UNIVERSITA DEGLI STUDI DI MILANO-BICOCCA
SCUOLA DI ECONOMIA E STATISTICA

CORSO DI LAUREA IN
SCIENZE STATISTICHE ED ECONOMICHE

<t DEGLI STUDI
= >
(C/a) e
2 =
= Z

- ©
BICOCCA

ROBUST VARIABLE SELECTION: AN
APPROACH BASED ON KNOCKOFFS

RELATORE: Prof. Tommaso Rigon

CORRELATORE: Prof. Federico Camerlenghi

TESI DI LAUREA DI:

Federico Boiocchi

MATRICOLA N. 895221

ANNO ACCADEMICO 2024 /2025

Contents

1 Classical Inferential Tools

1.1
1.2

1.3

Statistical modelso Lo
Hypothesis testing Lo
1.2.1 Statistical test procedure L.
1.2.2 Significance Levelo
1.2.3 Power function
1.2.4 Observed significance level
1.2.5 Two-tailed Z-test
1.2.6 Examples
Multiple Hypothesis Testing
1.3.1 Imtroductiono
1.3.2 Union-Intersection and Intersection-Union Tests
1.3.3 Multiple testingo
1.3.4 Errors
1.3.5 Family wise errorrate
1.3.6 FWER Controlling procedures

2 False Discovery Rate Controlling Procedures

2.1 False Discovery Rate
2.2 Benjamini-Hochberg approach
2.3 Variable Selection
2.3.1 Thetwocultures,
232 TheLasso
2.3.3 Limitations of standard procedures
2.4 Knockoff filter
2.4.1 Introduction
2.4.2 Construction
243 FDRcontrol

il

9
11
13
18
18
18
21
21
23

31
31
32
36
36
37
40

2.4.4 Knockoff Extensions 53

3 Multiple Testing Application 55
3.1 Imtroduction 55
3.2 Simulation 56
3.2.1 Comparison: p-value vs rank plot 56
3.2.2 Microarray simulation study 60
3.2.3 The Knockoff filter 65
3.2.4 Effect of sparsity level, signal amplitude, and feature correlation 67

3.3 Experiment on real data: HIV-1 drug resistance 76
3.3.1 Background oo 77

3.3.2 Anmalysis 78

A Theoretical details 83
A.1 Knockoff construction details 83
A1l n>2pframework 83
A.1.2 Gram Matrix construction 84
A.1.3 Proof of Knockoffs constraints 85
A.1.4 Positive semidefinitedness and symmetry 86
A.1.5 Test statistic properties. 87

A.2 Exchangeability Lemma 0L 89
A.3 Essential Concepts in Martingale Theory 90
A.3.1 Filtration and Stopping Times 90
A.3.2 Conditional Expectation and Supermartingales 91
A.3.3 Optional Stopping Time Theorem 93

A.4 Knockoff+ FDR~control Proof details 93
A.4.1 Supermartingale Proofo 94
A.4.2 Binomial Property 97

A.5 FDR and power approximation 99
B R code 103
B.1 Chapter I 103
B.2 Chapter IIT 108
B.2.1 p-values vsrank plot 108
B.2.2 Microarray simulation study 113
B.2.3 Knockoff filter codeo 117
B.2.4 Effect of sparsity, feature correlation and signal magnitude . . 122

B.2.5 HIV data application

Bibliography

Acknowledgements

Voglio ringraziare il Prof. Tommaso Rigon per i preziosi consigli, le stimolanti
conversazioni, le opportunita ricevute e il tempo dedicatomi non solo durante la
stesura della tesi ma soprattutto nel corso di questi tre anni.

Ringrazio poi la mia famiglia per il supporto che mi ha sempre dimostrato.

Infine ringrazio il mio amico Andrea con cui ho condiviso questo percorso universitario.

Chapter 1

Classical Inferential Tools

This chapter introduces foundational concepts in the theory of single hypothesis
testing. The main references are the section on hypothesis testing in chapter 2 of
Pace & Salvan (2001) and chapter 8 of Casella & Berger (2008).

1.1 Statistical models

A fundamental concept in statistical inference is to consider observed data (y1, . .., y»)
as realizations of an underlying random variable Y. This assumption allows us
to link scarce empirical evidence with the random behavior of Y on the whole
population or domain Sy. Therefore, the randomness of the phenomenon object
of study is formally expressed through an unknown probability distribution P. In
this sense, we say that Y is distributed according to P or Y ~ P. Consequently, the
purpose of inferential statistics is to extract valid information about P from a sample
(y1,-..,yn) belonging to a sample space). The sample space is the set of all
possible samples given a specific sample amplitude n and a specific data generating
model. In extracting information about P, one must define the set of all probability
distributions P to choose from and a criterion to find the best P based on collected
data. Thus, finding the most plausible P, according to data, can be considered as
a constrained optimization problem, in which the criterion used is often based on
likelihood maximization, the search space F is the statistical model, namely, the
set of all probability distributions compatible with the data, while the simplifying
assumptions made on the model represent the constraints of the problem. Probably
the easiest approach consists of fixing the functional form for all the elements in
F and indexing them to a parameter ¢ that is free to vary in a parameter space

© C RP. A model of this kind is known as a parametric statistical model with

2 Chapter 1. Classical Inferential Tools

the following formulation
F = {P@ 10 e @}, (11)

where 6 is an unknown but deterministic population parameter, namely, a parameter
characterizing the universal behavior of the phenomenon Y; © is a subset of the
Euclidean space such as R and p € IN™T; lastly, F is a set of probability mass functions
(PMFs), in the case Y was a discrete random variable, or a set of probability density
functions (PDFs) when Y is a continuous random variable. Clearly, fixing a specific
functional form or distribution class for all Py represents another assumption that, in
this basic framework, is not considered as an object of inference. In this context, the
need to introduce a parametric simplification is immediately clear, since it allows to
simplify dramatically the inferential phase. Actually, at the root of this simplification
stands a fundamental property of 0 called identifiability.

Definition 1.1. A parametric statistical model (1.1) is said to be identifiable if any
pair of values ', 8" of the parameter 6, (both € ©) define the same probability law
if and only if §" = #". Namely:

]P>0’ -]P)a/’ < 0/ - 0”.

In other words, 6 is said to be identifiable if there exists a one-to-one correspondence
between © and F. As a result, inference will be carried out on a subset © of the
Euclidean space, called the parameter space, rather than a space of functions F.
However, parameter estimation is not the only interest of inferential statistics. In
fact, scientists are often interested in testing the coherence of empirical evidence
with certain mathematically formulated “hypotheses” on the data distribution; this
alternative way of extracting information from empirical evidence is called hypothesis

testing.

1.2 Hypothesis testing

In real-world problems, it is often of interest to test whether a conjecture about
the distribution of the data is validated by empirical evidence or not. In statistical

language, this is formalized through a hypothesis.

Definition 1.2. A statistical hypothesis H is a conjecture on the probability

distribution of a random variable.

Chapter 1. Classical Inferential Tools 3

Actually, considering only a single statement H turns out to be not that interesting.
Indeed, in many real-world scenarios, one would like to choose between two alterna-
tives. For this reason, two complementary hypotheses are often defined, and the goal
of a hypothesis testing procedure is to choose which of the two is more supported by
the data. In this setting, the hypothesis to validate is called the null hypothesis
and it is denoted by Hj, while the complementary one is known as the alternative
hypothesis or H;. These attributes arise because H is often the simple hypothesis
representing no effect, while H; is the alternative hypothesis that assumes a specific
effect. Therefore, once 0 is defined as a population parameter in a statistical model,
such as in (1.1), and identifiability is satisfied, the general structure of a null versus

alternative hypothesis test is
HO 10 e (")0 VS H1 10 e @8, (12)

where O is a subset of the parameter space © and Of is its complementary set
such that their union returns ©. An important aspect of hypothesis testing is the
distinction between hypotheses that fully specify a model and those that only partially
define it. The former case identifies a single probability distribution within the model,
while the latter describes a subset of possible distributions. This distinction is so
relevant that the first type is referred to as a simple hypothesis, while the second
is known as a composite hypothesis. It is essential to clarify that it is possible to
simplify the hypothesis comparison structure, by making complementary conjectures
on O, as written in (1.2), only thanks to the identifiability of the model. Otherwise,
only a specification of two complementary subsets of probability functions would have
been allowed. It is also worth mentioning that testing complementary hypotheses is
profoundly different from doing estimation to discover the best probability distribution
for a random phenomenon. Even though inference is still involved, the interest of a
testing procedure is only to choose which hypothesis between Hy and H; is more
plausible according to data. As a consequence, the statistical models specified in
the two hypotheses are not questioned. Moreover, an important observation is
that, strictly speaking, a hypothesis is never truly “accepted” as this would imply
that sufficient evidence has been found to prove it, something that is not possible.
Instead, hypotheses are said to be “not rejected”. Nonetheless, the term “accepted”
is sometimes used for simplicity and to avoid misunderstanding. To conclude, it is

important to note that rejected hypotheses are sometimes referred to as discoveries.

4 Chapter 1. Classical Inferential Tools

For this reason, the terms true discovery and false discovery are sometimes used for

correct and incorrect rejection.

1.2.1 Statistical test procedure

In a parametric framework, given a statistical model such as (1.1), and a testing

structure as (1.2), other tools are required to choose between Hy and H;.

Definition: A test statistic ¢ is a function of both the data and the parameter
under the null hypothesis. It measures the gap between the statement in H, and the
observed sample.

Therefore, t is a function that shows which model, between the one specified under
Hjy and the one under H, is more reasonable based on the information in the sample.

It is defined as follows:
t=ty1,. -, Yn,0) = t:YXO;—=>T. (1.3)

Where) is the sample space, ©¢ the subset of the parameter space specified under
Hy, and T the codomain of the test statistic. It is immediately clear how mapping
the sample space into the codomain 7, reduces the complexity of the problem; indeed,
when Y is a continuous random variable, the sample space is a subset of R"™ while
T is a subset of R. Therefore, the decision between the two hypotheses will be
based on a summary ¢ of the sample rather than the sample itself; in this way, we
are able to reduce from n to 1 the dimensionality of the problem. Besides that, ¢
has to satisfy two properties in order to be a proper test statistic. The first one is
the definition (1.3), with a stress on the fact that ¢ has to be a function also of ¢
while assuming Hj to be true. The second one requires that the distribution of ¢
under Hy must not depend on 6. In this context, it is meaningful to talk about the
distribution of ¢ because the repeated sampling principle guarantees that the test
statistic is a random variable since it is a function of random data. In this regard,
when ¢ is considered as a random variable, it is often used the notation 7' = ¢t(Y)
instead of a small £. Coming to the actual decision phase, the test statistic (1.3)
suggests rejecting or accepting the null hypothesis by partitioning the sample space

into two disjoint sets,

R={y €)Y :t(y,0) suggests rejecting Hy},

Chapter 1. Classical Inferential Tools 5t

that is the rejection region, namely the set of sample values that would make us
reject Hy and
A={y €Y :t(y,0) suggests accepting Hy},

which is the acceptance region, namely, the subset of the sample space that would
lead towards accepting Hy. R and A are two disjoint sets, and their union forms
the sample space. Given the complementary structure of the regions, it is usually
enough to specify only the rejection region R of the test. In this framework, whenever
the sample belongs to R, or equivalently, the test statistic takes on values in the
mapped version of the rejection region, Hy will be rejected; otherwise, Hy will be
accepted. As defined in (1.3), a test statistic quantifies the discrepancy between
the observed data and the null hypothesis. Intuitively, large absolute values of the
test statistic suggest stronger evidence against Hj, making it reasonable to reject
the null hypothesis in these cases. Based on this idea, three types of tests can be
defined. The first type rejects Hy for large positive values of the test statistic; this is
known as a right-tailed test, due to the location of the critical region on the right
side of the distribution of ¢. The second type rejects Hy for large negative values of
t, and is called a left-tailed test. Finally, the third one, known as a two-tailed
test, rejects the null hypothesis for both large positive and large negative values of t.
At this point, it is essential to understand that a statistical test is not an infallible
mechanism to decide between a null and an alternative hypothesis; as a result, it
commits errors. Below is shown a confusion matrix displaying the four possible error

cases.

Table 1.1: Hypothesis Testing Confusion matrix

H, false Hy true

reject Hy correct decision type I error
accept Hy type Il error correct decision

The columns are labeled with the ground truth, while the rows are labeled with the
choices made. A type I error is committed when the null hypothesis is rejected,
but it was actually true. This error is also known as a false positive or false discovery,
since the procedure is declaring the presence of an effect while in reality there is none.
On the other side, a type II error happens when the null hypothesis is accepted,
but it was actually false. This type of error is also known as a false negative, meaning

that the procedure has failed to detect an effect that was actually present. Thus, it

6 Chapter 1. Classical Inferential Tools

becomes relevant to understand how to design statistical tests that control these two
errors while being useful in detecting signals. But first, it is essential to introduce,

more precisely, how these error measures are computed.

1.2.2 Significance Level

It is called the significance level of the test with rejection region R the value

a = supPy(Y € R).
N
First of all, a key concept in this definition is that computing a probability based on
the distribution specified under Hj is equivalent to assuming Hj is true. Therefore,
given the general hypothesis test structure as in (1.2), and since ¥ € R means
rejecting Hy, the quantity Pp(Y € R) represents the probability of committing a
type I error, for a fixed #. Consequently, by letting vary # in ©, and taking the
sup, we obtain the maximum probability of committing a type I error, also known
as the significance level of the test. It could also happen that the probability of
making a type I error is the same for all values of 6 under the null hypothesis; in that
case, the test is said to have a constant significance level a. Given a test statistic
t, a criterion to design R could be to arbitrarily fix o in advance and then find the
upper and lower bounds of R in order to obtain the pre-determined significance level.
Hence, the resulting rejection region will be denoted by R, . Intuitively, the choice
of the significance level stems from the amount of evidence we require to reject the
null hypothesis. In other words, and high o would mean more probability mass is
assigned to the rejection region; namely, it will be sufficient less evidence to reject
Hy. Conversely, a low a means less probability mass is assigned to R, and then
more evidence is required to reject the null hypothesis. As a result, the choice of the
significance level is crucial in determining how strict (low a) or loose (high «) the
test will be in declaring discoveries. In the scientific literature and applications, the

most commonly used significance level values are oo = 0.1, 0.05, 0.01.

1.2.3 Power function

The power function of a test with rejection region R is

T(0)=Py(Y €R), 00, = 7:0—]01]. (1.4)

Chapter 1. Classical Inferential Tools 7

Thus, it is the probability of rejecting the null hypothesis as a function of 6. Clearly,
when 6 € O, the power function represents the probability of committing a type
I error as a function of 6, or a(#). Vice versa, when 6 € ©F, m(f) represents the
power of the test. In other terms, the power measures the ability of the test to reject
Hy when it is actually false, namely, detecting an effect when it is actually present.
Hence, depending on the value of 6 provided, the power function can yield either the
probability of a type I error or the power of the test. The latter is related to the

probability of committing a type II error 5, indeed, we have:
BO)=1—m(0) =Py(Y € A), 0 € 6,

that means ((0), for a specific 0, is the probability of accepting Hy when it is actually
false. This follows from the fact that the event Y € A means accepting Hj,, and
its probability is assigned assuming the alternative hypothesis is true. Therefore,
a desirable 7(0) is 0 over Og, so that the probability of detecting false positives
is null, while on ©f is 1, meaning that the test can detect perfectly true signals.
However, given the fallibility of the test, this behavior is not achievable in practice;
nonetheless, if the test is well specified, 7(0) will show a sigmoid behavior, in the
case of a one-tailed test, or a u-shape behavior for a two-tailed test; while at the
same time potentially reaching 0 over Oy and 1 over ©f. Further details about its
representation are presented in the example section of this chapter. Besides that,
one would ideally aim to design a test that minimizes both a and 8. However, this
is not an easy task, as these two probabilities are inversely related. For this reason,
a comprehensive theory has been developed to guide the construction of optimal
tests; however, this topic falls outside the scope of this thesis. At this point, before
introducing the next topic, it is useful to examine the probability confusion matrix
of a testing procedure, which is similar to Table 1.1, but it is expressed in terms of

the probabilities associated with the four possible outcomes.

Table 1.2: Hypothesis Testing Probability Confusion matrix

H, false Hj true

reject Hy w=1—-0 Q
accept H) 6] 11—«

8 Chapter 1. Classical Inferential Tools

Theoretically, for a fixed 6, these four quantities are well-defined with closed formulas.
However, to deeply understand their meaning, it could be useful to present how
they can be estimated through simulation via Monte Carlo. It is worth mentioning
that, in practice, we are not necessarily interested in approximating these quantities
via simulation since, as presented in this chapter, in simple contexts, there exist
analytical formulas to compute them. In this context, simulating data is essential
because it allows us to know the true quantities from which we are generating,
enabling a direct comparison between the true values and their approximations. In
this regard, we consider the approximation of the power function, whose pseudo-code

is detailed in Algorithm 1. In this way, we are estimating both the approximated

Algorithm 1: Power function Approximation via Monte Carlo (Single
Hypothesis Testing)

1. Fix a true significance level o € [0, 1] and a single hypothesis test structure
Hy:0€0yvs Hy:0 € 6.

2. Fix a number M of Monte Carlo iterations.

3. Fix a grid {6y,...,6,} C O of parameter values on which to evaluate the
approximated power 7(6;) for all j € {1,...,p}.

