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Shrinkage and variable selection
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® This unit will cover the following
m Best subset regression
® Principal component regression

m Ridge regression

Lasso, LARS, elastic-net

B The common themes are called variable selection and

® The issue we face is the presence of a high number p of covariates

that are potentially irrelevant.

® This problem is quite challenging when the ratio p/n is large.

" |n the p > n, is there any hope of fitting a meaningful
model?
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A biostatistical motivation
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The prostate dataset

®m The prostate cancer data investigates the relationship between the prostate-specific and a
number of clinical measures in men about to receive a prostatectomy.

® This dataset has been used in the by Tibshirani (1996) to present the lasso. A
description is given in Section 3.2.1 of HTF (2009).

= \We want to predict the logarithm of a (1psa) as a function of:
® |ogarithm of the cancer volume (1cavol);
m |ogarithm of the prostate weight (lweight);
m age each man (age);
m |ogarithm of the benign prostatic hyperplasia amount (1bph);
® seminal vesicle invasion (svi), a binary variable;
m |ogarithm of the capsular penetration (1cp);
m Gleason score (gleason), an ordered categorical variable;

m Percentage of Gleason scores 4 and 5 (pgg45).
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A glimpse of the prostate dataset

® Summarizing, there are in total 8

® \We

® There are n = 67 observations in the

Rows: 97
Columns:

S P P L P P L P H P

lcavol
lweight
age
1lbph
svi

lcp
gleason
PgE45
lpsa
train
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that can be used to predict the antigen 1lpsa.

and standardized all the covariates before the training/test split.

Original dataset

10

<dbl>
<dbl>
<int>
<dbl>
<int>
<dbl>
<int>
<int>
<dbl>
<lgl>

Standardized dataset

-0.5798185, -0.9942523, -0.5108256,

set and 30 in the test set.

-1.2039728, 0.7514161, -1...

2.769459, 3.319626, 2.691243, 3.2827389, 3.432373, 3.228826, 3...

50, 58, 74, 58, 62, 50, 64, 58, 47,
-1.3862944, -1.3862944, -1.3862944,
o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
-1.3862944, -1.3862944, -1.3862944,
6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6,

63, 65, 63, 63, 67, 57, 66..
-1.3862944, -1.3862944, -1..
o, 0, 0, 0, 0, O, O, O, O,..
-1.3862944, -1.3862944, -1..
7, 7, 7,6, 7, 6, 6, 6, 6,..

o, o, 20, 0, 0, 0, O, O, O, O, O, O, 30, 5, 5, 0, 30, 0, O, O,..

-0.4307829, -0.1625189, -0.1625189,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
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-0.1625189, 0.3715636, 0.7..
FALSE, TRUE, FALSE, FALSE,..
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Correlation

matrix of prostate

Pgg45 1

gleason -

lcpA

SVI

Ibph

age
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Icavol
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The regression framework

® |n this unit, we will assume that the response variables Y; (1psa) are obtained as

Y, = f(wz) + €,

where ¢; are iid random variables with E(e;) = 0 and var(e;) = o2.

® Unless specifically stated, we will assume the of the errors €; nor make any specific
assumption about f(x), which could be non-linear.

® |n practice, we the true f(x) using a linear model, e.g., by considering the following
function

f(®i; 80, 8) = Bo + Brizis + -+ + Bpxip = Bo + =} B,

in which the regression coefficients must be estimated.

® |n this unit, the intercept By will often play a special role therefore we use a slightly different
notation compared to Unit A.
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The variable selection problem

® |ncluding a lot of covariates in the model is not necessarily a good thing!

® |ndeed, some variables are likely to be irrelevant:
® they might be with other covariates and therefore ;

® they could be uncorrelated with the response lpsa.

= |f we use all the p = 8 available covariates, the estimated f(x; 5o, ) might have a ,
without an important gain in terms of bias, i.e., a large mean squared error.

We are looking for a having, hopefully, a lower mean squared error.

® These considerations are particularly relevant in cases in which p > n!
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A naive approach: (ab)using p-values

hypothesis testing procedures are ill-posed.

However, what if the true f(a) were not linear?

without appropriate multiplicity corrections.

to make

Even if the true function were linear, using p-values would

Home page

(Intercept) lcavol lweight age 1lbph svi lcp gleason pgegésd
estimate 2.46 0.68 0.26 -0.14 021 0.31 -0.29 -0.02 0.27
std.error 0.09 0.13 0.10 0.10 0.10 0.12 0.15 0.15 0.15
statistic 27.60 5.37 2.75 -1.40 206 247 -1.87 -0.15 1.74
p.value 0.00 0.00 0.01 0.17 0.04 0.02 0.07 0.88 0.09
® |t is common practice to use the to perform model selection in a stepwise fashion.
|

In many data mining problems, a linear model is simply an approximation of the unknown f() and

at least if done

The above p-values are meant to be used in the context of a single hypothesis testing problem,
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The predictive culture

m “All models are approximations. Essentially, all models are wrong, but some
are useful.”

m |f the focus is on prediction, we do not necessarily care about selecting
the “true” set of parameters.

® |n many data mining problems, the focus is on the

m Hence, often we may accept some bias (i.e., we use a “wrong” but useful
model), if this leads to a

George E. P. Box
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Overview of this unit

® |n this unit, we will discuss two “discrete” methods:
m Best subset selection and its greedy approximations: forward / backward regression;
® Principal components regression (PCR).

m Best subset selection perform , Whereas principal components regression
of the coefficients.

® These “discrete” methods can be seen as the naive counterpart of more advanced and continuous
ideas that are presented in the second part of the Unit.

