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This unit will cover the following topics:

Best subset regression

Principal component regression

Ridge regression

Lasso, LARS, elastic-net

The common themes are called variable selection and shrinkage
estimation.

The issue we face is the presence of a high number  of covariates

that are potentially irrelevant.

This problem is quite challenging when the ratio  is large.

In the extreme case , is there any hope of fitting a meaningful

model?
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A biostatistical motivation

Home page

3 / 100

https://tommasorigon.github.io/datamining


The prostate dataset

The prostate cancer data investigates the relationship between the prostate-specific antigen and a

number of clinical measures in men about to receive a prostatectomy.

This  has been used in the original paper by Tibshirani (1996) to present the lasso. A
description is given in Section 3.2.1 of HTF (2009).

dataset

We want to predict the logarithm of a prostate-specific antigen (lpsa) as a function of:

logarithm of the cancer volume (lcavol);

logarithm of the prostate weight (lweight);

age each man (age);

logarithm of the benign prostatic hyperplasia amount (lbph);

seminal vesicle invasion (svi), a binary variable;

logarithm of the capsular penetration (lcp);

Gleason score (gleason), an ordered categorical variable;

Percentage of Gleason scores  and  (pgg45).4 5
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A glimpse of the prostate dataset

Summarizing, there are in total  variables that can be used to predict the antigen lpsa.

We centered and standardized all the covariates before the training/test split.

There are  observations in the training set and  in the test set.

8

n = 67 30

Original dataset Standardized dataset

Rows: 97

Columns: 10
$ lcavol  <dbl> -0.5798185, -0.9942523, -0.5108256, -1.2039728, 0.7514161, -1.…
$ lweight <dbl> 2.769459, 3.319626, 2.691243, 3.282789, 3.432373, 3.228826, 3.…
$ age     <int> 50, 58, 74, 58, 62, 50, 64, 58, 47, 63, 65, 63, 63, 67, 57, 66…
$ lbph    <dbl> -1.3862944, -1.3862944, -1.3862944, -1.3862944, -1.3862944, -1…
$ svi     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…

$ lcp     <dbl> -1.3862944, -1.3862944, -1.3862944, -1.3862944, -1.3862944, -1…
$ gleason <int> 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 7, 6, 6, 6, 6,…
$ pgg45   <int> 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 5, 5, 0, 30, 0, 0, 0,…
$ lpsa    <dbl> -0.4307829, -0.1625189, -0.1625189, -0.1625189, 0.3715636, 0.7…
$ train   <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE,…
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Correlation matrix of prostate
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The regression framework

In this unit, we will assume that the response variables  (lpsa) are obtained as

where  are iid random variables with  and .

Y ​i

Y ​ =i f(x ​) +i ϵ ​,i

ϵ ​i E(ϵ ​) =i 0 var(ϵ ​) =i σ2

Unless specifically stated, we will not assume the Gaussianity of the errors  nor make any specific

assumption about , which could be non-linear.
ϵ ​i

f(x)

In practice, we approximate the true  using a linear model, e.g., by considering the following

function

in which the regression coefficients must be estimated.

f(x)

f(x ​;β ​,β) =i 0 β ​ +0 β ​x ​ +1 i1 ⋯ + β ​x ​ =p ip β ​ +0 x ​β,i
T

In this unit, the intercept  will often play a special role therefore we use a slightly different

notation compared to .

β ​0

Unit A
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The variable selection problem

Including a lot of covariates in the model is not necessarily a good thing!

Indeed, some variables are likely to be irrelevant:

they might be correlated with other covariates and therefore redundant;

they could be uncorrelated with the response lpsa.

If we use all the  available covariates, the estimated  might have a high variance,

without an important gain in terms of bias, i.e., a large mean squared error.

We are looking for a simpler model having, hopefully, a lower mean squared error.

p = 8 f(x; ​, ​)β ​0̂ β̂

These considerations are particularly relevant in cases in which !p > n
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A naïve approach: (ab)using p-values

(Intercept) lcavol lweight age lbph svi lcp gleason pgg45

estimate 2.46 0.68 0.26 -0.14 0.21 0.31 -0.29 -0.02 0.27

std.error 0.09 0.13 0.10 0.10 0.10 0.12 0.15 0.15 0.15

statistic 27.60 5.37 2.75 -1.40 2.06 2.47 -1.87 -0.15 1.74

p.value 0.00 0.00 0.01 0.17 0.04 0.02 0.07 0.88 0.09

It is common practice to use the p-values to perform model selection in a stepwise fashion.

However, what if the true  were not linear?

In many data mining problems, a linear model is simply an approximation of the unknown  and

hypothesis testing procedures are ill-posed.

f(x)

f(x)

Even if the true function were linear, using p-values would not be a good idea, at least if done
without appropriate multiplicity corrections.

The above p-values are meant to be used in the context of a single hypothesis testing problem, not
to make iterative choices.
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The predictive culture

“All models are approximations. Essentially, all models are wrong, but some
are useful.”

George E. P. Box

If the focus is on prediction, we do not necessarily care about selecting
the “true” set of parameters.

In many data mining problems, the focus is on minimizing the prediction
errors.

Hence, often we may accept some bias (i.e., we use a “wrong” but useful
model), if this leads to a reduction in variance.

George E. P. Box
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Overview of this unit

In this unit, we will discuss two “discrete” methods:

Best subset selection and its greedy approximations: forward / backward regression;

Principal components regression (PCR).

Best subset selection perform variable selection, whereas principal components regression reduces
the variance of the coefficients.

These “discrete” methods can be seen as the naïve counterpart of more advanced and continuous
ideas that are presented in the second part of the Unit.

Shrinkage Variable selection

Discrete Principal component regression Best subset selection,
stepwise

Continuous Ridge regression Relaxed Lasso

Finally, the lasso and the elastic-net perform both shrinkage and variable selection.
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Overview of the final results

Least squares Best subset PCR Ridge Lasso

(Intercept) 2.465 2.477 2.455 2.467 2.468

lcavol 0.680 0.740 0.287 0.588 0.532

lweight 0.263 0.316 0.339 0.258 0.169

age -0.141 . 0.056 -0.113 .

lbph 0.210 . 0.102 0.201 .

svi 0.305 . 0.261 0.283 0.092

lcp -0.288 . 0.219 -0.172 .

gleason -0.021 . -0.016 0.010 .

pgg45 0.267 . 0.062 0.204 .
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Best subset selection
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Best subset selection

Let us return to our variable selection problem.

In principle, we could perform an exhaustive search considering all the  possible models and then
selecting the one having the best out-of-sample predictive performance.

2p

1. Let  be the null model, which contains no predictors, i.e. set .

2. For , do:

i. Estimate all the  models that contain exactly  covariates;

ii. Identify the “best” model with  covariates having the smallest ; call it .

