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The Great Barrier Reef

In this unit we will cover the following topics:
= Generalized additive models (GAMs)
= Multivariate Adaptive Regression Splines (MARS)

We have seen that fully nonparametric methods are plagued by
the curse of dimensionality.

GAMs and MARS are semi-parametric approaches that keep
the model complexity under control so that:

m they are more flexible than linear models;
® they are not hugely impacted by the curse of dimensionality.

The running example is about traw! data from the Great
Barrier Reef.
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An ecological application
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The trawl dataset

m \We consider the trawl dataset, which refers to a survey of the fauna on the sea bed lying between

the coast of northern Queensland and the

® The response variable is Score, which is a standardized numeric quantity measuring the amount of

fishes caught on a given location.

= \We want to predict the - as a function of a few covariates:

® the Latitude and Longitude of the sampling position. The longitude can be seen as a proxy of
the distance from the coast in this specific experiment;

® the Depth of the sea on the sampling position;
® the Zone of the sampling region, either open or closed to commercial fishing;
® the Year of the sampling, which can be either 1992 or 1993.

® Having remove a few observations due to missingness, we split the data into training (119 obs.) and
set (30 obs.). The full trawl dataset is available in the sm R package.
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The trawl dataset
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Getting started: linear models

m | et begin our analysis by trying to predict the Score using a of the form
yi:ﬂ0+ﬁlxil+"'+ﬂpwipa ’iZl,...,n,
® The above values correspond to the variables of the trawl dataset, so that

Score; = By + BiLatitude; + B2Longitude,+
+ B3Depth, + B4l (Zone; = Closed) + B5I(Year; = 1993).

® Such a model can be estimated using , resulting in:
term estimate std.error statistic p.value
(Intercept)  297.690 26.821  11.099 0.000
Latitude 0.256 0.222 1.151 0.252
Longitude -2.054 0.187  -10.955 0.000
Depth 0.020 0.007 3.003 0.003
Zone_Closed -0.116 0.102 -1.143 0.255
Year_1993 0.127 0.103 1.242 0.217
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Scatterplot with loess estimate
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Comments and cricism of linear models

® |s this a good model?

® Granted that every model is just an approximation of reality, it is undeniable that there are some
aspects.

m By simple graphical inspection, it seems that the relationship between Score and Longitude is

® Also, an interaction effect between Year and Longitude could be present.

® These considerations support the idea that a nonparametric approach might be more appropriate.

®m However, the number of covariates is p = 5 and therefore a fully nonparametric estimation would

be , because of the curse of dimensionality.

® \We need a simplified modelling strategy, that accounts for non-linearities but at the same time is not
fully flexible.
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Generalized additive models (GAM)
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The ANOVA decomposition of a function

m \We seek for an estimate of (a suitable transformation of) the mean function, namely
g_l{E(Y;)} — f(mila <o 7wip)7

where g~ 1(-) is the so-called

= The multivariate function f(x) = f(z1,...,2,) :RP - R is . However, the
following decomposition holds

F@)=Bo+> filx)+ > ) Fulzpz) + D ) > funlas, z,n) + -
j=1

j=1 k<j j=1 k<j h<k<j

~” Ve Ve

IS
i

i

Main effect Interaction effect Higher order interaction

®= By imposing suitable constraints, this decomposition can be made

® More importantly, this decomposition gives us an intuition on how to build non-linear models with a
simplified structure.
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Generalized additive models (GAM)

= A generalized additive model (GAM) presumes a representation of the following type:

f(@i) = Bo+ filman) + -+ fulzip) = Bo+ ) filwy),  i=1,...,n,
=1

where fi,..., f, are functions with a potentially non-linear behavior.
® |n GAMs we include only the main effects and we the terms.
= Generalized linear models (GLMs) are a of GAMs, in which f;(xi;) = Bjxij.

® To avoid what is essentially a problem of model identifiability, it is necessary for the various f; to
be centered around 0, that is

ij(xij):O, ]:1,,]?
=1
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The backfitting algorithm |

® There exist several strategies for the fi,--., fp- One of them, called
backfitting, is particularly appealing because of its elegance and generality.

m Suppose we model each f;(z) = Zf\n/‘rjzl Bmjihmj(x) with a , for example using
regression splines.

