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“In view of all that we have said in the foregoing sections,
the many obstacles we appear to have surmounted, what
casts the pall over our victory celebration? It is the curse of
dimensionality, a malediction that has plagued the scientist
from the earliest days.”

Richard Bellman

In  we explored linear predictive models for high-dimensional
data (i.e.   is large).

In  we explored nonparametric predictive models for
univariate data, placing almost no assumptions on .

Thus, the expectations are that this unit should cover models with the
following features:

High-dimensional, with large ;

Nonparametric, placing no assumptions on .

The title of this unit, however, is not “fully flexible high-dimensional
models.”

Instead, it sounds like bad news is coming. Let us see why,
unfortunately, this will be indeed the case.
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Multidimensional local regression

At least conceptually, kernel methods could be applied with two or more covariates.

To estimate  on a specific point , a natural extension of the Nadaraya-Watson

takes the form

where the weights  are defined as
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This estimator is well-defined and it considers “local” points in  dimensions.

If the theoretical definition of multidimensional nonparametric tools is not a problem, why are they
not used in practice?

p
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The curse of dimensionality I

When the function  is entirely unspecified and a local nonparametric method is used, a dense
dataset is needed to get a reasonably accurate estimate .

f(x)
​(x)f̂

However, when  grows, the data points becomes sparse, even when  is “big” in absolute terms.

In other words, a neighborhood of a generic point  contains a small fraction of observations.

Thus, a neighborhood with a fixed percentage of data points is no longer local.

p n

x

To put it another way, to get a local neighborhood with  data points along each axis we need
about  data points.

10
10p

As a consequence, much larger datasets are needed even for moderate , because the sample size 

needs to grows exponentially with .

p n

p
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The curse of dimensionality II

The following illustration may help clarify this notion of sparsity. Let us consider data points that are

uniformaly distributed on , that is .(0, 1)p x ​i ∼iid U (0, 1)p

Then, the median distance from the origin  to the closest point is:(0, … , 0)T

dist(p,n) = 1 − ​ .{ (
2
1

)
1/n

}

1/p

In the univariate case, such a median distance for  is quite small:n = 100

dist(1, 100) = 0.007.

Conversely, when the dimension  increases, the median distance becomes:

Note that we get  even with a much larger sample size.

p

dist(2, 100) = 0.083, dist(10, 100) = 0.608, dist(50, 100) = 0.905.

dist(10, 1000) = 0.483

Most points are close to the boundary, making predictions very hard.
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The curse of dimensionality III

The following argument gives another intuition of the curse of dimensionality. Let us consider again

uniform covariates .x ​i ∼iid U (0, 1)p

Let us consider a subcube which contains a fraction  of the total number of observations .

In the univariate case ( ), the side of this cube is .

r ∈ (0, 1) n

p = 1 r

In the more general case, it can be shown that on average, the side of the cube is

which is again exponentially increasing in .

side(r, p) = r ,1/p

p

Hence, when , the expected amount of points in the local sub-interval  is again .p = 1 (0, 1/10) 1/10

Instead, when  the amount of point is the local subcube  isp = 10 (0, 1)10

n ​ =(
10
1

)
10

​ .
1.000.000.000

n

Home page

6 / 11

https://tommasorigon.github.io/datamining


The curse of dimensionality (HTF, 2011)
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Implications of the curse of dimensionality

In the local kernel smoothing approach, we can precisely quantify the impact of the curse of
dimensionality on the mean squared error.

Under some regularity conditions, the Nadaraya-Watson and the local linear regression estimator has
asymptotic mean squared error

which is slower than the parametric rate , but still reasonably fast for predictions.

E {f(x) − ​(x)} ∼[ f̂ 2] n ,−4/5

n−1

Conversely, it can be shown that in high-dimension the asymptotic rate becomes

E {f(x) − ​(x)} ∼[ f̂ 2] n .−4/(4+p)

Thus, the sample size for a -dimensional problem to have the same accuracy as a sample size  in

one dimension is , with .

p n

m ∝ ncp c = (4 + p)/(5p) > 0

To maintain a given degree of accuracy of a local nonparametric estimator, the sample size must
increase exponentially with the dimension .p
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Escaping the curse

Is there a “solution” to the curse of dimensionality? Well, yes… and no.

If  is assumed to be arbitrarily complex and our estimator  is nonparametric, we are

destined to face the curse.

f(x) f(x)

However, in linear models you never encountered the curse of dimensionality. Indeed:

which is increasing linearly in , but not exponentially.

​ ​ E (x ​β − x ​ ​) =
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Linear models make assumptions and impose a structure. If the assumptions are correct, the
estimates exploit global features and are less affected by the local sparsity.

Nature is not necessarily a linear model, so we explored the nonparametric case.

Nonetheless, making (correct) assumptions and therefore imposing (appropriate) restrictions is
beneficial, to the extent that it is unavoidable in high dimensions.
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Escaping the curse

The multidimensional methods you will study (GAM, trees, random forest, boosting, neural
networks, etc.) deal with the curse of dimensionality by making (implicit) assumptions.

These assumptions differentiate because of:

The particular nature of the knowledge they impose (e.g., no interactions, piecewise constant
functions, etc.);

The strength of this assumption;

The sensibility of the methods to a potential violation of the assumptions.

Thus, several alternative ideas and methods are needed; no single “best” algorithm exists.

This is why having a well-trained statistician on the team is important because they can identify the
method that best suits the specific applied example.

…or at least, they will be aware of the limitations of the methods.
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