism II

It can be proved (see Exercises) that the optimism has a very simple form:

Opt = ​ ​ cov(Y ​, ​(x ​))
n

2

i=1

∑
n

i f̂ i

If ordinary least squares are employed, then the predictions are , thereforeHY

Opt ​ =ols ​ tr{cov(Y ,HY )} =
n

2
​ tr{cov(Y ,Y )H } =

n

2 T
​ tr(H) =

n

2σ2
​ .

n

2σ p2

This leads to an estimate for the in-sample prediction error, known as  of Mallows:C ​p

=ErrF MSE ​ +train Opt ​ =ols ​ ​
{y ​

−
n

1

i=1

∑
n

i f(x ​
;

​
)} +i β̂ 2

​
.

n

2σ p2

If  is unknown, then it must be estimated using for instance .σ2 s2
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Optimism III
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Cross-validation
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Another example: cholesterol data

A drug called “cholestyramine” is administered to
 men.

We observe the pair  for each man.

The response  is the decrease in cholesterol
level over the experiment.

The covariate  is a measure of compliance.

We assume, as before, that the data are
generated according to

The original data can be .

n = 164

(x ​, y ​)i i

y ​i

x ​i

Y ​ =i f(x ​) +i ϵ ​, i =i 1, … ,n.

found here
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Summary and notation (random- )X

A slight change to the previous setup is necessary. In fact, there are no reasons to believe that the
compliance is a fixed covariate.

We consider a set of iid random variables , whose realization is

. This time, the covariates are random.

(X ​,Y ​), … , (X ​,Y ​)1 1 n n

(x ​, y ​), … , (x ​, y ​)1 1 n n

The main assumption is that these pairs are iid, namely:

(X ​,Y ​)i i ∼iid P, i = 1, … ,n.

Conditionally on , in regression problems we let as before

where  are iid “error” terms with  and .

X ​ =i x ​i

Y ​ =i f(x ​) +i ϵ ​, i =i 1, … ,n,

ϵ ​i E(ϵ ​) =i 0 var(ϵ ​) =i σ2

Home page

33 / 55

https://tommasorigon.github.io/datamining


Expected prediction error

In this setting with random covariates, we want to minimize the expected prediction error:

where  is a new data point and  is an estimate using  observations.

Err = E L { ; ​( )} ,[ Y
~

f̂ X
~

]

( , ) ∼X
~

Y
~

P ​f̂ n

We can randomly split the original set of data  into two groups  and .{1, … ,n} V ​train V ​test

We call  the estimate based on the data in .​ ​f̂train V ​train

Then, we obtain a (slightly biased) estimate of  by using the empirical quantity:Err

=Err ​ ​ L { ​ ​; ​ ​(x ​)}.
∣V ​∣test

1

i∈V ​test

∑ y~i f̂train i

The data-splitting strategy we used before is an effective tool for assessing the error. However, its
interpretation is changed: we are now estimating  and not .Err ErrF
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MSE on training and test (cholesterol data)
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Training, validation, and test I

On many occasions, we may need to select several complexity parameters and compare hundreds of
models.

If the same test set is used for such a task, the final assessment of the error is somewhat biased and
too optimistic, because we are “learning” from the test set.

If we are in a data-rich situation, the best approach is to divide the dataset into three parts randomly:

a training set, used for fitting the models;

a validation set, used to estimate prediction error and perform model selection;

a test set, for assessment of the error of the final chosen model.

Ideally, the test set should be kept in a “vault” and be brought out only at the end of the data
analysis.
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Training, validation, and test II

There is no precise rule on how to select the size of these sets; a rule of thumb is given in the picture
below.

Training set Validation set Test set

0
100908070605040302010

1. Option

2. Option

3. Option

505050

757575

676767

252525 252525

252525

333333

The training, validation, and test setup reduces the number of observations we can use to fit the
models. It could be problematic if the sample size is relatively small.

Made with Flourish • Create a chart
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Cross-validation I

A way to partially overcome the loss of efficiency of the training / test paradigm consists in
randomly splitting the data  in equal parts, say .

In the -fold cross-validation method we use the observations  to train the model and the

remaining observations  to perform model selection.

In the following scheme, we let .

TRAININGTRAININGTRAININGTRAININGTEST

TRAININGTRAININGTRAININGTESTTRAINING

TRAININGTRAININGTESTTRAININGTRAINING

TRAININGTESTTRAININGTRAININGTRAINING

TESTTRAININGTRAININGTRAININGTRAINING

ITER 5

ITER 4

ITER 3

ITER 2

ITER 1

{1, … ,n} V ​, … ,V ​1 K

K i ∈/ V ​k

i ∈ V ​k

K = 5

Made with Flourish • Create a hierarchy graph
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Cross-validation II

In the -fold cross validation we compute for each fold  we fit a model  without using the

observations of .