® |n 3 we need to minimize, over the unknown B parameters, the loss
n p 2
Z {.%‘ — Bo — ij(wij)}
i=1 j=1

subject to the constraint Y. | fi(zi;) = 0.

m When f; are regression splines, the above loss can be using . The
identifiability issue could be handled by removing the intercept term from each spline basis.

® However, here we consider an and iterative minimization method, which is similar to the
coordinate descent algorithm we employed for the elastic-net.
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The backfitting algorithm I

® Now, let us re-arrange the term in the squared loss as follows:

2
n

D Sui—Bo— D fula) — filey) o

i=1 k]

where the highlighted terms are sometimes called partial residuals.

m Hence, we can repeatedly and iteratively fit a univariate smoothing model for f; using the
as , keeping fixed the value of the other functions fi, for k # j.

® This algorithm produces the same fit of least squares when f; are regression splines, but the idea is
appealing because it can be used with any generic smoothers S;.

= Finally, note that under the constraint > ; f;i(z;;) = 0 the least square estimate for the
term is BO = ¢, i.e. the arithmetic mean.
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The backfitting algorithm (regression)

The backfitting algorithm for additive regression models
1. Initialize By = y and set f;i(z;) =0, forj =1,...,p.
2.Cyclej=1,...,p,7=1,...,p, ..., until

i. Update the kth function by smoothing via §; the partial residuals, so that

n

f](m.) — Sj Lijy Yi — Bo - Z fk(ﬂfzk)

k7J i=1

ii. Center the function by subtracting its mean

fi(z) « fi(z) — % Z filzij).
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Backfitting: comments and considerations

® The backfitting algorithm, when f; are modeled as regression splines, is known as “Gauss-Seidel”.
The is under standard conditions.

m Interestingly, even when S; are smoothing splines the of backfitting is ;
the proof for this statement is less straightforward.

® |n general, however, there is no theoretical guarantee that the algorithm will ever converge, even
though the practical experience suggest that this is a

® When §; is a with smoothing matrix S, then by analogy with the previous unit we
can define the effective degrees of freedom of fj as

dfj = tI'(Sj).

The number of degrees of the whole model therefore is df =1 + Z?Zl df;.

® A variant of backfitting for classification problems is available. Once again, relying on
of the log-likelihood allows for a generalization to GLMs.
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The backfitting algorithm (classification)

Local scoring algorithm for additive logistic regression

1. Initialize By = logit(7) and set f;j(x;) =0, for j =1,...,p.
2. lterate
i. Define the quantities 7; = By + > fi(zi;) and 7t; = {1 + exp(—7;)} L.

ii. Construct the

. , — 7
zl—m%—AyZ — 1=1,...,n
(1 — 7;)
iii. Construct the w; =m;(1—m;), fori=1,...,n.

iv. Use a weighted backfitting algorithm using the z; as responses, which produces a new set of

estimates fl, cee fp.
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GAM using penalized splines

® A common special instance of GAM occurs when smoothing splines are employed. In the regression

case, the algorithm implicitly minimizes the following
n p 2 p b
L(fry-- oy [ A) = E {yl — By — Efj(mj)} + ZAJ-/ {fjf_/(t)}2dt,
i=1 j=1 j=1 4
where A = (A1,...,Ap) is a vector of smoothing parameters.
® Each f;(x;8) is a , therefore the penalized least squares criterion is
n p 2 p
L(B;A) =) {yz — Bo — ij(wj;ﬂj)} +> NBIQ;B;,
i=1 j=1 j=1

whose joint minimization over ( is available in closed form.

= Hence, a that minimizes £ (8; \) is used instead of backfitting.
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On the choice of smoothing parameters

® [n GAMs there are p ALy ..., Ap that must be selected. We can proceed in

the usual way, e.g. considering the generalized cross-validation criteria:
GCV(A A,) = 1 zn: Yi— U 2
bty n <= \1-df/n '
m An alternative criterion in this context is the REML (Restricted Maximum Likelihood), which is the

marginal likelihood of the corresponding

m |t is to construct a of values for all the combinations of smoothing parameters
A1,y ..., Ap, because the number of terms increases exponentially in p.

= Hence, many software packages numerically optimize the GCV()q,...,A,), or other information

criteria, as a function of A1,..., ), using e.g. the Newton-Raphson method.

