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“Nonparametric regression might, like
linear regression, become an object
treasured both for its artistic merit as well
as usefulness.”

Leo Breiman

This unit will cover the following topics:

Kernel methods and local regression;

Regression splines;

Smoothing splines.

Let us consider again the relationship between a response variable 

and a set of covariates :

where  are iid with  and .

We do not believe  is a polynomial nor it belongs to some

parametric family of functions.

Can we fit a nonparametric relationship that does not make strong
assumptions on ? Let us review some old datasets…
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Motivating applications
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The cholesterol data

In this first example, a drug called “cholestyramine” is
administered to  men.

We observe the pair  for each man.

The response  is the decrease in cholesterol level over

the experiment.

The covariate  is a measure of compliance.

We assume, as before, that the data are generated
according to

In  we fit a polynomial with degree  on this data,
although there was some uncertainty.

n = 164

(x ​, y ​)i i

y ​i

x ​i

Y ​ =i f(x ​) +i ϵ ​, i =i 1, … ,n.
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The auto dataset

In  we considered the auto dataset.

We wanted to model the relationship between
city.distance ( ) and engine.size ( ).

The chosen model involved a non-linear function

where  was “manually” selected.

There are no reasons to believe that  or that

 belongs to any other parametric family.

We would like the data to “speak for themselves.”

Unit A

y x

Y ​ =i f(x ​) +i ϵ ​, i =i 1, … ,n,

f(x)

f(x) = αxβ
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The mcycle dataset

Data consist of variables  accelerometer (accel)

readings, taken through time  (times).

The  observations were measured during a

simulated motor-cycle crash experiment, for testing the
efficacy of crash helmets.

Some characteristics of the data:

The time points are not regularly spaced and
sometimes there are multiple observations;

The observations are subject to error;

The errors  are probably heteroscedastic, but let us

ignore this now.

It is of interest to discern the general shape of the
underlying acceleration curve.

y

x

n = 133

ϵ ​i
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Old friends: polynomials

In the mcycle dataset, it is not obvious which parametric function we should consider, therefore this

route is not an option.

In theory polynomials can approximate a large class of functions, as a consequence of Taylor’s
expansion theorem.

In the statistical practice, however, polynomial regression is not very well suited for modeling
complex relationships.

When performing flexible regression, we expect the prediction at  to depend on observations close

to . However, polynomials are not local.

Instead, in polynomial regression points that are far away from  have a big impact on . This

produces spurious oscillations at the boundaries and unstable estimates.

This is known as  in numerical analysis.

x ​i

x ​i

x ​i ​(x ​)f̂ i

Runge’s phenomenon
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Old friends: polynomials (mcycle data)
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Local regression
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The regression function

The only assumption we are making in this Unit is the following additive structure

where  are iid with  and . This structure can be relaxed even further.

Y ​ =i f(x ​) +i ϵ ​, i =i 1, … ,n,

ϵ ​i E(ϵ ​) =i 0 var(ϵ ​) =i σ2

Let  be a new data point. In  we showed that under the quadratic loss

the best prediction , i.e. the one minimizing the loss, coincides with

which is the conditional expectation of  given the value , called regression function.

​Y
~
i Unit B

E { ​ − ​(x ​)} ,[ Y
~
i f̂ i

2]

​(x ​)f̂ i

​
(x ​

) =f̂ i E( ​) =Y
~
i f(x ​),i

Y ​i x ​i

The regression function  is the optimal prediction even in presence of

heteroschedastic data or when the above additive decomposition does not hold.

f(x ​) =i E( ​)Y
~
i
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Local estimates of the prediction

We do not know , but the previous formulas suggest that we could consider an arithmetic
average of the data points.

Hence, a prediction for a generic value  could be obtained as follows:

f(x)

x

​(x) =f̂ ​ ​ y ​, n ​ =
n ​x

1

i:x ​=xi

∑ i x ​ I(x ​ =
i=1

∑
n

i x).

This idea, unfortunately, does not work in most practical cases.

Indeed, in a typical dataset it is very unlikely that there exist multiple observations exactly equal to
 among the points .

Even if there were values such that , the sample size  would be so small (e.g.  ) that

the variance of  would be extremely high, making this estimator useless.

x (x ​, y ​)i i

x ​ =i x n ​x n ​ =x 1
​(x)f̂

However, this “local average” idea seems intuitively appealing. Can we “fix” it?
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K-nearest neighbours

Instead of considering the values exactly equal to , we could identify the pairs  that are close
to (i.e. in a neighbour of) .

A natural measure of proximity between  and the data points  is the Euclidean distance ,

but in principle any other metric could be used.

x (x ​, y ​)i i

x

x x ​i ∣x ​ −i x∣

We consider an average of the  values  whose  are nearest to , that is:

where  is indeed the set of  points nearest to  in Euclidean distance.