A model with more variables has lower training error, namely  by
construction. Hence, the optimal subset size  must be chosen e.g., via cross-validation.

Best subset procedure

M ​0 ​ ​ =ŷi ​ ​ =β̂0 ​ȳ

k = 1, … , p

​(
k

p) k

k MSE ​k,train M ​k

MSE ​ ≤k+1,train MSE ​k,train

k
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Step 1. and 2. of best subset selection
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The “best” models 

The output of the best subset selection, on the training set is:

M ​, … , M ​1 p

         lcavol lweight age lbph svi lcp gleason pgg45

1  ( 1 ) "*"    " "     " " " "  " " " " " "     " "  
2  ( 1 ) "*"    "*"     " " " "  " " " " " "     " "  
3  ( 1 ) "*"    "*"     " " " "  "*" " " " "     " "  
4  ( 1 ) "*"    "*"     " " "*"  "*" " " " "     " "  
5  ( 1 ) "*"    "*"     " " "*"  "*" " " " "     "*"  

6  ( 1 ) "*"    "*"     " " "*"  "*" "*" " "     "*"  
7  ( 1 ) "*"    "*"     "*" "*"  "*" "*" " "     "*"  
8  ( 1 ) "*"    "*"     "*" "*"  "*" "*" "*"     "*"  

The above table means that the best model with  uses the variable lcavol, whereas when 

 the selected variables are lcavol and lweight, and so on.

k = 1 k =
2

Note that, in general, these models are not necessarily nested, i.e. a variable selected at step  is

not necessarily included at step . Here they are, but it is a coincidence.

k

k + 1

What is the optimal subset size  in terms of out-of-sample mean squared error?k
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The wrong way of doing cross-validation

Consider a regression problem with a large number of predictors (relative to ) such as the

prostate dataset.

n

A typical strategy for analysis might be as follows:

1. Screen the predictors: find a subset of “good” predictors that show a reasonably strong
correlation with the response;

2. Using this subset of predictors (e.g., lcavol, lweight and svi), build a regression model;

3. Use cross-validation to estimate the prediction error of the model of the step 2.

Is this a correct application of cross-validation?

If your reaction was “this is absolutely wrong!”, it means you correctly understood the principles of
cross-validation.

If you thought this was an ok-ish idea, you may want to read Section 7.10.2 of HTF (2009), called
“the wrong way of doing cross-validation”.
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Step 3. of best subset selection via cross-validation

By applying the “1 standard error rule”, we select , i.e. lcavol and lweight.k = 2
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Comments and computations

The correct way of doing cross-validation requires that the best subset selection is performed on
every fold, possibly obtaining different “best” models with the same size.

Best subset selection is conceptually appealing, but it has a major limitation. There are

models to consider, which is computationally prohibitive!

​ ​ =
k=1

∑
p

(
k

p
) 2p

There exist algorithms (i.e. leaps and bounds) that make this feasible for .p ≈ 30

Recently,  proposed the usage of a mixed integer optimization formulation,
allowing  to be in the order of hundreds.

Bertsimas et al., 2016
p

Despite these advances, this problem remains computationally very expensive. See also the recent
paper  for additional considerations and comparisons.Hastie et al. (2020)
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Forward regression

Forward regression is greedy approximation of best subset selection that produces a sequence of
nested models. It is computationally feasible and can be applied when .p > n

1. Let  be the null model, which contains no predictors, i.e. set .

2. For , do:

i. Consider the  models that augment the predictors in  with one additional

covariate.

ii. Identify the “best” model among the above  competitors having the smallest 

and call it .

Forward regression

M ​0 ​ ​ =ŷi ​ ​ =β̂0 ​ȳ

k = 0, … , min(n − 1, p − 1)

p − k M ​k

p − k MSE ​k,train

M ​k

It can be shown that the identification of the optimal new predictor can be efficiently computed
e.g. using the QR decomposition.
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Backward regression

When , an alternative greedy approach is backward regression, which also produces a

sequence of nested models.

p < n

1. Let  be the full model, which contains all the predictors.

2. For , do:

i. Consider the  models that contain all but one of the predictors in , for a total of 

predictors.

ii. Identify the “best” model  among these  models having the smallest .

Backward regression

M ​p

k = p, p − 1, … , 1

k M ​k k − 1

M ​k k MSE ​k,train

It can be shown that the dropped predictor is the one with the lowest absolute -score or,

equivalently, the highest p-value.

Z
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Forward, backward and best subset

In the prostate dataset, forward, backward and best subset selection all gave precisely the same
path of solutions on the full training set.
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Pros and cons of subset selection strategies

Best subset selection is appealing because of its conceptual simplicity.

Best subset and forward regression can be used, if computationally feasible, even when .

Pros

p > n

Subset strategies tend to select models that are “too simple”, especially in presence of correlated
variables.

Despite the recent advances, when  is large best subset selection is computationally unfeasible.

Leaps and bounds computational strategies can not be easily generalized to GLMs.

Cons

p
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Principal components regression
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Data compression

At this point, we established that many covariates = many
problems.

Instead of selecting the “best” variables, let us consider a different
perspective.

We consider a compressed version of the covariates that has smaller
dimension  but retains most information.

Intuitively, we want to reduce the variance by finding a good
compression without sacrificing too much bias.

The main statistical tool, unsurprisingly, will be the celebrated
principal components analysis (PCA).

We will compress the covariate information  using a smaller set of
variables , i.e. the principal components.

k

X

Z
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The intercept term

In principal component regression and other related methods (ridge, lasso, and elastic-net), we do
not wish to compress the intercept term . We would like to “remove it”.β ​0

Let us consider a reparametrization of the linear model, in which . This is equivalent

to a linear model with centered predictors:

α = β ​ +0 βx̄T

​ ​

f(x ​;α,β)i = β ​ + x ​β = α − β + x ​β = α + (x ​ − ) β.0 i
T x̄T

i
T

i x̄ T

The estimates for  can be now computed separately and in two steps.(α,β)

The estimate of the intercept with centered predictors is . In fact:=α̂ ​ȳ

=α̂ arg ​ ​{y ​ −
α∈R
min

i=1

∑
n

i α − (x ​ −i ) β} =x̄ T 2
​ ​{y ​ −

n

1

i=1

∑
n

i (x ​ −i ) β} =x̄ T
​ ​y ​.

n

1

i=1

∑
n

i

Then, the estimate of  can be obtained considering a linear model without intercept:

employed to predict the centered responses .