4. For jin 1 : p do:

(a) Fix a specific § = 6,.
(b) For kin 1: M do:

i. Simulate data D from f(D,6;)
ii. Compute the corresponding test statistic 7}

iii. Reject or accept Hy based on the test statistic T} and the
test structure

iv. store the value Wy, = 1(H, is rejected)

(c) End For
M
> Wi
. i=1
(d) Compute 7(6;) = 7

5. End For
6. Plot {6y,... ,Hp} vs {7(61),. .. ,7%(910)}.

significance level &(6) = () for 6 € ©y, and the power of the test for different
values of 6 € ©F. Globally, 7(0) represents a discrete version of the power function

7(0) for all 6 € © . More precisely, &(f) represents the probability of having a

Chapter 1. Classical Inferential Tools 9

false positive for a fixed value of 6 € O because we are computing the frequency of
discoveries under the null hypothesis, namely, false discoveries over the total number
of true nulls. On the other hand, 7(#) is the frequency of true discoveries among true
alternatives, hence it approximates the test power. Clearly, to perform the testing,
the true significance level must be determined in advance to allow the construction of
the rejection region. Consequently, by the law of large numbers, we are guaranteed
that, as M — 400, the approximated power function converges to the real one.
The same could be done with the probability of committing a type II error ().
This idea of approximating probabilities via Monte Carlo will turn out to be highly
useful in multiple testing contexts, where, only through simulation, we will be able
to compute average power functions to compare different multiple testing approaches.
In that case, we will compute the average power function of each multiple comparison
procedure by averaging true positive rates (TPRs) over M Monte Carlo iterations

across different ground truths.

1.2.4 Observed significance level

In a statistical test, the probability distribution of the test statistic T is sensitive
to a change of the probabilistic model underlying the data from H, towards H;.
Considering, for example, as a test statistic the sample mean, it is clear how changing
the distribution of data will shift the distribution of the resulting sample mean. In
simple cases, this sensitivity is shown in a stochastic ordering of distributions of T,
namely, by moving # from Oy to ©;, we obtain cumulative distribution functions of
T that could be ordered. Under Hy, the distributions of the univariate test statistic
T fall into the set {P},0 € Oy}, while, under Hi, one of the following situations
could happen:

1. for a test with right-unilateral critical region: T will have all probability
distributions that will be stochastically bigger than those under Hj, namely,
Py (T) > t) > Po(Ty > t) for all t, where Tj is the test statistic under the null
hypothesis with distribution Py and 7 is the test statistic under the alternative
hypothesis with distribution Py

2. for a test with left-unilateral critical region: T will have all probability distri-
butions that will be stochastically smaller. Namely, Py (77 > t) < Po(Ty > 1)

3. for a test with bilateral-critical region: T will have all probability distributions

either stochastically smaller or stochastically bigger.

10 Chapter 1. Classical Inferential Tools

Considering a right-unilateral critical region, we can define the test statistic observed

obs)

value as t°" = ¢(y°>). Thus, since high values of ¢ suggest a disagreement between

y°P and Hy, a synthetic measure of this gap is given by:

a°® = sup Pp(T > t°).
[UASISH)

°bs js said to be the observed significance level or p-value of

The quantity «
the test. Clearly, we have 0 < a° < 1. If a°® ~ 0 then t°* is significantly large
with respect of all distributions of 7" under Hy. In other words, even if one takes
the Py under H, that maximizes the probability assigned to the event 7' > t°b*, the
resulting probability will still be small; this suggest a very low accordance between
y°P* and Hy. On the other hand, if one considers a left-unilateral critical region, the

observed significance level will be:

o™ = sup Py(T < t°%).
[UASISH)
If a°P ~ 0 then t°" is significantly small with respect of all distributions of 7" under
Hy. As a result, there is a huge gap between the sample and the hypothesis Hy. A
slightly more complicated case happens with a bilateral test, in which the observed

« 1s defined as follows:

a®® = 2. sup min {Py(T < t°7%), Py(T > t°>)}. (1.5)

N
In this case, it is used the function min{-} to place t°* in the more critical tail;
whereas the sup over O helps to consider the law Py of T under H, for which ¢°" is
less critical. Then, the product by 2 is essential to maintain 0 < a° < 1. In this
regard, the observed significance level a°® can be used as a test statistic; indeed, if
T has a continuous distribution, both in the unilateral and in the bilateral case, we

have:
o (V) 2 U(0,1),

namely, the observed « is distributed under H, according to a uniform continuous
distribution in [0,1]. Therefore, the rejection and acceptance regions could be
redefined based on the p-value. A statistical test with significance level o will have

the following regions:

Ry={yeV:a®™<a} A,={yel:a”>a}

Chapter 1. Classical Inferential Tools 11

This last definition allows us to directly use the observed significance level as a proxy
of whether the sample falls in the rejection or acceptance region, and consequently,
whether to reject or accept the null hypothesis. The advantage of this approach
is that it does not require any explicit computation of the critical region, and it is
identical regardless of its structure. Conversely, a disadvantage of using p-values is
that we need to know the distribution of the test statistics to compute them, which

is not always possible. The following is an example of a well-known bilateral test.

1.2.5 Two-tailed Z-test

Given n independent and identically distributed (i.i.d) observations from a Normal
distribution N (p,02), namely, (Y3,...,Y,) w N(u,o?), it is known that the sample
mean Y, ~ N(u,02/n). Considering a known variance o2, we would like to test the

following system of hypotheses:

Ho:p=po vs Hy:p# o

Then a test statistic can be defined based on a pivotal quantity that, in this case,
is taken as the standardization of Y,,. This choice is made since Yn well summarizes
the information carried by data, while standardizing allows for simplifying the test

statistic distribution; more precisely, the test statistic will be:

?TL,LL Hop

= N,

In other terms Z measures the discrepancy between the sample and Hy. It is worth

Z

noting that the denominator of Z is the standard deviation of the sample mean and
follows from both the property of linear combination of Gaussian random variables
and the scaling property of the variance. Furthermore, we can also specify the critical

region R, where y = (y1,...,Yn) :

Ra:{}’ERn37n<MO_Zl—§'%}U{yeRn3?n>Mo+Z1_g'%}.

12 Chapter 1. Classical Inferential Tools

In this case, R, is found by following the sequence of equalities below:

a=Py((y1,..,yn) € Ry)
=Py, (Y, € R,)
=Py, (Y, <) +Ppy (Y, > u)
Y, — po Y, — po

~om (o <)+ om (G =)
The first equality is an imposition in which it is fixed the significance level of the test.
The subscript Hy of P means assuming the null hypothesis to be true. The second
equality stems from having defined, through a test statistic, the mapped version
of the rejection region. Hence, if the sample belongs to R, then the sample mean
belongs to the transformation of the rejection region through the test statistic. The
third step is a consequence of considering a two-tailed test, in which R, includes
both high negative and high positive values. To conclude, the last equality derives
from the standardization of the arguments within the two probability distributions.
Specifically, in the last step @y, represents the cumulative distribution function of a
standardized normal N (0, 1). Consequently, by imposing the first and second term
of the last step respectively equal to /2 we obtain the two symmetric quantiles of
N(0,1) of order 1 — /2, namely, [= —z1-¢ and u = z1-g¢. As aresult, the definition
of R, is just a consequence of having rewritten the argument of both probability
distributions and having isolated on the left the test statistic Y,. Regarding the

observed significance level or p-value, in this test, it is defined as follows:

. ?n_ﬂl) 7TL_,UO
obs

=2. Sy (20} 1 -y (2).
o e (o () o (T

This definition stems from having a null hypothesis that specifies a unitary set,
namely, Oy = {o}, and for this reason, there is no need to take the sup over ©.
The rest is just a consequence of the standard definition of a two-tailed p-value. We
could also have defined the critical and acceptance regions based on the observed
significance level:

Ry, ={y € R": a°™® < a},

Ay ={y € R": o™ > a}.

Chapter 1. Classical Inferential Tools 13

1.2.6 Examples

In this example, a right-tailed Z-test on the mean of a Gaussian population with
known variance o2 = 1 has been performed, considering a composite null hypothesis.

More precisely, the two hypotheses being tested are:
Hy:p < po VS Hy:pe> po,

with ©¢ equal to the left ray {u € R : u < ug}, while the alternative hypothesis
is the right ray {s € R : > uo}. In this case, the test statistic Z is taken to be
the standardization of the sample mean. As in a two-tailed Z-test, the test statistic
under H is distributed according to a standard Normal. In order to have a graphical
representation of this hypothesis test, in Figure 1.1 are shown two distributions:
on the left, the probability density of the sample mean under a specific u € Oy,
namely, 1o = 0; whereas on the right, it is drawn a generic distribution under H,
with gy = 0.08. Although both the null and the alternative hypotheses define an
entire ray of values, a single u; € ©; and py € ©p must be selected to enable an
effective illustration. The number of observations is n = 1000, while @ has been fixed

to 0.05. The critical region has been computed as follows:

— — g
R0.05 = {X eR: X > Lo + Z1—-0.05 ° %}

— — 1
={XeR: X>0+1644 - —
{ v/ 1000

}
={X eR: X > 0.0520}.

It is important to note that the x-axis is labeled with the sample mean X, and not
with the raw data X. Therefore the two Normals are N (g, o /+/n) and N(uy,0/+4/n).
The acceptance region A is colored in light blue, and it represents the subset of
the sample mean space for which Hj is not rejected; while on the right, colored
in purple, R represents the rejection region. Dashed lines represent the means p,
and pq of the two Normals, while the continuous vertical line marks the so-called
critical threshold, that is the boundary between R and A. The area colored in red
represents the probability of committing a type I error, since it is the probability of
being in the critical region while assuming Hj is true. On the other hand, the area
colored in blue represents the probability of committing a type II error, namely, the
probability of accepting Hy but assuming H; is true. To conclude, the area colored in

green represents the power of the test because it is the area above the rejection region

14 Chapter 1. Classical Inferential Tools

Sample mean PDFs a =0.05

8 10 12
N N

probability density
6
|
A

-0.15 —-0.05 0.05 0.10 0.15 0.20

X

Figure 1.1: Sample mean PDFs under Hy, N(up,o/y/n) ,on the left, and under Hy,
N(u1,0/y/n) on the right . The areas underlying the two curves have been colored
differently to show the power of the test w, and the probability of type I and II errors,
respectively o and 8. « is fixed to 0.05.

and under the sample mean PDF when H; is true. Another interesting illustration
concerns the power function of this example represented in Figure 1.2; although it is
unusual, an a = 0.25 has been chosen to ease the readability of the visualization.

Considering the example above, the power function has been computed as follows:
7(p) = P(reject Hy : p € O)
=P((Xy,...,X,) € Ry : p € R)

:P(Y>MO+21_Q'%1MGR)
S

- g
:]_—]P)(X<,u0+21_a'%1[t R)

X — o+ 210 7= —
:1—]P’< s vn :,uEIR)

Chapter 1. Classical Inferential Tools 15

Power function

()
00 02 04 06 08 1.0

I I I I I I
-0.10 -0.05 0.00 0.05 0.10 0.15

Figure 1.2: Power function of a right-tailed Z-test. The parameter space R on the x-axis
is partitioned into two rays representing the null and alternative hypotheses. On the y-axis,
are plotted in red, the values of the probability of type I error up to the significance level
a = 0.25. Whereas, in green are shown values of the power of the test for different u
specified under the alternative hypothesis. It is also shown po and the critical threshold
that corresponds to the inflection point of the curve.

The power function has a sigmoid behavior with domain the whole parameter space
R and codomain the interval [0, 1] since it is a probability by definition. Besides
that, the domain of the function can be partitioned according to the hypothesis test

structure; therefore, it is possible to visualize the significance level of the test as

a = supP(reject Hy : p € R) = supn(p),
n<po H< o
indeed, in the graph above, « is the maximum of all values of the probability of
rejecting Hy over ©g = {u € R : u < po}. On the opposite, values greater than
« represent the power of the test for different mean values specified under the
alternative hypothesis. Lastly, It can be proved that the x coordinate of the inflection

point is the critical threshold of the test. However, having analyzed a single example

16 Chapter 1. Classical Inferential Tools

does not capture the behavior of the test across different values of .. For this reason,
it is useful to compare the graphs of the PDFs of the sample mean under H, and
H; across different values of the probability of committing a type I error. Below
and on the next page are shown two versions of the sample mean PDF graph from
the previous example, identical in all aspects except for the significance level. In
the first illustration, Figure 1.3, a level of & = 0.01 has been chosen, namely, the
probability of declaring false positives is very low; then the test will be very strict
in declaring discoveries. An additional consequence is that the power of the test
(the green area) is reduced because the ability to detect true signals is lowered by

the strictness of the test. The second illustration, Figure 1.4, represents the same

Sample mean PDFs a =0.01

8 10 12

probability density
6
|
%

-0.15 -0.05 0.05 0.10 0.15 0.20

X

Figure 1.3: Probability density functions of the sample mean for a test with o = 0.01.

graph for a less strict test. In the following case, a significance level of a = 0.2 has
been chosen; although it is rather unusual to select an o that high, this choice has
been made to stress the difference with the more severe case. As can be seen, raising
the probability of committing a type I error decreases the critical value, since it is
proportional to z;_,; at the same time, 7 is increased at the cost of making false
discoveries. The probability of committing a type II error is reduced, since accepting
a null hypothesis that is actually true is harder if the procedure is more likely to
reject Hy. To conclude, another useful comparison to understand how tests with

different significance levels behave consists of examining the power functions of the

Chapter 1. Classical Inferential Tools 17

previous example across different «. In Figure 1.5, they have all been plotted in the

same graph.

Figure 1.4:

(%)
00 02 04 06 08 1.0

Sample mean PDFs a =0.2

o
—
> o4 BF°
B A n
[
g ©®7 Na
P
= O —
=
S <+ 4
o
o
T N
R
5 A AN\ R
T T T T T T T T
-0.15 -0.05 0.05 0.10 0.15 0.20

X

Probability density functions of the sample mean for a test with o = 0.2.

Power function comparison

I | i | | |
-0.10 -0.05 0.00 0.05 0.10 0.15

Figure 1.5: Power function comparison for the right-tailed Z-test of the previous example
with different significance level values. From left to right, the strictness of the test in
declaring positives increases.

18 Chapter 1. Classical Inferential Tools

It can be seen how decreasing the probability of declaring false positives shifts the
power function to the right. Indeed, the significance level is represented by the
intercept of the power function with the line 1 = po. Hence, shifting the function to
the right means decreasing the intercept. As we expected, given the same fixed value
of 1 under the alternative hypothesis, the three tests have three distinct powers,
which increase as « is decreased. In general, procedures with a power function shifted
on the left will be looser in declaring discoveries; vice versa, power functions shifted
to the right will determine more conservative choices. This behavior also persists in

the average power functions of multiple testing procedures.

1.3 Multiple Hypothesis Testing

1.3.1 Introduction

Hypothesis testing could be interpreted as the mathematical framework underlying
pretty much all scientific discoveries. In this sense, almost every breakthrough in
science stems from some form of hypothesis testing, whether to validate a result or
to guarantee its reproducibility. In this context, with the advent of high-dimensional
data, the need to develop a theory of multiple hypothesis testing was essential to
detect significant signals among many noises while controlling a global measure of
error. This field of research, while being inherently a milestone of science, has reached
huge popularity following the so-called Replication crisis, namely, the widespread
overestimation of scientific discoveries in academic papers due, in part, to the
application of single-hypothesis testing procedures to multiple contexts. More details
about the reproducibility crisis are provided in (Ioannidis, 2005) from a medical
perspective and (Gelman & Loken, 2014) from a statistical point of view. Over the
years, different robust detection strategies have been proposed, and despite their
differences, they maintain a level of similarity that allows for a meaningful comparison.
Throughout chapters 2 and 3, we will introduce these strategies and compare their
performances. We start by introducing the framework of union-intersection and
intersection-union tests, which provides an effective link between single and multiple

hypothesis testing.

1.3.2 Union-Intersection and Intersection-Union Tests

The following presentation is based on section 8.2.3 of Casella & Berger (2008). A

first example of multiple testing methods includes the Union-Intersection and

Chapter 1. Classical Inferential Tools 19

Intersection-Union tests. The idea is that, in some cases, a complicated single
null hypothesis can be expressed as a union or an intersection of simpler individual
hypotheses. We first consider the union-intersection method that turns out to be
useful when a complex null hypothesis is conveniently expressed as an intersection
of simpler sets. The required structure for the global hypothesis Hj is specified as

follows:

Hy: 0 € ()6, (1.6)

~yel
In this case, the approach involves decomposing a difficult to describe single hypothesis
into several simpler ones. Particularly, I' is an arbitrary index set that could be
finite or infinite, usually we have I' = {1, ..., m}, while O, are simpler sets for which

hypothesis tests are available, namely, for each v we have:
Hgfy NS 67 VS Hl'y NS @’cy (17)

Therefore, we have reduced the complexity of the problem by increasing the number
of hypotheses being jointly tested and having simplified their structures. At this

point, we can define the rejection region for the 4'" test specified in (1.7) as follows
R, ={y € Y :T,(y) suggest rejecting Ho, }, (1.8)

where T, (y) is the test statistic computed on the sample y for the v hypothesis.