This method is called -nearest neighbours (KNN).

k y ​i x ​i x

(x) =f̂ ​ ​ y ​,
∣N ​∣x

1

i∈N ​x

∑ i

N ​x k x

k
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K-nearest neighbours ( )k = 6
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Comments and limitations about the KNN method

The number of neighbours  influences how “local” is the estimate.

When  is low, the KNN estimator  has high variance. The extreme case  corresponds to

an “average” of a single data point.

When  is high, the KNN estimator  is not local and it has high bias. The extreme case 

produces a constant, i.e., the average of all the observations.

k

k ​
(x)f̂ k = 1

k ​
(x)f̂ k = n

Thus, there is a bias-variance trade-off in the choice of , which should be selected, e.g., via cross-
validation.

k

The -nearest neighbors produce a sensible result, but the method can be improved.

The blue curve is bumpy, because  is discontinuous in .

Indeed, as we move  from left to right, the -nearest neighborhood remains constant until a new

point  to the right of  is included, and one to the left is excluded.

This discontinuity is ugly and unnecessary. We are looking instead for a smooth prediction.

k

​(x)f̂ x

x k

x ​i x
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Nadaraya-Watson estimator

The Nadaraya-Watson estimator addresses the aforementioned issues of the KNN method. It is a
weighted average

where  are the normalized weights.

​
(x) =f̂ ​ ​w ​

(x)y =
​ w ​(x)∑i =1′

n
i′

1

i=1

∑
n

i i ​s ​
(x)y ​

,
i=1

∑
n

i i

s ​(x) =i w ​(x)/ ​ w ​(x)i ∑i =1′
n

i′

The values  are chosen so that the points  close to  are weighted more.w ​(x) ≥i 0 x ​i x

A convenient way of selecting these weights is through kernel functions:

where  is a density function, symmetric around the origin, called kernel in this context.

The value  is a scale factor, sometimes called bandwidth or smoothing parameter.

w ​(x) =i ​w ​ , i =
h

1
(

h

x ​ − xi ) 1, … ,n,

w(⋅)

h > 0
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Nadaraya-Watson estimator: comments

The fitted function  is continuous and is obtained by computing several weighted averages, one

for each value of .

A popular kernel is the Gaussian kernel, that is:

therefore  represents the variance. We will discuss alternative choices later on.

​(x)f̂

x

w ​(x) =i ​
ϕ

​
, i =

h

1
(

h

x ​ − xi ) 1, … ,n,

h2

The most important factor, however, is not the functional form of , but rather the smoothing
parameter , which is a complexity parameter.

Indeed,  defines the “smoothing window” on the -axis, i.e. the relevant data points that are

considered for .

As with any complexity parameter,  should be chosen via cross-validation or related ideas.

w(⋅)
h

h x

​(x)f̂

h
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Nadaraya-Watson (Gaussian kernel)

Smoothing h = 1 Smoothing h = 0.3 Smoothing h = 2 Smoothing h = 4
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Local linear regression I

Local linear regression is a refinement of the Nadaraya-Watson estimator that has typically lower
bias, especially at the boundaries, without noticeable increases in variance.

If  is differentiable, then it can be approximated with a linear function tangent in :f(x) x ​0

f(x) = ​ +

β ​1

​f(x ​)0 ​(x −

β ​2

​f (x ​)′
0 x ​) +0 rest.

Hence, instead of computing a local average ( ), we consider a local linear model. In other

words, for every  we seek the coefficients solving:

β ​ =2 0
x

​(x) =β̂ ​ ​(x), ​ ​(x) =(β̂1 β̂2 ) arg ​ ​w ​(x) y ​ − β ​ − β ​(x ​ − x) .
(β ​,β ​)1 2

min
i=1

∑
n

i { i 1 2 i }2

Once the parameter  and  are obtained, the local linear regression estimator is​ ​
(x)β̂1 ​ ​

(x)β̂2

(x) =f̂ ​ ​(x) +β̂1 ​ ​(x)(x −β̂2 x) = ​ ​(x).β̂1
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Local linear regression II

The local linear regression, as we have seen in , has an explicit solution:

where the rows of  are  and .

In practice, we do not need to solve this linear algebra problem. An even more explicit and non-
iterative solution can be found (see Exercises).

Unit A

​(x) =β̂ (X ​W ​X ​) X ​W ​y,x
T

x x
−1

x
T

x

X ​x x ​ =i,x (1,x ​ −i x) W ​ =x diag{w ​(x), … ,w ​(x)}1 n

The local linear regression smoother, evaluated in , admits an explicit expression:

where , for .

