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The 

In this unit we will cover the following topics:

Generalized additive models (GAMs)

Multivariate Adaptive Regression Splines (MARS)

We have seen that fully nonparametric methods are plagued by
the curse of dimensionality.

GAMs and MARS are semi-parametric approaches that keep
the model complexity under control so that:

they are more flexible than linear models;

they are not hugely impacted by the curse of dimensionality.

The running example is about trawl data from the Great
Barrier Reef.
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An ecological application
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The trawl dataset

We consider the trawl dataset, which refers to a survey of the fauna on the sea bed lying between
the coast of northern Queensland and the Great Barrier Reef.

The response variable is Score, which is a standardized numeric quantity measuring the amount of
fishes caught on a given location.

We want to predict the catch score, as a function of a few covariates:

the Latitude and Longitude of the sampling position. The longitude can be seen as a proxy of
the distance from the coast in this specific experiment;

the Depth of the sea on the sampling position;

the Zone of the sampling region, either open or closed to commercial fishing;

the Year of the sampling, which can be either 1992 or 1993.

Having remove a few observations due to missingness, we split the data into training (119 obs.) and
test set (30 obs.). The full trawl dataset is available in the sm R package.
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The trawl dataset
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Getting started: linear models

Let begin our analysis by trying to predict the Score using a linear model of the form

The above values correspond to the variables of the trawl dataset, so that

Such a model can be estimated using ordinary least squares, resulting in:

term estimate std.error statistic p.value

(Intercept) 297.690 26.821 11.099 0.000

Latitude 0.256 0.222 1.151 0.252

Longitude -2.054 0.187 -10.955 0.000

Depth 0.020 0.007 3.003 0.003

Zone_Closed -0.116 0.102 -1.143 0.255

Year_1993 0.127 0.103 1.242 0.217

y ​ =i β ​ +0 β ​x ​ +1 i1 ⋯ + β ​x ​, i =p ip 1, … ,n,

​ ​

Score ​ = β ​i 0 + β ​Latitude ​ + β ​Longitude ​+1 i 2 i

+ β ​Depth ​ + β I(Zone ​ = Closed) + β ​I(Year ​ = 1993).3 i 4 i 5 i
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Scatterplot with loess estimate
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Comments and cricism of linear models

Is this a good model?

Granted that every model is just an approximation of reality, it is undeniable that there are some
problematic aspects.

By simple graphical inspection, it seems that the relationship between Score and Longitude is non-
linear.

Also, an interaction effect between Year and Longitude could be present.

These considerations support the idea that a nonparametric approach might be more appropriate.

However, the number of covariates is  and therefore a fully nonparametric estimation would not
be feasible, because of the curse of dimensionality.

We need a simplified modelling strategy, that accounts for non-linearities but at the same time is not
fully flexible.

p = 5
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Generalized additive models (GAM)
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The ANOVA decomposition of a function

We seek for an estimate of (a suitable transformation of) the mean function, namely

where  is the so-called link function.

g {E(Y ​)} =−1
i f(x ​, … ,x ​),i1 ip

g (⋅)−1

The unknown multivariate function  is too complex. However, the

following decomposition holds

f(x) = f(x ​, … ,x ​) :1 p R →p R

f(x) = β ​ +0 ​ +

Main effect

​​f ​(x ​)
j=1

∑
p

j j ​ +

Interaction effect

​​ ​f ​(x ​,x ​)
j=1

∑
p

k<j

∑ jk j k ​ +

Higher order interaction

​​ ​ ​f ​(x ​,x ​,x ​)
j=1

∑
p

k<j

∑
h<k<j

∑ jkh j k h ⋯ .

By imposing suitable constraints, this decomposition can be made unique.

More importantly, this decomposition gives us an intuition on how to build non-linear models with a
simplified structure.
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Generalized additive models (GAM)

A generalized additive model (GAM) presumes a representation of the following type:

where  are smooth univariate functions with a potentially non-linear behavior.

f(x ​) =i β ​ +0 f ​(x ​) +1 i1 ⋯ + f ​(x ​) =p ip β ​ +0 ​f ​(x ​), i =
j=1

∑
p

j ij 1, … ,n,

f ​, … , f ​1 p

In GAMs we include only the main effects and we exclude the interactions terms.