β

f(x ​;β) =i (x ​ −i ) β,x̄ T

y ​ −i ​ȳ
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Centering the predictors I

In principal components regression, we replace original data  with their centered

version:

Y ​ =i f(x ​) +i ϵ ​i

x ​ −ij ​, y ​ −x̄j i ​, i =ȳ 1, … ,n;   j = 1, … , p.

In the end, we will make predictions in the original scale, which requires a simple final adjustment.
One need to compute the intercept term

and then compute the predictions via the formula .

​ ​ =β̂0 ​ −ȳ ​,x̄β̂

​ ​ +β̂0 x ​ ​ =i
T β̂ +α̂ x ​ ​i

T β̂

Remark. The centering operation is a mathematical trick that facilitate the exposition but is
unconsequential from an estimation point of view.
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Centering the predictors II

In principal components regression, we assume the data have been previously centered:

Centering assumption

​ ​y ​ =
n

1

i=1

∑
n

i 0, ​ ​x ​ =
n

1

i=1

∑
n

ij 0, j = 1, … , p.

Using centered predictors means that we can focus on linear models without intercept:

f(x ​;β) =i x ​β ​ +i1 1 ⋯ + x ​β ​ =ip p x ​β.i
T

Under the centering assumption, the covariance matrix of the data is simply

S = ​X X.
n

1 T
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Singular value decomposition (SVD)

Let  be a  matrix. Then, its full form singular value decomposition is:

with  and where:

the  matrix  is orthogonal, namely: ;

the  matrix  is orthogonal, namely: ;

the  matrix  has diagonal entries , for , and zero entries

elsewhere;

The real numbers  are called singular values.

If one or more , then the matrix  is singular.

X n × p

X = UDV =T
​d ​ ​ ​,

j=1

∑
m

ju
~
jv
~
j
T

m = min{n, p}

n × n U = ( ​, … , ​)u~1 u~n U U =T UU =T I ​n

p × p V = ( ​, … , ​)v~1 v~p V V =T V V =T I ​p

n × p D [D] ​ =jj d ​j j = 1, … ,m

d ​ ≥1 d ​ ≥2 ⋯ ≥ d ​ ≥m 0

d ​ =j 0 X
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Principal component analysis I

Le us assume that  and that , recalling that  is a centered matrix.p < n rk(X) = p X

Using SVD, the matrix  can be expressed as

where  is a  diagonal matrix with entries .

X XT

X X =T (UDV ) UDV =T T T V D U UDV =T T T VΔ V ,2 T

Δ =2 D DT p × p d ​, … , d ​1
2

p
2

This equation is at the heart of principal component analysis (PCA). Define the matrix

whose columns  are called principal components.

Z = XV = UD,

​, … , ​z~1 z~p

The matrix  is orthogonal, because , which is diagonal.Z Z Z =T D U UD =T T Δ2

Moreover, by definition the entries of  are linear combination of the original variables:

The columns  of  are sometimes called loadings.

Z

z ​ =ij x ​v ​ +i1 i1 ⋯ + x ​v ​ =ip ip x ​ ​.i
Tv~j

​, … , ​v~1 v~p V
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Principal component analysis II

Principal components form an orthogonal basis of , but they are not a “random” choice, and they

do not coincide with them Gram-Schmidt basis of .

X

Unit A

Indeed, the first principal component is the linear combination having maximal variance:

​ =v~1 arg ​ var(Xv) =
v∈Rp
max arg ​ ​v X Xv,  subject to  v v =

v∈Rp
max

n

1 T T T 1.

The second principal component maximizes the variance under the additional constraint of being
orthogonal to the former. And so on.

The values  are the eigenvalues of  and correspond to the rescaled

variances of each principal component, that is .

d ​ ≥1
2 d ​ ≥2

2 ⋯ ≥ d ​ >p
2 0 X XT

var( ​) =z~j ​ ​/n =z~j
Tz~j d ​/nj

2

Hence, the quantity  measures the amount of total variance captured by principal

components.

d ​/ ​ d ​j
2 ∑j =1′

p
j′
2
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Principal component analysis: prostate data
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Principal components regression (PCR)

We use the first  principal components to predict the responses  viak ≤ p y ​i

f(z ​; γ) =i γ ​z ​ +1 i1 ⋯ + γ ​z ​, i =k ik 1, … ,n,

Because of orthogonality, the least squares solution is straightforward to compute:

​ ​ =γ̂j ​ =
​ ​z~j

Tz~j

​yz~j
T

​ ​y, j =
d ​j

2
1
z~j
T 1, … , k.

The principal components are in order of importance and effectively compressing the information
contained in  using only  variables.X k ≤ p

When , we are simply rotating the original matrix , i.e. performing no compression.

The predicted values coincide with OLS.

k = p X = ZV

The number  is a complexity parameter which should be chosen via information criteria or cross-

validation.

k
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Selection of : cross-validationk
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Shrinkage effect of principal components I

A closer look at the PCR solution reveals some interesting aspects. Recall that:

​ =z~j X ​ =v~j d ​ ​, j =ju
~
j 1, … , p.

The predicted values for the centered responses  of the PCR with  components are:y k

​ ​ ​ ​ =
j=1

∑
k

z~j γ̂j X ​ ​ ​ ​ =
j=1

∑
k

v~j γ̂j X ​ ​,  where  ​ ​ =β̂pcr β̂pcr ​ ​ ​ ​.
j=1

∑
k

v~j γ̂j

This representation highlights two important aspects:

It is possible to express the PCR solution in the original scale, for better interpretability;

The vector  is a constrained solution, being a combination of  coefficients, therefore

reducing the complexity of the model and shrinking the coefficients.

​ ​β̂pcr k ≤ p

When , then the  estimate coincide with the scaled loading vector ;k = 1 ​ ​β̂pcr ​ ​ =β̂pcr ​ ​ ​γ̂1v
~

1

When  then the  coincides with ordinary least squares (see Exercises).k = p ​ ​β̂pcr
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Shrinkage effect of principal components II

The variance of , assuming iid errors  in the original data, is:​ ​β̂pcr ϵ ​i

var( ​ ​) =β̂pcr σ ​ ​ ​ ​.2

j=1

∑
k

d ​j
2

1
v~jv~j

T

In case of multicollinearity, then the last principal components will have a small variance, i.e., a
small . Its removal, therefore, drastically reduces the variance of .d ​j

2
​ ​β̂pcr

Furthermore, the predicted values for the centered data can be expressed as

X ​ ​
=β̂pcr ​ ​ ​ ​ =

j=1

∑
k

z~j γ̂j ​ ​ ​ =
j=1

∑
k

z~j
​ ​z~j

Tz~j

​yz~j
T

​d ​ ​ ​ ​ =
j=1

∑
k

ju
~
j
d ​j

2
d ​j

​ ​u~ j
Tu~ j

​yu~ j
T

​ ​ ​y.
j=1

∑
k

u~ ju~ j
T

The columns of , namely the vectors  are the normalized principal components.U ​u~ j

Hence, we are shrinking the predictions towards the main principal directions.
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Shrinkage effect of principal components III
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Pros and cons of PCR

Principal components are a natural tool to reduce the complexity of the data, especially in the
presence of highly correlated variables.