Theorem (Local linear smoothing)

x

​(x) =f̂ ​ ​ ​y ​ =
n

1

i=1

∑
n

a ​(x)a ​(x) − a ​(x)2 0 1
2

w ​(x){a ​(x) − (x ​ − x)a ​(x)}i 2 i 1
i ​s ​(x)y ​,

i=1

∑
n

i i

a ​(x) =j n ​ w ​(x)(x ​ −−1 ∑i=1
n

i i x)j j = 0, 1, 2
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Local linear regression ( , Gaussian kernel)h = 1.46
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Linear smoothers I

The Nadaraya-Watson estimator and local linear regression are special instances of linear smoothers,
which are estimators having the following form:

​
(x) =f̂ ​s ​

(x)y ​
.

i=1

∑
n

i i

We will study other members of this class, such as regression and smoothing splines.

Polynomial regression, ridge regression, Gaussian processes and moving averages are also linear
smoothers.

The mean (and hence the bias), and the variance of a linear smoother can be easily obtained:

E{
​
(x)} =f̂ ​s ​(x)f(x ​), var{ ​(x)} =

i=1

∑
n

i i f̂ σ ​s ​(x) .2

i=1

∑
n

i
2
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Linear smoothers II

In linear smoothers, we can express the predicted values  using matrix notation

where  is the so-called  smoothing matrix.

​ŷ

​ =ŷ ​ ​y ​ =
i=1

∑
n

s~i i Sy, ​ =s~i (s ​(x ​), … , s ​(x ​)) ,i 1 i n
T

S = ( ​, … , ​)s~1 s~n n × n

Each row of the smoothing matrix  is called equivalent kernel for estimating ; in the

Nadaraya Watson estimator  is indeed a normalized kernel.

s ​i ​(x ​)f̂ i

s ​i

The weights of all the smoothers we will use are such that  for all .

Hence, the smoother preserves constant curves, namely if all , then .

​ s ​(x) =∑i=1
n

i 1 x

y ​ =i c ​(x) =f̂ c
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On the choice of the kernel

As mentioned before, the choice of the kernel is not crucial. Some alternatives are:

Kernel Support

Gaussian

Rectangular

Epanechnikov

Bi-quadratic

Tri-cubic

w(x)

​ exp − ​

​2π
1 ( 2

x2
) R

​2
1 (−1, 1)

​ (1 −4
3 x )2 (−1, 1)

​ (1 −16
15 x )2 2 (−1, 1)

​ (1 −81
70 ∣x∣ )3 3 (−1, 1)

Some asymptotic considerations lead to the choice of the “optimal” Epanechnikov kernel.

Bounded kernels have computational advantages, because one needs to compute averages of a
limited number of data points.

On the other hand, bounded kernels may lead to discontinuous derivatives of  that could be

unappealing in certain contexts.

​(x)f̂
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Bias-variance tradeoff

Let  be iid random vectors with  denoting the marginal density of . The conditional

law is such that , with  iid and , .

Moreover, suppose  and that  and  are continuous in a neighborhood of . Then,

as  and  we have that for the local linear regression  the bias is

where . In addition, the variance is

where .

Theorem (Fan and Gijbels, 1996, Theorem 3.1)

(X ​,Y ​)i i g(x) X ​i

Y ​ =i f(X ​) +i ϵ ​i ϵ ​i E(ϵ ​) =i 0 var(ϵ ​) =i σ2

g(x) > 0 g(⋅) f (⋅)′′ x

h → 0 nh → ∞ ​(x)f̂

E{ ​(x) −f̂ f(x)} ≈ σ ​f (x),
2
h2

w
2 ′′

σ ​ =w
2 z w(z)dz∫ 2

var{ ​(x)} ≈f̂ ​ ​ ,
nh

σ2

g(x)
α ​w

α ​ =w w (z)dz∫ 2
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Bias-variance tradeoff II

The previous theorem shows that bias is of order  and the variance is of order .

Once again, there is a trade-off because we would like  but, at the same time, we need to keep

the variance under control.

h2 (1/nh)

h → 0

We can select  so that the asymptotic mean squared error is minimal. This leads to the following

optimal choice for the bandwidth:

h

h ​(x) =opt ​ ​ .(
n

1
σ ​f (x) g(x)w

4 ′′ 2

σ α ​

2
w )

1/5

Unfortunately,  is of little practical utility, as it involves the unknown terms ,  and

. However, it highlights two important facts:

The bandwidth  should decrease at the rate , i.e. quite slowly.

If we plug-in  into the bias/variance formulas, we get that the mean squared error tends to 

at the rate , which is much slower than the parametric case .

h ​(x)opt f (x)′′ g(x)
σ2

h n−1/5

h ​(x)opt 0
n−4/5 n−1
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Bias reduction of local linear regression

Compared to the Nadaraya-Watson estimator, local linear regression corrects the first-order term of
the bias, without affecting the variance sensibly.