® Such an approach is particularly convenient in combination with , because the
needed for Newton's method are available in closed form.
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GAM and variable selection

® \When p is large there is need to remove the potentially . There exist several
variable selection ideas for GAMs, but we will not cover the details here.

= Option 1. . Perhaps the simplest method, although it is not as efficient as in
linear models because we cannot exploit the same computational tricks.

= Option 2. (Lin and Zhang, 2006). It's
an idea based on combining lasso-type penalties and GAMs.

= QOption 3. (Ravikumar, Liu, Lafferty and Wasserman, 2009).
Similar to the above, but it exploits a variation of the non-negative garrote.

= Option 4. (Marra and Wood, 2011). It acts on the penalty term of
smoothing splines so that high-values of Aj,..., A, leads to constant functions.

= Option X. . Yet another method for variable selection with GAMs.
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GAM modeling of trawl data

® | et us get back to the trawl data. A specification based on GAM could be
Score; = fy + fi(Longitude;) + fo(Latitude;) + f3(Depth,;)+
+ B11(Zone; = Closed) + foI(Year; = 1993).

® |n GAMs the predictors are not necessarily modeled using nonparametric methods. Indeed, it is
common to have a combination of smooth functions and linear terms.

®m Besides, it does to “smooth” a
term estimate std.error df
(Intercept) 0.849 0.088 1
Zone_Closed -0.075 0.099 1
Year_ 1993 0.149 0.093 1
s(Longitude) - - 4.694
s(Latitude) - - 1
s (Depth) - - 2.447
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Partial effect of GAMs (Longitude)
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Partial effect of GAMs (Latitude)
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Partial effect of GAMs (Depth)
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Comments and criticism (trawl data)

® The fitted GAM model highlights some interesting aspects of the trawl data.

® |n the first place, it seems confirmed that the Longitude has a impact on the
catch score, as the initial analysis was suggesting.

® |n particular, the catch score is high when the sampling location is close to the coast (but not too
close!), and then it suddenly decreases.

m The effective degrees of freedom of Latitude is dfs = 1, meaning that the estimated fg collapsed
to a linear term. The corresponding shrinkage parameter A\, is very high.

®m Qverall, the effect due to the Latitude looks or at all.

® The Depth seems to have a on the Score, but this is likely due to a few leverage
points at the right extreme of the Depth range.

® Finally, we note that both Zone and Year seem to have a minor effect.
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« - Naive Bayes classifier and GAMs

The expresses the binary classification probability pr(y =1 | ) as
pr(y =1 ) — LS )
o [ [i—1 pjo(z;) + m1 [[5—; pjr (25) p(x)
Hence, using class 0 as a , we can derive the following expression:
p
pr(y =1]x) ! HJ 1 pj1( ) pi1(z
log = log + log = By + fi(x;).
pr(y =0 | x) mo 15—y pjo(x;) ; pjo(x EZ: 7

Therefore, although naive Bayes and GAMs are fitted in a quite different way, there is a
among the two methods.

Naive Bayes has a generalized additive model structure. This also suggests that the “
" is linked to the notion of among the covariates.
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«« - The mgcv R package

GAM WITH BACKFITTING

7 -1:..‘ . .

GLOBAL OPTIMIZATION OF GAM
USING SMOOTHING SPLINES

NUMERICAL MINIMIZATION OF
THE GCV SCORE USING NEWTON METHOD

NUMERICAL Mﬂlﬂlll'l'lll’;ﬂlll’fl'll!
RESTRICTED MAKIMUM lIlElI]Illllll (REML

VARIABLE SELECTION USING
A DOUBLE-SHRINKAGE PENALTY

imgfiip.com

GAMs were by Hastie and Tibshirani in 1986, including
the backfitting algorithm.

Simon Wood (2003) described thin-plate regression splines
and their estimation (no backfitting).

Simon Wood (2004, 2011) invented methods for estimating
Aly---yApinan and manner.

Marra and Wood (2011) discussed many methods for practical
for GAMs.

For further details, there is a recent and advanced book by
Simon Wood (2017) entitled “Generalized Additive Models: An
Introduction with R".

The mgcv package in R (by Simon Wood) implements everything
mentioned here.