Discrete Principal component regression Best subset selection,
stepwise
Continuous Ridge regression Relaxed Lasso
® Finally, the lasso and the perform both shrinkage and variable selection.
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Overview of the final results

Least squares  Best subset PCR Ridge Lasso
(Intercept) 2.465 2.477 2.455 2.467 2.468
lcavol 0.680 0.740 0.287 0.588 0.532
lweight 0.263 0.316 0.339 0.258 0.169
age -0.141 0.056  -0.113
1bph 0.210 0.102 0.201
svi 0.305 0.261 0.283 0.092
lcp -0.288 0219 -0.172
gleason -0.021 -0.016 0.010
pgg4b 0.267 0.062 0.204
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Best subset selection
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Best subset selection

® |et us return to our variable selection problem.

® |n principle, we could perform an considering all the 2P possible models and then
selecting the one having the best out-of-sample predictive performance.

Best subset procedure

1. Let M; be the null model, which contains no predictors, i.e. set y; = Bo = .

2. Fork=1,...,p, do:

i. Estimate all the (Z) models that contain exactly k covariates;

ii. ldentify the “best” model with k covariates having the smallest MSEy, 14in; call it M.

® A model with more variables has lower error, namely MSEj (1 train < MSEg train by

construction. Hence, the optimal subset size kK must be chosen e.g., via cross-validation.
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Step 1. and 2. of best subset selection

14
o
[ ]
[ ]
¢ [ ]
1.2 :
¢ H

g . o

= |

EE [ ]

=10 ®

o i

—

o) ]

3

© s L

S [ [ ]

T 0.8 $

: . : '

© [ ]

2 e o
s ‘ s [ ] °
$ |

|
0.6 L] : : o °
2 i . ?
0.4

2 4 6 8
Number of covariates

Home page 12N
BICOCCA



https://tommasorigon.github.io/datamining

The “best” models M;,..., M,

® The output of the

0O N O Ok W N -

lcavol
II*II
II*II
ll*ll
II*II
II*II
ll*ll

II*II

N\ N\ /N /NN /NN "M
e e i e e e e
N NN\

||*l|

The above table means that the best model with k£ = 1 uses the variable 1cavol, whereas when k =

lweight

Il*ll
Il*ll
II*II
Il*ll
ll*ll
II*II

ll*ll

age

ll*ll

ll*ll

1bph

|l*|l
ll*ll
|l*ll
ll*ll

ll*ll

, on the training set is:

Svi

ll*ll
Il*ll
II*II
ll*ll
Il*ll

ll*ll

lcp

n n
n * n
n * n

ll*ll

gleason pgg4b

ll*ll

II*II
ll*ll
II*II

||*l|

2 the selected variables are 1cavol and lweight, and so on.

Note that, in general, these models are

necessarily

, i.e. a variable selected at step k is

not necessarily included at step k£ + 1. Here they are, but it is a coincidence.

What is the

k in terms of out-of-sample mean squared error?
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The wrong way of doing cross-validation

m Consider a regression problem with a (relative to m) such as the

prostate dataset.
m A typical strategy for analysis might be as follows:

1. Screen the predictors: find a subset of “good” predictors that show a reasonably strong
correlation with the response;

2. Using this subset of predictors (e.g., 1cavol, lweight and svi), build a regression model;
3. Use cross-validation to estimate the prediction error of the model of the step 2.

® |s this a correct application of cross-validation?

® |f your reaction was ° , it means you correctly understood the principles of
cross-validation.

m |f you thought this was an ok-ish idea, you may want to read Section 7.10.2 of HTF (2009), called
“the wrong way of doing cross-validation”.
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Step 3. of best subset selection via cross-validation

1.75
1.50

1.25

1.00

Mean squared error (10-fold cv)

0.75

0.50

Number of covariates

m By applying the “1 standard error rule”, we select k = 2, i.e. 1cavol and lweight.
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Comments and computations

® The correct way of doing cross-validation requires that the best subset selection is performed on
, possibly obtaining different “best” models with the same size.

m Best subset selection is conceptually appealing, but it has a . There are
— (P
— 9P
> (5)
k=1

models to consider, which is !

® There exist algorithms (i.e. leaps and bounds) that make this feasible for p ~ 30.

m Recently, Bertsimas et al., 2016 proposed the usage of a mixed integer optimization formulation,
allowing p to be in the order of hundreds.

m Despite these advances, this problem remains . See also the recent
paper Hastie et al. (2020) for additional considerations and comparisons.
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Forward regression

® Forward regression is of best subset selection that produces a sequence of
nested models. It is computationally feasible and can be applied when p > n.

Forward regression

1. Let M| be the null model, which contains no predictors, i.e. set y; = Bo = 1.
2. Fork=0,...,min(n —1,p — 1), do:

i. Consider the p — k models that augment the predictors in M, with

i. Identify the “"best” model among the above p — k competitors having the smallest MSEy, ;in
and call it Mj.

® |t can be shown that the identification of the optimal new predictor can be efficiently computed
e.g. using the
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Backward regression

® \When p < n, an alternative greedy approach is , which also produces a
sequence of nested models.

Backward regression

1. Let M, be the full model, which contains all the predictors.
2. Fork=p,p—1,...,1, do:

i. Consider the k& models that contain of the predictors in My, for a total of k — 1
predictors.

i. ldentify the “best” model M}, among these k models having the smallest MSEy, t1ain.

® |t can be shown that the dropped predictor is the one with the lowest absolute Z-score or,
equivalently, the
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Forward, backward and best subset

0.60

MSE (training)
o
&

0.50 -

3 4 5 6
Number of covariates

® |n the prostate dataset, forward, backward and best subset selection all gave precisely the same

path of solutions on the full training set.
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Pros and cons of subset selection strategies

Pros

m Best subset selection is appealing because of its conceptual simplicity.

m Best subset and forward regression can be used, if computationally feasible, even when p > n.

Cons

® Subset strategies tend to select models that are * ", especially in presence of correlated
variables.

® Despite the recent advances, when p is large best subset selection is

® | eaps and bounds computational strategies can not be easily generalized to GLMs.
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Principal components regression
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Data compression

® At this point, we established that

m |nstead of selecting the “best” variables, let us consider a different
perspective.

® \We consider a compressed version of the covariates that has smaller
dimension k but retains most information.