Indeed, it can be shown that the asymptotic variance of Nadaraya-Watson and local linear
regression is the same, but the asymptotic bias is different.

To get an intuition of this, consider the following Taylor expansion for  around , and for the

local linear regression case:

It can be shown with some algebra that the first-order term simplifies ( ) in the local linear
regression case, but it doesn’t for the Nadaraya-Watson, therefore reducing the bias.

E{ ​(x)}f̂ x

​ ​

E{ ​(x)}f̂ = ​s ​(x)f(x ​)
i=1

∑
n

i i

= f(x) ​ + f (x) ​ + ​ ​(x ​ − x) s ​(x) + rest.

=1

​​s ​(x)
i=1

∑
n

i
′

=0

​(x ​ − x)s ​(x)
i=1

∑
n

i i 2
f (x)′′

i=1

∑
n

i
2

i

= 0
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Choice of the bandwidth I

In practice, we need to choose the bandwidth by other means. A first solution is based on
information criteria such as the  or the AIC/BIC.

However, as before, their usage requires a suitable notion of effective degrees of freedom.

C ​p

Let  be a linear smoother. Then the effective degrees of freedom are

Effective degrees of freedom for linear smoothers

​(x) =f̂ ​ s ​(x)y ​∑i=1
n

i i

df ​ =sm ​ ​ cov(Y ​, ​(x ​)) =
σ2

1

i=1

∑
n

i f̂ i ​ tr{cov(Y ,SY )} =
σ2

1
​ tr(S) =

σ2

σ2

tr(S).

Some authors proposed to use  or , but the connection with the optimism
and the definition of effective degrees of freedom is less clear.

tr(SS )T tr(2S − SS )T
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Choice of the bandwidth II

Cross-validation is another option for selecting the bandwidth . For most linear smoothers there is

a brilliant computational shortcut for the leave-one-out case.

h

Any reasonable linear smoother is constant preserving, that is  for all . Moreover, for

most linear smoothers the following property holds:

In other words, the leave-one-out predictions can be obtained by excluding the th observation and

re-normalizing the weights.

​ s ​(x) =∑j=1
n

j 1 x

​ ​ =ŷ−i ​ ​s ​(x ​)y ​.
1 − s ​(x ​)i i

1

j=i

∑ j i j

i

A linear smoother is called projective if it has the above property.

All the linear smoothers presented in this unit (Nadaraya-Watson, local linear regression, regression
an smoothing splines) are projective (see Exercises).
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Choice of the bandwidth III

Let  be the leave-one-out predictions of a projective linear smoother and let 

be the predictions of the full model. Then:

Therefore, the leave-one-out mean squared error is

Theorem (LOO-CV for linear smoothers)

​ ​ =ŷ−i ​ ​
(x ​

)f̂−i i ​ =ŷ Sy

y ​ −i ​ ​ =ŷ−i ​ , i =
1 − [S] ​ii

y ​ − ​ ​i ŷi 1, … ,n.

=Err ​ ​ ​ .
n

1

i=1

∑
n

(
1 − [S] ​ii

y ​ − ​ ​i ŷi )
2
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Choice of the bandwidth IV
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Loess

Sometimes it is convenient to choose  adaptively, i.e. specifying a variable bandwidth  that

depends on the local density of the data.

Indeed, recall that the asymptotic variance depends on the sampling design of the s

h h(x)

x ​i

var{
​
(x)} ≈f̂ ​ ​

.
nh

σ2

g(x)
α ​w

The loess (Cleveland, 1979) considers a fixed percentage of data points (assuming a bounded

kernel is used), which automatically induces a variable bandwidth, as in KNN.

Moreover, the loess algorithm combines the variable bandwidth with some robust estimation
ideas, so that outliers less influence the resulting estimate.

loess is a short-hand for “locally weighted estimated scatterplot smoothing”.
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Local likelihoods

The concept of local regression and varying coefficients is extremely broad.

In principle, any parametric model can be made local as long as it accommodates weights.

Let us consider a logistic regression with a single predictor. For every value  we seek

whose solution can be found using iteratively re-weighted least squares.

x

​(x) =β̂ arg ​ ​w ​(x) y ​(β ​ + β ​x ​) − log{1 + exp(β ​ + β ​x ​)} ,
(β ​,β ​)1 2

max
i=1

∑
n

i [ i 1 2 i 1 2 i ]

The computations and the theory are not as straightforward and limpid as in the regression case,
but they do hold in an approximate sense.

