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® This unit will cover the following
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=

m Kernel methods and local regression;
m Regression splines;

() @oues!
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® Smoothing splines.
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2
%1600

® | et us consider again the relationship between a response variable Y;
and a set of covariates x;:

1800

5

Y, = f(=x;) + €,

where ¢; are iid with E(¢;) = 0 and var(e;) = o2,

“Nonparametric regression might, like
linear regression, become an object

= We do not believe f(x) is a polynomial nor it belongs to some
treasured both for its artistic merit as well
as usefulness.”

parametric family of functions.

® Can we fit a nonparametric relationship that does

make strong
on f(x)? Let us review some old datasets...
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Motivating applications
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In this first example, a drug called “cholestyramine” is
administered to n = 164 men.

We observe the pair (z;,y;) for each man.

The response y; is the over
the experiment.

The covariate x; is a measure of compliance.

We assume, as before, that the data are generated
according to

Y}:f(wi)—f—ei, 1=1,...,n.

In Unit B we fit a with degree 3 on this data,
although there was some uncertainty.
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The auto dataset

In Unit A we considered the auto dataset.

We wanted to model the relationship between
city.distance (y) and engine.size (x).

The chosen model involved a non-linear function
YEZf(CBi)—l—Gi, 1=1,...,n,

where f(x) was “manually” selected.

There are no reasons to believe that f(z) = az’ or that

f(x) belongs to any other family.

We would like the data to “speak for themselves.”
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The mcycle dataset

. . m Data consist of variables y accelerometer (accel)
w0 o N . readings, taken through time = (times).
L Y ‘ .
C e e, Cee e ® The n = 133 observations were measured during a
_5 0 % oy J‘. . . ° .:o —o ] . -
g . LR R simulated motor-cycle crash experiment, for testing the
: v of
§ 50 " E. R
T e ® Some characteristics of the data:
-100 .g . 2 . _ _
S ® The time points are and
! 20’ . ! sometimes there are multiple observations;
Time (ms)

®m The observations are subject to :

® The errors €; are probably heteroscedastic, but let us

ignore this now.

® |t is of interest to discern the general shape of the
underlying acceleration curve.
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Old friends: polynomials

® |n the mcycle dataset, it is obvious which function we should consider, therefore this

route is not an option.

® |n polynomials can approximate a large class of functions, as a consequence of Taylor's
expansion theorem.

® |n the statistical , however, polynomial regression is not very well suited for modeling
complex relationships.

® \When performing flexible regression, we expect the prediction at x; to depend on observations close

to x;. However, polynomials are

® |nstead, in polynomial regression points that are far away from x; have a big impact on f(a:z) This
produces spurious oscillations at the boundaries and estimates.

m This is known as Runge’'s phenomenon in numerical analysis.
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Old friends: polynomials (mcycle data)
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Local regression
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The regression function

® The only assumption we are making in this Unit is the following structure

K:f(wz)+€za 7::1"“7”7

where ¢; are iid with E(e;) = 0 and var(e;) = o2. This structure can be relaxed even further.

" Let Y; be a new data point. In Unit B we showed that under the
B [{¥ - (=)},

the best prediction f(z;), i.e. the one minimizing the loss, coincides with

A~ ~

flai) = E(Y;) = f(x),
which is the conditional expectation of Y; given the value z;, called regression function.

m The regression function f(z;) = E(ﬁ) is the optimal prediction even in presence of
data or when the above decomposition does
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Local estimates of the prediction

= We do not know f(x), but the previous formulas suggest that we could consider an arithmetic
average of the data points.

® Hence, a for a generic value x could be obtained as follows:

fay=— S w  ne=Ii=u).
r i=1

1, =T

® This idea, unfortunately, in most practical cases.

® |ndeed, in a typical dataset it is very unlikely that there exist multiple observations to
x among the points (z;,y;).

m Even if there were values such that ; = x, the sample size n, would be so (e.g. n, =1) that
the variance of f(x) would be extremely high, making this estimator useless.

®m However, this “local average” idea seems . Can we “fix" it?
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K-nearest neighbours

® |nstead of considering the values exactly equal to z, we could identify the pairs (z;,y;) that are close
to (i.e. ina of) x

® A natural measure of proximity between & and the data points z; is the lx; — x|,
but in principle any other metric could be used.

m \We consider an average of the y; whose x; are to x, that is:
2

where N is indeed the set of k points nearest to x in Euclidean distance.