® |ntuitively, we want to by finding a good
compression without sacrificing too much bias.

® The main statistical tool, unsurprisingly, will be the celebrated
principal components analysis (PCA).

® We will compress the covariate information X using a smaller set of
variables Z, i.e. the principal components.
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The intercept term

® |n principal component regression and other related methods (ridge, lasso, and elastic-net), we do
wish to the term By. We would like to “remove it".

m |et us consider a reparametrization of the linear model, in which a = By + T 3. This is equivalent

to a linear model with

fl@ia,B)=B+z;B=a—-&"B+zif=a+ (z;— )" B.

® The estimates for («, 8) can be now computed separately and

® The of the with centered predictors is & = §. In fact:

& =argmin Y {y: —a — (2~ &) Y = Z{yz ~E)B = Y
1=1

acR

® Then, the estimate of 3 can be obtained considering a linear model
f(zi;8) = (= — 2)" B,
employed to predict the centered responses y; — 4.
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Centering the predictors |

® |n principal components regression, we replace Y; = f(=;) + €; with their centered

version:

:EZJ—.’EJ, yz—ga z:l,,n, j:].,,p

® |n the end, we will make predictions in the original scale, which requires a simple
One need to compute the intercept term

/80 =Y — 53/87
and then compute the predictions via the formula By + X8 = & + =T 5.

u . The centering operation is a mathematical trick that facilitate the exposition but is
unconsequential from an estimation point of view.
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Centering the predictors ||

Centering assumption

In principal components regression, we assume the data have been previously

%Zyi:(), %Zibij:(), J=1...,p.
i=1 i=1

m Using centered predictors means that we can focus on linear models without intercept:

f(xi;8) =xafr+ -+ xiphbp = 33;7’15-

m Under the centering assumption, the of the data is simply

1
S=-XTX.
n
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Singular value decomposition (SVD)

m et X be an X p matrix. Then, its full form is:
X =UDV" = Zd ;o]

with m = min{n, p} and where:

m the n x n matrix U = (uq,...,%,) is  namely: UTU = UU” = I,;

" the p x p matrix V = (9y,...,9,) is ,namely: V'V =vVv' =1,

® the n X p matrix D has diagonal entries [D];; = d;, for j = 1,...,m, and zero entries
elsewhere;

® The real numbers dy > d2 > --- > d,,, > 0 are called singular values.

® |f one or more d; = 0, then the matrix X is singular.
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Principal component analysis |

Le us assume that p < n and that rk(X) = p, recalling that X is a matrix.
Using SVD, the matrix X7 X can be expressed as

xX'Xx =(wpbpvH)'ubv' =vD'U'UDV' = VAV,
where A* = DD is a p X p diagonal matrix with entries d2, ..., df,.
This equation is at the heart of principal component analysis (PCA). Define the matrix
Z =XV =UD,
whose columns 24, ..., 2, are called

The matrix Z is orthogonal, because z'z = D'UTUD = Az, which is diagonal.

Moreover, by definition the entries of Z are linear combination of the original variables:
_ R
Zij = T;1Vi1 —+ -+ wipvip = &; ’Uj.

The columns v1,...,v, of V' are sometimes called loadings.
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Principal component analysis ||

® Principal components form an orthogonal basis of X, but they are not a “random” choice, and they
do coincide with them basis of Unit A.

® |ndeed, the first principal component is the linear combination having

- 1 .
®; = argmax var(Xv) = argmax —v? X' Xv, subjectto vTwv=1.
veRP veRP N

® The second principal component maximizes the variance under the additional constraint of being
to the former. And so on.
® The values d% > dg > e > df, > 0 are the of XTX and correspond to the rescaled
variances of each principal component, that is var(2;) = ZJTZj/n =d;/n.

m Hence, the quantity d?/ Z?Zl d?/ measures the amount of total variance captured by principal

components.

Home page én:ucn%


file:///slides/slides/un_A.html#the-qr-decomposition-i
https://tommasorigon.github.io/datamining

32 /100
Principal component analysis: prostate data
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Principal components regression (PCR)

m \We use the first & < p principal components to predict the responses y; via
f(zi;7)271zi1+"'+7kzik7 7::].,...,77,,

m Because of orthogonality, the least squares solution is straightforward to compute:

=T
Z:y 1
A J ~T .
’yj:,‘T.‘.:ﬁzjy, j=1,...,k.
® The principal components are in and effectively compressing the information

contained in X using only k < p variables.
®m When k = p, we are simply rotating the original matrix X = ZV, i.e. performing
The predicted values coincide with OLS.

® The number k is a complexity parameter which should be chosen via information criteria or cross-

validation.
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Selection of k: cross-validation
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Number of principal components

SSUNIVERSITA

Home page
ICOCCA



https://tommasorigon.github.io/datamining

35 /100

Shrinkage effect of principal components |

® A closer look at the PCR solution reveals some interesting aspects. Recall that:

®m The for the centered responses y of the PCR with £ components are:
k k k
Y 24 =X ) 99 = XBar, where  Bpe = Y 0;9;.
j=1 j=1 j=1

® This representation highlights two important aspects:
m |t is possible to express the PCR solution in the original scale, for better :

® The vector chr is a constrained solution, being a combination of k < p coefficients, therefore
the of the model and shrinking the coefficients.

When k = 1, then the chr estimate coincide with the scaled loading vector chr = Y11

When k = p then the chr coincides with ordinary least squares (see Exercises).
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Shrinkage effect of principal components Il

m The of Byer, assuming iid errors €; in the original data, is:
G|
2 _ 2 ~ ~T
var(Bpe) =0 E 20 -
=1 J
® |n case of multicollinearity, then the principal components will have a small variance, i.e., a
small d?. Its removal, therefore, drastically the of Bper-
® Furthermore, the predicted values for the can be expressed as
k k ~T k ~T k
Xﬂ — 3.A. = 3. JZ d:ir, — 17 — Y
per — Vi = I5Ts P jU; Y-
j=1 j=1 Jj<J j=1 J 3" j=1

® The columns of U, namely the vectors @; are the normalized principal components.