Once again, the conceptual scheme is: (i) perform a quadratic approximation of the log-likelihood;
(ii) proceed as in the regression case.
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The bivariate case

Local linear regression can be applied when two or more covariates, say , are used. Let us begin

with two covariates so that

To estimate  on a specific point , a natural extension of local linear regression takes

the form

p

y ​ =i f(x ​,x ​) +i1 i2 ϵ ​.i

f x = (x ​,x ​)1 2
T

​(x) =β̂ arg ​ ​w ​(x) y ​ − β ​ − β ​(x ​ − x ​) − β ​(x ​ − x ​) .
(β ​,β ​,β ​)1 2 3

min
i=1

∑
n

i { i 1 2 i1 1 3 i2 2 }2

A common way of choosing the weights  is to set

Clearly, this now involves the choice of two different smoothing parameters.

w ​(x)i

w ​(x) =i ​w ​ w ​ .
h ​h ​1 2

1
(

h ​1

x ​ − x ​i1 1 ) (
h ​2

x ​ − x ​i2 2 )
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The bivariate case ( )h ​ =1 0.5,h ​ =2 150
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Pros and cons of kernel nonparametric regression

Local linear regression is a nonparametric estimator for unknown functions  which makes

very few assumptions on its form.

The procedure is simple and computationally efficient.

The smoothing parameter  can be easily handled, since  a linear smoother.

Pros

f(x)

h ​
(x)f̂

There is a price to pay for not making assumptions: estimation is less efficient in terms of mean
squared error compared to parametric models (when they are correctly specified!).

This is a drawback of all nonparametric estimators, not just local linear regression.

Cons
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Regression splines
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Basis expansions

The idea of polynomial regression can be generalized and improved. The main idea is to augment
or replace the input  with additional variables (basis expansion).x

Let  be pre-specified functions  that transform the original predictor

 in some non-linear fashion. Then, we let

where  is a vector of unknown coefficients.

Polynomials are a specific instance of basis expansion, in which

h ​(x), … ,h ​(x)1 p h ​(x) :j R → R
x

f(x;β) = ​h ​(x)β ​,
j=1

∑
p

j j

β = (β ​, … ,β ​)1 p
T

h ​(x) =1 1, h ​(x) =2 x, h ​(x) =3 x , … h ​(x) =2
p x .p−1

The main advantage of this approach is its linearity in the parameters, because it means that
ordinary least squares can be used for the estimation of .β
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Piecewise regression I

A piecewise constant regression model is another instance of basis expansions, in which we consider
step functions, say 

where  are pre-specified cutpoints, called knots. Here .

p = 3

h ​(x) =1 I(x < ξ ​), h ​(x) =1 2 I(ξ ​ ≤1 x < ξ ​), h ​(x) =2 3 I(x ≥ ξ ​),2

ξ = (ξ ​, ξ ​)1 2 ξ = (15, 25)
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Piecewise regression II

The previous choice of knots is not working very well. The model is not flexible enough.

To improve the fit, we could consider piecewise polynomial functions rather than constant. For
example, a piecewise quadratic function with  isp = 30

​ ​ ​ ​​ ​

h ​(x)1

h ​(x)4

⋮

h ​(x)28

= I(x < ξ ​),1

= I(ξ ​ ≤ x < ξ ​),1 2

= I(x ≥ ξ ​),9

h ​(x) = x I(x < ξ ​),2 1

h ​(x) = x I(ξ ​ ≤ x < ξ ​),5 1 2

⋮

h ​(x) = x I(x ≥ ξ ​),29 9

h ​(x) = x I(x < ξ ​),3
2

1

h ​(x) = x I(ξ ​ ≤ x < ξ ​),6
2

1 2

⋮

h ​(x) = x I(x ≥ ξ ​).30
2

9

The piecewise quadratic  is not continuous e.g. at the knot :

To achieve smoothness, it would be appealing to add some continuity constraints.

f(x;β) = ​ h ​(x)β ​∑j=1
30

j j ξ ​1

β ​ +1 β ​ξ ​ +2 1 β ​ξ ​ =3 1
2  β ​ +4 β ​ξ ​ +5 1 β ​ξ ​.6 1

2
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Piecewise polynomial functions
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Splines I

Splines are piecewise polynomial functions with smoothness and continuity constraints.

Originally developed for ship-building to draw a smooth curve through a set of points.

The solution was to place metal weights (called knots) at the control points, and bend a thin metal
or wooden beam (called a spline) through the weights.
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Splines II

Let  be a set of ordered points called knots belonging to the interval .

A spline  of degree  is a piecewise polynomial function of degree  that has

continuous derivatives up to order .

Definition (Spline of degree )d

ξ ​ <1 ⋯ < ξ ​k (a, b)

f(x;β) : (a, b) → R d d

d − 1

Cubic splines ( ) are the most common spline used in practice.