Home page

26 / 45

BICOCCA


https://tommasorigon.github.io/datamining

27 /45

Pros and cons of generalized additive models (GAMs)

Pros
® GAMs can automatically model relationships. This can potentially make more accurate
predictions for the response.

® GAMs, as linear models, are interpretable: the variation of the fitted response, holding all but one
predictor fixed, on the values of the

® |n practice, this means that we can the fj separately to examine the roles of
the predictors in modelling the response.

®  Additive assumption is quite strong, but it is still possible to manually add interactions as in the
linear regression case.

Cons
m Especially when p is large, it is almost impossible to manually model all the among
covariates. GAMs do take effects (or higher) into account.
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MARS
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Multivariate Adaptive Regression Splines

® MARS are a generalization of GAMs that avoid the
additivity assumption.

® MARS allow modeling of non—linear interactions and not
just non—linear marginal effects.

® MARS are at the same time:
m A generalization of stepwise regression;
® A method based on multi-dimensional tensor splines;

®m A modification of classification and regression trees
(CART).

® MARS combine many of the techniques we have seen in
this course into a single sophisticated algorithm.
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MARS additive representation
B MARS is an additive model of the form:
M
f(@;8) = Bo+ Y Buhm(),
m=1

where h,,(x) are and B = (Bi,...,Bu)! are regression coefficients.

® Once the basis functions are specified, the estimate for B is straightforward, using for example least
squares or the IWLS algorithm in the classification case.

® The main distinction with GAMs is that in MARS the basis functions are from the
and therefore they are in advance.

® MARS is essentially a smart heuristic algorithm for selecting a collection of basis functions
hi(zx),...,hy(x) that hopefully does not incur in the
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Basis functions for MARS (reflected pairs)

= The MARS algorithm begins by including just the intercept term, i.e. f(x;3) = By. Then, we
proceed by adding basis functions.

® |n MARS the basis functions are always (or ), meaning that we always add them in
pairs to the additive specification.

m |et us consider the following set of pairs of basis functions (linear splines):
C = {(w] _5)—1—7(6 _mj)—i- . g < {mljw"’mnj}a .7 — 177p}

For example, two basis functions could be hy(x) = (1 — 0.5), and hy(x) = (0.5 — z1) .

® The knots are placed in correspondence of the observed data. Hence, there are in 2np

among which we can choose.

= |n the first step of the MARS algorithm, we identify the pair hy(x) = (z; — &)+ and hy(x) = (£ —
x;)+ that, together with the intercept, the
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An example of reflected pair basis
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® The function hy(x) = (z — 0.5), (blue) and its reflection hy(x) = (0.5 — ), ( ).
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A stepwise construction

® Hence, the of the MARS algorithm, our model for example could be
2
f(z;8) = Bo + Z Bmhm(®) = Bo + Bi(z1 — 0.5) + £2(0.5 — z1),..
m=1

® |n the subsequent step, we consider a new pair of basis functions (z; — &), (£ — ;)4 in C, but this

time we are allowed to perform two kind of operations:

i. We can include the new pair to the predictor in an way, obtaining for example
f(a:,ﬁ) = ,B() + /Bl(ibl — 05)_|_ + ,82(05 — $1)+ + ,83(552 — 075)_|_ + /34(075 — $2)+.

ii. We can include the new pair in a way, by considering the products between the
new basis and one of the old bases of the model, obtaining for instance

f(x;8) = Bo+ Bi(z1 — 0.5)4 + B2(0.5 — z1)+
+ B3(z1 — 0.5)  (z2 — 0.75), + B4(z1 — 0.5)(0.75 — z5) .
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An example of tensor product basis

= The product function h(z) = (z; — 0.5) (x5 — 0.75) in the range (0,1)2.
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MARS algorithm (degree d)

1. Initialize f(@;8) = By and let K be maximum number of pairs, so that M = 2K.

2. Identify the initial pair of basis functions hy and hy in C that minimize the loss function. Then,
let ho(iB) =1 and set Ml — {ho,hl,hz}.