INI

® This method is called k-nearest neighbours (KNN).
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K-nearest neighbours (k = 6)
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Comments and limitations about the KNN method

® The number of neighbours k influences how *“ " is the estimate.

A

® When k is low, the KNN estimator f(x) has . The extreme case k = 1 corresponds to
an “average” of a single data point.

A

m When k is high, the KNN estimator f(z) is not local and it has high bias. The extreme case k = n

produces a constant, i.e., the average of all the observations.

® Thus, there is a in the choice of k, which should be selected, e.g., via cross-
validation.

® The k-nearest neighbors produce a sensible result, but the method
® The blue curve is bumpy, because f(x) is in .

® |ndeed, as we move x from left to right, the k-nearest neighborhood remains constant until a new

point x; to the right of x is included, and one to the left is excluded.

® This discontinuity is and . We are looking instead for a smooth prediction.
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Nadaraya-Watson estimator

The Nadaraya-Watson estimator addresses the aforementioned issues of the KNN method.

n
70) = sy S = 3 e
i'=1 wi i1
where s;(z) = w;(x)/ > 5 _, wy(x) are the normalized weights.
The values w;(x) > 0 are chosen so that the points x; to = are
A convenient way of selecting these weights is through kernel functions:

wi(w):%w(wi;m), i=1,...,n,

where w(-) is a function,

The value h > 0 is a scale factor, sometimes called or

Home page

around the origin, called kernel in this context.

It is a
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Nadaraya-Watson estimator: comments

m The fitted function f(x) is continuous and is obtained by computing several weighted averages, one
for each value of .

® A popular kernel is the , that is:

1 i — :
wz(w)zﬁqb(mhm)? ’L:].,...,’I'L,

therefore h? represents the variance. We will discuss alternative choices later on.

® The most important factor, however, is not the functional form of w(-), but rather the
h, which is a complexity parameter.

® |ndeed, h defines the “smoothing window" on the z-axis, i.e. the relevant data points that are

A

considered for f(x).

® As with any complexity parameter, h should be chosen via cross-validation or related ideas.
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Nadaraya-Watson (Gaussian kernel)

Smoothing h =1 | Smoothing h = 0.3  Smoothing h =2  Smoothing h =4
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Local linear regression |

® Local linear regression is a refinement of the Nadaraya-Watson estimator that has typically
, especially at the - without noticeable increases in variance.

= |f f(x) is differentiable, then it can be with a linear function tangent in xg:

f(z) = f(zo) + f'(zo)(z — o) + rest.
S

® Hence, instead of computing a (B2 = 0), we consider a local linear model. In other

words, for every x we seek the coefficients solving:

A

B(z) = (Bi(2), ha(a) ) = arg

= Once the parameter B;() and B2(z) are obtained, the local linear regression estimator is

A

f(z) = Bi(2) + Ba(2)(z — &) = Bi(2).
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Local linear regression ||

® The local linear regression, as we have seen in Unit A, has an
Bla) = (X;W.X,) ' X, Wy,

where the rows of X, are @;, = (1,2; — ) and W, = diag{wi(x),...,w,(x)}.

® |n practice, we do need to solve this problem. An even more explicit and
solution can be found (see Exercises).

Theorem (Local linear smoothing)

The local linear regression smoother, evaluated in &, admits an explicit expression:

n n

flay = 130 wlleeld) (@~ @), _ §7 ey,

i—1 az(z)ag(z) — a1(z)? i—1

where aj(z) =n' Y7 wi(z)(zi — z)’, for 7 =0,1,2.
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Local linear regression (h = 1.46, Gaussian kernel)
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Linear smoothers |

®m The Nadaraya-Watson estimator and local linear regression are special instances of linear smoothers,
which are estimators having the following form:

® We will study other members of this class, such as regression and smoothing splines.

® Polynomial regression, ridge regression, Gaussian processes and are also linear
smoothers.
® The mean (and hence the bias), and the of a linear smoother can be easily obtained:

E{f(2)} = Zsz z),  var{f(a _02232
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Linear smoothers ||

® |n linear smoothers, we can express the predicted values 4 using
n
. - - T
yzzszyzzsya S; = (Si(xl)a'“)'si(wn)) ’
i=1

where S = (81,...,8,) is the so-called n x n smoothing matrix.

m Each row of the smoothing matrix s; is called for estimating j?(acz) in the
Nadaraya Watson estimator s; is indeed a normalized kernel.