As a result, we can also define the rejection region for the union intersection test in

(1.6), which is
R=[JR,

~er
In this case, the rationale is rather simple because we will reject the complex
hypothesis Hj if any one of the hypotheses Hy, is rejected. Therefore, Hy will be
accepted only if all Hy, are accepted. Sometimes a simple expression for the rejection
region of union-intersection test can be defined. More precisely, if we suppose to

have a rejection region for each simpler hypothesis Hy, of the following kind
R,={yeY:T,(y) > c}, (1.9)

then the global rejection region will be defined as:

R:U{yey:Tw(y)>c}:{y€y:supTﬁ,(y)>c}.

~er yel

20 Chapter 1. Classical Inferential Tools

Hence, the global test statistic is T'(y) = sup 7,(y); intuitively, we need to check
~el

whether the most extreme test statistic exceeds the threshold, since rejecting even
one individual hypothesis is sufficient to reject the global hypothesis. Therefore, we
have understood how the union-intersection test provides a first example of how
single and multiple testing are related to each other. The second case, as mentioned
above, is the intersection-union method and it is detailed below.

The intersection-union approach is used when the global null hypothesis can be

conveniently expressed as a union of simpler hypotheses, namely:

HO 0 c U@'Y
~yel’
Then, after having defined the same multiple hypothesis structure as in (1.7), with
the only difference of how minor hypotheses are aggregated to form the global Hy,
and after having defined rejection regions R. with the exact same form of (1.8), we

can construct the global rejection region

R= (R,
~veT
Thus, Hy will be rejected if each of the Hy, is rejected as well. This behavior follows
from the definition of the global rejection region as an intersection of simple R,. In
particular, if the single rejection region has the same form as in (1.9), except for the
sign that is >, then the global R will be:

R=(WyeY:T,(y) > c}={yey: inf T,(y) 2 c}, (1.10)
~ver

in other words, if the smallest test statistic exceeds the threshold c, then it is
guaranteed that all the others 7", will do the same and the global hypothesis will be
rejected.
These two approaches have been introduced as a bridge between single and multiple
testing frameworks, mainly to understand how they are inherently related to each
other. However, in many cases, the goal is not to simplify a complex single hypothesis,
but rather to test multiple hypotheses directly. In other words, our interest often
lies in testing multiple hypotheses on their own without considering them as a tool
to tackle a single more complicated Hy. For this reason, we now introduce some
additional notation to present the problem of multiple testing more clearly and

regardless of a global Hj.

Chapter 1. Classical Inferential Tools 21

1.3.3 Multiple testing

The core idea of multiple testing is to jointly perform many hypothesis tests, instead
of a single one. Intuitively, we are interested in testing m distinct, independent and
easy to describe null hypotheses against their respective alternatives, more precisely,

the 4" hypothesis test is:
Hy, : 0 € Oy, Vs Hiy, : 0 € 6, for v=1,...,m.

This is done by computing m distinct test statistics 7, that once compared with
a shared critical threshold, naturally determine either to reject or fail to reject
Hy, for v =1,...,m. This could be done equivalently using p-values instead of the
test statistics. More specifically, we assume to have a collection H = {Hq, ..., H,,} of
m null hypotheses. Within this collection, an unknown number mg of null hypotheses
are true, while the remaining m; = m — myq are false. Besides being unknown, both
mg and m; are also unobservable. In this regard, a quantity that will turn out to be
highly useful in Chapter 2 is the proportion of null hypothesis 7y that is equal to
mg/m. The subset of true hypotheses is called 7 C H, whereas the subset of false
hypotheses is F = H \ 7. Clearly, both these sets are unobservable and unknown,
since we cannot know the true reality. Consequently, the goal of a multiple testing
procedure is to choose a subset R of H composed by hypotheses to reject. If we have

p-values py,...,py, for Hy, ..., H,, a natural way to define R is:
R ={H,:p, <c}, (1.11)

specifically, the set of rejected hypotheses consists of those H., whose p-values are
below a critical probability level ¢, indicating that the corresponding test statistics
are notably distant from the null hypothesis. In an ideal situation, one would like to
have the set of rejected hypotheses R to coincide as much as possible with the set of
false null hypotheses F. This because we would like to reject null hypotheses that

are actually false.

1.3.4 Errors

In practice, the multiple testing procedure commits two types of errors. The first
ones, in analogy with the single hypothesis framework, are known as type I errors
and they represent the set of true null hypotheses that are rejected, namely, R 0T .

The second ones are the type II errors, which are accepted null hypotheses that were

22 Chapter 1. Classical Inferential Tools

actually false; they are denoted by F \ R. In other words, we are considering, within
the set of actually false hypotheses, those that have not been rejected. Since scientific
discoveries often result from rejecting null hypotheses, and new breakthroughs are
built on previous ones, the scientific community generally considers making a false
discovery more harmful than failing to detect a real one. This is because many
false discoveries would undermine the whole structure of science, if not contained;
conversely, failing to detect a true discovery could be unfortunate for a scientist’s
career but would not harm the whole scientific community. For this reason, type I
errors, whether in single or multiple testing, are considered more problematic than
type II errors. In multiple testing, in analogy with the one-hypothesis framework, it
is possible to summarize correct and wrong decisions through a contingency table.
Therefore, if we repeat a multiple test only once, we are able to define the following

contingency table. In Table 1.3, the rows represent the decisions based on the results

Table 1.3: Multiple test contingency table

false null true null total

null rejected TP FP R
null accepted FN TN m—R
total mo m — mg m

of the multiple test, rejecting or accepting each null hypothesis, while the columns
indicate the true status of the m null hypotheses. Therefore, in this case, we are
jointly testing m hypotheses, with a number of rejections R = |R|. The only known
quantities are the number of rejections R and the number of hypotheses m to be
tested. R is an observable random variable, while m is a parameter that needs to
be fixed in advance. All the remaining quantities are unobservable and unknown
random variables, except for mg, which is an unobservable and unknown, non-random
parameter. Furthermore, TP is the number of true positives, namely, the number of
null hypotheses correctly rejected, while FP represents the number of false positives,
which is the number of null hypotheses rejected that were actually true. TP and FP
sum up to R, which is the already mentioned total number of rejections. Instead,
coming to the accepted null hypotheses, they are divided into false negatives FN,
namely, the number of null hypotheses that have been accepted while being false,
and true negatives TN, which is the number of accepted null hypotheses that were
actually true; FN and TN add up to m — R. Moreover, FP is also known as the

number of type I errors, while FN can be interpreted as the number of type II errors.

Chapter 1. Classical Inferential Tools 23

1.3.5 Family wise error rate

This section and the next one are based on chapter 15 of Efron & Hastie (2021). In
multiple testing, it is not immediately clear which error measure to use when designing
tests aimed at finding a balance between detecting true discoveries and avoiding
false ones. This also happens because the significance level and the probability
of committing a type II error are naturally defined only for a single hypothesis
framework and not directly extended to multiple testing. For this reason, it has been
introduced the so-called family-wise error rate or FWER whose definition is the
following:

FWER = P(FP > 0), (1.12)

namely, the probability of making at least one false positive, or in other words,
the probability that the collection of rejected hypotheses contains any type I error.
As mentioned above, since FP is a random variable, it is meaningful to write the
probability of the event FP > 0.

In addition to the intuitive definition in (1.12), assuming to test m hypotheses each

one at «, the family-wise error rate can also be formulated as follows:

FWER:P{U(M ga)}. (1.13)
veT

This quantity represents the probability of the union of events corresponding to false
positives. In probability theory, such a union is interpreted as the probability that
at least one of these events occurs. For this reason, it represents the probability of
committing at least one false discovery. More precisely, the individual events in the
union correspond to false positives because we are considering only hypotheses Hy,
with v € T that is the set of indices of true null hypotheses, and we are rejecting
this subset of hypotheses based on p-values. Using p-values to reject hypotheses
means considering Hy, and declaring a rejection if the corresponding p-value is
less than «. Therefore, we are effectively computing the probability of having at
least one false positive, by testing each Hy, in 7 at level a. However, especially in
(1.12), the family-wise error rate appears to be defined in a top-down manner. As a
consequence, one might wonder why do we need to define it in the first place and
how do we obtain it. Actually, the family-wise error rate can be more clearly defined
as a classical probability of committing a type I error for the global null hypothesis

in a union-intersection test. To some extent, we could have an intuition of why it is

24 Chapter 1. Classical Inferential Tools

the case by looking at the definition (1.13). However, a more detailed explanation is
needed to prove that FWER is just a significance level of a union-intersection test.
In this regard, a bottom-up approach can be taken: first, define a collection of m
simpler hypotheses Hy,, then aggregate them into a single global hypothesis Hy, by
doing a proper intersection, and finally compute the usual probability of making
a type I error for Hy. It turns out that the significance level associated with the
resulting global hypothesis H, corresponds exactly to the definition of the family-wise
error rate associated to the collection of simpler hypotheses { Hy1, ..., Hoy}; this
holds true assuming a global hypothesis Hy with Oy # @&. To better explain this
definition of FWER, we could consider the case of a multiple test composed of m
two-tailed Z-tests, each one testing the the expected value of a Gaussian population

with known variance

Hoy:p=po vs Hyip#p, y=1,...,m

or, equivalently, using set notation, which is more appropriate in this context, we

would have:
Ho,:pe{pw}y vs Hyy:p€ {uo}s (1.14)

Consequently, the global hypotheses structure of this union-intersection test will be:

Hy:pe ﬂ{uo} vs Hi:pe <ﬂ{#0}>)

yel vel’

thus, if we solve the intersection, this hypothesis structure turns out to be exactly
equal to (1.14), since the intersection of many identical singletons results in the
singleton itself. consequently, we can assume a rejection region for the v test

specified as follows
R, = yel: |Tw(y)| > c},

which is the natural way of defining a rejection region for a two-tailed normal test;
equivalently, using the p-value and an arbitrarily chosen significance level o, we

would have:
sz{yey:pvga}'

Chapter 1. Classical Inferential Tools 25

Therefore, the global rejection region for the null hypothesis Hy of the union-

intersection test will be:

R=JlyeY: I, >c} = JlveV:p, <a} (1.15)
yel ~el
Hence, we are now able to compute a classic significance level for the global
hypothesis Hy and show how this quantity is exactly equal to FWER for hypotheses
HOl) e ey Hom.

a=supP(Y € R) = sup P(Y € R)

1€ pe{po}

=P(Y € R| p= o)

:P(U{y €Y:p, <a}| Hy true)

vyel

:P(U{y € y:py S Oé} | H()l,...,Hom are true)
~vel

—B(J{yey:p, <a})

yET

= FWER.

The first equality follows from the definition of significance level. The second and
third equalities result from the two-tailed structure of the tests used in the chosen
example. The fourth step is obtained by explicitly expanding the rejection region
of a union-intersection test within the probability measure PP. The fifth equality
relies on the definition of the global null hypothesis Hy as the intersection of simpler
null hypotheses. Therefore, conditioning to Hy is equivalent to conditioning to all
individual null hypotheses Hy,. Hence, computing the probability assuming that H
is true is the same as conditioning on the truth of all individual hypotheses. Finally,
conditioning on the true nulls means computing the probability of the union of events
corresponding to false discoveries only. As a result, this leads us to the definition of

the family-wise error rate.

1.3.6 FWER Controlling procedures

However, in the context of multiple testing, our goal is not to accept or reject the
global null hypothesis Hy, as we would have done in a union-intersection test. Instead,

we aim to construct a multiple comparison procedure that allows us to assess each

26 Chapter 1. Classical Inferential Tools

individual hypothesis Hyy, ..., Hy,, regardless of the global Hy. Therefore, we need
to define multiple comparison procedures capable of determining a rejection region
as specified in (1.11), while also controlling a global error measure. In this section,
we introduce two different approaches to multiple testing that aim to control the
family-wise error rate. In other words, when applied, these procedures ensure that
the FWER is bounded by a predetermined significance level denoted by «. Before
introducing these controlling procedures, it is helpful to first consider the most
intuitive, yet incorrect, approach to test m distinct hypotheses. This method could
be called Naive, since it applies a single-hypothesis approach to multiple testing
without caring about generalization or global error controlling. In practice, using
this method, we test each Hy, at significance level o, as a result, we end up with a
FWER that is not bounded by «. Algorithm 2 performs Multiple testing using the

naive method:

Algorithm 2: Naive approach
1. fix an arbitrary level « € (0, 1) (upper bound of FWER)

2. compute m distinct p-values one for each Ho,: p1,p2, ..., 0m

3. reject all Hy, such that p, < a.

It is straightforward to verify how this Naive procedure does not control the family-

wise error rate:

FVVER:IP’{LJ(]?7 Sa)} < E:IP’{p7 <a}=mgp-a.
YyeT yeT

The first equality stems from the definition of FWER (1.13), that is the probability
of committing at least one false discovery. The second step originates from the finite
case of Boole’s Inequality. Ultimately, the third equality relies on the key assumption
that the data are continuous, and therefore the test statistic is also continuous.
Therefore, under the true null p, ~ U(0,1) and then P{p, < a} = [;* dp, = o
consequently doing the sum of the term a over the true null indexes we obtain mg - «

that is > a. Moreover, assuming independence among p-values, we would have:

FWER:P{U(])VS&)} :ZP{pvga}:mo-a.

yET yET

Chapter 1. Classical Inferential Tools 27

This follows from the absence of the intersection terms among the sum of probabilities
P{p, < a} with v € T. For this reason, both under independence and dependence
among hypotheses, the naive approach is not guaranteed to control the family-wise
error rate. Besides that, it is worth mentioning that in real-world problems when
m is particularly high, and independence is not satisfied, the number of true nulls
mg is approximately equal to m; as a result, the FWER is bounded by a quantity
that is > 1, which clearly means that FWER is not bounded at all, since being a
probability implies that FWER is by definition < 1. Even more evident is the case
when p-values are independent, which leads to FWER = my - a.

At this point, we introduce the first FWER controlling procedure, known as
Bonferroni approach. Intuitively, the Bonferroni method is just a correction
of the naive algorithm used to test m distinct hypotheses. The pseudocode for this

FWER controlling procedure is defined in Algorithm 3:

Algorithm 3: Bonferroni approach
1. fix an arbitrary level o € (0,1) (upper bound of FWER)

2. compute m distinct p-values one for each Hoy: p1,p2, ..., Pm

3. reject all Hy, such that p, < e
m

In this way, by testing each hypothesis Hy, at a/m instead of «, we are guaranteed

to control FWER with a. The reason why this is true is provided below:

FWER < ZP{p7 < %} m;)n' ay
veT

These steps are identical to the ones used to show that FWER was not controlled
using the Naive approach. With the only difference that by isolating 1/m, we are
now able to show that FWER is bounded by « since my = mg/m is by definition
less than 1, indeed mg is always less than m. The fact that under the Bonferroni
approach each Hy, is rejected only if p, < a/m will inevitably lead to a lower number
of discoveries and to detecting only extremely significant effects. In this context, it
is evident the presence of a trade-off between the conservativeness of the Bonferroni
bound, which controls type I errors, and its ability to detect signals, which is reduced
by its strictness. At this point, one might wonder if there exists a procedure that

still controls the FWER but is slightly more generous in declaring discoveries; the

28 Chapter 1. Classical Inferential Tools

answer is Holm’s approach introduced in (Holm, 1979). The Holm’s method is
the second and the last FWER controlling procedure presented in this chapter. The
steps of this approach are described in Algorithm 4.

Algorithm 4: Holm’s approach
1. fix an arbitrary level o € (0,1) (upper bound of FWER)

2. compute m distinct p-values one for each Ho,: p1,p2, ..., 0m

3. order (and relabel) the m p-values in ascending order such that:
P1p2 << Dnm

4. ﬁndtheindexyozmin{WG{L---am}3pv> m_o,;_,_l}

5. reject all Hy, with v < 7y and fail to reject otherwise.

The first two steps are identical to other common approaches, while from the third
step on, Holm’s method differs from previously exposed procedures. Specifically, the
third step involves ordering the p-values and relabeling them accordingly. Successively
in the fourth step, the goal is to find a threshold, denoted as 7y, which corresponds
to the smallest index for which the associated p-value exceeds the adjusted critical
value a/(m — v+ 1). Finally, all null hypotheses Hy, corresponding to indices before
this threshold are rejected, while the remaining ones are accepted. It can also be
shown that Holm’s procedure controls the family-wise error rate. The following is
the proof based on the one provided in Holm (1979).

We first assume to reject at least one true null hypothesis and have reordered
hypotheses in ascending order by their p-values. Then, we consider the minimum

index associated with a rejected true null, and we call it [:
I =min{y € T : Hy, is rejected}.

Consequently, if Hy; is the first true null to be rejected, we have [— 1 false nulls
that have been correctly rejected before Hy;. Since the total number of false nulls is

mi; = m — mg, we can claim that
[—1<m—my,

because the number of correct rejections before [is necessarily smaller than the

number of total false nulls. Thus, by isolating mg on the right and taking the inverse,

Chapter 1. Classical Inferential Tools 29

we obtain
L < L (1.16)
m—I1+1" mg '
At this point, we recognize that using the Holm’s step-down procedure means rejecting

those hypotheses Hy, such that:

«

<
P m—%—l—l

where 7y has been properly defined in Algorithm 4. This also means that for all
indices v < g it holds true the following claim:

«

< —7.
Py m—y+1

Consequently, combining this last claim with (1.16), we obtain the following for all
rejected hypotheses
o
< —. 1.17
Dy g (1.17)
Hence, the definition of FWER based on this threshold is equivalent to computing
the FWER of Holm’s procedure. Since (1.17) is especially true for rejected true nulls,

we have

FWER = P (U {p7 < m%}) < ZP{p7 < m%} :mo.mﬁo = a.
veT ~eT

The first equality derives from the definition of family-wise error rate and having

used claim (1.17). The second step is given by Boole’s inequality; the last one

assumes continuous test statistics for the m tests, and therefore, continuous uniform

distributions in [0, 1] for the p-values. Consequently, by computing the probability

of the event p, < a/my, we obtain that FWER is bounded by «.