Generalized linear models (GLMs) are a special case of GAMs, in which .f ​(x ​) =j ij β ​x ​j ij

To avoid what is essentially a problem of model identifiability, it is necessary for the various  to

be centered around , that is

f ​j

0

​f ​(x ​) =
i=1

∑
n

j ij 0, j = 1, … , p.
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The backfitting algorithm I

There exist several strategies for estimating the unknown functions . One of them, called

backfitting, is particularly appealing because of its elegance and generality.

f ​, … , f ​1 p

Suppose we model each  with a basis expansion, for example using

regression splines.

In a regression problem we need to minimize, over the unknown  parameters, the loss

subject to the constraint .

f ​(x) =j ​ β ​h ​(x)∑m=1
M ​j

mj mj

β

​ y ​ − β ​ − ​f ​(x ​)
i=1

∑
n

{ i 0
j=1

∑
p

j ij }

2

​ f ​(x ​) =∑i=1
n

j ij 0

When  are regression splines, the above loss can be minimized using least squares. The

identifiability issue could be handled by removing the intercept term from each spline basis.

However, here we consider an alternative and iterative minimization method, which is similar to the
coordinate descent algorithm we employed for the elastic-net.

f ​j
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The backfitting algorithm II

Now, let us re-arrange the term in the squared loss as follows:

where the highlighted terms are sometimes called partial residuals.

​ ​y ​ − β ​ − ​ f ​(x ​) − f ​(x ​) ​ ,
i=1

∑
n

⎩
⎨
⎧

i 0

k=j

∑ k ik j ij ⎭
⎬
⎫

2

Hence, we can repeatedly and iteratively fit a univariate smoothing model for  using the partial

residuals as response, keeping fixed the value of the other functions , for .

f ​j

f ​k k = j

This algorithm produces the same fit of least squares when  are regression splines, but the idea is

appealing because it can be used with any generic smoothers .

f ​j

S ​j

Finally, note that under the constraint  the least square estimate for the intercept
term is , i.e. the arithmetic mean.

​ f ​(x ​) =∑i=1
n

j ij 0
​ ​ =β̂0 ​ȳ
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The backfitting algorithm (regression)

1. Initialize  and set , for .

2. Cycle , , , until convergence:

i. Update the th function by smoothing via  the partial residuals, so that

ii. Center the function by subtracting its mean

The backfitting algorithm for additive regression models

​ ​ =β̂0 ​ȳ f ​(x ​) =j j 0 j = 1, … , p

j = 1, … , p j = 1, … , p …

k S ​j

​ ​
(x) ←f̂j S ​ ​ ​x ​, y ​ − ​ ​ − ​ ​ ​(x ​) ​ ​ ​

.j ⎩
⎨
⎧

ij i β̂0

k=j

∑ f̂k ik ⎭
⎬
⎫

i=1

n

​ ​(x) ←f̂j ​ ​(x) −f̂j ​ ​ ​ ​(x ​).
n

1

i=1

∑
n

f̂j ij
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Backfitting: comments and considerations

The backfitting algorithm, when  are modeled as regression splines, is known as “Gauss-Seidel”.

The convergence is guaranteed under standard conditions.

Interestingly, even when  are smoothing splines the convergence of backfitting is guaranteed;
the proof for this statement is less straightforward.

f ​j

S ​j

In general, however, there is no theoretical guarantee that the algorithm will ever converge, even
though the practical experience suggest that this is not a big concern.

When  is a linear smoother with smoothing matrix , then by analogy with the previous unit we
can define the effective degrees of freedom of  as

The number of degrees of the whole model therefore is .

S ​j S ​j

​ ​f̂j

df ​ =j tr(S ​).j

df = 1 + ​ df ​∑
j=1
p

j

A variant of backfitting for classification problems is available. Once again, relying on quadratic
approximations of the log-likelihood allows for a generalization to GLMs.
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The backfitting algorithm (classification)

1. Initialize  and set , for .

2. Iterate until convergence:

i. Define the quantities  and .

ii. Construct the working response

iii. Construct the weights , for .

iv. Use a weighted backfitting algorithm using the  as responses, which produces a new set of

estimates .