= The weights of all the smoothers we will use are such that " | s;(z) = 1 for all z.

® Hence, the smoother preserves constant curves, namely if all y; = ¢, then f(:v) =c.
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On the choice of the kernel

® As mentioned before, the choice of the kernel is . Some alternatives are:
Kernel w(x) Support
Gaussian \/% exp (—‘”2—2) R
Rectangular 3 (—1,1)
Epanechnikov  3(1 — z?) (—1,1)
Bi-quadratic  12(1 — z?)? (—1,1)
Tri-cubic D1 —|z[?)3 (—1,1)
® Some asymptotic considerations lead to the choice of the “ " Epanechnikov kernel.

® Bounded kernels have computational advantages, because one needs to compute averages of a
limited number of data points.

= On the other hand, bounded kernels may lead to of f(z) that could be
unappealing in certain contexts.
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Bias-variance tradeoff

Theorem (Fan and Gijbels, 1996, Theorem 3.1)

Let (Xi,Y:) be iid random vectors with g(z) denoting the of X;. The conditional
law is such that Y; = f(X;) + ¢;, with ¢; iid and E(¢;) = 0, var(e;) = o2,

Moreover, suppose g(xz) > 0 and that g(-) and f”(-) are continuous in a neighborhood of z. Then,

as h — 0 and nh — 0o we have that for the local linear regression f(z) the is
£ h? 2 el
Eif(z) - f(@)} = S ouf(2),
where 02 = [ z?w(z)dz. In addition, the variance is
2
var{f(z)} ~ "—h(—

where a,, = [(w?(2)dz
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Bias-variance tradeoff |l

® The previous theorem shows that is of and the variance is of order (1/nh).

® Once again, there is a trade-off because we would like h — 0 but, at the same time, we need to keep

the variance under control.

m \We can select h so that the asymptotic mean squared error is . This leads to the following
optimal choice for the bandwidth:

1 o2y, 1/5
hope() = (ﬁa;t,fﬂwg(w)) ‘

= Unfortunately, hopt(z) is of , as it involves the terms f’(z), g(x) and

o%. However, it highlights two important facts:
= The bandwidth h should decrease at the rate n=/?, i.e. quite slowly.

= |f we plug-in hopt(x) into the bias/variance formulas, we get that the mean squared error tends to 0

—4/5 1

at the rate n . which is much than the case n_ .
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Bias reduction of local linear regression

® Compared to the Nadaraya-Watson estimator, local linear regression corrects the term of
the , without affecting the variance sensibly.

® |ndeed, it can be shown that the asymptotic variance of Nadaraya-Watson and local linear
regression is the same, but the IS

® To get an intuition of this, consider the following Taylor expansion for ]E{f(:c)} around z, and for the
local linear regression case:

E{f(x)} = Z si(z)f(z:)

— f(ac)z si(z) + f'(x) . (z; — x)s;(x) + f”ém) z:(av:Z — a;)2si(a:) + rest.

3

:1 =

It can be shown with some algebra that the first-order term simplifies (= 0) in the local linear
regression case, but it doesn't for the Nadaraya-Watson, therefore
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Choice of the bandwidth |

® |n practice, we need to choose the bandwidth by other means. A first solution is based on
information criteria such as the C,, or the AIC/BIC.

®m However, as before, their usage requires a suitable notion of

Effective degrees of freedom for linear smoothers

Let f(z) = 3.7, si(z)y; be a linear smoother. Then the effective degrees of freedom are

dfs = % zn:cov(Yi, f(z) = %tr{cov(Y, SY)} = Z—ztr(S) = tr(S).
i=1

= Some authors proposed to use tr(SS?) or tr(2S5 — SST), but the connection with the
and the definition of effective degrees of freedom is less clear.
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Choice of the bandwidth II

® Cross-validation is another option for selecting the bandwidth h. For linear smoothers there is
a brilliant for the leave-one-out case.

= Any reasonable linear smoother is constant preserving, that is ) %, s;(z) = 1 for all . Moreover, for
most linear smoothers the following property holds:

R 1 Z
y—i = — SJ(CL'Z)yJ.

® |n other words, the can be obtained by the 7th observation and
re-normalizing the weights.