If you transform back the coefficients, there is a clean interpretation of the impact of the
covariates on the response.

Principal components might be interesting in their own right, as they describe the dependence
structure among covariates.

Pros

All the variables are used for predictions, which could be computationally demanding.

The shrinkage effect on the regression coefficients is somewhat indirect and not smooth.

Cons
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Ridge regression
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Shrinkage methods

Shrinkage methods are popular tools for handling the issue of multiple
variables.

Shrinkage regularizes the estimates, constraining the size of the
regression coefficients.

This leads to biased estimator with, hopefully, lower variance.

As a byproduct, the induced regularization procedure enables
estimation even when .

The first method that has been proposed is called ridge regression.
The lasso and the elastic-net are other examples.

p > n
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The ridge regularization method

The ridge estimator is the most common shrinkage method and is the minimizer of

​(y ​ −
i=1

∑
n

i β ​ −0 x ​β) subject to ​β ​ ≤i
T 2

j=1

∑
p

j
2 s.

When the complexity parameter  is small, the coefficients are explicitly shrinked, i.e. biased,

towards zero.

On the other hand, if  is large enough, then the ridge estimator coincides with ordinary least

squares.

s

s

In ridge regression, the variability of the estimator is explicitly bounded, although this comes with
some bias. The parameter  controls the bias-variance trade-off.s

The intercept term  is not penalized because there are no strong reasons to believe that the mean

of  equals zero. However, as before, we want to “remove the intercept”.

β ​0

y ​i
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Centering and scaling the predictors I

The ridge solutions are not equivariant under scalings of the input, so one normally standardizes
the input to have unit variance if they are not on the same scale.

Moreover, as for PCR, we can estimate the intercept using a two-step procedure:

The reparametrization  is equivalent to centering the predictors;

The estimate for the centered intercept is ;

The ridge estimate can be obtained by considering a model without intercept, using centered
responses and predictors.

α = β ​ +0 βx̄T

=α̂ ​ȳ

Hence, in ridge regression, we replace original data  with their standardized version:

where  is the sample variance.

Y ​ =i f(x ​) +i ϵ ​i

​ , y ​ −
s ​j

x ​ − ​ij x̄j
i ​, i =ȳ 1, … ,n;   j = 1, … , p.

s ​ =j
2 n ​(x ​ −−1 ∑i=1

n
ij ​)x̄j

2
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Centering and scaling the predictors II

It is easy to show (see Exercises) that the coefficients expressed in the original scale are

Thus, the predictions on the original scale are .

​ ​ =β̂0 ​ −ȳ ​ , ​ ​ =x̄β̂scaled-ridge β̂scaled-ridge diag(1/s ​, … , 1/s ​) ​ ​.1 p β̂ridge

​ ​ +β̂0 x ​ ​ ​ =i
T β̂scaled-ridge ​ +ȳ x ​ ​ ​i

T β̂ridge

For ridge problems, we will assume the data have been previously standardized, namely

​ y ​ =
n

1

i=1

∑
n

i 0, ​ ​x ​ =
n

1

i=1

∑
n

ij 0, ​ ​x ​ =
n

1

i=1

∑
n

i
2 1 j = 1, … , p.

We will say that the ridge estimator  is the minimizer of following system​ ​β̂ridge

​(y ​ −
i=1

∑
n

i x ​β) subject to ​β ​ ≤i
T 2

j=1

∑
p

j
2 s.
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Lagrange multipliers and ridge solution

The ridge regression problem can be equivalently expressed in its , which greatly
facilitates computations. The ridge estimator  is the minimizer of

where  is a complexity parameter controlling the penalty. It holds that .

Lagrangian form
​ ​β̂ridge

​(y ​ −
i=1

∑
n

i x ​β) +i
T 2 λ β ​ =

j=1

∑
p

j
2

​ +

least squares

​∣∣y −Xβ∣∣2 ​,

ridge penalty

​λ∣∣β∣∣2

λ > 0 s = ∣∣ ​ ​∣∣β̂ridge
2

When  then  whereas when  we get .λ = 0 ​ ​
=β̂ridge ​ ​β̂ols λ → ∞ ​ ​

=β̂ridge 0

For any  design matrix , not necessarily of full-rank, the ridge estimator is

Such an estimator always exists and is unique (even when ).

Ridge regression estimator

n × p X

​ ​ =β̂ridge (X X +T λI ​) X y.p
−1 T

p > n

Home page

44 / 100

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://tommasorigon.github.io/datamining


The geometry of the ridge solution
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The ridge path
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Comments on the ridge path

The values of  are in somewhat arbitrary scale. The ridge penalty has a concrete effect starting

from  or so.

The variable lcavol is arguably the most important, followed by lweight and svi, which are those
receiving less shrinkage compared to the others.

λ

λ/n > 0.1

The coefficient of age, gleason, and lcp, is negative at the beginning and then becomes positive for

large values of .

This indicate that their negative value in  was probably a consequence of their correlation with
other variables.

λ

​ ​β̂ols

There is an interesting similarity between this plot and the one of principal component regression… is
it a coincidence?
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Shrinkage effect of ridge regression I

Considering, once again, the singular value decomposition, we get:

where  is the so-called hat matrix of ridge regression.

​ ​

X ​ ​β̂ridge = X(X X + λI ​) X yT
p

−1 T

= UDV [V (D D + λI ​)V ] (UDV ) yT T
p

T −1 T

= UDV V (D D + λI ​) V V D U yT T
p

−1 T T T

= UD(D D + λI ​) D U yT
p

−1 T T

= H ​y = ​ ​ ​ ​y,ridge
j=1

∑
p

u~ j
d ​ + λj

2

d ​j
2

u~ j
T

H ​ =ridge X(X X +T λI ​) Xp
−1 T

This means that ridge regression shrinks the principal directions by an amount that depends on the
eigenvalues .

In other words, it smoothly reduces the impact of the redundant information.

d ​j
2
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Shrinkage effect of ridge regression II

A sharp connection with principal components regression is therefore revealed.