Local scoring algorithm for additive logistic regression

​ ​ =β̂0 logit( ​)ȳ f ​(x ​) =j j 0 j = 1, … , p

​ ​ =η̂i ​ ​ +β̂0 ​ ​ ​(x ​)∑
j=1
p

f̂j ij ​ =π̂i {1 + exp(− ​ ​)}η̂i
−1

z ​ =i ​ ​ +η̂i ​ , i =
​(1 − ​)π̂i π̂i

y ​ − ​i π̂i 1, … ,n.

w ​ =i ​(1 −π̂i ​)π̂i i = 1, … ,n

z ​i

​ ​, … , ​ ​f̂1 f̂p

Home page

16 / 45

https://tommasorigon.github.io/datamining


GAM using penalized splines

A common special instance of GAM occurs when smoothing splines are employed. In the regression
case, the backfitting algorithm implicitly minimizes the following penalized loss

where  is a vector of smoothing parameters.

L (f ​, … , f ​;λ) =1 p ​ y ​ − β ​ − ​f ​(x ​) +
i=1

∑
n

{ i 0
j=1

∑
p

j j }

2

​λ ​ ​{f ​(t)} dt,
j=1

∑
p

j ∫
a ​j

b ​j

j
′′ 2

λ = (λ ​, … ,λ ​)1 p

Each  is a natural cubic spline, therefore the penalized least squares criterion is

whose joint minimization over  is available in closed form.

Hence, a direct algorithm that minimizes  is used instead of backfitting.

f ​(x;β)j

L (β;λ) = ​ y ​ − β ​ − f ​(x ​;β ​) +
i=1

∑
n

{ i 0
j=1

∑
p

j j j }

2

​λ ​β ​Ω ​β ​,
j=1

∑
p

j j
T

j j

β

L (β;λ)
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On the choice of smoothing parameters

In GAMs there are  smoothing parameters  that must be selected. We can proceed in

the usual way, e.g. considering the generalized cross-validation criteria:

An alternative criterion in this context is the REML (Restricted Maximum Likelihood), which is the
marginal likelihood of the corresponding Bayesian model.

p λ ​, … ,λ ​1 p

GCV(λ ​, … ,λ ​) =1 p ​ ​ ​ .
n

1

i=1

∑
n

(
1 − df/n
y ​ − ​ ​i ŷi )

2

It is not possible to construct a grid of values for all the combinations of smoothing parameters
, because the number of terms increases exponentially in .λ ​, … ,λ ​1 p p

Hence, many software packages numerically optimize the , or other information

criteria, as a function of , using e.g. the Newton-Raphson method.

Such an approach is particularly convenient in combination with smoothing splines, because the
derivatives needed for Newton’s method are available in closed form.

GCV(λ ​, … ,λ ​)1 p

λ ​, … ,λ ​1 p
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GAM and variable selection

When  is large there is need to remove the potentially irrelevant variables. There exist several

variable selection ideas for GAMs, but we will not cover the details here.

p

Option 1. Stepwise regression. Perhaps the simplest method, although it is not as efficient as in
linear models because we cannot exploit the same computational tricks.

Option 2. COSSO: Component Selection and Smoothing Operator (Lin and Zhang, 2006). It’s
an idea based on combining lasso-type penalties and GAMs.

Option 3. SpAM: Sparse Additive Models (Ravikumar, Liu, Lafferty and Wasserman, 2009).
Similar to the above, but it exploits a variation of the non-negative garrote.

Option 4. Double-penalty and shrinkage (Marra and Wood, 2011). It acts on the penalty term of
smoothing splines so that high-values of  leads to constant functions.λ ​, … ,λ ​1 p

Option X. Fancy name. Yet another method for variable selection with GAMs.
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GAM modeling of trawl data

Let us get back to the trawl data. A specification based on GAM could be

In GAMs the predictors are not necessarily modeled using nonparametric methods. Indeed, it is
common to have a combination of smooth functions and linear terms.

Besides, it does not make sense to “smooth” a dummy variable.

​ ​

Score ​ = β ​i 0 + f ​(Longitude ​) + f ​(Latitude ​) + f ​(Depth ​)+1 i 2 i 3 i

+ β ​I(Zone ​ = Closed) + β ​I(Year ​ = 1993).1 i 2 i

term estimate std.error df

(Intercept) 0.849 0.088 1

Zone_Closed -0.075 0.099 1

Year_1993 0.149 0.093 1

s(Longitude) - - 4.694

s(Latitude) - - 1

s(Depth) - - 2.447
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Partial effect of GAMs (Longitude)
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Partial effect of GAMs (Latitude)
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Partial effect of GAMs (Depth)
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Comments and criticism (trawl data)

The fitted GAM model highlights some interesting aspects of the trawl data.

