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The curse of dimensionality
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“In view of all that we have said in the foregoing sections,
the many obstacles we appear to have surmounted, what
casts the pall over our victory celebration? It is the curse of
dimensionality, a malediction that has plagued the scientist
from the earliest days.”

In Unit C we explored linear predictive models for high-dimensional
data (i.e. pis large).

In Unit D we explored nonparametric predictive models for
univariate data, placing almost no assumptions on f(x).

Thus, the expectations are that this unit should cover models with the
following features:

m High-dimensional, with large p;
= Nonparametric, placing no assumptions on f(x).

The title of this unit, however, is not “fully flexible high-dimensional
models.”

Instead, it sounds like bad news is coming. Let us see why,
unfortunately, this will be indeed the case.
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Multidimensional local regression

m At least , kernel methods could be applied with or

T

m To estimate f on a specific point € = (z1,...,%,)", a natural extension of the Nadaraya-Watson

takes the form

where the wi(x) are defined as

® This estimator is well-defined and it considers “local” points in p dimensions.

m |f the theoretical definition of multidimensional nonparametric tools is not a problem, why are they
in practice?
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The curse of dimensionality |

® When the function f(x) is entirely unspecified and a method is used, a dense

dataset is needed to get a reasonably accurate estimate f(z).

®m However, when p grows, the data points becomes , even when n is “big” in absolute terms.
® |n other words, a neighborhood of a generic point & contains a small fraction of observations.
® Thus, a neighborhood with a fixed percentage of data points is

® To put it another way, to get a local neighborhood with 10 data points along each axis we need
about 107 data points.

® As a consequence, datasets are needed even for moderate p, because the sample size n

needs to grows exponentially with p.
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The curse of dimensionality ||

® The following illustration may help clarify this notion of . Let us consider data points that are
uniformaly distributed on (0, 1)?, that is @; S U?(0,1).
= Then, the from the origin (0,...,0)T to the closest point is:

dist(p, n) — {1 - (;)UH}W.

® |n the univariate case, such a median distance for n = 100 is quite small:
dist(1,100) = 0.007.
® Conversely, when the P , the median distance becomes:
dist(2,100) = 0.083, dist(10,100) = 0.608, dist(50,100) = 0.905.

Note that we get dist(10,1000) = 0.483 even with a much larger sample size.

® Most points are close to the boundary, making predictions very hard.
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The curse of dimensionality Il

®m The following argument gives another of the curse of dimensionality. Let us consider again

: . iid
uniform covariates x; ~ U?(0, 1).

m |et us consider a subcube which contains a fraction r € (0,1) of the total number of observations n.
In the univariate case (p = 1), the side of this cube is 7.

® |n the more general case, it can be shown that on - the side of the cube is
side(r, p) = PP

which is again exponentially increasing in p.
® Hence, when p = 1, the expected amount of points in the (0,1/10) is again 1/10.

® |nstead, when p = 10 the amount of point is the local subcube (0,1)1 is

1\ n
”(1_0) ~ 1.000.000.000°
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FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
stde-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.
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Implications of the curse of dimensionality

® |n the local kernel smoothing approach, we can precisely quantify the impact of the
on the mean squared error.

® Under some regularity conditions, the Nadaraya-Watson and the local linear regression estimator has
asymptotic mean squared error

E [{f(2) - f@)}] ~n 7",

which is than the n~1, but still reasonably fast for predictions.

® Conversely, it can be shown that in the asymptotic rate becomes
E [{f(@) - f(2)}] ~n-¥/6),
® Thus, the sample size for a p-dimensional problem to have the same accuracy as a sample size n in

one dimension is m o n®, with ¢ = (4 + p)/(5p) > 0.

® To maintain a given degree of accuracy of a local nonparametric estimator, the sample size must
increase with the dimension p.
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Escaping the curse

® |s there a “solution” to the ? Well, yes... and no.

= |f f(x) is assumed to be and our estimator f(x) is nonparametric, we are
destined to face the curse.

® However, in linear models you never encountered the curse of dimensionality. Indeed:
1 — P
T T 3\2 2
_ZE{(wiﬂ—wiﬁ) }:U —
n n

which is increasing linearly in p, but

® [inear models make and impose a structure. If the assumptions are correct, the
estimates exploit and are less affected by the local sparsity.

® Nature is not necessarily a linear model, so we explored the nonparametric case.

= Nonetheless, making (correct) and therefore imposing (appropriate) restrictions is
beneficial, to the extent that it is in high dimensions.
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Escaping the curse

® The multidimensional methods you will study (GAM, trees, random forest, boosting, neural
networks, etc.) deal with the curse of dimensionality by making (implicit) assumptions.

® These differentiate because of:

® The particular of the knowledge they impose (e.g., no interactions, piecewise constant
functions, etc.);

® The of this assumption;
®m The sensibility of the methods to a potential violation of the assumptions.
®m Thus, several alternative ideas and methods are needed; no single “best” algorithm exists.

® This is why having a well-trained statistician on the team is important because they can identify the
method that best suits the specific applied example.

m _or at least, they will be aware of the of the methods.
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