3.Fork=1,...,K — 1, do:
i. Let My = {hg, h1,--.,ho} be the basis functions already present in the model.

ii. Consider a novel pair of bases l~11, hy €C \ My. A candidate pair is obtained by multiplying
Bl, ho with one of the bases in Mj. Note that hg € M.

iii. A valid candidate basis does not contain the same variable z; more than once in the product,

and it must involve at most d product terms.

iv. ldentify the optimal pair among the candidates at steps (ii)-(iii) that reduces the loss
function the most. This results in a new pair of bases hogi1, hogt2.

v. Set M1 < My U {hapt1, hor+2}.
4. Return the collection of models My,..., Mf.
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Basis selection and backward regression

® The of the MARS algorithms allow to control the number order of interactions of the
model. Note that when d = 1 it corresponds to a GAM (no interactions).

® The final model with M terms is very likely the data. Hence, it is important to remove

some of the bases using backward regression or best subset.

® The can be selected via cross-validation, but generalized cross-validation is
often preferred due to computational reasons.

m Unfortunately, it is not clear how to compute the that are needed in
the GCV formula.

® |n MARS, however, we do not have any miraculous simple formula like in LAR or ridge.

® Simulation studies suggest that, for every knot placed, we should pay a of about
. However, this result is quite heuristic.
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Heuristics behind MARS

® The basis functions used in MARS have the advantage of

® When the basis functions in C are multiplied together, the result is only over the small part
of the feature space where both component functions are nonzero.

® Hence, the estimated function is built up parsimoniously, by making to
the fit obtained at the previous step.

® This is important, since one should “spend” degrees of freedom carefully in high dimensions, to avoid
incurring into the

® The constructional logic of the model is . We can multiply new basis functions that
involve new variables only to the basis functions already in the model.

® Hence, an interaction of a higher order can only be introduced interactions of a

® This constraint, introduced for computational reasons, does not necessarily reflect the real behavior of
the data, but it often helps in interpreting the results.
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MARS modeling of trawl data (d = 1)

= We fit a MARS model with d =1 ( ), using M = 20. Then, the model was simplified
using best subset selection and GCV. The results are:
Term Basis function Coefficient
ho(x) 1 1.382

hi(x) (Longitude — 143.28), -4.275
ha(x) (Longitude — 143.58), 3.984

m To clarify, this specification corresponds to the following estimated regression function:

~

f(x;; 8) = 1.382 — 4.275(Longitude, — 143.28), + 3.984(Longitude, — 143.58),

which has the structure of a GAM. However, the is

® The estimated function f(a:z-;ﬂA) is remarkably simple and it involves only the Longitude.
Moreover, the relationship between Score and Longitude is non-linear.

® Both these considerations are consistent with the previous findings, obtained using GAMs.
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MARS modeling of trawl data (d = 2)

= We fit a MARS model with d = 2 ( ), using M = 20. As before, the model
was simplified using best subset selection and GCV. The results are:
Term Basis function Coefficient
ho(z) 1 1.318
hi(x) (Longitude — 143.28) -5.388
hs(x) (Longitude — 143.58) 4.172
hs(x) I(Year = 1993)(Longitude — 143.05) . 0.679
ha() [Latitude — (—11.72)]; (Longitude — 143.05);  1.489

® As expected, a degree 2 MARS lead to a more sophisticated fit involving interactions between Year
and Longitude as well as between Latitude and Longitude.

® \We can explore these effects using
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Partial effects
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Results on the test set

® \We can now check the predictive performance on the , to see which is model scored the best
in terms of MAE and RMSE.

Null model Linear model GAM MARS (degree 1) MARS (degree 2)
MAE 0.611 0.361 0.315 0.305 0.334
RMSE 0.718 0.463 0.408 0.390 0.407

® |t is quite clear that including a non-linear specification for the Longitude was indeed a good idea
that improved the predictive performance.

m Somewhat surprisingly, the best model is the extremely simple (yet effective)

® The weak interactions effects captured by the MARS of degree 2 led an increased variance of the
estimates, slightly deteriorating the fit.
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Pros and cons of MARS

Pros

® MARS constructs a sophisticated model by sequentially refining the previous fit.
® MARS can capture effects.
® The MARS algorithm can be employed for both regression and classification problems.

® The final model is often interpretable. The order of the interactions can be controlled by fixing d.

Cons
® MARS can quickly the data if the model complexity is not kept under control.
m Unfortunately, this is not always easy to do as there is that guides us

in the choice of the effective degree of freedom.
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