® Hence, we are shrinking the predictions towards the main
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Shrinkage effect of principal components Il|
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Pros and cons of PCR

Pros

® Principal components are a natural tool to reduce the complexity of the data, especially in the
presence of variables.

® |f you transform back the coefficients, there is a clean interpretation of the impact of the
covariates on the response.

® Principal components might be interesting in their own right, as they describe the dependence
structure among covariates.

Cons

u are used for predictions, which could be computationally demanding.

® The shrinkage effect on the regression coefficients is somewhat indirect and not smooth.
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Ridge regression
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Shrinkage methods

® Shrinkage methods are popular tools for handling the issue of multiple
variables.

® Shrinkage regularizes the estimates, constraining the size of the
regression coefficients.

® This leads to with, hopefully, lower variance.

® As a byproduct, the induced regularization procedure enables
estimation even when p > n.

® The first method that has been proposed is called
The lasso and the elastic-net are other examples.
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The ridge regularization method

® The ridge estimator is the most common shrinkage method and is the of

n

p
> (Wi~ Bo—=B)  subjectto  » B} <s.
j=1

i=1
® \When the complexity parameter s is small, the coefficients are explicitly , i.e. biased,

® On the other hand, if s is large enough, then the ridge estimator coincides with ordinary least

squares.

® |n ridge regression, the of the estimator is explicitly , although this comes with
some bias. The parameter s controls the bias-variance trade-off.

® The intercept term fy is because there are no strong reasons to believe that the mean
of y; equals zero. However, as before, we want to “remove the intercept”.
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Centering and scaling the predictors |

® The ridge solutions are under , so one normally standardizes
the input to have unit variance if they are not on the same scale.

® Moreover, as for PCR, we can estimate the intercept using a
® The reparametrization a = By + &1 3 is equivalent to centering the predictors;
® The estimate for the centered intercept is & = ;

® The ridge estimate can be obtained by considering a model without intercept, using centered
responses and predictors.

m Hence, in ridge regression, we replace Y; = f(x;) + €; with their standardized version:

) yi_ga 221,,71,]:1,,]?

2

—1 ™\ — \2 - .
2=mn"") . (ziy — T;)° is the sample variance.

where s
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Centering and scaling the predictors |l

m |t is easy to show (see Exercises) that the expressed in the original scale are
60 — 'y - ﬁzﬂscaled—ridgea ﬁscaled—ridge — diag(l/sla sy ]-/sp)/Bridge-

Thus, the on the original scale are By + wiTﬂscaled_ridge =9+ wg—'ﬁridge.

For ridge problems, we will assume the data have been previously , namely

1 1 1 & _
E;yizo, ﬁ;xzj:o, ﬁ;af:l j=1,...,p.

m \We will say that the ridge estimator Bﬁdge is the of following system

n

p
Z(yi — x] B)? subject to Z 6]2 < s.
j=1

1=1
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Lagrange multipliers and ridge solution

® The ridge regression problem can be in its Lagrangian form, which greatly
facilitates computations. The ridge estimator B,iqq. is the of

n

p
>~ =B+ A8 = |ly ~ X8I+ B

i=1 j=1

least squares ridge penalty

where A > 0 is a complexity parameter controlling the . It holds that s = |]Bridge|\2.

® \When A\ = 0 then Bridge = Bols whereas when A — oo we get Bridge = 0.

Ridge regression estimator

For any n X p design matrix X, not necessarily of full-rank, the ridge estimator is

Bridge - (-XTX + )\Ip)_le’y.

Such an estimator always exists and is (even when p > n).
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The geometry of the ridge solution
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The ridge path
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Comments on the ridge path

® The values of A are in somewhat . The ridge penalty has a concrete effect starting
from A/n > 0.1 or so.

® The variable 1cavol is arguably the most important, followed by 1lweight and svi, which are those
receiving less shrinkage compared to the others.

® The coefficient of age, gleason, and 1lcp, is negative at the beginning and then becomes positive for
large values of .

® This indicate that their negative value in BOIS was probably a consequence of their with
other variables.

® There is an interesting similarity between this plot and the one of principal component regression... is
it a coincidence?

Home page én:ucn%


https://tommasorigon.github.io/datamining

48 /100

Shrinkage effect of ridge regression |

® Considering, once again, the , we get:

X Brigge = X (XTX +2L) ' XTy
—UDV'[V(D'"D + )V (UDV)Ty
=UDV'V(D'D +),) 'V'VD'U"y
—UD(D"'D + \I,) 'D'U"y

d2
= Higgey = Zluj 2 + )\ U, y,
J

where H yidge = X(XTX — )\Ip)_lXT is the so-called hat matrix of ridge regression.

® This means that ridge regression shrinks the principal directions by an amount that depends on the
dz.
j

® |n other words, it the impact of the information.
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Shrinkage effect of ridge regression ||

® A sharp connection with principal components regression is therefore revealed.

® Compare the previous formula for Xﬁridge with the one we previously obtained for Xﬁpcr.

®m More explicitly, for we will have that
A dy d
idee — V di —_— ... P Ty.
Briag Vlag(d{Jr)\’ ’dg+>\)Uy

whereas for principal components regression with k& components we get

- 1 1
o= Vdiag [ —,...,—,0,... Ty.
/Bp V la’g (d17 7dk707 70>U y

®m Both operate on the singular values, but where principal component regression thresholds the
singular values, shrinks them.

Home page én:ucn%


https://tommasorigon.github.io/datamining

50 /100

Bias-variance trade-off

® The ridge regression to the estimates, but it reduces their variance.
® The of Bridge, assuming iid errors ¢; in the original scale with variance o2, results:
p d2
2 _ 2 J ~ ~T
Var(/jridge) -0 Z (d2- + )\)2 )70
j=1 \

whose diagonal elements are always smaller than those of var(S,s).

® The above formula highlights that ridge will be very effective in presence highly correlated
variables, as they will be “shrunk™ away by the penalty.