In the first place, it seems confirmed that the Longitude has a marked non-linear impact on the
catch score, as the initial analysis was suggesting.

In particular, the catch score is high when the sampling location is close to the coast (but not too
close!), and then it suddenly decreases.

The effective degrees of freedom of Latitude is , meaning that the estimated  collapsed
to a linear term. The corresponding shrinkage parameter  is very high.

Overall, the effect due to the Latitude looks small or not present at all.

df ​ =2 1 ​ ​f̂2

λ ​2

The Depth seems to have a relevant effect on the Score, but this is likely due to a few leverage
points at the right extreme of the Depth range.

Finally, we note that both Zone and Year seem to have a minor effect.
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☠️ - Naïve Bayes classifier and GAMs

The naïve Bayes classifier expresses the binary classification probability  as

Hence, using class  as a baseline, we can derive the following expression:

pr(y = 1 ∣ x)

pr(y = 1 ∣ x) = ​ =
π ​ ​ p ​(x ​) + π ​ ​ p ​(x ​)0 ∏j=1

p
j0 j 1 ∏j=1

p
j1 j

π ​ ​ p ​(x ​)1 ∏
j=1
p

j1 j
​ .

p(x)

π ​ ​ p ​(x ​)1 ∏
j=1
p

j1 j

0

log ​ =
pr(y = 0 ∣ x)
pr(y = 1 ∣ x)

log ​ =
π ​ ​ p ​(x ​)0 ∏j=1

p
j0 j

π ​ ​ p ​(x ​)1 ∏j=1
p

j1 j
log ​ +

π ​0

π ​1
​ log ​ =

j=1

∑
p

p ​(x ​)j0 j

p ​(x ​)j1 j
β ​ +0 ​f ​(x ​).

j=1

∑
p

j j

Therefore, although naïve Bayes and GAMs are fitted in a quite different way, there is a tight
connection among the two methods.

Naïve Bayes has a generalized additive model structure. This also suggests that the “additive
assumption” is linked to the notion of independence among the covariates.
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☠️ - The mgcv R package

GAMs were invented by Hastie and Tibshirani in 1986, including
the backfitting algorithm.

Simon Wood (2003) described thin-plate regression splines
and their estimation (no backfitting).

Simon Wood (2004, 2011) invented methods for estimating
 in an efficient and stable manner.λ ​, … ,λ ​1 p

Marra and Wood (2011) discussed many methods for practical
variable selection for GAMs.

For further details, there is a recent and advanced book by
Simon Wood (2017) entitled “Generalized Additive Models: An
Introduction with R”.

The mgcv package in R (by Simon Wood) implements everything
mentioned here.
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Pros and cons of generalized additive models (GAMs)

GAMs can automatically model non-linear relationships. This can potentially make more accurate
predictions for the response.

GAMs, as linear models, are interpretable: the variation of the fitted response, holding all but one
predictor fixed, does not depend on the values of the other predictors.

In practice, this means that we can plot the fitted functions  separately to examine the roles of
the predictors in modelling the response.

Additive assumption is quite strong, but it is still possible to manually add interactions as in the
linear regression case.

Pros

​ ​f̂j

Especially when  is large, it is almost impossible to manually model all the interactions among

covariates. GAMs do not take second-order effects (or higher) into account.

Cons

p
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MARS
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Multivariate Adaptive Regression Splines

MARS are a generalization of GAMs that avoid the
additivity assumption.

MARS allow modeling of non–linear interactions and not
just non–linear marginal effects.

MARS are at the same time:

A generalization of stepwise regression;

A method based on multi-dimensional tensor splines;

A modification of classification and regression trees
(CART).

MARS combine many of the techniques we have seen in
this course into a single sophisticated algorithm.

Home page

29 / 45

https://tommasorigon.github.io/datamining


MARS additive representation

MARS is an additive model of the form:

where  are basis functions and  are regression coefficients.

f(x;β) = β ​ +0 ​β ​h ​(x),
m=1

∑
M

m m

h ​(x)m β = (β ​, … ,β ​)1 M
T

Once the basis functions are specified, the estimate for  is straightforward, using for example least
squares or the IWLS algorithm in the classification case.