® A [inear smoother is called if it has the above property.

u the presented in this unit (Nadaraya-Watson, local linear regression, regression
an smoothing splines) are projective (see Exercises).
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Choice of the bandwidth 1l

Theorem (LOO-CV for linear smoothers)

Let g_; = f_l(wz) be the leave-one-out predictions of a projective linear smoother and let y = Sy
be the predictions of the full model. Then:

yi_@—z‘:—yi_gi, 1=1,...,n.
1 — [S]i

Therefore, the leave-one-out mean squared error is

— I &K (vi—0 )
Err—nZ(l_[S]ii).

=1
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Choice of the bandwidth IV

Error term -~ GCV -e- LOO-CV
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Loess

= Sometimes it is convenient to choose h , i.e. specifying a variable bandwidth h(z) that
depends on the local density of the data.

® |ndeed, recall that the asymptotic variance depends on the sampling design of the x;s

o

var{f(z)} ~ h @)

m The loess (Cleveland, 1979) considers a fixed percentage of data points (assuming a bounded
kernel is used), which automatically induces a cas in KNN.

® Moreover, the loess algorithm combines the variable bandwidth with some
ideas, so that outliers less influence the resulting estimate.

® Joess is a short-hand for “locally weighted estimated scatterplot smoothing”.
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Local likelihoods

®m The concept of local regression and varying coefficients is extremely

® |n principle, any model can be made local as long as it accommodates weights.

® | et us consider a logistic regression with a single predictor. For every value x we seek

n

B(z) = arg (Iglaﬂ% w;(x) [y (B1 + Bax;) — log{l + exp(B1 + Bai)}],

whose solution can be found using iteratively re-weighted least squares.

®m The and the theory are not as straightforward and limpid as in the regression case,
but they do hold in an sense.
® Once again, the conceptual scheme is: (i) perform a of the log-likelihood;

(ii) proceed as in the regression case.
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The bivariate case

® [ ocal linear regression can be applied when or , say p, are used. Let us begin

with two covariates so that
Y = f(@i1, Ti2) + €.

m To estimate f on a specific point ® = (z1,z5)?, a natural extension of local linear regression takes

the form
B(x) = arg min wi() {y; — B1 — Ba(min — 1) — B3z — 72)}.
(/81’/327/33) i=1
= A common way of choosing the w; () is to set
w; (@) = 1 (T ZLY (T2 T2
: hihs hi he )
® (Clearly, this now involves the choice of different smoothing parameters.

Home page én:ucn%


https://tommasorigon.github.io/datamining

34 /68

The bivariate case (h; = 0.5, hy = 150)
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Pros and cons of kernel nonparametric regression

Pros

m | ocal linear regression is a nonparametric estimator for unknown functions f(z) which makes

very on its form.

® The procedure is simple and computationally efficient.

® The smoothing parameter h can be easily handled, since f(:c) a linear smoother.

Cons

m There is a price to pay for not making assumptions: estimation is in terms of mean
squared error compared to parametric models (when they are correctly specified!).

® This is a drawback of all nonparametric estimators, not just local linear regression.
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Regression splines
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Basis expansions

® The idea of polynomial regression can be generalized and . The main idea is to augment
or replace the input & with additional variables (basis expansion).

= Let hy(z),...,hy(z) be functions h;(z) : R — R that transform the original predictor

z in some non-linear fashion. Then, we let

p

Fz;8) =) hi(z)B;,

j=1
where 8 = (B1,...,0,)" is a vector of
®m Polynomials are a specific instance of basis expansion, in which

hi(z) =1, hy(z) ==z, hs(z)=2> ... hy(z)=2""

® The main advantage of this approach is its in the , because it means that
ordinary least squares can be used for the estimation of 3.
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Piecewise regression |
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m A piecewise constant regression model is another instance of basis expansions, in which we consider
step functions, say p = 3

hi(z) =I(z < &), ha(z) =I(& <z <&), hs(z)=1I(z > &),

where £ = (&1,&5) are pre-specified cutpoints, called . Here £ = (15, 25).
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Piecewise regression ||

® The previous choice of knots is very well. The model is not flexible enough.

® To improve the fit, we could consider piecewise polynomial functions rather than constant. For
example, a piecewise function with p = 30 is

hi(z) = I(x < &), ho(z) =z I(x < &), hy(z) = 2° I(z < &),
ha(z) =I1(& <z < &), hs(z) =z (& <z < &), he(z) = 2° I(&; <z < &),

hog(x) = I(x > &), hog(x) =z I(x > &), hyo(z) = z2 I(z > &).