® \What typically happens is that such a reduction in variance the increase in bias,
especially when p is large relative to n.
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A historical perspective |

m The ridge regression estimator was originally proposed by Hoerl and Kennard (1970) with a quite
different motivation in mind.

® |n linear models, the estimate of 3 is obtained by solving the normal equations
(X'X)8=X"y,

which could be
® |n other words, the condition number
2
di

K}(XTX) = E,
p

might be very large, leading to . since the matrix X* X is numerically
singular and therefore not invertible in practice.
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A historical perspective ||

m Ridge provides a remedy for . by adding a “ridge” to the diagonal of X7 X,

obtaining the modified normal equations
(XTX 4+ A8 = X"y.

= The of the modified (XX + AI,) matrix becomes

A+ d?
T . 1
k(X X + M) = —/\+d,%'

® Notice that even if d, = 0, i.e. the matrix X is singular, then the condition number will be finite as

long as A > 0.

® This technique is known as , after the Russian mathematician Andrey
Tikhonov.
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A historical perspective |l

m Figure 1 of the
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On the choice of )\

® The A determines the amount of bias and variance of ﬁridge and therefore it must

be carefully estimated.

= Minimizing the loss ||y — Xﬂrldge{|2 over A is a , because it would always lead to A =0,
corresponding to ﬂndge = 6015

® |ndeed, A is a complexity parameter and, like the number of covariates, should be selected using

or training/test and

® Suppose we wish to use an information criteria such as the AlC or BIC, of the form
IC(p) = —2£(Buiage) + penalty(“degrees of freedom”).

We need a careful definition of degrees of freedom that is appropriate in this context.

® The current definition of degrees of freedom, i.e., the number of s
for ridge regression because it would be equal to p for any value of \.
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Effective degrees of freedom |

m |et us recall that the original data are Y; = f(x;) + €; and that the for a generic estimator
f (@) is defined as the following average of covariances

2 — A
Opt = — Yi’ il)s
pt = 1 D cov(¥, fe)

which is equal to Opt,,, = (202p)/n in ordinary least squares.

Effective degrees of freedom

Let f(a:) be an estimate for the regression function f(x) based on the data Y3,...,Y,. The
are defined as

df = % Z cov(Y;, f(;)).
i=1
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Effective degrees of freedom Il

m The effective degrees of freedom of ordinary least squares and principal component regression
are

dfols =p+1, dfpcr — k+1a

where the additional term corresponds to the

m After some algebra, one finds that the effective degrees of freedom of are

p d2
dfridge =1+ tI'(ITIridge) =1+ Z 2 .
2t G

m Using the above result, we can df;igge into the formula of the C), of Mallows:

L 1 n - ) 2 6'2
ErrF = — Z(yz — &; Bscaled—ridge) + Tdfridg&

n -
=1

where the residual variance is estimated as 6% = (n — dfridge)_1 Z?Zl(yi — wiTﬁscaled_ridge)z.
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Effective degrees of freedom IllI
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Cross-validation for ridge regression |

m Training/test strategies and cross-validation are also valid tools for selecting .

m Most statistical software packages use a slightly for A\, as they minimize

1 < - <
=D (wi—={ B+ A) B,
i=1 j=1

where the penalty parameter X = A/n.

m This parametrization does not alter the estimate of Bridge but is more amenable for cross-validation
as the values of X can be compared across datasets with

m Different R packages have different defaults about other aspects too.

m For instance, the R package glmnet uses X and also standardizes the response y and then
the estimated coefficients into the
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Cross-validation for ridge regression |l
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The ridge estimate
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Further properties of ridge regression

m Ridge regression has a transparent , since the penalty can be interpreted as
a Gaussian prior on 8.

® |f two variables are identical copies &; = ®,, so are the corresponding ridge coefficients B; 1iqge =
/Bﬂ,ridge-

= Adding p all equal to 0 to the response and then fitting ordinary least squares
leads to the ridge estimator. This procedure is called data augmentation.

® A computationally convenient formula for LOO cross-validation is available, which requires the
model to be estimated only once, as in least squares.

® |n the there are specific that can be employed; see Section
18.3.5 of Hastie, Tibshirani and Friedman (2011).
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Pros and cons of ridge regression

Pros

® Ridge regression trades some in exchange of a lower variance, often resulting in more
accurate predictions.

® The ridge solution and is unique, even when p > n or in presence of perfect

® For fixed values of )\, efficient computations are available using QR and Cholesky

decompositions.

Cons

® |n ridge regression, are used. This is in contrast with best subset selection.
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The lasso
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Looking for sparsity

Robert Tibshirani

Signal sparsity is the assumption that only a small number of predictors
have an effect, i.e.,

B; =0, for most jeA{1,...,p}

In this case we would like our estimator B to be sparse, meaning that

A

B; =0 for many j € {1,...,p}.
Sparse estimators are desirable because:

m perform variable selection and improve the interpretability of the
results:

® Speed up the computations of the predictions because fewer variables
are needed.

Best subset selection is sparse (but computationally unfeasible), the ridge
estimator is not.
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The least absolute selection and shrinkage operator

® The lasso appeared in the highly influential paper of Tibshirani (1996). It is a method that performs
both shrinkage and

® The lasso estimator is the of the following system

n

p
z:(yZ — By — 33;7’”5)2 subject to Z 18] < s.
j=1

1=1

therefore when the complexity parameter s is small, the coefficients of Blasso are and when
s is large enough Blasso — Bols, as in ridge regression.

® The lasso is to ridge. However, the change from a quadratic penalty to an
absolute value has a crucial sparsity implication.

B The intercept term [y is , as for ridge, because we can remove it by centering the

predictors.
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Centering and scaling the predictors

® Thus, as for ridge regression, we will center and scale predictors and response.

® |t is easy to show that the expressed in the original scale are
ﬁO — g - izﬁlassoa 5scaled—1asso — diag(l/sla ) 1/3p)ﬁlasso'

Thus, the on the original scale are 8By + wZT/Bscaled—lasso =y + w;ffﬁlasso.