Compare the previous formula for  with  for .X ​ ​β̂ridge the one we previously obtained X ​ ​β̂pcr

More explicitly, for ridge regression we will have that

whereas for principal components regression with  components we get

​ ​ =β̂ridge V diag ​ , … , ​ U y.(
d ​ + λ1

2
d ​1

d ​ + λp
2

d ​p ) T

k

​ ​ =β̂pcr V diag ​ , … , ​ , 0, … , 0 U y.(
d ​1

1
d ​k

1
) T

Both operate on the singular values, but where principal component regression thresholds the
singular values, ridge regression shrinks them.
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Bias-variance trade-off

The ridge regression add some bias to the estimates, but it reduces their variance.

The variance of , assuming iid errors  in the original scale with variance , results:

whose diagonal elements are always smaller than those of .

​ ​β̂ridge ϵ ​i σ2

var(
​ ​

) =β̂ridge σ ​ ​ ​ ,2

j=1

∑
p

(d ​ + λ)j
2 2

d ​j
2

v~jv~j
T

var( ​ ​)β̂ols

The above formula highlights that ridge will be very effective in presence highly correlated
variables, as they will be “shrunk” away by the penalty.

What typically happens is that such a reduction in variance compensate the increase in bias,
especially when  is large relative to .p n
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A historical perspective I

The ridge regression estimator was originally proposed by Hoerl and Kennard (1970) with a quite
different motivation in mind.

In linear models, the estimate of  is obtained by solving the normal equations

which could be ill-conditioned.

β

(X X)β =T X y,T

In other words, the condition number

might be very large, leading to numerical inaccuracies, since the matrix  is numerically
singular and therefore not invertible in practice.

κ(X X) =T
​ ,

d ​p
2

d ​1
2

X XT
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A historical perspective II

Ridge provides a remedy for ill-conditioning, by adding a “ridge” to the diagonal of ,

obtaining the modified normal equations

X XT

(X X +T λI ​)β =p X y.T

The condition number of the modified  matrix becomes(X X +T λI ​)p

κ(X X +T λI ​) =p ​ .
λ + d ​p

2

λ + d ​1
2

Notice that even if , i.e. the matrix  is singular, then the condition number will be finite as

long as .

d ​ =p 0 X

λ > 0

This technique is known as Tikhonov regularization, after the Russian mathematician Andrey
Tikhonov.

Home page

52 / 100

https://tommasorigon.github.io/datamining


A historical perspective III

Figure 1 of the original paper by Hoerl and Kennard (1970), displaying the bias-variance trade-off.
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On the choice of 

The penalty parameter  determines the amount of bias and variance of  and therefore it must

be carefully estimated.

λ

λ ​ ​β̂ridge

Minimizing the loss  over  is a bad idea, because it would always lead to ,

corresponding to .

Indeed,  is a complexity parameter and, like the number of covariates, should be selected using

information criteria or training/test and cross-validation.

∣∣y −X ​ ​∣∣β̂ridge
2 λ λ = 0

​ ​ =β̂ridge ​ ​β̂ols

λ

Suppose we wish to use an information criteria such as the AIC or BIC, of the form

We need a careful definition of degrees of freedom that is appropriate in this context.

The current definition of degrees of freedom, i.e., the number of non-zero coefficients, is not
appropriate for ridge regression because it would be equal to  for any value of .

IC(p) = −2ℓ( ​ ​) +β̂ridge penalty(“degrees of freedom").

p λ
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Effective degrees of freedom I

Let us recall that the original data are  and that the optimism for a generic estimator

 is defined as the following average of covariances

which is equal to  in ordinary least squares.

Y ​ =i f(x ​) +i ϵ ​i

​
(x)f̂

Opt = ​ ​ cov(Y ​, ​(x ​)),
n

2

i=1

∑
n

i f̂ i

Opt ​ =ols (2σ p)/n2

Let  be an estimate for the regression function  based on the data . The

effective degrees of freedom are defined as

Effective degrees of freedom

​
(x)f̂ f(x) Y ​, … ,Y ​1 n

df = ​ ​ cov(Y ​, ​(x ​)).
σ2

1

i=1

∑
n

i f̂ i
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Effective degrees of freedom II

The effective degrees of freedom of ordinary least squares and principal component regression
are

where the additional term corresponds to the intercept.

df ​ =ols p + 1, df ​ =pcr k + 1,

After some algebra, one finds that the effective degrees of freedom of ridge regression are

df ​ =ridge 1 + tr(H ​) =ridge 1 + ​ ​ .
j=1

∑
p

d ​ + λj
2

d ​j
2

Using the above result, we can plug-in  into the formula of the  of Mallows:

where the residual variance is estimated as .

df ​ridge C ​p

=ErrF ​ ​(y ​ −
n

1

i=1

∑
n

i x ​ ​ ​) +i
T β̂scaled-ridge

2
​ df ​.

n

2σ̂2

ridge

=σ̂2 (n − df ​) ​(y ​ −ridge
−1 ∑i=1

n
i x ​ ​ ​)i

T β̂scaled-ridge
2
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Effective degrees of freedom III
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Cross-validation for ridge regression I

Training/test strategies and cross-validation are also valid tools for selecting .

Most statistical software packages use a slightly different parametrization for , as they minimize

where the penalty parameter .

λ

λ

​ ​(y ​ −
n

1

i=1

∑
n

i x ​β) +i
T 2

​β ​,λ
~

j=1

∑
p

j
2

=λ
~

λ/n

This parametrization does not alter the estimate of  but is more amenable for cross-validation
as the values of  can be compared across datasets with different sample sizes.

​ ​β̂ridge

λ
~

Different R packages have different defaults about other aspects too.

For instance, the R package glmnet uses  and also standardizes the response  and then
transforms back the estimated coefficients into the original scale.

λ
~

y
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Cross-validation for ridge regression II
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The ridge estimate

Home page

60 / 100

https://tommasorigon.github.io/datamining


Further properties of ridge regression

Ridge regression has a transparent Bayesian interpretation, since the penalty can be interpreted as
a Gaussian prior on .β

If two variables are identical copies , so are the corresponding ridge coefficients 
.

​ =x~j ​x~ℓ ​ ​ =β̂j,ridge

​ ​β̂ℓ,ridge

Adding  fake observations all equal to  to the response and then fitting ordinary least squares

leads to the ridge estimator. This procedure is called data augmentation.

p 0

A computationally convenient formula for LOO cross-validation is available, which requires the
model to be estimated only once, as in least squares.

In the  case there are specific computational strategies that can be employed; see Section

18.3.5 of Hastie, Tibshirani and Friedman (2011).

p > n
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Pros and cons of ridge regression

Ridge regression trades some bias in exchange of a lower variance, often resulting in more
accurate predictions.

The ridge solution always exists and is unique, even when  or in presence of perfect

collinearity.

For fixed values of , efficient computations are available using QR and Cholesky

decompositions.

Pros

p > n

λ

In ridge regression, all variables are used. This is in contrast with best subset selection.