Letting  denote a set of ordered knots, a cubic spline  is a piecewise cubic

polynomial that has continuous first and second derivatives.

d = 3

Definition (Cubic spline, )d = 3

ξ ​ <1 ⋯ < ξ ​k f(x;β)
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Splines III

Figure 5.2 of HTF (2011), in which are shown piecewise cubic polynomials with increasing
regularity. The bottom-right plot (green line) depicts a cubic spline.
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Splines IV

To recap: a spline of degree  is a piecewise polynomial  of order  such that

where  and  denote the left and the right limits.

d f(x;β) d

f(ξ ​) =j
+ f(ξ ​), … , f (ξ ​) =j

− (d−1)
j
+ f (ξ ​), j =(d−1)

j
− 1, … , k,

ξ ​j
+ ξ ​j

−

The degree  controls the amount of smoothness:

 is a piecewise constant function;

 is a polygonal line (continuous, but with discontinuous first derivative).

Higher values of  increase the smoothness, but the spline behaves more and more like a global

polynomial. In practice, one rarely goes beyond .

d

d = 0

d = 1

d

d = 3

The current definition of spline is quite abstract and non-operative. How do we fit a regression
model whose  is a spline?f(x;β)
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Truncated power basis

Let  be a set of ordered points called knots belonging to . Let

and

Then, the functions  form a basis for the set of splines of degree  at these knots,

called the truncated power basis.

Thus, any th degree spline  with these knots can be written as a basis expansion

Theorem (Truncated power basis)

ξ ​ <1 ⋯ < ξ ​k (a, b)

h ​(x) =j x , j =j−1 1, … , d + 1,

h ​(x) =j+d+1 (x − ξ ​) ​, j =j +
d 1, … , k.

{h , … ,h ​}1 k+d+1 d

d f(x,β)

f(x;β) = ​h ​(x)β ​.
j=1

∑
k+d+1

j j
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Regression splines

The truncated power basis is a constructive way of defining splines. Moreover, it clarifies that splines
are linear in the parameters.

Let  be a  design matrix whose elements are obtained from the basis functions:B n × p

[B] ​ =ij h ​(x ​), j =j i 1, … , p; i = 1, … ,n.

Let . Then, the ordinary least squares for  are obtained as usual:

Hence, regression splines are another instance of linear smoother (actually, of linear model). The
smoothing matrix in this case is , so that .

f(x;β) = ​ h ​(x)β ​∑j=1
p

j j β

​
=β̂ (B B) B y ⟹T −1 T

​
(x) =f̂ ​h ​(x) ​ ​ =

j=1

∑
p

j β̂j ​s ​(x)y ​.
i=1

∑
n

i i

S = B(B B) BT −1 T tr(S) = p

Regression splines are generating “new” covariates. Hence, their extension to GLMs, particularly to
logistic regression, is straightforward.
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On the choice of the knots

The knots’ placement and their number  are complexity parameters, which should be chosen via

cross-validation or other tools.

k

In principle, the position of the knots could be manually selected to get the best fit. However, this
results in an incredible optimization problem.

In practice, the knots are typically selected in two ways:

1. Knots are equally spaced on a grid of values ranging from  to ;

2. Knots are placed on quantiles (bs default), to get variable bandwidth.

min(x) max(x)

The degree  influences the number of knots we can place for a fixed number of degrees of

freedom . For example:

In linear splines ( ), with  we can place  knots;

In quadratic splines ( ), with  we can place  knots;

In cubic splines ( ), with  we can place  knots.

d

p

d = 1 p = 12 k = p− d− 1 = 10

d = 2 p = 12 k = 9

d = 3 p = 12 k = 8
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Regression splines ( )p = 12
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On the choice of  (cubic splines)p
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Natural cubic splines I

Polynomials fit beyond the boundary knots  and  tends to be erratic. Prediction and

extrapolations can be dangerous.

ξ ​1 ξ ​k

A natural cubic spline  is a cubic spline which is linear beyond the boundary knots  and

, which means .

Natural cubic splines enforce  additional constraints; these degrees of freedom can be used more
efficiently to place more internal knots.

Definition (Natural cubic spline)

f(x;β) ξ ​1

ξ ​k f (ξ ​) =′′
1 f (ξ ​) =′′

k 0

4

A set of  distinct points ( ) can be interpolated using a natural cubic spline with the

data points  as knots. The interpolating natural cubic spline is unique.

Proposition

n ≥ 2 x ​, y ​i i

x ​ <1 ⋯ < x ​n
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Natural cubic splines II

In practice, the truncated power basis can be easily modified, to get the following basis

​ ​

N ​(x) = 1, N ​(x) = x,1 2

N ​(x) = ​ − ​ , j = 1, … , k − 2.j+2
ξ ​ − ξ ​k j

(x − ξ ​) ​ − (x − ξ ​) ​j +
3

k +
3

ξ ​ − ξ ​k k−1

(x − ξ ​) ​ − (x − ξ ​) ​k−1 +
3

k +
3

This formula is a scaled version of the truncated power basis for any , namely

The formula becomes more complicated when  and the constraint is enforced.

x ≤ ξ ​k−1

N ​(x) =j+2 ​ , x ≤
ξ ​ − ξ ​k j

(x − ξ ​) ​j +
3

ξ ​, j =k−1 1, … , k − 2.

x > ξ ​k−1

Hence, in natural cubic splines  and the function can be express as followsk = p

f(x;β) = ​N ​(x)β ​.
j=1

∑
k

j j
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Natural cubic splines ( )k = 12
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Computations: B-splines I

Despite their conceptual simplicity, the truncated power basis and its “natural” modification are not
used in practice, due to ill-conditioning.