For lasso problems, we will assume the data have been previously , hamely

1 — 1 1
ﬁZyizo, EE zij = 0, EE w;?:l j=1,...,p.
7=1 i=1 i—=1

m \We will say that the lasso estimator Blasso is the of following system
n D
Z(yz — x] B)? subject to Z 18] < s.
1=1 j=1
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Lagrange multipliers and lasso solution

® The lasso problem can be equivalently expressed in its Lagrangian form, which is more amenable
for computations.

® Having removed the intercept, the lasso estimator Blasso is the of
1 o P
T 212
om (yi — =; B) +)\Z\ﬁj\
i=1 j=1

NG 7
A 7
N ~

least squares lasso penalty

where A > 0 is a complexity parameter controlling the

® \When A\ = 0 the penalty term disappears and Blasso = Bols. On the other hand, there exists a finite
value of Ay < oo such that Blasso = 0.

® For any intermediate value 0 < A < Ao we get a combination of but positive coefficients,
and a set of coefficients whose value is exactly zero.

® Unfortunately, there is for the lasso solution.
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The geometry of the lasso solution

|B1]+ B2l =5

0.0 2.5 5.0

B+
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Lasso with a single predictor |

® To gain some understanding, let us consider the single-predictor scenario, in which

n

a R | 9
ﬁlasso = arg IIlﬁlIl 2_ Z(yz - wzﬁ) + )"B‘

n -
1=1
m This simple problem admits an (see Exercises), which is
cov(z,y) — A, if cov(z,y) > A
Blasso = 4 0 if |cov(z,y)| < A
cov(z,y) + A, if cov(z,y) < —A

= The above solution can be written as Bl = S,\(Bols), where Sy (z) = sign(z)(|z| — A). is the soft-
thresholding operator and ()4 is the of a number (pmax (0, x)).

m For (including a n~! factor in the least squares penalty; see here) we get:

R 1 1 . 1 1
/Bridge = )\—HCOV(CL’,?J) — )\—Hﬁols = )\—Hg szyz
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Lasso with a single predictor Il

Estimate — Lasso — OLS Ridge
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Soft-thresholding and lasso solution

® The single predictor special case provides further intuition of why the lasso perform variable
selection and

® Ridge regression induces shrinkage in a fashion, and the regression coefficients reach
zero as A — 0o.

® Conversely, the lasso shrinks the ordinary least squares in an additive manner, them at
after a certain threshold.

® Even though we do not have a closed-form expression for the lasso solution Blasso when the covariates
p > 1, the main intuition is preserved: lasso induces !
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The lasso path
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Least angle regression |

m | east angle regression (LAR) is a " version of forward stepwise regression.

® Forward stepwise builds a model sequentially, adding one variable at a time. At each step, the best
variable is included in the and then the least square fit is updated.

®m | AR uses a similar strategy, but any new variable contributes to the predictions only “as much” as it
deserves.

Main result of LAR

® The LAR algorithm provides a way to compute the entire efficiently at the cost of a
full least-squares fit.

® | AR sheds light on important of the lasso. A nice LAR - lasso - boosting
relationship is established, which is computationally and conceptually sound.
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Least angle regression algorithm (LAR)

1. After centering and standardization, define the residuals ro = y and let B(O) = 0.

2. Find the predictor &; most correlated with the residuals 7, i.e. having the largest value for
cov(&;,ro) = cov(x;,y). Call this value Ay and let A = {j} be the active set.

i. Move 8;(\) from 8% = 0 towards its least squares solution by decreasing A, i.e.
J J

Ao — A
6]()‘) — O)\ COV(fiZj,y), 0<AL )\07
0

keeping track of the residuals 7(A) = y — @;6;(A). It can be shown that
cov(@5,7(V))| = A
ii. ldentify the value A > 0 such that another variable &, has as much correlation with the

residuals as @;. Call this value A;, obtaining: [cov(&,, 7(A1))| = A;.

iii. Obtain the estimate () = (0,...,8;(\1),...,0) and set #; = 7();). Define the new active
set A= {j,¢} and let X 4 be the corresponding matrix.
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Least angle regression algorithm (LAR)

3. For k=2,..., K = min(n — 1,p), do:

i. Move the coefficients 54(\) from Bff_l) towards their least squares solution:

a1 Ae1 — A
Ba(n) =AYV 4 —kx,t (XEX ) ' XLy, 0< A< A1,
-1

keeping track of »(A) =y — X 48.4(A). The covariances with the residuals are tied:
’COV(@j,T‘()\))‘ = A jeA

ii. ldentify the largest value A > 0 such that another variable ®, has as much correlation with
the residuals. Call this value A, so that |cov(&, r(Ax))| = Ak

iii. Set the estimate 5*) with entries Bf) = Ba(Ax) and zero otherwise. Let 7 = 7(Ag). Define
the new active set A < AU {¢} and design matrix X 4.

4. Return the pairs {\;, B}
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Least angle regression: remarks

® The coefficients in LAR change in a fashion, with knots in A\;. The LAR path coincides

almost always with the lasso. Otherwise, a simple modification is required:

LAR: lasso modification

3.ii+. If a nonzero coefficient crosses zero before the next variable enters, drop it from A and
recompute the joint least-squares direction using the reduced set.

Practical details

m |n Step 3.ii, we do take small steps and then recheck the covariances. Instead, the new
variable @, “catching up” and the value )\, can be identified with some algebra.

" The LAR algorithm is , requiring the same order of computation of least
squares. The main bottleneck is Step 3.i, but QR decomposition can be exploited.
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«« - Lasso and LAR relationship

® \What follows is for why LAR and lasso are so similar. By construction, at any
stage of the LAR algorithm, we have that:

cov (&, r( Zw”{yz (A)} = sy, je A,

where s; € {—1, 1} indicates the sign of the covariance.