K k ​ ​(x)f̂−V ​k

V ​k

Hence, the model must be estimated  times, which could be computationally challenging.K

The error of each on the th folds is computed as

where  is the cardinality of , i.e. .

k

​ =ErrV ​k
​ ​ L {y ​; ​ ​(x ​)},

∣V ​∣k

1

i∈V ​k

∑ i f̂−V ​k i

∣V ​∣k V ​k V ​ ≈k n/K

We summarize the above errors using the mean, obtaining the following estimate for the expected
prediction error:

=Err ​ ​ ​ =
K

1

k=1

∑
K

ErrV ​k
​ ​ ​ ​ L {y ​; ​ ​(x ​)} .

K

1

k=1

∑
K

[
∣V ​∣k

1

i∈V ​k

∑ i f̂−V ​k i ]

Home page

39 / 55

https://tommasorigon.github.io/datamining


Cross-validation III

An advantage of CV is that variance of the Monte Carlo estimate  can be quantified.Err

Let us define cross-validated “residuals” of our procedure as follows

so that . Does it coincide with the estimate  presented in the previous slide? Recall that
…

r ​ =i L {y ​; ​ ​(x ​)}, i =i f̂−V ​k i 1, … ,n.

=Err r̄ Err
V ​ ≈k n/K

Then, a simple estimate for the standard error of  isErr

=se ​ sd(r) =
​n

1
​ ​.
​n

1
​ ​(r ​ − )

n − 1
1

i=1

∑
n

i r̄ 2

The above formula is often criticized for producing intervals that are too narrow!

Indeed, the estimate  of the standard deviation of  assumes that the observed errors 

are independent, but this is false!

se Err r ​, … , r ​1 n
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Cross-validation IV (cholesterol data)
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Leave-one-out cross-validation

The maximum possible value for  is , the leave-one-out cross-validation (LOO-CV).

The LOO-CV is hard to implement because it requires the estimation of  different models.

However, in ordinary least squares there is a brilliant computational shortcut.

K n

n

Let  be the leave-one-out predictions of a linear model and let  and  be

the leverages and the predictions of the full model. Then:

Therefore, the leave-one-out mean squared error is

LOO-CV (Ordinary least squares)

​ ​ =ŷ−i x ​ ​ ​i
T β̂−i h ​ =i [H] ​ii ​ ​ŷi

y ​ −i ​ ​ =ŷ−i ​ , i =
1 − h ​i

y ​ − ​ ​i ŷi 1, … ,n.

=Err ​ ​ =
n

1

i=1

∑
n

ErrV ​i
​ ​ ​ .

n

1

i=1

∑
n

(
1 − h ​i

y ​ − ​ ​i ŷi )
2
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Generalized cross-validation

An alternative to LOO-CV is the so-called generalized cross validation (GCV), defined as

GCV = =Err ​ ​ .
n

1

i=1

∑
n

(
1 − p/n
y ​ − ​ ​i ŷi )

2

The GCV is an approximate LOO-CV for ordinary least squares, in which the leverages  are

replaced by their mean:

hi

​ ​h ​ =
n

1

i=1

∑
n

i ​ .
n

p

For small  it holds that . Then, we will write

revealing a sharp connection with the  of Mallows.

x > 0 (1 − x) ≈−2 1 + 2x

GCV ≈ ​ ​{y ​ −
n

1

i=1

∑
n

i f(x ​; ​)} +i β̂
2

​ , =
n

2 pσ̂2
σ̂2

​ ​{y −
n

1

i=1

∑
n

i f(x ​; ​)} ,i β̂
2

C ​p
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LOO-CV and GCV (cholesterol data)
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On the choice of K

Common choices are  or . It is quite evident that a larger  requires more

computations.
K = 5 K = 10 K

A -fold CV with  or  is a (upwords) biased estimate of  because it uses less

observations than those available (either  or ).

K K = 5 K = 10 Err
4/5 9/10

The LOO-CV has a very small bias, since each fit uses  observations, but it has high variance,

being the average of  highly positively correlated quantities.

n − 1
n

Indeed, the estimates  and  have  observations in common. Recall that the variance of

the sum is:

​ ​f̂−i ​ ​f̂−i′ n − 2

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ).