Indeed, the condition number of  using a truncated power basis is very large, leading to

numerical inaccuracies.
B BT

For this reason, more computationally convenient bases are preferred. This means we will consider
an equivalent set of functions  such that

for some set of weights  that makes this transformation one-to-one.

B ​(x), … , B ​(x)1 p

B ​(x) =j ​γ ​h ​(x), j =
ℓ=1

∑
p

ℓj ℓ 1, … , p,

γ ​ℓj

Since we are performing a linear transformation, if ordinary least squares are used, this does not
change the fit.

A particularly convenient basis are B-splines, which are local and numerically stable. They admit a
direct construction; i.e., we do not need to compute the coefficients .γ ​ℓj
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Computations: B-splines II
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☠️ - Details of B-splines I

Define  and consider an augmented sequence of ordered knots

The most common choice is  and .

ξ = (ξ ​, … , ξ ​)1 k

τ = (τ ​, … , τ ​) =1 k+2d+2 ( ​, ξ, ​).

auxiliary knots

​ξ ​, … , ξ ​−d 0

auxiliary knots

​ξ ​, … , ξ ​k+1 k+d+1

ξ ​ =−d ⋯ = ξ ​ =0 a ξ ​ =k+1 ⋯ = ξ ​ =k+d+1 b

Step 1. For , obtain the B-spline of degree  as follows:

where by convention we say that  if the knots are equal .

j = 1, … , k + 2d + 1 m = 0

B ​(x) =j,0 I ​(x),[τ ​,τ ​)j j+1

B ​(x) =j,0 0 τ ​ =j τ ​j+1

Step 2 (recursion). The B-spline of degree  are obtained recursively, so that

for  and for .

m ≤ d

B ​(x) =j,m ​ B ​(x) +
τ ​ − τ ​j+m j

x − τ ​j
j,m−1 ​ B ​(x),

τ ​ − τ ​j+m+1 j+1

τ ​ − xj+m+1
j+1,m−1

j = 1, … , k + 2d + 1 − m m = 1, … , d
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☠️ - Details of B-splines II

The intercept term is implicitly included in a B-spline basis, in fact

​ B ​(x) =
j=1

∑
k+d+1

j,d 1, x ∈ (a, b).

B-splines  have local support, which means that for  we have

This implies that the support of cubic B-splines is at most  knots.

τ j = 1, … , k + 2d + 1 − m

​ ​

B ​(x) = 0, x ∈ (τ ​, τ ​),j,d  j j+d+1

B ​(x) > 0, x ∈ (τ ​, τ ​).j,d j j+d+1

4

The presence of structural zeros implies that, when computing ordinary least squares, extremely
efficient Cholesky factorization for banded matrices can be exploited.

The B-spline basis can be modified to produce a natural cubic spline, by numerically enforcing the
linearity constraint. This is implemented in the ns R function.
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Pros and cons of regression splines

Regression splines is a semi-parametric estimator for unknown functions .

They are essentially a linear model with smart covariates that account for non-linearity. Hence,
the procedure is simple and computationally efficient (thanks to B-splines).

The smoothing parameter  is discrete and can be easily handled, being directly associated with

the number of degrees of freedom.

They are trivial to extend to generalized linear models.

Pros

f(x)

k

Knot placement based on quantiles or other automatic choices could be inefficient.

Manual placement of the knots is out of question because it is an almost impossible optimization
problem.

Cons
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Smoothing splines
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Smoothing splines I

Let us consider the following penalized least squares criterion

where  is an interval containing the data points and  is a smoothing parameter.

L (f ;λ) = ​{y ​ −
i=1

∑
n

i f(x ​)} +i
2 λ ​,

roughness penalty

​​{f (t)} dt∫
a

b
′′ 2

(a, b) λ > 0

We consider as our estimator the minimizer of the above loss, that is

where  is a sufficiently regular functional space (Sobolev space).

The roughness penalty quantifies the “wiggliness” of the curve. There are two extremes:

When  there is no penalization: any solution interpolates the points ;

When  then necessarily , i.e. the solution is a linear model.

​(x) =f̂ arg ​ L (f ;λ),
f∈F
min

F

λ = 0 (x ​, y ​)i i

λ = ∞ f (x) =′′ 0
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Smoothing splines II

Let  be the distinct points among , with . Suppose .