The main distinction with GAMs is that in MARS the basis functions are estimated from the data
and therefore they are not pre-specified in advance.

​β̂

MARS is essentially a smart heuristic algorithm for selecting a collection of basis functions
 that hopefully does not incur in the curse of dimensionality.h ​(x), … ,h ​(x)1 M
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Basis functions for MARS (reflected pairs)

The MARS algorithm begins by including just the intercept term, i.e.  . Then, we

proceed by iteratively adding basis functions.

f(x;β) = β ​0

In MARS the basis functions are always coupled (or reflected), meaning that we always add them in
pairs to the additive specification.

Let us consider the following set of pairs of basis functions (linear splines):

For example, two basis functions could be  and .

The knots are placed in correspondence of the observed data. Hence, there are in total 
possible basis functions among which we can choose.

C = {(x ​ −j ξ) ​, (ξ −+ x ​) ​ :j + ξ ∈ {x ​, … ,x ​},  j =1j nj 1, … , p}.

h ​(x) =1 (x ​ −1 0.5) ​+ h ​(x) =2 (0.5 − x ​) ​1 +

2np

In the first step of the MARS algorithm, we identify the pair  and 

 that, together with the intercept, minimize the loss function.

h ​(x) =1 (x ​ −j ξ) ​+ h ​(x) =2 (ξ −
x ​) ​j +
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An example of reflected pair basis

The function  (blue) and its reflection  (orange).h ​(x) =1 (x − 0.5) ​+ h ​(x) =2 (0.5 − x) ​+
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A stepwise construction

Hence, after the first step of the MARS algorithm, our model for example could be

f(x;β) = β ​ +0 ​β ​h ​(x) =
m=1

∑
2

m m β ​ +0 β ​(x ​ −1 1 0.5) ​ ++ β ​(0.5 −2 x ​) ​.1 +

In the subsequent step, we consider a new pair of basis functions  in , but this

time we are allowed to perform two kind of operations:

(x ​ −j ξ) ​, (ξ −+ x ​) ​j + C

i. We can include the new pair to the predictor in an additive way, obtaining for example

f(x;β) = β ​ +0 β ​(x ​ −1 1 0.5) ​ ++ β ​(0.5 −2 x ​) ​ +1 + β ​(x ​ −3 2 0.75) ​ ++ β ​(0.75 −4 x ​) ​.2 +

ii. We can include the new pair in a multiplicative way, by considering the products between the
new basis and one of the old bases of the model, obtaining for instance

​ ​

f(x;β) = β ​0 + β ​(x ​ − 0.5) ​ + β ​(0.5 − x ​) ​1 1 + 2 1 +

+ β ​(x ​ − 0.5) ​(x ​ − 0.75) ​ + β ​(x ​ − 0.5) ​(0.75 − x ​) ​.3 1 + 2 + 4 1 + 2 +
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An example of tensor product basis

The product function  in the range .h(x) = (x ​ −1 0.5) ​(x ​ −+ 2 0.75) ​+ (0, 1)2
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MARS algorithm (degree )d

1. Initialize  and let  be maximum number of pairs, so that .f(x;β) = β ​0 K M = 2K

2. Identify the initial pair of basis functions  and  in  that minimize the loss function. Then,

let  and set .

h ​1 h ​2 C

h ​(x) =0 1 M ​ =1 {h ​,h ​,h ​}0 1 2

3. For , do:k = 1, … ,K − 1

i. Let  be the basis functions already present in the model.M ​ =k {h ​,h ​, … ,h ​}0 1 2k

ii. Consider a novel pair of bases . A candidate pair is obtained by multiplying
 with one of the bases in . Note that .

​, ​ ∈h
~

1 h
~

2 C ∖ M ​k

​, ​h
~

1 h
~

2 M ​k h ​ ∈0 M ​k

iii. A valid candidate basis does not contain the same variable  more than once in the product,

and it must involve at most  product terms.

x ​j

d

iv. Identify the optimal pair among the candidates at steps (ii)-(iii) that reduces the loss
function the most. This results in a new pair of bases .h ​,h ​2k+1 2k+2

v. Set .M ​ ←k+1 M ​ ∪k {h ​,h ​}2k+1 2k+2

4. Return the collection of models .M ​, … , M ​1 K
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Basis selection and backward regression

The degree  of the MARS algorithms allow to control the number order of interactions of the

model. Note that when  it corresponds to a GAM (no interactions).

d

d = 1

The final model with  terms is very likely overfitting the data. Hence, it is important to remove

some of the bases using backward regression or best subset.