® On the other hand, let A;,., be the active set of the lasso. For these variables, the penalized lasso
loss is differentiable, obtaining:

COV(iJ, Z X {yz — )} )\31gn(ﬁj) ] € Alassoa

which with the LAR solution if s; = sign(3;), which is almost always the case.
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Uniqueness of the lasso solution

® The lasso can be computed even when p > n. In these cases, will it be

Three uniqueness results (Tibshirani, 2013)
= |f X has full rank rk(X) = p, which implies p < n, then Blasso is uniquely determined.
m |f all the values of X are , then Blasso is uniquely determined, even when p > n.

® The predictions XBlaSSO are always uniquely determined.

® Non-uniqueness may occur in the presence of data. It is of practical concern only
whenever p > n and if we are interested in interpreting the coefficients.

® Much more general sufficient conditions for the uniqueness of Blasso are known, but they are quite

technical and complex to check in practice.
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The degrees of freedom of the lasso

® |n ridge regression, the effective degrees of freedom have a simple formula.

u , for the lasso with a fixed penalty parameter A, the number of nonzero coefficients
| Alasso(A)] is an unbiased estimate of the degrees of freedom.

Degrees of freedom (Zhou, Hastie, and Tibshirani, 2007, Tibshirani and Taylor, 2012)
® Suppose X has rk(X) = p and y follows a Gaussian law. Then:

dflasso =1+ E‘Alasso()‘”'

® Under further regularity conditions, the above relationship is exact if we consider the
, therefore implicitly using a different set of A values for any fit:

dfi,, =1+ | Al
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Effective degrees of freedom of LAR and best subset

Method —e— Bestsubset -~ LAR

N
o

Effective degrees of freedom
o
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Cross-validation for lasso
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The LAR (lasso) estimate
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Other properties of LAR and lasso

u : the penalty can be interpreted as a Laplace prior on 8.

® As mentioned, under certain conditions the LAR algorithm can be seen as the limiting case of a
boosting procedure, in which small corrections to predictions are iteratively performed.

® The (Breiman, 1995) is a two-stage procedure with a close relationship to the
lasso. Breiman's paper was the inspiration for Tibshirani (1996).

m There is a large body of theoretical work on the behavior of the lasso, focused on:
® the mean-squared-error consistency of the lasso;

® the recovery of the nonzero support set of the true regression parameters, sometimes called

® The interested reader work may have a look at the (very technical) Chapter 11 of Hastie, Tibshirani
and Wainwright (2015)
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Summary of LARS and lasso

Pros

®m | AR and Lasso are extremely efficient approaches that perform both variable selection and
at the same time.

® | asso produces a parsimonious model.

Cons

® | asso can be applied when p > n, but there might be issues. Moreover, the lasso
selects at most n variables.

m |f there is a group of variables with high pairwise correlations, the lasso tends to “randomly” select
only one variable from the group.

® \When p < n, if there are between predictors, it has been empirically observed

that the prediction performance of the lasso is dominated by ridge regression.
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The prostate dataset. A summary of the estimates

Least squares Best subset PCR Ridge Lasso
(Intercept) 2.465 2.477 2.455 2.467 2.468
lcavol 0.680 0.740 0.287 0.588 0.532
lweight 0.263 0.316 0.339 0.258 0.169
age -0.141 0.056  -0.113
1bph 0.210 0.102 0.201
svi 0.305 0.261 0.283 0.092
lcp -0.288 0.219  -0.172
gleason -0.021 -0.016 0.010
pPgg4b 0.267 0.062 0.204

Home page

85 /100

BICOCCA


https://tommasorigon.github.io/datamining

The results on the test set

At the beginning of this unit, we split the data into training set and set. Using the training, we

selected A via cross-validation or the C, index.

Using the final test set with 30 observations, we will assess which model is

OLS Best subset PCR Ridge Lasso
Test error (MSE) 0.521 0.492 0.496 0.496 0.48

All the approaches presented in this unit perform better than ordinary least squares.

The lasso is the approach with . At the same time, it is also a
parsimonious choice.

Best subset is the second best, doing a good job in this example... but here p = 8, so there were no

computational difficulties!
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Elastic-net and pathwise algorithms
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Elastic-net

m The elastic-net is a compromise between ridge and lasso. It selects variables like the lasso and
shrinks together the coefficients of correlated predictors like ridge.

® Having removed the intercept, the elastic-net estimator Ben is the of:

n

1 T 212 - (1—a)
%Z(yi_wiﬁ) +)\;(0¢15j’+75j),

1=1

where 0 < o < 1 and the A > 0.

®m Ridge regression is a special case, when o = 0. Lasso is also a special case, when a = 1.

® |t is often to estimate «a using cross-validation. A typical choice is a = 0.5.

®m An advantage of the elastic-net is that it has a , even when p > n.

= Another nice property, shared by ridge, is that whenever &; = &,, then Bj,en = Bg,en. On the other
hand, the estimator would be
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Convex optimization

® The estimators OLS, ridge, lasso, and elastic-net have a huge compared,
e.g., to best subset: they are all convex optimization problems.

m A function f: RP — R is convex if for any values b;, by € RP and t € [0, 1] it holds that
f(tbr + (1 —t)bz) < tf(b1) + (1 —t)f(b2).

Replacing < with < for t € (0, 1) gives the definition of

® OLS and the lasso are, for a general design matrix X, convex problems. On the other hand,
and are strictly convex, as well as OLS and lasso when rk(X) = p.

Properties of convex optimization

® |n a convex optimization problem, every local minimum is a global minimum;

® |na optimization problem, there exists a global minimum.
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Elastic-net with a single predictor

® The elastic-net estimate Ben is typically obtained through the coordinate descent algorithm, which
works well here due convexity and the following

® |n the single-predictor scenario the elastic-net minimization problem simplifies to

n

- 1 1 —
Ben = argmin o ;(yz —zif)* + A (alﬂ\ 4 5 %) [32) .
® [t can be shown that an for Ben is available, which is
Ben = S (Bt
en—1+(1_a))\ ai\Mols )

where Sy (z) = sign(z)(|z| — A). is the soft-thresholding operator and the
is Bols =n ! Z?:j[ LiYi-
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Coordinate descent

® The coordinate descent algorithm is based on a simple principle: optimize one coefficient
(coordinate) at a time, keeping the others fixed.