Without going into the details, it is worth mentioning that multiple testing can
also be approached from another perspective, by fixing a significance threshold «
and adjusting the p-values according to a multiple comparison procedure. If the
adjustment is done appropriately, this is exactly equivalent to computing raw p-values
and comparing each of them to a threshold that is appropriately defined based on the
chosen method and the selected a.. In this regard, the stats package of the R software
provides the function p.adjust () that can perform such p-value adjustments directly.

In the last section of this chapter, we have seen two examples of family-wise error rate

30 Chapter 1. Classical Inferential Tools

controlling procedures; however, in the scientific literature, other global measures of
error have been proposed with their own controlling procedures. More sophisticated

approaches will be presented in the next chapter.

Chapter 2

False Discovery Rate Controlling Procedures

The two main references for this chapter are: chapter 15 of Efron & Hastie (2021) for
the part on false discovery rate and Benjamini-Hochberg procedure, and the article
Barber & Candés (2015a) for the Knockoff procedure.

2.1 False Discovery Rate

In the literature of multiple testing, there is extensive debate over which global error
measure to control in order to define a good multiple comparison procedure. One
influential alternative to the family-wise error rate is the False Discovery Rate
(FDR). In order to define the FDR we first need to introduce the False Discovery
Proportion (FDP).

Using the notation in Table 1.3, the false discovery proportion is defined as:

FP/R if R >0,
FDP = _ P A
max(R, 1) 0

otherwise.

In other words, the false discovery proportion is a random variable equal to the
proportion of false discoveries among all discoveries. If no discoveries are made, to
avoid division by zero, the denominator is set equal to 1; consequently, yielding to
FDP = 0 in such cases.

The false discovery rate is defined as follows:
FDR = E(FDP), (2.1)

namely, it is the expected proportion of false discoveries among all discoveries. Here,

the expectation is taken with respect to the underlying data. Indeed, once both

31

32 Chapter 2. Fulse Discovery Rate Controlling Procedures

the testing procedure and the system of hypotheses are fixed, the false discovery
proportion becomes a random variable as the data vary, so it is natural to consider its
expectation. As we defined FWER controlling procedures in Chapter 2, we can now
introduce FDR controlling procedures to test multiple hypotheses. More precisely, a
testing procedure is said to control FDR if the resulting rejection set R is chosen in
such a way that FDR < a. It is worth noting that the family-wise error rate and
the false discovery rate are closely related, and so are the methods used to control

them. Indeed, we can show that:

FP 1 if FP > 0,
FDP— -~ < =1(FP > 0).
max(R, 1) 0 otherwise.

This is just a consequence of 0 < FDP < 1; while 1 represents the indicator function.

As a result, if we take the expectation on both sides, we obtain:

E(FDP) < E(1(FP > 0))
FDR < P(FP > 0)
FDR < FWER.

The second inequality stems from observing that 1(FP > 0) can be considered a
Bernoulli random variable with a success probability equal to its expected value,
that is P(FP > 0). Therefore, we have proved that FWER control implies FDR
control. Hence, all the FWER controlling procedures also control the FDR, while
the reverse is not true. Intuitively, this connection is supported by the fact that
FDR and FWER are proper generalizations of the concept of type I error to multiple
hypotheses. In fact, in the case where the number of hypotheses to be tested is
m = 1, the two error rates are identical and equal to the type I error rate.

The following sections present two false discovery rate controlling procedures, with

particular emphasis on the Knockoff filter, which is the central topic of this thesis.

2.2 Benjamini-Hochberg approach

In High-dimensional contexts where the number of true alternatives m, is very low and
the number of true nulls my is approximately equal to the total number of hypotheses
tested m, the conservative bounds yielded by FWER controlling procedures risk

producing always approximately 0 discoveries. For this reason, in 1995 Benjamini and

Chapter 2. Fualse Discovery Rate Controlling Procedures 33

Hochberg introduced the first FDR controlling procedure (Benjamini & Hochberg,
1995). This paradigm shift has been highly influential both inside and outside the
field of mathematical statistics, primarily for its power and simplicity. The framework
is quite similar to the one used in previously discussed FWER controlling procedures,
with a few key differences. First of all, the Benjamini-Hochberg (BHq) procedure is
guaranteed to control the FDR but not the FWER. Secondly, the rejection threshold is
clearly defined in a different way. Finally, we require independence among hypotheses,
a request not made for FWER controlling procedures, which is crucial to guarantee
FDR control for BHq. In this regard, the independence request is highly unrealistic
and not satisfied in many real cases, due to this limit other procedures have been
proposed, such as modified versions of BHq and the Knockoffs. In Algorithm 5 is
detailed the Benjamini-Hochberg approach:

Algorithm 5: Benjamini-Hochberg approach

1. Fix an arbitrary level ¢ € (0, 1)
2. Compute m distinct p-values one for each Hy,

3. Order the m p-values in ascending order such that: p; < py < --- < p,,
4. It p, < l-q V~y=1,...,m reject nothing
m
5. Otherwise, find the index Y.x = max {7 e{l,....,m}:p, < X, q}
m

6. Reject all Hy, with v < ymax and fail to reject otherwise.

The logic is very similar to Holm’s method, but with two key differences: firstly,
we use a different rejection threshold that is based on p, ., secondly, the BHq
procedure controls the FDR rather than the FWER. It is also interesting to note
that, unlike the Bonferroni approach, which tests each hypothesis at level a/m, the
BHq procedure progressively assigns more weight to the hypotheses through the
parameter 7. This helps in counterbalancing the conservativeness of testing all Hy,
at the uniform level oo/m. The goal, then, is to identify the largest p-value that
remains below its corresponding threshold determined by v, and subsequently test
cach hypothesis at the level p,_ . .

Defining D, as the decision rule described above to either reject or fail to reject
hypotheses Hy,, one could denote the false discovery rate yielded by this procedure
as FDR(D,). The following theorem states how BHq is guaranteed to control the
FDR(D,) at level q. The proof is based on Solari (2023)

34 Chapter 2. Fulse Discovery Rate Controlling Procedures

Theorem 2.1 (Benjamini & Hochberg (1995) FDR Control). if the p-values

corresponding to valid null hypotheses are independent of each other; then

FDR(D,) =m-q<q where Ty = o, (2.2)
m

Proof. When my = 0 the conclusion is obvious, FDR is exactly 0 since there are no
true nulls. Hence, it is obviously controlled at level g since it is exactly 0. Therefore,
let us assume mg > 1.

For each v € 7 with 7 = {v € {1,...,m} : Hy, is actually true}, define V,, such

that:

] 1 if Hy, is rejected
V, = 1{Hy, rejected} =
0 if Hy, is not rejected.

Namely, V, is a random variable that takes values in {0,1} and signals when a
rejection is a false positive (V, = 1) or a true negative (V, = 0). The false discovery

proportion could then be expressed as follows:

FDP = vajl where RV 1=max{R,1}.

yET

Hence, the numerator counts only false discoveries, while the denominator counts
the maximum between the total number of discoveries R and 1, this is done to avoid
division by 0 if there are no positives. At this point, we could make the following

statement (it will be proved later):

E(Rv\h):% with e 7. (2.3)

Based on which it is possible to write that:

V.
FDR:E(FDP):ZE(R\’;J:Zizwo-q, (2.4)
yeT WETm

where the first equality stems from the definition of FDR, the second equality is
given by the linearity of the expected value E(-) and the third step is a consequence
of the claim (2.3) yet to be proved. The last step derives from adding g/m my
times with mq the cardinality of 7. Clearly, (2.4) is the core result of the theorem,
however, to conclude the proof it remains to show that the statement (2.3) is true.

Let’s say that there are R = k rejections using BHq, then 7,,,, = k and each Hy,

Chapter 2. Fualse Discovery Rate Controlling Procedures 35

is rejected if and only if p, < (k- ¢)/m ; Therefore using the notation introduced

before we have that:
) k
V., = 1{Hy, rejected} =1 {p7 < o q} . (2.5)

Suppose now that p, < (k- ¢)/m, hence Hy, is rejected. Let us take p, and set its
value to 0, and denote the new number of total rejections by R(p, | 0). This new
number of rejections is exactly k because we have only reordered the first k p-values
all of which remain below the threshold (k - ¢)/m. On the other hand, if p, < (k-

q)/m we do not reject Hy, and so V,, = 0. As a consequence we have:
V, 1{R = k} = V,1{R(p, 0) = k}. (2.6)

This means that we are considering V, conditioned to the case in which we have
observed R = k rejections. At this point, in order to prove (2.3), we need the

following result:

RVJ - ZVW{R k}. (2.7)

(2.7) holds because when a specific number of rejections R = k is made, given the
presence of indicator functions as weights of the linear combination on the right,
all indices different from k are sent to 0 and the realization of the random variable
is exactly R/k. Combining the observation above and taking the expectation with

respect of all p-values except for p,, and defining the sigma-algebra of p-values

-Fj = {ph vy Py—1 Py+1s - - ,pm}, we obtain:

o(5r)_E(igm W)

k=1

:iﬁ(%n{fz ka) iEV]l{R k}F,)
~ E(1{p, < 5 G} 1{R(p, 1 0) = k}|F,)
:kz:; 3

She T

(2.8)

36 Chapter 2. Fulse Discovery Rate Controlling Procedures

The first equality follows from having replaced (2.7) within the expected value. The
second equality is a consequence of the linearity of the expectation while the third
one follows from the number of rejections k£ being deterministic. Next, the fourth
step stems from replacing V, and 1(R = k) respectively with the expressions in (2.5)
and the indicator function in (2.6). The fifth equality derives from the p-values being
independent and uniformly distributed and 1{R(p, | 0) = k} being deterministic.
Finally, by recognizing that the sum of indicator functions 1{R(p, | 0) = k} is 1
since we can only have a fixed number of rejections, we obtain the final result.

To conclude the proof, we apply the tower property, which allows us to explicitly

express the FDR as follows:

_ Vs _ Vs _ 9
FDR_ZE(Rv1> _ZE[E(RN \]—"7)] _Zm_m q
yET ~yeT

yeT

The first equality is the definition of FDR given in (2.4). The second equality is a
consequence of the tower rule, whose statement is: E[X] = E[E[X | Y]]. The third
equality is given by replacing the inner expected value with the result proved in
(2.3), and finally, by applying the expectation on a constant, we obtain the sum of

q/m my times, which is 7 - q.]

2.3 Variable Selection

2.3.1 The two cultures

Performing variable selection is probably one of the most crucial steps in constructing
an appropriate regression model. As with many foundational statistical concepts, the
process of model building and variable selection has been the subject of extensive
debate. In this context, the highly influential paper by Breiman (2001) highlights two
opposing statistical cultures that have developed over the years. The first culture,
emerging from the high-dimensional data setting and focused on prediction, prioritizes
predictive accuracy over significance and interpretability, as the primary criterion for
model evaluation. However, this approach often lacks inferential guarantees regarding
the significance of the estimated parameters and the selected variables. In contrast,
the second culture, often referred to as the classical or “old-fashioned” approach,
follows more thoroughly traditional inferential principles. Consequently, this second
perspective emphasizes significance, robustness, and interpretability over predictive

accuracy. In this sense, multiple testing can be considered as an “old-fashioned”

Chapter 2. Fualse Discovery Rate Controlling Procedures 37

approach to perform variable selection since it is rooted in classical inference and
can have the purpose of building robust regression models. Indeed, the multiple
testing framework introduced in Section (1.3.3) is particularly useful for assessing the
significance of coefficients in a linear regression model. While in the classical setting
we were interested in testing hypotheses about parameters of the data-generating
model, our interest here lies in conducting multiple hypothesis tests on the regression
coefficients B = (B4, ..., 3,) of the linear regression model applied to n statistical

units and p explanatory variables:
y =X + z, (2.9)

in this case we are assuming z ~ N(0,0%I) to be a Gaussian n-dimensional noise,
X € R™? a known and deterministic design matrix with n rows and p columns and
y € R™ a vector of responses. While a linear regression model is often specified for
a single statistical unit, in (2.9) it is expressed for the entire sample using matrix
notation. Specifically, the response variable Y is a univariate random variable
assumed to follow a Gaussian distribution, while y denotes its realizations across n
observations. As already mentioned, our interest lies in testing regression coefficients
not per se, but to perform variable selection supported by a robust inferential
procedure. Namely, for each j € {1,...,p}, we select the variable X if the test
statistic suggests rejecting the corresponding null hypotheses Hy; : 3; = 0.

On the other side, there exist techniques such as stepwise regression, best subset
selection or cross validation, to name a few, that can select variables based on the
overall performance of the model in terms of bias-variance tradeoff; In doing so, these
procedures often do not care about the significance of the variables selected. In this
regard, the Lasso can be seen as a compromise between these two cultures because,
while it does not provide inferential guarantees about the significance of the selected
variables, it promotes interpretability by creating sparse solutions. The following is

a brief description of the Lasso.

2.3.2 The Lasso

The Least Absolute Shrinkage and Selection Operator (Lasso) is a penalized regression
technique that promotes sparse estimates for the regression coefficients 3 in a linear
model. For this reason, it turns out to be highly useful in sparse regression problems
where the number of covariates is high and only a few variables are truly relevant.

In practice, the Lasso differs from ordinary least squares since it leads to sparse

38 Chapter 2. Fulse Discovery Rate Controlling Procedures

solutions, namely, it estimates many 3; with Bj = 0; in this way, it performs both
shrinkage and variable selection. Particularly, the shrinkage effect consists in the
reduction in magnitude of the regression coefficients aimed at satisfying the constraint
that guarantees sparsity in 3. On the other hand, variable selection is a consequence
of estimating many (3;’s with 0, meaning that the respective X;’s will not appear in
the final model. Hence, in the context of a linear model (2.9) which is assumed to
be sparse, to find the regression coefficients yielded by the Lasso BLaSSO, we need to

find the minimizer of the following constrained optimization problem:

min ||y — X3 subject to |8l <t (2.10)

namely, we want to find the vector of regression coefficients B that minimizes the
sum of squared residuals, subject to the constraint that the sum of the absolute
values of the components of B is bounded by a threshold ¢. Clearly, decreasing the
value of ¢ will tighten the constraint, thus increasing the amount of shrinkage on
the regression coefficients. Conversely, raising ¢ will loosen the constraint and lead
towards an ordinary least squares estimate. Often, this minimization problem is

expressed in its more compact Lagrangian form specified as follows:

min {lly = XBl3 + AlBl:}, (2.11)

where) is the Lagrangian multiplier, while the whole expression is just a compact
form to incorporate the constraint within the minimization problem. Consequently,
A plays the opposite role of t, as it represents the strength of the penalty applied to
the regression and is proportional to the amount of shrinkage obtained. As a result,
if A =0, we end up having an ordinary least squares (OLS) estimate. Conversely, as
A increases, the OLS estimates are progressively shrunk; in other words, Blasso will
be increasingly composed of zeros as the penalty parameter is raised. Unfortunately,
there is no closed-form expression for the Lasso solution; therefore, numerical methods
such as Least Angle Regression or Coordinate Descent must be used to approximate
it. It is worth noting that any monotonic transformation of the target function leaves
the minimizer Blasso unchanged. At the same time, certain transformations can ease
the minimization process. For this reason, it is common practice not to minimize
the expression in (2.11) directly, but rather a scaled version obtained by multiplying

it by a factor such as 1/2n or 1/2. Thus, the minimizer of the Lasso regression could

Chapter 2. Fualse Discovery Rate Controlling Procedures 39

be defined as follows:

n p
Biasso(A) = argmin {%Z(yi -x,/B) + AZ\ﬁjl} : (2.12)
BERP i=1 j=1

in this case, both the L? norm, representing the residual sum of squares, and the
L' norm, representing the lasso constraint, have been expanded to ease readability.
Moreover, as can be seen, the vector of estimated coefficients is a function of the
complexity parameter \; since, as explained earlier, changing the penalty modifies
the final Lasso estimate of the coefficients. Furthermore, a concept that lies at the
heart of the Lasso is the so-called Lasso path.

The Lasso path can be intuitively defined as the graphical representation of the
evolution of regression coefficients {fi,...,5,} as functions of the penalization
parameter A. It is usually read from left to right, focusing on the evolution of
Blasso()\) as A increases; in this case, we start with the OLS estimates, which are
progressively shrunk toward zero. Conversely, it can also be read in the opposite
direction if we are interested in assessing how the regression coefficients behave as
the constraint is progressively loosened. Therefore, if we read the Lasso path, in
the first way, from left to right, looking at the evolution of Blasso from Bols to 0, we
observe that the order in which the variables are shrunk - more precisely, the order in
which their respective regression coefficients are shrunk to zero - is a proxy for each
variable’s importance in the linear model. For example, in an orthogonal design, the
solution Blasso is exactly a function of A\, making the complexity parameter more than
just a proxy for variable importance. This is based on the assumption that variables
that shrink to zero at low values of A are less likely to be informative, whereas those
that persist until larger values of A\ are likely to be more influential. In other words,
using an analogy, we can think of the complexity parameter as time, and define the
exit time for each variable as the value of A at which the corresponding j3; reaches
zero. Intuitively, the higher the exit time, the more important the variable; this is
because even under a strong penalization, the model continues to estimate a nonzero
coefficient for that variable, suggesting that its contribution to the model outweighs
the penalty. In this sense, since we are constrained by the L' norm, retaining a
variable in the model comes at the expense of others. Therefore, to justify this cost,
the variable being kept must be important; otherwise, we would have chosen another

one.