Then, for any  the minimizer of  is unique and is a natural cubic spline with 

knots at the distinct points.

Theorem (Green and Silverman, 1994)

n ​ ≤0 n x ​, … ,x ​1 n x ​ ∈i (a, b) n ​ ≥0 3

λ > 0 L (f ;λ) n ​0

The Green and Silverman theorem is remarkably elegant and powerful.

Since the solution is a natural cubic spline, we can write it as follows:

whose coefficients  still needs to be determined.

f(x;β) = ​N ​(x)β ​,
j=1

∑
n0

j j

β

In smoothing splines, we do not need to choose the knots: every distinct observation is a knot. The
model is not overparametrized because the complexity is controlled by .λ
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Smoothing splines III

Since  is a natural cubic spline, the penalized least squares criterion becomes

whose minimization over  is much easier, because it becomes finite-dimensional.

f(x;β)

L (β;λ) = ​{y ​ −
i=1

∑
n

i f(x ​;β)} +i
2 λβ Ωβ, [Ω] ​ =T

jk ​ N ​(t)N ​(t)dt,∫
a

b

j
′′

k
′′

β

The minimization of  is reminiscent of ridge regression, and in fact the solution is

which leads to a linear smoother, with .

L (β;λ)

​ =β̂ (N N +T λΩ) N y, [N ] ​ =−1 T
ij N ​(x ​).j i

S = N(N N +T λΩ) N−1 T

The above formula is not used in practice directly. The smooth.spline R implementation relies on

B-splines to make computations fast and stable.

Alternatively, the so-called Reinsch (1967) algorithm has computational complexity .∼ n
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Smoothing splines ( )df ​ =sm 12.26
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The equivalent kernel

As already mentioned, smoothing splines are linear smoothers, which means that

Provided  is not too near the edge of the interval , and  is not too big or too small, we obtain

the following approximation for the equivalent kernel

​(x) =f̂ ​s ​(x)y ​.
i=1

∑
n

i i

x (a, b) λ

s ​(x) ≈i ​ ​w ​ .
g(x)

1
h(x)

1
(

h(x)
x − x ​i )

The kernel function , which is not a density, and the local bandwidth equal to

Smoothing splines automatically incorporate a local bandwidth decreasing with .

w(t)

w(t) = ​ exp − ​ sin ​ + ​ , h(x) =
2
1

(
​2

∣t∣
) (

​2
∣t∣

4
π

) λ {ng(x)} .1/4 −1/4

n
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Multi-dimensional splines

There are several ways of extending regression and smoothing splines to the multivariate case. An
example are tensor splines, based on the cross-multiplication of basis functions.

Another instance are the thin-plate splines, in which the 2d roughness penalty becomes

The minimization of the above loss has a simple finite-dimensional solution.

​ ​ + 2 ​ + ​ dx ​dx ​.∫
R2

{(
∂x ​1

2
∂ f(x ​,x ​)2

1 2 )
2

(
∂x ​∂x ​1 2

∂ f(x ​,x ​)2
1 2 )

2

(
∂x ​2

2
∂ f(x ​,x ​)2

1 2 )
2

} 1 2

We do not discuss any further multi-dimensional splines because, when the dimension is large, they
are affected by the so-called curse of dimensionality; see .Unit E

Nonetheless, the 2d case is extremely useful in spatial statistics, in which  and  represent

longitude and latitude.

There will be a strong connection between the smoothers we have seen in this unit and the so-called
kriging equations.

x ​1 x ​2
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Further properties of smoothing splines

Extension of smoothing splines to generalized linear models is possible by adding the “roughness”
penalty to the log-likelihood function.

Smoothing splines have a Bayesian interpretation, being an instance of Gaussian process.

From a theoretical perspective, there exists (Chapter 5.8 of HTF, 2011) an elegant theory based on
reproducing kernel Hilbert spaces, that unifies:

Gaussian processes;

Smoothing splines;

Support vector machine.

“If you want to derive an estimator that performs well in practice, define a Bayesian model, derive
the posterior mean, call this a frequentist estimator, and hide all evidence you ever considered a
Bayesian approach.” 

Pro-tip (a joke?)

Credits to Eric B. Laber
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Pros and cons of smoothing splines

Smoothing splines is a nonparametric estimator for unknown functions .

They are a linear smoother with variable bandwidth.

Compared to regression splines, they do not require the choice of the knots.

Simple and efficient algorithms for computing 1d smoothing splines exist, such as smooth.spline

available in R.

Pros

f(x)

Efficient implementations require a profound knowledge of linear algebra, B-spline basis, etc.

Hence, the “manual” incorporation (i.e., the coding) of smoothing splines into bigger, non-
standard models is not straightforward.

Cons
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