Cons

Home page

62 / 100

https://tommasorigon.github.io/datamining


The lasso
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Looking for sparsity

Signal sparsity is the assumption that only a small number of predictors
have an effect, i.e.,

In this case we would like our estimator  to be sparse, meaning that
 for many .

Sparse estimators are desirable because:

perform variable selection and improve the interpretability of the
results;

Speed up the computations of the predictions because fewer variables
are needed.

Best subset selection is sparse (but computationally unfeasible), the ridge
estimator is not.

Robert Tibshirani

β ​ =j 0, for most j ∈ {1, … , p}.

​β̂

​ ​ =β̂j 0 j ∈ {1, … , p}
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The least absolute selection and shrinkage operator

The lasso appeared in the highly influential paper of Tibshirani (1996). It is a method that performs
both shrinkage and variable selection

The lasso estimator is the minimizer of the following system

therefore when the complexity parameter  is small, the coefficients of  are shrinked and when

 is large enough , as in ridge regression.

​(y ​ −
i=1

∑
n

i β ​ −0 x ​β) subject to ​ ∣β ​∣ ≤i
T 2

j=1

∑
p

j s.

s ​ ​β̂lasso

s ​ ​ =β̂lasso ​ ​β̂ols

The lasso is deceptively similar to ridge. However, the change from a quadratic penalty to an
absolute value has a crucial sparsity implication.

The intercept term  is not penalized, as for ridge, because we can remove it by centering the

predictors.

β ​0
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Centering and scaling the predictors

Thus, as for ridge regression, we will center and scale predictors and response.

It is easy to show that the coefficients expressed in the original scale are

Thus, the predictions on the original scale are .

​ ​ =β̂0 ​ −ȳ ​ ​, ​ ​ =x̄β̂lasso β̂scaled-lasso diag(1/s ​, … , 1/s ​) ​ ​.1 p β̂lasso

​ ​
+β̂0 x ​ ​ ​

=i
T β̂scaled-lasso ​ +ȳ x ​ ​ ​i

T β̂lasso

For lasso problems, we will assume the data have been previously standardized, namely

​ ​y ​ =
n

1

i=1

∑
n

i 0, ​ ​x ​ =
n

1

i=1

∑
n

ij 0, ​ ​x ​ =
n

1

i=1

∑
n

i
2 1 j = 1, … , p.

We will say that the lasso estimator  is the minimizer of following system​ ​β̂lasso

​(y ​ −
i=1

∑
n

i x ​β) subject to ​ ∣β ​∣ ≤i
T 2

j=1

∑
p

j s.
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Lagrange multipliers and lasso solution

The lasso problem can be equivalently expressed in its Lagrangian form, which is more amenable
for computations.

Having removed the intercept, the lasso estimator  is the minimizer of

where  is a complexity parameter controlling the penalty.

​ ​β̂lasso

​ +

least squares

​​ ​(y ​ − x ​β)
2n
1

i=1

∑
n

i i
T 2

​

lasso penalty

​λ ​ ∣β ​∣
j=1

∑
p

j

λ > 0

When  the penalty term disappears and . On the other hand, there exists a finite

value of  such that .

For any intermediate value  we get a combination of shrinked but positive coefficients,

and a set of coefficients whose value is exactly zero.

λ = 0 ​ ​ =β̂lasso ​ ​β̂ols

λ ​ <0 ∞ ​ ​ =β̂lasso 0

0 < λ < λ ​0

Unfortunately, there is no closed-form expression for the lasso solution.
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The geometry of the lasso solution
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Lasso with a single predictor I

To gain some understanding, let us consider the single-predictor scenario, in which

​ ​ =β̂lasso arg ​ ​ ​(y ​ −
β

min
2n
1

i=1

∑
n

i x ​β) +i
2 λ∣β∣.

This simple problem admits an explicit expression (see Exercises), which is

​ ​ =β̂lasso ​ ​ ​

⎩
⎨

⎧cov(x, y) − λ,
0

cov(x, y) + λ,

if cov(x, y) > λ

if ∣cov(x, y)∣ ≤ λ

if cov(x, y) < −λ

The above solution can be written as , where  is the soft-

thresholding operator and  is the positive part of a number (pmax(0, x)).

​ ​ =β̂lasso S ​( ​ ​)λ β̂ols S ​(x) =λ sign(x)(∣x∣ − λ) ​+

(⋅) ​+

For ridge regression (including a  factor in the least squares penalty; see ) we get:n−1 here

​ ​ =β̂ridge ​ cov(x, y) =
λ + 1

1
​ ​ ​ =

λ + 1
1

β̂ols ​ ​ ​x ​y ​.
λ + 1

1
n

1

i=1

∑
n

i i
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Lasso with a single predictor II
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Soft-thresholding and lasso solution

The single predictor special case provides further intuition of why the lasso perform variable
selection and shrinkage.

Ridge regression induces shrinkage in a multiplicative fashion, and the regression coefficients reach
zero as .

Conversely, the lasso shrinks the ordinary least squares in an additive manner, truncating them at
zero after a certain threshold.

λ → ∞

Even though we do not have a closed-form expression for the lasso solution  when the covariates
, the main intuition is preserved: lasso induces sparsity!

​ ​β̂lasso

p > 1
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The lasso path
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Least angle regression I

Least angle regression (LAR) is a “democratic” version of forward stepwise regression.

Forward stepwise builds a model sequentially, adding one variable at a time. At each step, the best
variable is included in the active set and then the least square fit is updated.

LAR uses a similar strategy, but any new variable contributes to the predictions only “as much” as it
deserves.

The LAR algorithm provides a way to compute the entire lasso path efficiently at the cost of a
full least-squares fit.

LAR sheds light on important statistical aspects of the lasso. A nice LAR - lasso - boosting
relationship is established, which is computationally and conceptually sound.

Main result of LAR
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Least angle regression algorithm (LAR)

1. After centering and standardization, define the residuals  and let .r ​ =0 y ​ =β̂(0) 0

2. Find the predictor  most correlated with the residuals , i.e. having the largest value for
. Call this value  and let  be the active set.

​x~j r ​0

cov( ​, r ​) =x~j 0 cov( ​,y)x~j λ ​0 A = {j}

i. Move  from  towards its least squares solution by decreasing , i.e. 

keeping track of the residuals . It can be shown that

β ​(λ)j ​ ​ =β̂j
(0) 0 λ

β ​(λ) =j ​ cov( ​,y), 0 <
λ ​0

λ ​ − λ0
x~j λ ≤ λ ,0

r(λ) = y − ​β ​(λ)x~j j

∣cov( ​, r(λ))∣ =x~j λ.

ii. Identify the value  such that another variable  has as much correlation with the

residuals as . Call this value , obtaining: .