40 Chapter 2. Fulse Discovery Rate Controlling Procedures

2.3.3 Limitations of standard procedures

As we have already mentioned, in a response-covariate setting, the theory of multiple
testing can be seen as an effective variable selection tool that not only identifies
relevant variables but also provides inferential guarantees about their significance.
In this context, to overcome the limitations of existing approaches - such as the
lack of inferential guarantees in the Lasso, the conservativeness of methods like
Bonferroni and Holm, and the strong independence assumption underlying the
Benjamini-Hochberg (BHq) procedure, which is typically violated in linear models due
to non-orthogonal covariates - Barber & Candeés (2015a) introduced the Knockoff filter.
It is worth observing that if the covariates are assumed to be normally distributed, an
orthogonal design matrix, which means zero correlation among variables, implies that
the features are independent, and so are their p-values. This follows from the fact that
linear dependence is the only form of dependence among Gaussian random variables.
On the contrary, if no assumptions are made on the distribution of the features,
then uncorrelated (orthogonal) variables are not necessarily independent, and their
p-values may still be dependent due to the presence of non-linear relationships.
For this reason, the BHq independence assumption becomes even harder to verify.
Moreover, since the primary aim of the knockoff method is to relax the assumption of
independence among hypotheses while still controlling the FDR, this new approach
is not supposed to perform better than BHq in terms of power under the assumption
of independence. Furthermore, knockoffs do not use p-values to perform variable
selection, which is profoundly advantageous since, many times, we do not know the
distribution of test statistics. Another interesting property is that knockoffs can
work with a broad class of test statistics, well beyond the classical pivotal quantities;
this provides additional flexibility to the method. Ultimately, since the Knockoff
approach, unlike Bonferroni or Holm, does not control the FWER, it will have a
higher ability to detect true signals. In the following section it is detailed the whole
construction of the Knockoff filter and its FDR controlling property.

2.4 Knockoff filter

2.4.1 Introduction

The Knockoff method, introduced in Barber & Candés (2015a), enables variable
selection through multiple testing without requiring independence among hypotheses.

It also provides inferential guarantees on the selected variables, and it effectively

Chapter 2. Fualse Discovery Rate Controlling Procedures 41

controls the false discovery rate at an arbitrary level ¢; moreover, by not controlling
FWER, the knockoff approach is likely to be more powerful than previously described
FWER controlling procedures such as Bonferroni and Holm that also do not require
independence among the hypotheses. The intuition behind this method is to generate
an artificial copy of the original design matrix, mimicking in this way a simulation
framework in which we actually know what variables are relevant and which are
not. Consequently, we can calibrate a data-dependent threshold 7" used to select
variables via multiple testing. In practice, calibrating the threshold means defining
T as the most permissive threshold possible while controlling an estimate of the
false discovery proportion. Computing the estimate of FDP is feasible only through
the pseudo-simulation context in which we are operating, thanks to the knockoffs.
The overall context in which this method is applied is a linear regression setting as
defined in (2.9), with the caveat that n has to be larger than or equal to 2p. This
requirement is crucial to properly define the matrix of knockoffs. However, it is worth
noting that in modern applications we often deal with high-dimensional data, where
the ratio p/n is large and n > 2p is not necessarily satisfied. For this reason, there
exist more sophisticated versions of knockoffs that deal with this problem; however,
in this work, we will only consider the case where n > 2p. As mentioned above, the
Knockoff filter is an effective variable selection tool that performs multiple testing
on the regression coefficients of a linear model. In this context, given a total of p
covariates and denoting S c {1,...,p} as the set of indices of chosen variables, we

can express the FDR associated with the selection procedure as follows:

#{j:8,=0and je S}

FDR = E iz 2
#{j.jeS}t v 1

(2.13)

This is the same definition as in (2.1) adapted to a variable selection context, where
the numerator represents the number of variables declared significant that do not
appear in the true model, while the denominator represents the total number of
variables declared significant. Besides that, since we are testing the nullity of
regression coefficients, the subscript of the hypotheses tested will change from ~ to
j, because j is commonly used to index covariates. Additionally, the denominator
uses the notation a V b = max(a, b) in order to set FDR = 0 when zero variables are
selected. Given the analogy between rejecting Hy; : 3; = 0 and selecting the variable
X, this terminology will be used interchangeably in this section.

Coming to the controlling property, as mentioned in the introduction to the false

42 Chapter 2. Fulse Discovery Rate Controlling Procedures

discovery rate, since the Knockoff filter is an FDR controlling procedure, it is
guaranteed to control the FDR at any arbitrarily chosen level ¢. In this context, we
will denote the upper bound of the FDR by ¢ instead of «, which is typically used to
bound the FWER; moreover, the values of ¢ are usually set to a different order of
magnitude than those of o, such as ¢ = 0.1,0.2.

The Knockoff procedure is guaranteed to work under any deterministic design matrix
X € R™*? which is the matrix of recorded values of p variables across n statistical
units; as long as the response y follows a Gaussian distribution and n > p. Actually,
as mentioned earlier, we will consider the stricter case where n > 2p; the rationale for
this choice is clarified in A.1.1. Moreover, this procedure does not require the design
matrix to be orthogonal nor any knowledge about the noise variance 2, which can
be considered unknown.

The core idea of this method is to create “knockoff” variables, { X7, ... ,Xp}, which
are artificial copies of the original variables designed to mimic the correlation
structure of the original data {X;,..., X,}. Consequently, they are used to calibrate
a data-dependent threshold 7' that will be used to perform multiple testing on the
regression coefficients of the linear model (2.9).

Knockoffs work well in combination with a broad class of test statistics used to
test the significance of each regression coefficient ;. However, these test statistics
have to satisfy two properties, detailed in A.1.5, to be compatible with the knockoff
procedure. Coming to the actual exposition of this FDR controlling approach, we
only present it in combination with statistics from the Lasso, following the outline of

the paper that has introduced this tool, Barber & Candeés (2015a).

2.4.2 Construction

Step 1: Construct Knockoffs.
To construct Knockoffs, we first need to compute the Gram Matrix or Correlation
Matrix 3 of the original data. The detailed construction of the Correlation matrix
XX is given in A.1.2. However, we are not interested in computing the Gram
matrix per se; instead, we need it to determine the constraints that define the matrix
of knockoff variables X. In this regard, the first equality that the knockoff features
have to satisfy is:

X'X=X, (2.14)

which means that the correlation matrix of the knockoff features has to be iden-

tical to that of the original data. This follows from implicitly considering X as

Chapter 2. Fualse Discovery Rate Controlling Procedures 43

the standardized (through deviance) version of the original knockoff matrix, and
consequently having XX as the correlation matrix of original knockoffs. From
a geometrical viewpoint, considering the observation space (where each axis is a
statistical unit and each of the p variables is represented by an n-dimensional vector),
the constraint in (2.14) means that the cosines of the angles between knockoff
variables are equal to those between respective original features. This analogy
holds because, in the observation space, the cosines of the angles between variables
correspond to their linear correlations. As previously stated, while the first equality
involves the correlation of knockoffs with each other, the second constraint involves
cross-correlation between knockoff and original variables. The second equality that

has to be satisfied by the knockoff features is the following:
XX = ¥ — diag{s}, (2.15)

where s is a p-dimensional nonnegative vector, and diag{s} denotes a diagonal matrix
with s as entries. This second constraint implies that the correlation structure
between the knockoff variables and the original variables must match that of the
knockoffs with each other and the original variables with each other. The only
exception is the correlation between each knockoff and its corresponding original
variable, which should be as low as possible. In fact, ¥ and ¥ — diag{s} are equal

on off-diagonal entries:
XXy =X/X; forall j+#k,
while on diagonal entries, we have that
X;—X] = Ejj — Sj = 1 — Sj.

Intuitively, we require this behavior because we want to create fake artificial copies
of the original variables with an identical covariance structure, with the exception
of correlations with the respective original features; otherwise, we wouldn’t be able
to distinguish real from fake variables. For this reason, to ensure that our method
will have a good statistical power in detecting significant regression coefficients, we
should choose entries of s as high as possible. However, these two equalities don’t
provide a direct operational definition of the matrix of knockoffs. For this reason, we
need to define an explicit formula to compute X. In this regard, it can be proved

that there exists a closed formula that allows us to construct the matrix of knockoffs

44 Chapter 2. Fulse Discovery Rate Controlling Procedures

while satisfying both the constraints in (2.14) and in (2.15); A.1.3 contains the proofs
that (2.16) satisfies both these constraints. The formula is stated as follows:

X = X(I — = 'diag{s}) + UC. (2.16)

In this case, X is the matrix of standardized data using the deviance, while X is the
associated correlation matrix of X; whereas, s € R is chosen in order to be as large

as possible and to satisfy the condition:
2% — diag{s} > 0, (2.17)

which means that the matrix 2¥ — diag{s} must be positive semidefinite. The
reason behind the requirement in (2.17) lies in the definition of the matrix C. In
this regard, C is defined as the upper triangular matrix resulting from the Cholesky

decomposition of the following matrix:
2diag{s} — diag{s} > 'diag{s} = C'C. (2.18)

The Cholesky decomposition is just a way of rewriting a complicated matrix as the
product of an upper triangular matrix and its transpose; this decomposition is feasible
only if the matrix to decompose is symmetric and positive semidefinite. In this regard,
it can be proved that if (2.17) holds, then also the matrix to decompose to obtain C
is positive semidefinite. Besides that, the existence of C is also guaranteed by the
symmetry of the matrix 2diag{s} — diag{s}>X~'diag{s}. The condition of symmetry
and the equivalence between the expression specified in (2.17) and requiring that
the matrix to decompose is positive semidefinite are detailed and proved in A.1.4.
Finally, the last quantity not yet defined in (2.16) is U, which is an orthonormal
matrix, namely, its column and row vectors have unit length, and they are orthogonal

to each other. Therefore, we have that:

Moreover, U has to be orthogonal to the span of standardized features X. In this
regard, it is relevant to mention that the definition of orthogonality can be naturally
extended from being a property of a single matrix to a relationship between two

matrices; indeed, we say that a matrix A is orthogonal to B if their row and column

Chapter 2. Fualse Discovery Rate Controlling Procedures 45

vectors are perpendicular, namely
A'"B=AB' =0,

where 0 is the null matrix. On the other hand, the span of a matrix B is defined as the
subspace composed of linear combinations of columns of B. For this reason, saying
that U is orthogonal to the span of X means that all columns of U are perpendicular
to the column space of X. It is worth noting that the requirement n > 2p is strongly
related to the construction of U. For this reason, in A.1.1 is provided an extended
explanation of this relationship and why n > 2p is a crucial requirement to construct
classical knockoffs. To conclude, by summing and multiplying the quantities just

described as stated in (2.16), we obtain the matrix of knockoff variables.

Another important aspect is how s is defined. This choice is so crucial that, depending
on the method used, the entire knockoff construction will take different names. The
first and cheapest method determines the so-called Equicorrelated knockoffs, which
are the ones used in the simulations of Chapter 3. In this case the vector s is

composed by identical entries s; defined as:
s; = min{2 - Apin(X2), 1},

where A\yin () is the minimum eigenvalue of ¥. In other terms, we are assigning
to all pairs (X;, X;) the same correlation 1 — s;. An alternative that offers greater
power but comes at a higher computational cost is to define knockoffs such that the
total correlation between original and knockoff variables is minimized. These are
called SDP knockoffs and are defined by a vector s = {s1,...,s,} that solves the
following minimization problem:

P

min » (1—s;) subject to 0 <'s; <1, diag{s} < 2%.
SERﬁ_ -
Jj=1

This optimization problem can be solved efficiently using techniques from linear
programming. SDP stems from the minimization problem being a semidefinite
program. However, we will not deepen this construction since for the entire thesis,
the simpler equi-variant version of the knockoff will be used. Once we have properly
defined the matrix of knockoffs, we can go through the second step in which we will

construct statistics W;’s. As stated in the introduction, we will present the knockoff

46 Chapter 2. Fulse Discovery Rate Controlling Procedures

filter in combination with the Lasso.

Step 2: Compute statistics W;'’s for each pair of original variable and knockoff copy.
In the second step, we introduce the statistics 1W;’s one for each ; with j € {1,...,p};
these statistics will help to decide which variables are likely to belong to the true
model and which are not. Specifically, these W;’s are constructed so that high
positive values suggest rejecting the null hypotheses Hy; : 8; =0 for j = {1,...,p},
while large negative values are evidence in support of the null hypotheses. Since we
are presenting the Knockoff filter with statistics from the Lasso, we can consider the
previously defined “exit times” of the Lasso path as proxies for variable importance;
therefore, we can use them as statistics to assess the significance of 8;’s. This naturally
leads to the definition of a statistic with one of the desired properties mentioned
above, namely, that high positive values provide evidence for the significance of Xj;

we define these statistics as follows:

Z; = sup{\ : B;(\) # 0} for j € {1,...,p}, (2.19)

in this case Blasso()\) defined as in (2.12) is replaced with a more concise notation
,[;’()\) Z; is what we have earlier defined as the exit time for variable X, namely,
the highest value of the penalization parameter for which Bj(/\) is different from 0.
In this regard, the true signals are likely to be associated with high positive values
of Z;, whereas for most of the null variables, Z; will likely be small. However, the
statistics W;’s, we are interested in defining, need to be calibrated using the knockoff
variables; therefore, we compute the statistics in (2.19) not only for original variables
{X1,...,X,} but also for knockoffs; this implies estimating a 2p-dimensional vector
BlaSSO(A), that is the minimizer of a Lasso regression, with a design matrix that is
the column-wise concatenation of X and the matrix of knockoffs X. The following is

the minimizer of the Lasso regression applied on the concatenated matrix:

~) 1 ~
Blasso(A) = argmin {§Hy — X X]85 + AHBHl} :
BeR2p

that could be rewritten in expanded form as:

n 2p
Blasso(A) = argmin {EZ(Yi — [Xi iz]—r /6)2 +)‘Zlﬁj|} ;
j=1

BER2P =1 1x1 1x2p 2px1

Chapter 2. Fualse Discovery Rate Controlling Procedures 47

therefore, we can easily define the statistics in (2.19) for the augmented 2p-dimensional
vector of regression coeflicients for both original variables and knockoffs. Consequently,
we end up having a corresponding 2p-dimensional vector of importance scores
(Z1,..., 2y, Zi,. .., Zp). At this point, we are ready to define the statistics W;’s for
each pair of original and knockoff variables. Thus, for each j € {1,...,p} we define:

+1, Zj > Z~j,
—1, Zj < Zj.

In this regard, if we look at the lasso path from right to left, namely, from 0 towards
Bols, high positive values of W; indicates that the original variable X; enters the
lasso path earlier than its knockoff copy X ;, or equivalently looking at the lasso path
from ﬁols to 0, this means that the exit time of the original variable Z; is greater
than the one of its knockoff Zj. Hence, considering a variable X, if it enters the
Lasso path before its knockoff copy, this can be seen as a genuine signal that the
variable truly belongs to the model. Conversely, if the Lasso shrinkage is misled by
the knockoff, causing the knockoff to enter before the original variable, this can be
interpreted as a symptom that the variable is not part of the true model. Intuitively,
since in practice we do not know what the true model is, we create artificial copies
that allow us to tease apart significant variables from irrelevant ones. At this point,
based on W;’s, we can define the actual data-dependent threshold 7" that will be

used to perform multiple testing.

Step 3: Calculate a data-dependent threshold for the statistics W;'’s.

As said earlier, we would like to select variables such that W; > t for some ¢ > 0.
At the same time, the purpose of the knockoff filter is to introduce an alternative
procedure that both performs variable selection and controls the false discovery rate
at level ¢q. Thus, letting ¢ be the arbitrarily chosen upper bound of the FDR, we
define the critical threshold 7" as the statistic W; such that, if selected, it leads to an

estimated false discovery proportion bounded by ¢; namely,
T:min{tGW:F/ﬁ’(t) gq},

where W = {|W;| : j =1,...,p}\ {0} is the set of unique non null statistics W,’s in

absolute value. Thus, by taking the minimum over W, we define T" as the loosest

48 Chapter 2. Fulse Discovery Rate Controlling Procedures

threshold among the W;’s, corresponding to the setting where we achieve the highest
number of discoveries while controlling the FDP at level ¢. Intuitively, large values
of W; strictly control the FDP; in the extreme case where 1" = 4-00 - which occurs
when W is empty - the FDP is exactly 0, but no discoveries are made. Since our
goal is to maximize the number of discoveries while keeping the proportion of false
discoveries under control, we select the threshold T corresponding to the smallest
W; that ensures FDP control. In other words, since lower thresholds lead to more
discoveries - but also to more false ones - we define the lowest threshold 7' such
that the resulting estimated false discovery proportion F/]i’(t) remains bounded by
q. In this regard, if we explicitly write the Knockoff estimate of the false discovery

proportion, we obtain:

(2.21)

T:min{tEW: # W < 1} < }

W zvi

We have already explained why a large positive value of W; brings evidence against
Hy; : B; = 0; however, it is not immediately clear how the estimated FDP has been
computed. In this regard, the mathematical details about the computation of the
knockoff estimate of the false discovery proportion are provided in the intuitive result

that follows from Lemma A.1 in Appendix A.