® The piecewise quadratic f(x; ) = 23021 hi(z)B; is e.g. at the knot &;:

B+ Bob1 + Bs&l # B+ Bs&a + B

To achieve smoothness, it would be appealing to add some
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Piecewise polynomial functions

Method — Piecewise quadratic —— Piecewise quadratic (continuity constraints)
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Splines |

m Splines are piecewise polynomial functions with smoothness and continuity constraints.
® QOriginally developed for ship-building to draw a smooth curve through a set of points.

® The solution was to place metal weights (called knots) at the control points, and bend a thin metal

or wooden beam (called a spline) through the weights.
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Splines 1l

Definition (Spline of degree d)
Let & < --- < &, be a set of ordered points called knots belonging to the interval (a,b).

A spline f(z; ) : (a,b) — R of degree d is a piecewise polynomial function of degree d that has

continuous derivatives up to order d — 1.

® Cubic splines (d = 3) are the most common spline used in practice.

Definition (Cubic spline, d = 3)

Letting & < - -- < & denote a set of ordered knots, a cubic spline f(x; ) is a piecewise cubic
polynomial that has continuous first and second derivatives,
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Splines 11l

m Figure 5.2 of HTF (2011), in which are shown piecewise cubic polynomials with increasing
regularity. The bottom-right plot (green line) depicts a cubic spline.

Discontinuous Continuous

&1 &2 & &

Continuous First Derivative Continuous Second Derivative

& &2 & &2
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Splines IV

® To . a spline of degree d is a piecewise polynomial f(x; ) of order d such that

FE) = &), .., f9 D) = f94 D),  j=1,...,k

where £ and £; denote the left and the right limits.

® The degree d controls the amount of smoothness:
" d =0 is a piecewise constant function;
md=1isa (continuous, but with discontinuous first derivative).

m Higher values of d increase the smoothness, but the spline behaves more and more like a global
polynomial. In practice, one rarely goes beyond d = 3.

® The current definition of spline is quite abstract and . How do we fit a regression
model whose f(x; ) is a spline?
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Truncated power basis

Theorem (Truncated power basis)

Let & < --- < & be a set of ordered points called belonging to (a,b). Let
hi(z) =z, j=1,...,d+1,
and
hjrari(z) = (z — &), j=1,...,k.

Then, the functions {hq,...,h;rg.1} form a basis for the set of splines of degree d at these knots,
called the truncated power basis.

Thus, any f(x, 8) with these knots can be written as a basis expansion
k+d+1
f(z;8) = ) hi(z)B;.
j=1
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Regression splines

® The truncated power basis is a way of defining splines. Moreover, it clarifies that splines
are linear in the parameters.

m et B be an X p design matrix whose elements are obtained from the basis functions:

[B]ij:hj(zci), jZl,...,p; iZ].,...,?’L.

m et f(z;6) = ?:1 hj(x)B;. Then, the ordinary least squares for 8 are obtained as usual:

n

B=(B"B)'B"y = f(2) =) hi@)8; =) si(x)y:

® Hence, are another instance of linear smoother (actually, of linear model). The

smoothing matrix in this case is § = B(B” B)"'B”, so that tr(S) = p.

m Regression splines are generating “new” covariates. Hence, their extension to GLMs, particularly to
, is straightforward.
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On the choice of the knots

® The knots' placement and their number k are - which should be chosen via
cross-validation or other tools.

® |n principle, the position of the knots could be manually selected to get the best fit. However, this
results in an

® |n practice, the knots are typically selected in two ways:

1. Knots are on a grid of values ranging from min(z) to max(z);

2. Knots are placed on quantiles (bs default), to get variable bandwidth.

®m The degree d influences the we can place for a fixed number of degrees of
freedom p. For example:

® |n linear splines (d = 1), with p = 12 we can place kK = p —d — 1 = 10 knots;
® |n quadratic splines (d = 2), with p = 12 we can place k = 9 knots;

® |n cubic splines (d = 3), with p = 12 we can place k = 8 knots.
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Regression splines (p = 12)
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On the choice of p (cubic splines)
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Natural cubic splines |

® Polynomials fit beyond the boundary knots &; and &, tends to be . Prediction and

extrapolations can be dangerous.

Definition (Natural cubic spline)

A natural cubic spline f(z; ) is a cubic spline which is beyond the boundary knots & and

£, which means f"(&) = f"(&) = 0.

® Natural cubic splines enforce 4 ; these degrees of freedom can be used more
efficiently to place more internal knots.