λ > 0 x ​ℓ

x ​j λ ​1 ∣cov( ​, r(λ ​))∣ =x~ℓ 1 λ ​1

iii. Obtain the estimate  and set . Define the new active
set  and let  be the corresponding matrix.

​ =β̂(1) (0, … ,β ​(λ ​), … , 0)j 1 r ​ =1 r(λ ​)1

A = {j, ℓ} X ​A
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Least angle regression algorithm (LAR)

3. For , do:k = 2, … ,K = min(n − 1, p)

i. Move the coefficients  from  towards their least squares solution:

keeping track of . The covariances with the residuals are tied:

β ​(λ)A ​ ​β̂A

(k−1)

β ​(λ) =A ​ ​ +β̂A

(k−1)
​ (X ​X ​) X ​r ​, 0 <

λ ​k−1

λ ​ − λk−1
A
T

A
−1

A
T

k−1 λ ≤ λ ​,k−1

r(λ) = y −X ​β ​(λ)A A

∣cov( ​, r(λ))∣ =x~j λ, j ∈ A.

ii. Identify the largest value  such that another variable  has as much correlation with

the residuals. Call this value , so that .

λ > 0 x ​ℓ

λ ​k ∣cov( ​, r(λ ​))∣ =x~ℓ k λ ​k

iii. Set the estimate  with entries  and zero otherwise. Let . Define
the new active set  and design matrix .

​β̂(k)
​ ​ =β̂A

(k)
β ​(λ ​)A k r ​ =k r(λ ​)k

A ← A ∪ {ℓ} X ​A

4. Return the pairs .{λ ​, ​ } ​k β̂(k)
0
K
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Least angle regression: remarks

The coefficients in LAR change in a piecewise fashion, with knots in . The LAR path coincides

almost always with the lasso. Otherwise, a simple modification is required:

λ ​k

3.ii+. If a nonzero coefficient crosses zero before the next variable enters, drop it from  and
recompute the joint least-squares direction using the reduced set.

LAR: lasso modification

A

In Step 3.ii, we do not take small steps and then recheck the covariances. Instead, the new
variable  “catching up” and the value  can be identified with some algebra.

The LAR algorithm is extremely efficient, requiring the same order of computation of least
squares. The main bottleneck is Step 3.i, but QR decomposition can be exploited.

Practical details

x ​ℓ λ ​k
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☠️ - Lasso and LAR relationship

What follows is heuristic intuition for why LAR and lasso are so similar. By construction, at any
stage of the LAR algorithm, we have that:

where  indicates the sign of the covariance.

cov( ​, r(λ)) =x~j ​ ​x ​{y ​ −
n

1

i=1

∑
n

ij i x ​β(λ)} =i
T λs ​, j ∈j A,

s ​ ∈j {−1, 1}

On the other hand, let  be the active set of the lasso. For these variables, the penalized lasso
loss is differentiable, obtaining:

which coincide with the LAR solution if , which is almost always the case.

A ​lasso

cov( ​, r(λ)) =x~j ​ ​x ​{y ​ −
n

1

i=1

∑
n

ij i x ​β(λ)} =i
T λsign(β ​), j ∈j A ​,lasso

s ​ =j sign(β ​)j
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Uniqueness of the lasso solution

The lasso can be computed even when . In these cases, will it be unique?p > n

If  has full rank , which implies , then  is uniquely determined.

If all the values of  are different, then  is uniquely determined, even when .

The predictions  are always uniquely determined.

Three uniqueness results (Tibshirani, 2013)

X rk(X) = p p ≤ n ​ ​β̂lasso

X ​ ​β̂lasso p > n

X ​ ​β̂lasso

Non-uniqueness may occur in the presence of discrete-valued data. It is of practical concern only
whenever  and if we are interested in interpreting the coefficients.

Much more general sufficient conditions for the uniqueness of  are known, but they are quite
technical and complex to check in practice.

p > n

​ ​β̂lasso
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The degrees of freedom of the lasso

In ridge regression, the effective degrees of freedom have a simple formula.

Miraculously, for the lasso with a fixed penalty parameter , the number of nonzero coefficients

 is an unbiased estimate of the degrees of freedom.

λ

∣A ​(λ)∣lasso

Suppose  has full rank  and  follows a Gaussian law. Then:

Under further regularity conditions, the above relationship is exact if we consider the LAR active
set, therefore implicitly using a different set of  values for any fit:

Degrees of freedom (Zhou, Hastie, and Tibshirani, 2007, Tibshirani and Taylor, 2012)

X rk(X) = p y

df ​ =lasso 1 + E∣A ​(λ)∣.lasso

λ

df ​ =lar 1 + ∣A∣.
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Effective degrees of freedom of LAR and best subset
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Cross-validation for lasso
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The LAR (lasso) estimate
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Other properties of LAR and lasso

Bayesian interpretation: the penalty can be interpreted as a Laplace prior on .β

As mentioned, under certain conditions the LAR algorithm can be seen as the limiting case of a
boosting procedure, in which small corrections to predictions are iteratively performed.

The nonnegative garrote (Breiman, 1995) is a two-stage procedure with a close relationship to the
lasso. Breiman’s paper was the inspiration for Tibshirani (1996).

There is a large body of theoretical work on the behavior of the lasso, focused on:

the mean-squared-error consistency of the lasso;

the recovery of the nonzero support set of the true regression parameters, sometimes called
sparsistency.

The interested reader work may have a look at the (very technical) Chapter 11 of Hastie, Tibshirani
and Wainwright (2015)
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Summary of LARS and lasso

LAR and Lasso are extremely efficient approaches that perform both variable selection and
shrinkage at the same time.

Lasso produces a parsimonious model.

Pros

Lasso can be applied when , but there might be uniqueness issues. Moreover, the lasso

selects at most  variables.

If there is a group of variables with high pairwise correlations, the lasso tends to “randomly” select
only one variable from the group.

When , if there are high correlations between predictors, it has been empirically observed

that the prediction performance of the lasso is dominated by ridge regression.

Cons

p > n

n

p < n
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The prostate dataset. A summary of the estimates

Least squares Best subset PCR Ridge Lasso

(Intercept) 2.465 2.477 2.455 2.467 2.468

lcavol 0.680 0.740 0.287 0.588 0.532

lweight 0.263 0.316 0.339 0.258 0.169

age -0.141 . 0.056 -0.113 .

lbph 0.210 . 0.102 0.201 .

svi 0.305 . 0.261 0.283 0.092

lcp -0.288 . 0.219 -0.172 .

gleason -0.021 . -0.016 0.010 .

pgg45 0.267 . 0.062 0.204 .
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The results on the test set

At the beginning of this unit, we split the data into training set and test set. Using the training, we
selected  via cross-validation or the  index.