Step 4: Perform multiple testing
As explained in the introduction, we are interested in the following multiple

comparison problem:
HOj:ﬁjZO VS Hljlﬁj#o,

with j € {1,...,p}. Consequently, to perform multiple testing, we first compute
for each hypothesis the statistic W; as explained in Step 2; Secondly, we define the
common threshold 7" that will be used to decide whether a regression coefficient
fB; is significant or not. Hence, the multiple testing rejection region R - with the
structure specified in (1.11) but using test statistics instead of p-values - will have

the following form:

R:{HOJ : W] ZT},

namely, it represents the set of rejected null hypotheses using the knockoff filter.
However, since we are working within a linear model framework, and since we have

noted that multiple testing on regression coefficients corresponds to performing

Chapter 2. Fualse Discovery Rate Controlling Procedures 49

variable selection on the model, we can define the set of indexes of selected variables

using the Knockoffs procedure as follows:
S={j:W;>T}

It is worth noting that both the set S and the data-dependent threshold 7" depend

on the arbitrarily chosen upper bound of the false discovery rate q.

2.4.3 FDR control

As stated in the introduction, the Knockoff filter is designed to control the false
discovery rate; However, up to this point, we have defined the threshold T" for multiple
testing based solely on false discovery proportion control. For this reason, we now
introduce the main result of Barber & Candés (2015a), which establishes that the
Knockoff procedure controls a quantity nearly equal to the FDR at the desired level

q.

Theorem 2.2. Knockoff FDR control (Barber € Candes, 2015a)
For any q € [0, 1], the knockoff method satisfies

p|#iB=0amdjes}| _
#{j:jeSt+qt |77

where the expected value is taken over the Gaussian noise z in the model (2.9), while

treating X and X as deterministic and fized.

The modified version of FDR that is controlled in Theorem 2.2 is very close to the
real false discovery rate when a large number of features is selected; indeed, in that
case, adding ¢~! to the denominator has little effect. However, in some cases, we
would like to control exactly the FDR and not its modified version; for this reason,
a slightly more conservative procedure has been proposed, which, through a little

modification of the data-dependent threshold, guarantees exact FDR control.

Definition 2.1. (Knockoff+ Barber & Candeés (2015a))
The Knockoff+ is a method that performs variable selection as in the standard

Knockoff procedure, but instead of performing multiple testing using the threshold

50 Chapter 2. Fulse Discovery Rate Controlling Procedures

defined in (2.21), it uses its modified version T" which can be defined as follows:

(2.22)

W < —
T:min{tGW:1+#{j W; < t}< }

. w,>tpvt =1

An important remark is that the critical threshold 7" in the Knockoff+ procedure is
always greater than or equal to that of the classical Knockoff filter. This is because
of the additional +1 in the numerator of the constraint, which forces us, assuming
the same target level ¢, to compensate it by selecting a higher (and therefore more
conservative) threshold to reduce the estimated FDP. As a result, Knockoff+ tends to
be slightly more stringent in declaring discoveries compared to the standard Knockoff
procedure. Consequently, the exact FDR control theorem using Knockoff+ is the

following;:

Theorem 2.3. Knockoff+ FDR control (Barber € Candés, 2015a)
For any q € [0, 1], the knockoff+ method satisfies

#{j: B =0andjeS}| _

FDR=E =4
#{j.jeStvl

Y

where the expected value is taken over the Gaussian noise z in the model (2.9), while

treating X and X as deterministic and fixed.

At this point, we can prove the main result of the paper Barber & Candés (2015a)
that is expressed in Theorem 2.3. The following is a proof sketch where many details

are deferred to Appendix A, which covers Theoretical Details.

Proof Sketch of Knockoff+ FDR-Control (Barber € Candés, 2015a)
To prove how the knockoff+ method controls the false discovery rate, we first need
to focus our attention on the knockoff estimate of the false discovery proportion,

which is crucial in defining the data-dependent threshold 7T'. In this regard, we can

Chapter 2. Fualse Discovery Rate Controlling Procedures 51

observe that:

#{j:p;=0and W; > T}
#{j - W;>T}v1
1+#{j:- W, <-T} #{j:B=0and W; > T}
H W, >TIV1 1+4{j: 8 =0and W, < —T}
<. #{j:Bj=0and W; >T}
=TT 3 B =0and W, < —T}

FDP =

(2.23)

where the first equality follows from the definition of false discovery proportion applied
to the multiple testing of regression coefficients ;’s. Indeed, we are computing the
ratio between the number of incorrect rejections (namely, null hypotheses declared
significant, since W; > T, while being false, given that 3; = 0), and the total number
of discoveries. In the second step, the FDP is multiplied on the left by a new quantity
greater than 0, thus changing the equality to an inequality. The fact that the new
quantity is greater than 1 is a consequence of having an additional constraint 8; = 0
specified in the set at the denominator of the fraction, which reduces the cardinality
of the set itself, and being greater than the numerator, makes the whole ratio > 1.
In the third step, we simply switch the denominators of the two ratios. As a result,
in the last step, we recognize that having defined T as in (2.22) guarantees that
the quantity on the left is exactly bounded by ¢. Therefore, through this chain of
inequalities, we have shown that the FDP is bounded by ¢ multiplied by the ratio of
false discoveries over 14+ the number of true negatives. At this point, by taking the

expected value on both sides of the inequality (2.23), we have:

E(FDP) < E [q #{j: B =0and W; > T}]

1+ #{j:B;=0and W; < —T}

#{: 0 =0 and W; > T} }

1+#{j:Bj=0and W; < -T} (2.24)

FDqu-E{

the first inequality holds due to the monotonicity of the expectation. Whereas, in
the second inequality, the left side follows from the definition of false discovery rate
(2.1), while the right side is a consequence of the linearity of E(-). Hence, proving
the FDR controlling property of the knockoff4 boils down to showing that:

#{j:B;=0and W; > T}
[T #0 6 =0amd W, < T]] = " (2.25)

52 Chapter 2. Fulse Discovery Rate Controlling Procedures

because in this way, we would have shown that defining the threshold 7" using the
knockoff+ approach would lead to FDR < q. Therefore, to conclude the proof, we
need to demonstrate that the claim in (2.25) is true. To do so, we need to introduce a
couple of new quantities. The first quantity V' (¢), for a fixed ¢, is a random variable,

due to the randomness of the underlying data, and it is defined as follows:
V) =#{j: B8, =0and W; > t}, (2.26)

namely, it represents the number of false discoveries when performing multiple testing
on f3;’s using a threshold ¢. At the same time, by considering different values of the
data-dependent threshold ¢, we obtain a sequence of random variables indexed by t;

therefore, we can define the associated stochastic process:

V() hew, (2.27)

which details are given at the beginning of section A.4. Adopting the same logic,
we can define the quantity V'~ (¢), namely, the random variable depending on ¢,

representing the number of true negatives:
V=(t)=#{j: 5 =0and W; < —t}, (2.28)

as did before in (2.27), we can also define the stochastic process derived from the
random variable V'~ (), that is obtained by letting vary the index ¢ in W. Thus,
considering a threshold ¢ instead of a fixed T', we are now able to rewrite the argument

of the expected value in the claim we wanted to prove (2.25), as follows:

V*(t)

s (2.29)

At this point, the core part of the proof is to show that 7', as defined in (2.22),
is a stopping time for the super-martingale V*(¢)/(1 + V= (¢)). In this regard,
section A.3 provides a useful background on some essential concepts in martingale
theory that help to better understand this proof sketch. Moreover, the full details
on why T is a stopping time and (2.29) a supermartingale are provided in section
A.4.1. Consequently, by applying the Optional stopping theorem, whose details are
described in A.3.3, to the supermartingale in (2.29), we obtain:

Chapter 2. Fualse Discovery Rate Controlling Procedures 53

clearly, the expected value on the left of this expression is exactly equal to the
expected value of the claim (2.25); thus, to show that this expectation is < 1, we
need to prove that the expected value of the super-martingale at time T = 0 is
bounded by 1. To do so, we can invoke the exchangeability Lemma A.1 whose
statement guarantees that the signs of W;’s for true nulls are independent and
identically distributed, namely sign(W)) S {#£1}; this lemma together with 7" =0
yield to exact symmetry in declaring positives and negatives; therefore, if we interpret
the number of false positives as the count of successes over p, trials, we have that
V1(0) is distributed according to a Bin(pg, 1/2); where py is the total number of true
nulls, and the success probability is 1/2 due to the randomness of signs. Consequently,
by employing the Proposition A.1 applied to the Binomial random variable V*(0),
we can show that the right member of the inequality in (2.30) is bounded by 1.

. [HVT%] - [1 +p:+—((3+<o>} =

where the first equality is just a consequence of py being the sum of true negatives
V~(0) and false positives V(0), and then V~(0) = py — V(0), while the second
inequality follows from property A.1. As a result, this last step, combined with
(2.24), demonstrates how the Knockoff+ method controls the false discovery rate at

an arbitrarily chosen gq.

2.4.4 Knockoff Extensions

In the Knockoft filter section following the presentation of the method introduced in
Barber & Candés (2015a), we have presented the tool in combination with statistics
from the Lasso; However, it is worth mentioning that the knockoff approach, rather
than a single method, is a flexible class of procedures used to perform multiple testing.
In this sense, the knockoff approach could be more generally combined with any
test statistic IW; that obeys the sufficiency property and the antisymmetry property,
both detailed in A.1.5. The core idea is that the symmetry of test statistics W;’s,
together with the construction of knockoff features, allows us to prove the crucial
exchangeability Lemma in A.1 that is essential in guaranteeing the FDR-control
of the whole procedure. In this regard the logic behind the construction of W;’s is
always to define test statistics that for large positive values provide evidence that
Bj # 0. From an intuitive viewpoint, we are seeking test statistics W;’s that are

able to highlight the importance gap between original and corresponding knockoff

54 Chapter 2. Fulse Discovery Rate Controlling Procedures

variables. The following are just a few examples among the endless test statistics

W;’s that can work well in combination with Knockoffs.

LW =[X]y|- |}~(J-Ty\, which compares the correlation of the original variable
X, with the response and the correlation of the respective knockoff variable
X ; also with the response. This holds if the original variables, the knockoffs,
and the response have been properly standardized beforehand. The rationale
behind this approach is that features whose correlation with the response differs
significantly from that of their corresponding knockoffs are highly likely to be

relevant.

2. W; = |5AJLS| —| AJLEP|, which compares ordinary least squares estimates of original
and knockoff variables, where 35 has been obtained by regressing y on the
augmented design [X X]. The logic behind this method is to compare the
effects of the original variables and their knockoffs on the response, measured

by their regression coefficients.

3. In general, considering any penalized likelihood estimation procedure of the
form
1
min |y — Xb|j3 +AP(b).

where P(-) is a penalty function such as the Lasso, Ridge, or others, we can
proceed in two ways. The first one is to fix the penalization parameter A (for
example via cross-validation) and for each j compare the respective regression
coefficients of the original and knockoff variables at that specific A, namely
W, = [6;(\)| = |B;4p(N)]. The rationale behind this first approach is identical
to that of method 2, which compares Least squares estimates of the coefficients.
The second approach consists of using specific A values of the regularization
path induced by the penalized procedures as proxies of the importance gap
between original and knockoff variables; namely, defining Z; as in (2.19), and

then constructing test statistics such as W; = Z; — Z;,, or the one in (2.20).

Chapter 3

Multiple Testing Application

3.1 Introduction

The main focus of this last Chapter concerns applications of multiple testing
procedures both on simulated and real data. In this regard, it is worth noting
that adopting a simulation framework is essential to test and compare the robustness
of competing multiple testing procedures. In fact, the only way of assessing the
goodness of a multiple testing approach is through data simulation; in this sense,
by generating data arbitrarily, the analyst is able to decide the ground truth he
wants to work with and compare results yielded by competing procedures with
theoretical ones. In practice, considering for example a linear model, knowing the
actual truth could mean that one should generate a design matrix, then arbitrarily fix
a subset of non-null regression coefficients with their amplitudes, then determine the
resulting response, and finally conduct a multiple test to select significant variables.
In doing so, by comparing the selected variables with the ones in the true model, it is
possible to measure the accuracy of the procedure. For this reason, by knowing the
real truth in advance, we are able to compute essential quantities such as the false
discovery rate and the power of the test that are precluded in real-world problems.
A detailed description of how these quantities are actually computed is provided
in A.5. Ultimately, by comparing the trade-offs between the ability to detect true
signals and the strictness of the tests, we can choose the multiple testing procedure
that performs the best in terms of FDR and power.

Consequently, Chapter 3 is divided into a first section focused on data simulation,
procedures comparison, and empirical validation of theoretical results, and a second

section regarding the application of multiple testing to real-world data.

95

56 Chapter 3. Multiple Testing Application

3.2 Simulation

3.2.1 Comparison: p-value vs rank plot

In assessing the goodness of a multiple testing procedure, a very effective and useful
graph is the p-value vs rank plot. As the name suggests, the plot is a bi-dimensional
graph having on the x-axis the ranked indices {1,...,p} of the hypotheses being
tested and on the y-axis the corresponding p-values in ascending order p; < --- < p,,.
Moreover, the points of the resulting dispersion plot are colored based on the ground
truth of associated hypotheses. In other words, all points corresponding to true nulls
are colored the same, while the group of dots representing true alternatives is colored
differently. A multiple testing procedure is then represented as a threshold that cuts
horizontally the graph, determining, in this way, which hypotheses are rejected and
which are not. Clearly, the rejected hypotheses, being associated with low p-values,
will fall under the threshold; vice versa, the accepted ones will stay above the
threshold. Consequently, one would like to have most of the true alternatives under
the threshold while true nulls above it. In practice, especially around the boundary
of the two groups, the color distinction is often blurred due to low significant true
alternatives and true nulls; therefore, a good multiple testing procedure aims to
appropriately cut the graph in that specific region, yielding, as a result, the highest
number of rejections while controlling a global measure of error. Another interesting
aspect of the p-value vs rank plot is that it allows an extremely effective graphical
comparison of different multiple testing approaches. This is done by adding the
critical thresholds (in terms of p-value) of different procedures on the same plot, and
then eyeballing their performances. A more precise analysis consists of comparing
the FDR and the average power function of competing procedures. The Knockoff
method has not been considered in the following p-value vs rank plots, given the
difficulty in computing the corresponding p-values due to a complex distribution of
the test statistics Wy, ..., W,. Additionally, the framework considered in the next
two graphs does not involve a linear model setting, which, on the contrary, is the
primary field of application of knockoffs. Despite that, comparing all the procedures,
including the knockoffs, will still be possible using power functions and false discovery
rates which do not require computing p-values; these comparisons will be carried out
in section 3.2.4.

The following graph reproduces the just described comparison among four different

approaches: Naive, Bonferroni, Holm’s, and Benjamini-Hochberg. It is important

Chapter 3. Multiple Testing Application 57

to observe that we are comparing procedures that satisfy different error controlling
assumptions. For this reason, It is not fair to claim that Holm and Bonferroni
have poorer performances than competing procedures. On the contrary, this is a
natural behavior induced by their FWER controlling property. The details about

the data-generating mechanism are described below.

p-values vs rank

0.06 1 °
L d
Naive /
[J
d
[)
0.04 4 P
" [)
(])
S e TRUE HO
IS o
> «® e TRUE H1
o o
0.02 1 o~
P4
~ BH
Holm Bonf.
0.00 4
0 50 100 150
index j

Figure 3.1: Ordered p-values vs rank plot. Red dots represent true nulls, while
the green dots represent true alternatives. The points below the respective thresholds
represent rejected hypotheses across four different methods: Naive, Holm, Bonferroni, and
Benjamini-Hochberg.

In Figure 3.1, the first 150 ordered p-values of a testing procedure involving 1000
hypotheses have been plotted. The multiple testing problem that has been considered

involves the multiple comparison of two-tailed Z tests, each one with the structure
Hon/LjIO \% Hlj:,ujgéO for jzl,,lOOO

The advantage of being in a simulation framework is that we can decide both the
amount and the indices of true nulls and true alternatives. In this case, the number
of true alternatives has been fixed to 100, and the respective indices have been
sampled from {1,...,1000}. It is worth mentioning that multiple testing procedures
are usually order-invariant, so sampling indices is not strictly necessary. In this
case, we have skipped the actual data generation phase; instead, we have directly

sampled artificial test statistics from N (u, 1) with g = 3, which correspond to true

58 Chapter 3. Multiple Testing Application

alternatives and the remaining test statistics from N (0, 1) which correspond to true
nulls. Finally, the resulting sampled values 71, ..., Zip00 have been used to compute
two-tailed p-values that are shown as dots in the graph. It is important to note
that by generating test statistics directly, we implicitly assume a known variance,
a condition that rarely holds in real-world scenarios. Depending on the initial
assumptions, this approach may be considered either acceptable or inappropriate.
In the context of simulation studies, it is critical to ensure that the quantities used
to generate the data are not reused in the subsequent analysis. Doing so would
compromise the integrity of the simulation and falsify its results. For example, if the
simulation assumes that the true variance is unknown, it is acceptable to generate
data using the true variance; however, this same variance must not be used later
when calculating test statistics or p-values. Using such information would invalidate
the simulation by violating its assumptions. This issue highlights the importance of
maintaining coherence between the simulation setup and its subsequent analysis. In
this regard, a more realistic approach, namely one that does not assume a known
variance, has been carried out in the section on FDR and power comparison. In that
case, the data-generating mechanism is more complicated since we need to generate
the underlying data and then compute the resulting test statistics. Although it
comes at a greater computational cost, an approach like that allows for a relaxation
of the unrealistic assumption of known variance, which, in that framework, can be
estimated using the data. An idea could be, for example, to generate the underlying
matrix of data and compute p = 1000 7T-statistics instead of Z-scores; while paying
attention to use the sample variance 62 to standardize the test statistics instead of
the known o2. This alternative was not adopted in this section for two main reasons.
Firstly, the goal was to produce a simpler and more immediate simulation to have a
first overview of the performances of competing multiple testing approaches, thus
drawing directly test statistics was enough. Secondly, the performance assessment of
multiple testing methods is carried out more accurately using measures such as the
false discovery rate and the statistical power, rather than plots comparing p-values
to ranks, hence, in this section, a realistic but more complicated simulation setup
was not necessary. On the contrary, in section 3.2.2, to conduct a proper procedure
comparison, a realistic simulation setup has been considered at the cost of a higher
complexity in the data-generating mechanism. Returning to Figure 3.1, it is worth
observing that the rejection thresholds have been computed and labeled according
to the four mentioned approaches. In this regard, it is useful to note that the Naive

and Bonferroni bounds are just constant scalars that differ by a factor of 1/1000;

Chapter 3. Multiple Testing Application 59

they are respectively & = 0.05 and «a/1000. The Holm’s threshold that entirely
overlaps the Bonferroni bound is actually a function of the index j, having the form
a/(1000 — j 4 1). Ultimately, the Benjamini-Hochberg threshold is also a function
of j and has been defined accordingly as (« - j)/1000. Obviously, in order to have
unbroken rejection thresholds, the index j is assumed to be continuous.