Proposition

A set of n > 2 distinct points (x;,¥;) can be interpolated using a natural cubic spline with the
data points ; < -+ < x,, as knots. The interpolating natural cubic spline is
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Natural cubic splines Ii

® |n practice, the truncated power basis can be easily , to get the following basis
Ni(z) =1, Ny(z)=w=,
(&)L —(z— &)1 (2 —& 1)} — (2 — &)

Niio(x) = — , J=1,...,k—2.
j2(®) & — & §k — Ek1
® This formula is a of the truncated power basis for any x < &,_1, namely
r—&)3 .
Nj+2($):%, wggkz—la .7:17°"7k_2°
j

The formula becomes more complicated when x > £,_1 and the constraint is enforced.

® Hence, in natural cubic splines £ = p and the function can be express as follows

k

f(z;8) =) Ni(z)B;.

j=1
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Natural cubic splines (£ = 12)
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50

C
Eg 0 Nete v 8 e
®
—_
o
(O]
Q
&
- 90
®
0]
T

-100

0 20 40 60

Time (ms)

SSUNIVERSITA

Home page

Icocch


https://tommasorigon.github.io/datamining

53 /68

Computations: B-splines |

m Despite their conceptual simplicity, the truncated power basis and its “natural” modification are not
used in practice, due to

= |ndeed, the condition number of BT B using a truncated power basis is very large, leading to

® For this reason, more computationally convenient bases are preferred. This means we will consider
an equivalent set of functions Bi(x), ..., Bp(x) such that

b
B](iE) — Z’thﬁ(x% .7 — 17 - .y Py
/=1

for some set of weights ,; that makes this transformation

® Since we are performing a linear transformation, if ordinary least squares are used, this
the fit.

® A particularly convenient basis are B-splines, which are local and . They admit a
direct construction; i.e., we do not need to compute the coefficients ;.
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Computations: B-splines ||
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«« - Details of B-splines |

m Define £ = (&1,...,&) and consider an sequence of ordered
T = (7-17 <o 7Tk+2d+2) - (€—d7 s 7607 £7 €k+17 <o 7€k+d+1)'
W A ~ 7
auxiliary knots auxiliary knots
The most common choiceisé_g=---=& =aand §1 =+ = Eprqgr1 = b.

m Stepl. Forj=1,...,k+ 2d+ 1, obtain the B-spline of degree m = 0 as follows:
Bjo(@) = Iir, z,.0) (%),
where by convention we say that B;(z) = 0 if the knots are equal 7; = 7j;.

L] . The B-spline of degree m < d are obtained . so that

T —Tj Tj+m+1 — T

Bjm(z) = Bjm-1(z) +

Bj1m-1(),
Tj+m — Tj Tj+m+1 — Tj+1

fory=1,...,k+2d4+1—mand form=1,...,d.
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«« - Details of B-splines Il

The intercept term is in a B-spline basis, in fact
k+d+1
Z Bja(z) =1, z € (a,b).
j=1
B-splines 7 have , which means that for j =1,...,k+ 2d + 1 — m we have
Bj () z & (7, Tjrd+1);

— (),
Bj,d(x) > O, xr < (Tj,Tj+d+1).

This implies that the support of cubic B-splines is at most 4 knots.

The presence of implies that, when computing ordinary least squares, extremely
efficient Cholesky factorization for banded matrices can be exploited.

The B-spline basis can be modified to produce a natural cubic spline, by numerically enforcing the
linearity constraint. This is implemented in the ns R function.
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Pros and cons of regression splines

Pros

m Regression splines is a estimator for unknown functions f(x).

® They are essentially a linear model with smart covariates that account for non-linearity. Hence,
the procedure is simple and computationally efficient (thanks to B-splines).

® The smoothing parameter k is discrete and can be easily handled, being directly associated with

the number of degrees of freedom.

® They are trivial to extend to generalized linear models.

Cons

m Knot placement based on quantiles or other automatic choices could be inefficient.