The optimal reduced model can be selected via cross-validation, but generalized cross-validation is
often preferred due to computational reasons.

M

Unfortunately, it is not clear how to compute the effective degrees of freedom that are needed in
the  formula.

In MARS, however, we do not have any miraculous simple formula like in LAR or ridge.

Simulation studies suggest that, for every knot placed, we should pay a price of about  degrees of
freedom. However, this result is quite heuristic.

GCV

3
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Heuristics behind MARS

The basis functions used in MARS have the advantage of operating locally.

When the basis functions in  are multiplied together, the result is nonzero only over the small part
of the feature space where both component functions are nonzero.

C

Hence, the estimated function is built up parsimoniously, by making small local modifications to
the fit obtained at the previous step.

This is important, since one should “spend” degrees of freedom carefully in high dimensions, to avoid
incurring into the curse of dimensionality.

The constructional logic of the model is hierarchical. We can multiply new basis functions that
involve new variables only to the basis functions already in the model.

Hence, an interaction of a higher order can only be introduced when interactions of a lower order
are present.

This constraint, introduced for computational reasons, does not necessarily reflect the real behavior of
the data, but it often helps in interpreting the results.
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MARS modeling of trawl data ( )

We fit a MARS model with  (no interactions), using . Then, the model was simplified

using best subset selection and . The results are:

Term Basis function Coefficient

1.382

-4.275

3.984

d = 1

d = 1 M = 20
GCV

h ​(x)0 1

h ​(x)1 (Longitude − 143.28) ​+

h ​(x)2 (Longitude − 143.58) ​+

To clarify, this specification corresponds to the following estimated regression function:

which has the structure of a GAM. However, the estimation procedure is different.

f(x ​; ​) =i β̂ 1.382 − 4.275(Longitude ​ −i 143.28) ​ ++ 3.984(Longitude ​ −i 143.58) ​,+

The estimated function  is remarkably simple and it involves only the Longitude.

Moreover, the relationship between Score and Longitude is non-linear.

Both these considerations are consistent with the previous findings, obtained using GAMs.

f(x ​; ​)i β̂
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MARS modeling of trawl data ( )

We fit a MARS model with  (first order interactions), using . As before, the model

was simplified using best subset selection and . The results are:

Term Basis function Coefficient

1.318

-5.388

4.172

0.679

1.489

d = 2

d = 2 M = 20
GCV

h ​(x)0 1

h ​(x)1 (Longitude − 143.28) ​+

h ​(x)2 (Longitude − 143.58) ​+

h ​(x)3 I(Year = 1993)(Longitude − 143.05) ​+

h ​(x)4 [Latitude − (−11.72)] ​(Longitude −+ 143.05) ​+

As expected, a degree  MARS lead to a more sophisticated fit involving interactions between Year

and Longitude as well as between Latitude and Longitude.

We can explore these effects using partial plots.

2
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Partial effects

Linear model GAM model MARS (degree 1) MARS (degree 2)
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Results on the test set

We can now check the predictive performance on the test set, to see which is model scored the best
in terms of MAE and RMSE.

Null model Linear model GAM MARS (degree 1) MARS (degree 2)

MAE 0.611 0.361 0.315 0.305 0.334

RMSE 0.718 0.463 0.408 0.390 0.407

It is quite clear that including a non-linear specification for the Longitude was indeed a good idea
that improved the predictive performance.

Somewhat surprisingly, the best model is the extremely simple (yet effective) MARS of degree .

The weak interactions effects captured by the MARS of degree  led an increased variance of the
estimates, slightly deteriorating the fit.

1

2
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Pros and cons of MARS

MARS constructs a sophisticated model by sequentially refining the previous fit.

MARS can capture interaction effects.

The MARS algorithm can be employed for both regression and classification problems.

The final model is often interpretable. The order of the interactions can be controlled by fixing .

Pros

d

MARS can quickly overfit the data if the model complexity is not kept under control.

Unfortunately, this is not always easy to do as there is limited theoretical support that guides us
in the choice of the effective degree of freedom.

Cons
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