To have a clearer comparison of the four multiple testing procedures considered,
both the p-values and the rejection threshold of Figure 3.1 can be adjusted using the
log-scale. The following is the resulting plot:

p—values vs rank (log scale)

0.11 Naive
0.011
©0.001 1
T
(&]
wn
(@]
S le-4 e TRUE HO
M) @ T Bonf. e TRUE HL
< ®
|§ le-5 L
o [4
~ []
[J
le-61
[]
12 54 137
[]
0 50 100 150

index j

Figure 3.2: Ordered p-values in log-scale vs rank plot. Red dots represent true
nulls, while the green dots represent true alternatives. The points below the respective
thresholds represent rejected hypotheses across four different methods: Naive, Holm,
Bonferroni, and Benjamini-Hochberg. The respective thresholds have been adjusted using
a log-transformation.

In Figure 3.2, the distinction between performances of different approaches is more
effective; in this sense, we can better appreciate the slightly lower strictness of
Holm with respect to Bonferroni, the ability of Benjamini-Hochberg to cut the dots
precisely in the blurred region and the exact number of rejected hypotheses for each
approach that have labeled with the corresponding number colored in red. The
data-generating mechanism is the same as Figure 3.1. As described at the end of
Chapter 1, an alternative representation of the comparisons in Figures 3.1 and 3.2

could have been to consider a fixed threshold a and adjust p-values according to the

60 Chapter 3. Multiple Testing Application

four different approaches. Obviously, the two methods must have produced the same

exact discoveries.

3.2.2 Microarray simulation study

Average power comparison

A more accurate way of comparing multiple testing procedures is through their
average power functions. As defined in Algorithm 6, the concept of power function
can be extended to the multiple testing framework using the average true positive
rate over M Monte Carlo iterations; in this sense, the average power function
measures the ability of a multiple comparison procedure to detect true alternatives
across different signal amplitudes. Throughout the thesis, whenever the power of
a multiple testing procedure is mentioned, we will mean the average true positive
rate. While being highly informative, average power functions provide only a partial
view of the performance of the multiple testing procedures under consideration.
Specifically, they overlook the number of false discoveries produced. Therefore, a
comprehensive evaluation must consider both the power of the test and an appropriate
error metric, such as the false discovery rate. Figure 3.3 shows a graphical comparison
of the approximated bilateral power functions averaged over 1000 trials for Naive,
Benjamini-Hochberg, Bonferroni, and Holm procedures. The plot in Figure 3.3 was
generated following the procedure described in Algorithm 6, with some modifications
to make the simulation framework more realistic. The aim was to reproduce, within
a simulation context, a microarray study inspired by the first example on prostate
cancer data found in Chapter 15 of Efron & Hastie (2021). An essential difference
between this analysis and the one from the book is that this one does not transform
test statistics to make them Normally distributed, and it does not rely on a real
dataset, but it artificially generates new datasets at each Monte Carlo iteration. The
idea is to consider an n X p matrix with p = 100 genes’ expression measured across
n = 50 patients. These patients are divided into two known categories, namely,
ny = 25 cancer patients and ny = 25 normal controls. Among the p = 100 genes,
only 15 have been arbitrarily chosen to be truly relevant. The goal is to detect
which genes have a significant difference in terms of genetic expression between the
two groups, making them interesting to study since reasonably related to cancer.
It is worth noting that in this problem, the focus is not to predict cancer for new

or existing patients but to detect which genes are provably related to the disease.

Chapter 3. Multiple Testing Application 61

Power Comparison

1.0

Power
0.6

0.4

0.2

I I I I I I I
-15 -10 -05 0.0 0.5 1.0 15

Signal Magnitude

Figure 3.3: The graph shows the average true positive rate over M = 1000 Monte Carlo
iterations associated with four multiple testing methods: Naive, Bonferroni, Holm, and
Benjamini-Hochberg applied to a multiple Two-sample T-Test. The simulation details are
provided below.

Therefore, we expect to find only a few relevant genes among a haystack of irrelevant
ones. The following are the actual details of the simulation.

The test structure for each hypothesis is defined as follows:

HOj M1 = Moy VS Hlj Z,ulj%,ugj, fOI'jzl,...,p,

where we essentially want to test whether the means of the two groups are different or
not across all genetic expressions. However, considering the substitution 0 = f11; — 195,
and assuming that the effect 4, if significant, is equal across all j € {1,...,p} the

structure of the test can be further simplified as follows:
H0j25:0 \ Hlj:é#().

Therefore, we end up performing a multiple Two-sample T test to compare the

expected values of homoscedastic Gaussian populations with unknown variance;

62 Chapter 3. Multiple Testing Application

hence, we are also assuming that the variance is equal among variables and among
groups and that the genetic expression is normally distributed. Consequently, we

will test these p hypotheses using Two-sample T statistics. Defined as:

X0 — X,
Ty = —L 2 | Hoj ~ tp sy, (3.1)

1 1
Sjp ni + na

where the label 1 marks the group of cancer patients with size n; and 2 marks the
group of normal controls having size ny. The overall test statistic is distributed
following a Student T with n; + ny — 2 degrees of freedom, thus two tailed p-values
will be computed accordingly. X;; is the sample mean of genetic expression for gene
j among cancer patients and X j2 the same but for normal controls. \S;, is the square
root of the pooled variance, which is the appropriate estimator for the shared o.

Specifically, S}, is defined as:

5 - \/ (m — 1S} + (12~ 1)S}, 52

n n1+n2—2

In this case, szl and sz2 are the unbiased sample variances of gene j expression

within each of the two groups.

Coming to the numerical details of the simulation, we have considered a synthetic
matrix of data with dimensions 50 x 100, each column has been independently
generated from N(0,1) for cancer patients and from N (0, 1) for normal controls.
Then, having homoscedasticity between the two groups and assuming an unknown
variance, a two-sample T statistic (3.1) has been computed for each column. In this
phase, to avoid invalidating the simulation, it was crucial not to use 1 as standard
deviation but to estimate it through the square root of the pooled variance (3.2).
Another crucial remark is that the multiple tests have been carried out independently,
given that the data have been sampled column by column without any dependence.
This has been done to guarantee FDR-control for the Benjamini-Hochberg procedure.
Consequently, p = 100 two-sample T statistics have been computed, leading to the
respective two-tailed p-values (1.5). Then, the four earlier mentioned procedures:
Naive, Bonferroni, Holm’s and BHq have been used to declare discoveries leading,
as a result, to four different true positive rates. At this point, the whole multiple
comparison procedure involving p = 100 two-sample T-tests has been repeated for

M = 1000 Monte Carlo iterations. This has been done in order to average the

Chapter 3. Multiple Testing Application 63

resulting true positive rates of each procedure to obtain the approximated powers
across the four approaches. Lastly, this whole procedure was repeated for a grid of
100 equally spaced signal amplitudes § € {—1.8,...,1.8}. Finally, the four average
power functions have been plotted in Figure 3.3. Coming to the actual comments
of the graph, in Figure 3.3, we can observe a similar power trend across different
procedures, namely a power function that for weak signals stays around 0 and grows
monotonically to 1 as the signal gets stronger (on average). An interesting fact is
that these averaged power functions show an increasing first derivative up to around
a power of 0.5 and then a decreasing derivative. In other words, there is an initial
phase (shifted across procedures) where increasing the signal strength, even by a few
amount, leads to a substantial gain in power, then a second phase in which, despite
further increases in the signal, the power gain becomes weaker and eventually reaches
a plateau. On the other hand, it is also interesting to analyze the shift of the power
function across procedures. Coherently with theoretical results, the naive approach
(by not controlling FWER or FDR) always has the highest power; this simply means
that it will reject easily Hy;’s and not that it is precise, since many alleged discoveries
will be false. Then, the average power of the BHq approach, as expected, appears to
be a compromise between power and false discovery control. To conclude, Bonferroni
and Holm’s confirm their conservative bounds, by showing a very weak power, which
is a consequence of their “tendency” to declare only extremely significant discoveries.
It is worth noting the slightly looser behaviour of Holm with respect to Bonferroni
that has been explained in the theory. Consequently, the goal is not to find the
most powerful procedure (otherwise naive will always be the best), but to find the
approach that, while being powerful, is able to control an error measure (such as the
FDR) across different signal amplitudes. In this sense, it can be intuitively defined a

notion of trade-off power-FDR, control.

FDR comparison

As already explained, assessing the procedures’ control of the false discovery rate
is essential in selecting a robust multiple testing approach. For this reason, in
this section, we compare the same four approaches, Naive, Bonferroni, Holm’s
and Benjamini-Hochberg, using their respective FDRs as functions of the signal

amplitudes in Figure 3.4. The framework is the microarray simulation study detailed

64 Chapter 3. Multiple Testing Application

in the previous section, with the only difference that this time the construction of the
FDR functions is provided in Algorithm 7. Therefore the data-generating mechanism
is exactly equal to the one used in Figure 3.3 with the exception that, instead of
computing true positive rates, at each iteration and across the four approaches, we
compute the false discovery proportion (2.1) and then by averaging them we obtain
the estimated FDR. In Figure 3.4, coherently with the theory of multiple testing, we
can observe empirically how the Naive approach does not control the FDR while the

other methods do. It is worth observing that, among the FDR-controlling procedures,

FDR comparison

—— Naive

0.8
I

0.6
I

FDR
0.4

-15 -10 -05 0.0 0.5 1.0 15

Signal magnitude

Figure 3.4: Approximated FDR via Monte Carlo as a function of the signal amplitude
across the Naive, Bonferroni, Holm’s, and BHq methods. The data-generating mechanism
is identical to the one in Figure 3.3 with a few differences detailed in the extended graph
description. The upper bound of FDR is fixed at o = 0.2

the main difference lies in how the FDR is controlled when the signal varies. Indeed,
this very property can be used as a watershed between FDR controlling procedures
to choose the best approach. In this sense, we can see how, regardless of the signal
amplitude, the FDR of Benjamini-Hochberg stays just below the threshold, which is
an optimal behavior since it maximizes the number of discoveries while keeping FDR

under control; whereas Bonferroni and Holm’s have a decreasing FDR as the signal

Chapter 3. Multiple Testing Application 65

increases in absolute value, namely, they will tend to produce more false positives,
when the signal is low and less false positives when the signal gets stronger. In other
words, Bonferroni and Holm are more conservative when they could be looser since
the signal is stronger, and vice versa when they should be more conservative, because
the signal is weaker, they are looser. We can easily understand that a desirable
behaviour for a multiple testing procedure is the exact opposite, namely, being looser
at high signal amplitudes and stricter at low signal, while controlling the FDR. In this
regard, one could show that, in certain contexts, the Knockoff method introduced in
Barber & Candés (2015a) satisfies this property. In other terms, in high-dimensional
and nearly orthogonal settings, the Knockoff procedure shows an increasing FDR as
the signal gets stronger, while maintaining it below the upper bound . The next
section analyzes in a simulation framework the theoretical properties of the Knockoff
approach, while a comprehensive comparison of the five approaches will be made in
the final section of this Chapter.

3.2.3 The Knockoff filter

In the context of variable selection for a linear model, using the Knockoffs filter
turns out to be a good strategy that balances power with the FDR control, while
providing inferential guarantees on the chosen signals. However, the most relevant
breakthrough of the Knockoffs, which makes them more general than BHq, is
that, while controlling FDR, they do not require independence among hypotheses
being tested. Since in practice, unless artificially built designs, variables are never
completely independent, using the knockoffs turns out to be a very useful approach.
Moreover, another interesting property of Knockoffs is that they can be combined
with a broad class of non-conventional test statistics that can increase the overall
performance of the method. In this regard, a rather effective graph that allows both
to easily communicate the results of the Knockoff method and to better understand
the structure of its data-dependent threshold 7' is the plot of the pairs of Lasso
path entries of original variables and corresponding Knockoffs. In Figure 3.5 is
provided a representation of this graph using simulated data. Since we are in a
simulation setting, we can color the points according to the ground truth: red squares
denote true alternatives (signals), while black points indicate true nulls. The goal
of the procedure is to maximize the rejection of true alternatives while minimizing
the rejection of true nulls. In Figure 3.5, the x-axis represents the values of the

penalization parameter A in the Lasso path (which is read from 0 to BLS) at which

66 Chapter 3. Multiple Testing Application

Knockoff pairs: (Z;, zj)

’ ® Null features

o _| y
- e = Non-null features
Numerator e
0 — WjS—t e
d
d
d
d
d
- © 7 .7 Denominator
IN y
L] ’ WJ'ZI
< — o o 2
d
° ° -
[° ,’
d
~ - e ®

Figure 3.5: Scatterplot of the pairs of Lasso entries (Z;, Zj) for j =1,...,p for original
and knockoff variables. Red squares represent true alternatives while black points represent
true nulls. Dots below the diagonal line and out of the white square represent selected
variables. p = 80 two-tailed hypothesis tests on the regression coefficients of a linear model
have been performed. The number of observations is n = 1500, while the number of true
positives has been fixed at 12. The signal amplitude A = 3 is equal across the p coefficients.
Each of the n rows of the design matrix has been drawn from N(0 ,X) with ¥;; =1 for
all j =1,...,pand Xj;, = 0.3 for all j # k. The FDR upper bound has been fixed to
q = 0.15. Continuous black lines represent the data-dependent threshold found by the
Knockoff method. The labels numerator and denominator refer to the conditions that define
the quantities in the ratio inside the definition of the threshold 7" in (2.21), here we have
their graphical representation; they are crucial in defining the Knockoff estimate of FDP.

each original variable X first enters the model, denoted by (Z1,...,Z,) as defined

in (2.19). Similarly, the y-axis represents the corresponding A values for knockoff

variables X, namely, (Z,, ..., Z,), also defined in (2.19). As described in Step 2 of
the Knockoff construction, points below the diagonal line satisfy Z; > Zj, suggesting
that the original variable X is more important than its knockoff and therefore likely
belongs to the true model. However, selecting all variables corresponding to points
below the diagonal line would result in many false discoveries (black points), as
illustrated in the figure. Often, most false discoveries are concentrated near the
origin, whereas most true positives (red squares) also lie below the diagonal but are
farther from the origin. This observation motivates the idea of choosing a threshold

t that defines a square around the origin on both axes to isolate variables likely to

Chapter 3. Multiple Testing Application 67

be true nulls and control the FDR. Particularly, the continuous vertical segment
represents the data-dependent threshold 7" defined in (2.21); 7" is constructed to
ensure that, if variables with W; > T are selected, the FDR is controlled at level
q; W; is defined in (2.20). Consequently, W; > T means rejecting hypotheses for
which the corresponding point lies under the diagonal and after the threshold T'. As
a result, the number of points in the shaded region under the diagonal represents the
total number of rejections, namely, #{j : W; > T'}. Moreover, by observing that the
dots are roughly symmetrically distributed with respect to the diagonal line (which
is a graphical intuition behind Lemma A.1), the number of false discoveries can be
estimated with #{j : W; < —T'}. Hence, from a graphical viewpoint, it becomes

clearer the definition of the Knockoff estimate of the false discovery proportion.