= \We can the objective function of the elastic-net in a more convenient form:
2
1 « 1-a & 1-a
o, i — Y maBr — ziiBi |+ A (a!ﬁjH ( 5 )532) + A {alBl + ( 5 )513},
i=1 ki ki

~~

does not depend on f;

m et us define the partial residuals r9) = Yi — Zk#j z;1Bx- Then the updated 3; is

1

1 1 o :
| ENE Yl
ﬂ]<_1+(1—a))\ )\(n;mm )

We this update for j = 1,...,p, over and over until convergence.
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Coordinate descent - Example

Objective function: (1 — 81 — 2B2)% + (3 — B1 — 2B2)* + 5(|B1] + |B2]).
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Pathwise coordinate optimization

In a regression model with an elastic-net penalty, the coordinate descent is to
reach the global minimum.

® The coordinate descent algorithm is implemented in the glmnet package. It is, de facto, the default

algorithm for penalized generalized linear models.

® The glmnet implementation is very efficient due to several additional tricks:
B The warm start. The algorithm for A\ is initialized at the previous solution using A;_1.
m Partial residuals can be efficiently obtained the whole linear predictor.

® The code is written in C++4 from version 4.1-3, it used to be written in

®m Many other tricks are employed: active set convergence, tools for sparse X matrices, etc.

B The same algorithm can also be used to fit ridge regression and lasso, which is often convenient even
though alternatives would be available.
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Generalized linear models
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Generalized linear models

® Almost everything we discussed in this unit for problems can be extended to GLMs and,
in particular, to classification problems.

Best subset selection for GLMs

m Best subset selection and its forward and backward greedy approximations are conceptually
straightforward to extend to GLMs (using log-likelihood and ML).

® However, computations are much harder: leaps-and-bound approaches can not be applied.

Principal components for GLMs

® Principal components can be straightforwardly applied to GLMs.

® The shrinkage effect and their ability to control the variance remain unaltered, but the theory
(e.g., variance of the estimator) holds only in an approximate sense.
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Shrinkage methods for GLMs

® Shrinkage methods such as ridge and lasso can also be generalized to GLMs.

® The elastic-net approach for logistic regression, which covers ridge and lasso as special cases,
becomes:

1 < P 1—
min {—; > ui(en -+ <78) ~ g1 + exp(6 + 2T 8} + A D (alg + 5 82) } ,
0 i=1

J=1

which is an instance of

= Most of the properties (e.g. ridge = variance reduction and shrinkage, lasso = variable selection)
and other high-level considerations we made so far are still valid.

® Computations are somewhat more cumbersome. The glmnet package provides the numerical routines
for fitting this model, using variants of coordinate descent.

® The core idea is to obtain a quadratic approximation of the log-likelihood, as for IWLS. Then, the
approximated loss becomes a ( ) penalized regression problem.

Home page

BICOCCA


https://tommasorigon.github.io/datamining

97 /100

References

Home page sicaccs


https://tommasorigon.github.io/datamining

98 /100

References |

® Main references

Chapter 3 of Azzalini, A. and Scarpa, B. (2011), Data Analysis and Data Mining, Oxford
University Press.

Chapters 3 and 4 of Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of
Statistical Learning, Second Edition, Springer.

Chapter 16 of Efron, B. and Hastie, T. (2016), Computer Age Statistical Inference, Cambridge
University Press.

Chapters 2,3 and 5 of Hastie, T., Tibshirani, R. and Wainwright, M. (2015). Statistical
Learning with Sparsity: The Lasso and Generalizations. CRC Press.

Hastie, T., Tibshirani, R., and Tibshirani, R.J. (2020). Best subset, forward stepwise or lasso?

Analysis and recommendations based on extensive comparisons. Statistical Science 35(4): 579-
592.

Home page Eu:ucn%


http://azzalini.stat.unipd.it/Book-DM/
https://hastie.su.domains/ElemStatLearn/
https://hastie.su.domains/ElemStatLearn/
https://hastie.su.domains/CASI/
https://hastie.su.domains/StatLearnSparsity_files/SLS_corrected_1.4.16.pdf
https://hastie.su.domains/StatLearnSparsity_files/SLS_corrected_1.4.16.pdf
https://tommasorigon.github.io/datamining

99 /100

References ||

m Hoerl, A. E., and Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 12(1), 55-67.

m Hastie, T. (2020). Ridge regularization: an essential concept in data science. Technometrics,
62(4), 426-433.

® Tibshirani, R. (1996). Regression selection and shrinkage via the lasso. Journal of the Royal
Statistical Society. Series B: Statistical Methodology, 58(1), 267-288.

m Efron, B., Hastie, T., Johnstone, |., and Tibshirani, R. (2004). Least Angle Regression. Annals of
Statistics 32(2), 407-499.

m Zou, H., Hastie, T., and Tibshirani, R. (2007). On the ‘degrees of freedom’ of the lasso. Annals
of Statistics 35(5), 2173-2192.

m Tibshirani, R. J. (2013). The lasso problem and uniqueness. Electronic Journal of Statistics 7(1),
1456-1490.

Home page ;II:I]BI:%


https://tommasorigon.github.io/datamining

100 / 100

References Il

m Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society. Series B: Statistical Methodology 67(2), 301-320.

® Friedman, J., Hastie, T., Hofling, H. and Tibshirani, R. (2007). Pathwise coordinate optimization.
The Annals of Applied Statistics 1(2), 302-32.

m Tay, J. K., Narasimhan, B. and Hastie, T. (2023). Elastic net regularization paths for all
generalized linear models. Journal of Statistical Software 106 (1).

Home page ;II:I]BI:%



https://tommasorigon.github.io/datamining