Using the final test set with  observations, we will assess which model is preferable.

λ C ​p

30

OLS Best subset PCR Ridge Lasso

Test error (MSE) 0.521 0.492 0.496 0.496 0.48

All the approaches presented in this unit perform better than ordinary least squares.

The lasso is the approach with lowest mean squared error. At the same time, it is also a
parsimonious choice.

Best subset is the second best, doing a good job in this example… but here , so there were no

computational difficulties!

p = 8
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Elastic-net and pathwise algorithms
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Elastic-net

The elastic-net is a compromise between ridge and lasso. It selects variables like the lasso and
shrinks together the coefficients of correlated predictors like ridge.

Having removed the intercept, the elastic-net estimator  is the minimizer of:

where  and the complexity parameter .

​ ​β̂en

​ ​(y ​ −
2n
1

i=1

∑
n

i x ​β) +i
T 2 λ ​ α∣β ​∣ + ​β ​ ,

j=1

∑
p

( j 2
(1 − α)

j
2)

0 < α < 1 λ > 0

Ridge regression is a special case, when . Lasso is also a special case, when .

It is often not worthwhile to estimate  using cross-validation. A typical choice is .

α = 0 α = 1

α α = 0.5

An advantage of the elastic-net is that it has a unique solution, even when .

Another nice property, shared by ridge, is that whenever , then . On the other
hand, the lasso estimator would be undefined.

p > n

​ =x~j ​x~ℓ ​ ​ =β̂j,en ​ ​β̂ℓ,en
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Convex optimization

The estimators OLS, ridge, lasso, and elastic-net have a huge computational advantage compared,
e.g., to best subset: they are all convex optimization problems.

A function  is convex if for any values  and  it holds that

Replacing  with  for  gives the definition of strict convexity.

f : R →p R b ​, b ​ ∈1 2 Rp t ∈ [0, 1]

f(tb ​ +1 (1 − t)b ​) ≤2 tf(b ​) +1 (1 − t)f(b ​).2

≤ < t ∈ (0, 1)

OLS and the lasso are, for a general design matrix , convex problems. On the other hand, ridge
and elastic net are strictly convex, as well as OLS and lasso when .

X

rk(X) = p

In a convex optimization problem, every local minimum is a global minimum;

In a strictly convex optimization problem, there exists a unique global minimum.

Properties of convex optimization
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Elastic-net with a single predictor

The elastic-net estimate  is typically obtained through the coordinate descent algorithm, which
works well here due convexity and the following property.

​ ​β̂en

In the single-predictor scenario the elastic-net minimization problem simplifies to

​ ​ =β̂en arg ​ ​ ​(y ​ −
β

min
2n
1

i=1

∑
n

i x ​β) +i
2 λ α∣β∣ + ​β .(

2
(1 − α) 2)

It can be shown that an explicit expression for  is available, which is

where  is the soft-thresholding operator and the least square estimate

is .

​ ​β̂en

​ ​ =β̂en ​ S ​( ​ ​),
1 + (1 − α)λ

1
αλ β̂ols

S ​(x) =λ sign(x)(∣x∣ − λ) ​+

​
=β̂ols n ​ x ​y ​

−1 ∑i=1
n

i i
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Coordinate descent

The coordinate descent algorithm is based on a simple principle: optimize one coefficient
(coordinate) at a time, keeping the others fixed.

We can re-write the objective function of the elastic-net in a more convenient form:

​ ​ ​y ​ − ​x ​β ​ − x ​β ​ ​ +
2n
1

i=1

∑
n

i

k=j

∑ ik k ij j

2

λ α∣β ​∣ + ​β ​ +( j 2
(1 − α)

j
2) ​,

does not depend on β ​j

​λ ​{α∣β ​∣ + ​β ​}
k=j

∑
p

k 2
(1 − α)

k
2

Let us define the partial residuals . Then the updated  is

We cycle this update for , over and over until convergence.

r ​ =i

(j)
y ​ −i ​ x ​β ​∑k=j ik k β ​j

β ​ ←j ​ S ​ ​ ​x ​r ​ .
1 + (1 − α)λ

1
αλ (

n

1

i=1

∑
n

ij i
(j))

j = 1, … , p
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Coordinate descent - Example

Objective function: .(1 − β ​ −1 2β ​) +2
2 (3 − β ​ −1 2β ​) +2

2 5(∣β ​∣ +1 ∣β ​∣)2
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Pathwise coordinate optimization

In a regression model with an elastic-net penalty, the coordinate descent is theoretically guaranteed to
reach the global minimum.

The coordinate descent algorithm is implemented in the glmnet package. It is, de facto, the default
algorithm for penalized generalized linear models.

The glmnet implementation is very efficient due to several additional tricks:

The warm start. The algorithm for  is initialized at the previous solution using .λ ​k λ ​k−1

Partial residuals can be efficiently obtained without re-computing the whole linear predictor.

The code is written in C++ from , it used to be written in Fortran.version 4.1-3

Many other tricks are employed: active set convergence, tools for sparse  matrices, etc.X

The same algorithm can also be used to fit ridge regression and lasso, which is often convenient even
though alternatives would be available.
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Generalized linear models
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Generalized linear models

Almost everything we discussed in this unit for regression problems can be extended to GLMs and,
in particular, to classification problems.

Best subset selection and its forward and backward greedy approximations are conceptually
straightforward to extend to GLMs (using log-likelihood and ML).

However, computations are much harder: leaps-and-bound approaches can not be applied.

Best subset selection for GLMs

Principal components can be straightforwardly applied to GLMs.

The shrinkage effect and their ability to control the variance remain unaltered, but the theory
(e.g., variance of the estimator) holds only in an approximate sense.

Principal components for GLMs
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Shrinkage methods for GLMs

Shrinkage methods such as ridge and lasso can also be generalized to GLMs.

The elastic-net approach for logistic regression, which covers ridge and lasso as special cases,
becomes:

which is an instance of penalized log-likelihood.

Most of the properties (e.g. ridge = variance reduction and shrinkage, lasso = variable selection)
and other high-level considerations we made so far are still valid.

Computations are somewhat more cumbersome. The glmnet package provides the numerical routines

for fitting this model, using variants of coordinate descent.

The core idea is to obtain a quadratic approximation of the log-likelihood, as for IWLS. Then, the
approximated loss becomes a (weighted) penalized regression problem.

​ − ​ ​y ​(β ​ + x ​β) − log{1 + exp(β ​ + x ​β)} + λ ​ α∣β ​∣ + ​β ​ ,
(β ​,β)0

min {
n

1

i=1

∑
n

i 0 i
T

0 i
T

j=1

∑
p

( j 2
(1 − α)

j
2)}
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