® Manual placement of the knots is out of question because it is an almost impossible optimization
problem.
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Smoothing splines
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Smoothing splines |

m | et us consider the following penalized least squares criterion

Z{yz— }2+A/ ()12,

-~

roughness penalty

where (a,b) is an interval containing the data points and A > 0 is a

®m \\e consider as our estimator the minimizer of the above loss, that is

f(z) = arg min & (f; A),

where F is a sufficiently regular functional space (Sobolev space).
® The quantifies the “wiggliness” of the curve. There are two extremes:
® When A\ = 0 there is no penalization: any solution interpolates the points (z;, y;);

®m When A = oo then necessarily f”(z) =0, i.e. the solution is a

Home page En:ucn%


https://tommasorigon.github.io/datamining

60 / 68

Smoothing splines ||

Theorem (Green and Silverman, 1994)
Let ng < m be the distinct points among z1, ..., z,, with z; € (a,b). Suppose ng > 3.

Then, for any A > 0 the minimizer of Z(f;\) is and is a natural cubic spline with n
knots at the distinct points.

® The Green and Silverman theorem is remarkably and powerful.

® Since the solution is a natural cubic spline, we can write it as follows:
no
f(z;8) =D Nj(z)B;,
j=1
whose coefficients 3 still to be

® |n smoothing splines, we do need to . every distinct observation is a knot. The
model is not overparametrized because the complexity is controlled by A.
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Smoothing splines Il
= Since f(z;0) is a , the penalized least squares criterion becomes
n b
BN =y — f@s B + 28798, [ Q= / NY/(£) N} (£)dt,
=1 a

whose minimization over 3 is much easier, because it becomes

= The minimization of Z(8; \) is reminiscent of ridge regression, and in fact the solution is
B=(NTN+x2)"'N"y,  [N];=Nj(=z).
which leads to a  with § = N(NTN + Q) 'NT.

® The above formula is not used in practice directly. The smooth.spline R implementation relies on

B-splines to make computations and stable.

m Alternatively, the so-called Reinsch (1967) algorithm has computational complexity ~ n.
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Smoothing splines (df;,, = 12.26)

50

2 9
C
o)
©
| .
o
©
[&]
(®]
©
o -50
®©
o)
I

-100

0 20 40 60

Time (ms)

Home page

BICOCCA


https://tommasorigon.github.io/datamining

63 /68

The equivalent kernel

® As already mentioned, smoothing splines are , which means that

S

JE(CU) = Z si(Z)y;.

1=1

m Provided x is not too near the edge of the interval (a,b), and X is not too big or too small, we obtain

the following for the equivalent kernel
5:(z) ~ 1 1 w(w—wi)
Z g(z) h(z)  \ h(z) )
® The w(t), which is not a density, and the local bandwidth equal to

w(t) = %exp (—%) sin (% + %) C h(z) = AV ng(z)} V4.

® Smoothing splines incorporate a local bandwidth decreasing with n.
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Multi-dimensional splines

m There are several ways of extending regression and smoothing splines to the multivariate case. An
example are tensor splines, based on the cross-multiplication of basis functions.

® Another instance are the thin-plate splines, in which the 2d penalty becomes

82f(531,$2) ? 32f($1,$2) ? 82]‘(521,:182) ?
/]1%2 ( O )+2( 010, ) +( O3 ) dndes.

The minimization of the above loss has a simple solution.

®m \We do not discuss any further multi-dimensional splines because, when the , they
are affected by the so-called curse of dimensionality; see Unit E.

® Nonetheless, the 2d case is extremely useful in , in which 21 and x2 represent
longitude and latitude.

® There will be a strong connection between the we have seen in this unit and the so-called
kriging equations.
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Further properties of smoothing splines

m Extension of smoothing splines to generalized linear models is possible by adding the “roughness”
penalty to the log-likelihood function.

® Smoothing splines have a Bayesian interpretation, being an instance of Gaussian process.

® From a theoretical perspective, there exists (Chapter 5.8 of ) an elegant theory based on
- that unifies:

® Gaussian processes;
® Smoothing splines;

® Support vector machine.

Pro-tip (a joke?)

“If you want to derive an estimator that performs well in practice, define a Bayesian model, derive
the posterior mean, call this a frequentist estimator, and hide all evidence you ever considered a
Bayesian approach.” Credits to Eric B. Laber
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Pros and cons of smoothing splines

Pros

® Smoothing splines is a estimator for unknown functions f(x).

® They are a linear smoother with variable bandwidth.
® Compared to regression splines, they do not require the choice of the knots.

® Simple and efficient algorithms for computing 1d smoothing splines exist, such as smooth.spline
available in R.

Cons

m Efficient implementations require a profound knowledge of linear algebra, B-spline basis, etc.

® Hence, the "manual” incorporation (i.e., the coding) of smoothing splines into bigger, non-
standard models is not straightforward.
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