Overall, the choice is very much context-dependent.
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Information criteria
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Goodness of fit with a penalty term

The main statistical method for estimating unknown parameters of a model is the maximize the
log-likelihood .ℓ(θ) = ℓ(θ; y ​, … , y ​)1 n

However, we cannot pick the value of  that maximizes the log-likelihood (why not?)p

We must consider the different number of parameters, introducing a penalty:

IC(p) = −2ℓ( ) +θ̂ penalty(p),

The  is called an information criterion. We select the number of parameters minimizing the .IC IC

The choice of the specific penalty identifies a particular criterion.

An advantage of  is that they are based on the full dataset.IC
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The Akaike information criterion I

Akaike suggested minimizing over  the expectation of the Kullback-Leibler divergence:

between the “true” model  with parameter  and the estimated model .

p

KL(p(⋅; θ ​) ∣∣0 p(⋅; )) =θ̂ p( ; θ ​) log p( ; θ ​)d −∫ Y
~

0 Y
~

0 Y
~

p( ; θ ​) log p( ; )d ,∫ Y
~

0 Y
~

θ̂ Y
~

p(Y ; θ ​)0 θ ​0 p(Y ; )θ̂

In the above Kullback-Leibler, for any fixed , the parameter  is replaced with its maximum
likelihood estimator , using the data .

p θ

=θ̂ (Y )θ̂ Y = (Y ​, … ,Y ​)1 n

Equivalently, we can select  such that the expectation w.r.t. 

is minimized. Unfortunately, we cannot compute nor minimize  because  is unknown.

p p(Y ; θ ​)0

​ ​

Δ(p) = 2 E ​ KL(p(⋅; θ ​) ∣∣ p(⋅; )) − ​θ ​0 [ 0 θ̂ ]

Does not depend on p

​2 p( ; θ ​) log p( ; θ ​)d∫ Y
~

0 Y
~

0 Y
~

= −2 E ​ p( ; θ ​) log p( ; )dθ ​0 [∫ Y
~

0 Y
~

θ̂ Y
~

]

Δ(p) θ ​0
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The Akaike information criterion II

The theoretical quantity  cannot be obtained. However, the quantity

namely the Akaike information criterion, is a good estimator of .

Δ(p)

AIC = −2ℓ( ) +θ̂ 2p,

Δ(p)

More formally, it can be proved that under technical conditions:

for .

E ​(AIC) +θ ​0 o(1) = Δ(p),

n → ∞

In practice, we will select the value of  minimizing the , which is typically quite easy.p AIC

The factor  is just a convention, introduced to match the quantities of the usual asymptotic theory.2
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The AIC for Gaussian linear models

Let us assume that  is known. Then the  for a Gaussian linear model is

implying that for fixed values  the  of Mallows and the Akaike’s  are equivalent, i.e. they

lead to the same minimum.

σ2 AIC

​ ​

AIC = −2ℓ( ​) + 2p = −2 − ​ log (2πσ ) − ​ ​(y ​ − x ​ ​) + 2pβ̂ {
2
n 2

2σ2

1

i=1

∑
n

i i
T β̂ 2}

= n log (2πσ ) + ​ ​ ​(y ​ − x ​ ​) + ​

2

σ2

n
{
n

1

i=1

∑
n

i i
T β̂ 2

n

2pσ2
}

= n log (2πσ ) + ​C ​,2

σ2

n
p

σ2 C ​p AIC

When  is unknown, then it is estimated, and the  and  may be slightly different.σ2 C ​p AIC
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AIC, AICc, BIC

Several other proposals followed Akaike’s original work, differing in their assumptions and the way
they approximate certain quantities.

Criterion Author Penalty

Akaike

Sugiura, Hurvich-Tsay

Akaike, Schwarz

The  is an higher order correction of the  and the differences tend to be negligible for
high values of .

The justification of  is comes from Bayesian statistics.

Since  for any , it means that the  penalty is typically stronger than the one of

 and it favors more parsimonious models.

AIC 2p

AIC ​c 2p + ​

n−(p+1)
2p(p+1)

BIC p logn

AIC ​c AIC
n

BIC

logn > 2 n > 7 BIC
AIC
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AIC and BIC (cholesterol data)
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An optimistic summary

In the cholesterol dataset, the various indices produced different results!

The BIC and and the fold cross-validation selected  (linear model);10− p = 2

The training/test split suggested  (quadratic model);p = 3

All the others (LOO-CV, ,  and ) concluded that  (cubic model).GCV AIC AIC ​c p = 4

The good news is that all the above methods produced similar findings. For example, we are sure we
should choose .p ≤ 6

On the other hand, there is some uncertainty, which is quite a common situation.

In this specific case, we may prefer , since it is based on the less-biased estimates of , such

as the LOO-CV.

p = 4 Err

However, this choice is debatable: another statistician may prefer the simpler linear model with 

.

p =
2
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The cholesterol data: final model ( )p = 4
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