3.2.4 Effect of sparsity level, signal amplitude, and feature correlation

This section aims to present a comparison of the false discovery rate and the average
power as functions of signal sparsity, signal amplitude, and feature correlation across
the following procedures: Naive, Bonferroni, Holm, Benjamini-Hochberg, Knockoff,
and Knockoff+. The effects of the signal sparsity, the signal magnitude, and the
variable correlation on the FDR and power have been analyzed separately. Moreover,
in this simulation, we have considered a linear regression framework, meaning that
the focus is on performing multiple tests on the nullity of the regression coefficients.
It is important to underline that the comments made on the graphs of this section
are valid for these specific simulations; in general, the approximated behaviour of
FDR and power changes due to a combination of factors that is hard to investigate

in its entirety. Full details on the simulations in this section are provided in B.2.4

(Signal Sparsity) In this first part, the FDR and the power of the multiple tests
are analyzed through simulation as functions of the signal sparsity across Naive,
Bonferroni, Holm, BHq, Knockoff, and Knockoff+ methods. In this regard, the powers
in Figure 3.6 have been generated using Algorithm 6 applied to all six approaches
(using sparsity level instead of signal magnitude on the x-axis). Moreover, the design
matrix of the linear model has been drawn once and kept fixed for the whole analysis,
while new noise has been introduced at each Monte Carlo iteration. The following
are the major details about the actual simulation. Since we are in a simulation
setting, we can decide both the true values of the regression coefficients and their

level of sparsity. Firstly, we fix the dimensions of the design matrix X € R"*P,

68 Chapter 3. Multiple Testing Application

namely, n = 200 observations and p = 100 features. Each row is then sampled from
a multivariate normal N(0,©) with ©;, =1 and ©,; = 0.4 for all i # j. In doing so,
we are deciding to work under a non-orthogonal design, which is likely the case in
many real problems. At this point, we center and normalize the columns of X, and
we fix an arbitrary signal amplitude A = 3.5. We then set a grid of sparsity levels for
the associated linear model K = {1,2,3...,60}. In this regard, k € K measures the
sparsity of the regression, namely the number of non-null variables included in the
model. The notation for the sparsity level k, taken from Barber & Candés (2015a),
could be quite confusing since high sparsity means low k£ and vice versa. To be clear,
when k£ = 1 the model is highly sparse, having all regression coefficients equal to
zero except for one; on the contrary, as k grows, more variables are included in the

regression, making the problem increasingly less sparse. Then, after having fixed a

sparsity level k, we fix the k regression coefficients f3;, ..., B all equal to A, and we
define:

y=0X1+ -+ 65X, +z where z ~ N(0,1,), (3.3)
where y is an n-dimensional vector of responses, {1, ..., Ok} are scalars ; Xy, ..., Xy

are n-dimensional vector of features and z is an n-dimensional Gaussian noise. At
this point, for a fixed sparsity level k, we test the nullity of regression coefficients
{1, ..., P} using all six approaches at a = 0.2. We then repeat these same steps
with the exception of the generation of X and 3 for M = 2000 Monte Carlo iterations,
and we average the respective true positive rates to obtain six different powers for
the same sparsity level k. Finally, we reiterate this whole procedure keeping fixed X
for all sparsity levels specified in K (we do it by progressively replacing zeros with
A’s in 3. We then draw the graph by plotting the set of sparsity levels K against
the resulting powers across the six multiple testing approaches considered. In Figure
3.6, the performances of competing methods are effectively displayed through their
powers. As we expected from the theory, Naive method has the highest power across
all sparsity level k; however, this behaviour has no value since it does not guarantee
any error controlling property. Indeed, the outperformance is just a consequence
of the Naive loose threshold, which is highly likely to produce false discoveries.
It is worth mentioning that a more meaningful comparison should have included
only FDR and FWER controlling procedures and not the Naive approach; however,
we have kept it to make the reader ponder on the apparent good behavior of the
Naive approach, which, in reality, is just producing an inflation of discoveries. More

interesting are the behaviors of FDR controlling procedures. Starting from BHq, the

Chapter 3. Multiple Testing Application 69

Power
o _
Tl v——
o _|]
O
)
>
= o _| — Naive
g ~ — BHq
@) —— Holm
a - - Bonf.
Knockoff
8 — —— Knockoff+
O p—

Sparsity Level

Figure 3.6: Power vs Sparsity Level across Naive, Bonferroni, Holm, BHq, Knockoff, and
Knockoff+ methods. powers have been computed by averaging the respective true positive
rates for M = 2000 Monte Carlo iterations. All multiple testing procedures have been
performed using an FDR or FWER upper bound a = 0.2.

increasing trend of its power suggests that, at least empirically, raising the number
of true signals increases the power of the procedure; conversely, Classical Knockoffs,
which do not control exactly the FDR but a slightly more permissive threshold, show
the property of being more powerful in highly-sparse context and increasingly more
conservative when more covariates are significant. Whereas, Knockoff+, given the
FDR-controlling property, is in general, for all sparsity levels, more conservative
than BHq, its plus version, Bonferroni, and Holm’s method. As mentioned earlier, a
correct multiple testing approach assessment must analyze not only the power but
also an error measure such as the false discovery rate. For this reason, in Figure
3.7, the false discovery rates as functions of the sparsity levels have been plotted for
the same six procedures. The graph in Figure 3.7 was created using Algorithm 7,
under the same simulation settings as those described for the power. Coherently

with the theory of multiple testing exposed throughout this work, the Naive method

70 Chapter 3. Multiple Testing Application

False Discovery Rate

—— Naive
—— BHg
o — Holm
©] - -- Bonf.
Knockoff
—— Knockoff+
o _| ---aqa
= ©
S
5
T
o
N
O p—

Sparsity Level

Figure 3.7: False Discovery Rate vs Sparsity Level across Naive, Bonferroni, Holm, BHq,
Knockoff, and Knockoff+ methods. FDRs have been computed by averaging the respective
false discovery proportions for M = 2000 Monte Carlo iterations. All multiple testing
procedures have been performed using an FDR upper bound a = 0.2.

does not control the FDR and it explodes under highly-sparse regression conditions;
indeed, it reaches approximately FDR = 1 when k is low, meaning that nearly all
rejections are type I errors. Moreover, it can be observed that all procedures except
for Knockoff+ show a decreasing FDR as sparsity is reduced. This is a reasonable
behavior since it becomes harder to commit type I errors when the number of true
signals increases; conversely, Knockoff+ seems not to be affected by the number of
true variables in the model, showing, in this way, a robust behavior against sparsity.
It is worth noting that although in this simulation BHq empirically controls the FDR
at level q with a non-orthogonal design, such control is not guaranteed theoretically

under dependence of the hypotheses tested.

(Feature Correlation) In this second part, the FDR and the average power of the

multiple tests have been analyzed via simulation as functions of the feature correlation

Chapter 3. Multiple Testing Application 71

across Naive, Bonferroni, Holm, BHq, Knockoff, and Knockoff+ methods. The
simulation details are similar to those of the previous section, with some modifications
to take into account a changing feature correlation and highlight interesting effects.
Starting from the power comparison, Figure 3.8 has been generated using Algorithm
6; the following are the details of the simulation used. Firstly, we fix the dimensions
of a matrix of data X"*? with n = 300 observations and p = 150 variables. Next, we
set a grid of 30 equally spaced correlations R = {0,...,0.99}. Then, we choose a
fixed number k = 10 of variables to include in the true model and a signal magnitude
A = 3.5. We then fix a vector of regression coefficients (y,..., By all equal to A; this
vector will remain the same for the whole analysis. At this point, having fixed p € R,
we sample each row of the design matrix X from a Normal N(0,0,) with ©;, =1
and ©;; = p for all i # j. In doing so, we can manage the correlation structure of
the design by letting p vary in R. Hence, fixing a specific feature correlation, we can

define the regression model as:

y=05X + -+ Xy + 2 where z ~ N(0,1,), (3.4)
where, as before, y is an n-dimensional vector of responses, {1, ..., 5} are scalars
X1, ..., X} are n-dimensional vector of features and z is an n-dimensional Gaussian

noise. At this stage, for a fixed correlation of the features p € R, we test the nullity
of regression coefficients {1, ..., B} using all six approaches and an o = 0.2. We
then repeat these same steps for M = 800 Monte Carlo iterations, by redrawing
X and the response at each iteration; then we average the respective true positive
rates to obtain six different powers for the same feature correlation p. Ultimately,
we reiterate this whole procedure for all feature correlation p € R. We then draw
the graph of powers by plotting on the x-axis the correlations in ‘R and on the
y-axis the corresponding averaged powers across the six multiple testing approaches
considered. In this way, we obtain the plot in Figure 3.8. In this case, we can
appreciate that increasing the feature correlation has a strong impact on the ability
to detect true signals across all approaches. Intuitively, when variables are strongly
correlated, it is more difficult to isolate relevant ones. It is worth mentioning that
all procedures except for BHq and Naive are guaranteed to control FDR or its
modification. This makes the comparison among approaches not that meaningful
since we are comparing procedures that do not satisfy the same FDR-controlling
properties. However, from this graph, we can still observe the highly desirable
behavior of the Knockoff method, which, despite not controlling directly FDR (which

72 Chapter 3. Multiple Testing Application

Power

—— Naive
8] — BHq
—— Holm
- - Bonf.
o Knockoff
©] Knockoff+
)
S
o
o
; p—
3 <t
o
o _
(qV]
O —

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Feature correlation

Figure 3.8: Power vs Feature correlation across Naive, Bonferroni, Holm, BHq, Knockoff,
and Knockoff+ methods. powers have been computed by averaging the respective true
positive rates for M = 800 Monte Carlo iterations. All multiple testing procedures have
been performed using an FDR upper bound o = 0.2.

is not a problem since we still know what modification of FDR we are controlling
2.2), outperforms all procedures, with the exception of Naive for understandable
reasons. Therefore, in this framework, the Knockoff method is uniformly more
powerful than BHq and it also guarantees modified-FDR control (which BHq does
not); this means that in high-correlation contexts the Knockoff approach offers better
power and FDR control, that is exactly what we are looking for; hence, in these
situations it is highly preferable to Benjamini-Hochberg. Moreover, it is also worth
observing that the Knockoff4 power corresponding to low feature correlation values
is higher than that of strongly conservative methods. This means having higher
chances of finding true positives when features have a better structure to detect
signals. However, to complete the evaluation of the effects of feature correlation
across multiple testing approaches, it is necessary to consider the false discovery

rate as a function of p across the six procedures; this graph has been plotted in

Chapter 3. Multiple Testing Application 73

Figure 3.9. In this regard, the FDRs have been drawn following Algorithm 7 with

a simulation setup identical to the one used for Figure 3.8. As we expected, the

False Discovery Rate

o
O —
—
o N ’_—/_//_//
o6}
—— Naive
— 8 — — BHq
o\o —— Holm
E{ - - Bonf.
E o _ Knockoff
< —— Knockoff+
-=- a
O _ | o o T N
(q\] /_M_/\
o —

0.0 0.2 0.4 0.6 0.8 1.0

Feature correlation

Figure 3.9: False Discovery Rate vs Feature correlation across Naive, Bonferroni, Holm,
BHq, Knockoff, and Knockoff+ methods. FDRs have been computed by averaging the
respective false discovery proportions for M = 800 Monte Carlo iterations. All multiple
testing procedures have been performed using an FDR upper bound o = 0.2.

Knockoff+ method, Bonferroni, and Holm control the false discovery rate, while other
procedures do not; with the exception of classical knockoff which controls a slightly
modified version of FDR. In practice, it is irrelevant to control FDR or a modified
version of it as long as it is known what we are controlling; indeed, depending on the
situation, we will know that Knockoff will control a certain modified upper bound of
FDR while the plus version controls FDR exactly. The problem arises with other
procedures, such as BHq, that, without the independence assumption, have an FDR
that could potentially explode. However, Figure 3.9 could be misleading since it
seems that BHq controls the FDR better than knockoffs for high correlation. In
reality, knockoffs provably control a modified FDR, while the BHq method is not

guaranteed to control anything. Indeed, it is more desirable to control something,

74 Chapter 3. Multiple Testing Application

even a modified version of FDR as Knockoff+ does, rather than controlling nothing
at all like BHq (in high correlation settings). A final interesting observation about
Figure 3.9 is that as feature correlation increases, the FDR tends to rise across all
procedures except for Knockoff+, which exhibits a more robust behavior; in fact,
a slight decrease in the FDR of Knockoff+ can be observed as feature correlation

ncreases.

(Signal Magnitude) In this third and last part, we have compared the actual power
functions of six procedures (Naive, Bonferroni, Holm, BHq, Knockoff, Knockoff+)
and the false discovery rate for different signal amplitudes. It is important to
note that previous “powers” in Figure 3.6 and 3.8 were not strictly speaking power
functions, since a proper definition requires the signal amplitude to be on the
x-axis. Starting from Figure 3.10, average power functions have been computed
using Algorithm 6. Specifically, we have first fixed the dimensions for the design
matrix X™*P having n = 100 observations and p = 50 variables. Then, for the whole
simulation, the number of truly significant features has been fixed to & = 8 while the
feature correlation has been set to p = 0.4. In this regard, each row of the design
matrix X has been drawn from a Normal N(0,0,) with ©; = 1 and ©;; = 0.4
for all 7+ # j. Next, we have chosen a grid of 60 equally spaced signal amplitudes
A ={-10,...,10}, from which to compute (3;’s. Consequently, for a fixed A € A we
have imposed all the regression coefficients 1, ..., 8r to be equal to A. As a result,

we can define:
y=0X1+ -+ 6. X, +2 where z ~ N(0,1,), (3.5)

where these quantities have already been described for model (3.3) and (3.4). The
idea, as before, is to test the nullity of regression coefficients {f,. .., 5r} with an
a = 0.2 using all six approaches for a fixed signal amplitude A. Then, the process is
repeated for M = 2000 Monte Carlo iterations and the respective true positive rates
are averaged to obtain six different powers for the same signal amplitude. In this
case, as we did with signal sparsity, the design matrix X has been drawn once, while
the responses have been sampled at each montecarlo iteration from N(X3,1I). Lastly,
this whole procedure is reiterated for all signal magnitudes A € A, by changing
the vector of 3 and thus leading to the graph in Figure 3.10. In this regard, power
functions are obtained by plotting on the x-axis the elements of A and on the y-axis

the corresponding averaged powers across the six multiple testing approaches. It can

Chapter 3. Multiple Testing Application 75

Power function

o
o —
—
o _
00
~—~~ O _
E’\i ©
o
5 o
o < 7
Naive
— BHq
8] —— Holm
- - - Bonf.
Knockoff
o — — Khnockoff+
I I I I
-10 -5 0 5 10

Signal Magnitude

Figure 3.10: Power vs signal magnitude across Naive, Bonferroni, Holm, BHq, Knockoff,
and Knockoff+ methods. power functions have been computed by averaging the respective
true positive rates M = 2000 Monte Carlo iterations. All multiple testing procedures have
been performed using an FDR upper bound o = 0.2.

be observed that in a sparse scenario with a weak signal amplitude, Knockoff performs
the best among all procedures except for Naive, which is reasonable since the Naive
method does not control any error measure. Instead, restricting our attention to
procedures that strictly control the false discovery rate, Knockoff plus turns out to be
the best approach in terms of power, especially for weak signals. As already done in
the sections on sparsity and feature correlation, to give a comprehensive evaluation
of the six methods considered, we have also analyzed the respective false discovery
rates across the six procedures, but this time as functions of the signal amplitude.
In Figure 3.11, we can observe a highly desirable property that is typical only of the
Knockoff+ method, namely, an increasing FDR as the signal amplitude is increased.
This is actually a very interesting property for a multiple testing procedure since it
guarantees conservativeness at low signal amplitudes and higher permissiveness at

high signal amplitudes. Moreover, in this graph has been also computed the modified

76 Chapter 3. Multiple Testing Application

FDR
— Naive
S - — BHq
—— Holm
- = Bonf.
Knockoff
—— Knockoff+
o _| —— modif. FDR (K.+)
© -- a
)
S
x o _|
[a) <
L
O _| e o o e e e e e N e e e e e e e————_
N W\m
O p— :

Signal Magnitude

Figure 3.11: FDR vs signal magnitude across Naive, Bonferroni, Holm, BHq, Knockoff,
and Knockoff+ methods. false discovery rates have been computed by averaging the
respective false discovery proportions for M = 2000 Monte Carlo iterations. All multiple
testing procedures have been performed using an FDR upper bound a = 0.2.

FDR of the Knockoff+ method (in darkgreen) which controls the upper bound ¢ as
stated in Theorem 2.3.

3.3 Experiment on real data: HIV-1 drug resistance

This last section deals with a real data application of the six multiple testing proce-
dures presented throughout this work: Naive, Bonferroni, Holm, Benjamini-Hochberg,
Knockoff, and Knockoff+. The idea behind this section is to provide a comprehensive
and customized analysis of the HIV data proposed in (Barber & Candeés, 2015a).
This part will first cover the biological background needed to understand the HIV

Chapter 3. Multiple Testing Application 7

data, secondly, the data pre-processing phase will be presented, and thirdly, we will
focus on the actual application of the six methods to a cleaned dataset and comment

on the final results.

The problem we want to solve using a multiple testing approach is to detect significant
mutations in the Human Immunodeficiency Virus type I (HIV-1) that are associated
with drug resistance. This is interesting since mutations lead to drug resistance and
then to ineffective therapies. Therefore, detecting robust and provably significant

mutations can help in designing new and more effective drugs.

3.3.1 Background

HIV-1 is a virus that attacks cells of the immune system, weakening the body’s ability
to fight infections and diseases. HIV-1 is primarily transmitted through blood, sexual
contact, and from mother to child during pregnancy, delivery, or breastfeeding. If not
treated, it can lead to AIDS (Acquired Immunodeficiency Syndrome), a disease with
a life expectancy of 1 — 11 years from the diagnosis. It is detected through blood tests.
HIV-1 is treated using antivirals, namely, drugs that do not kill the virus directly
but inhibit biochemical reactions that are essential to allow viral replication. More
precisely, the virus, after having gained access inside the host cell, releases several
proteins, called enzymes, that are essential in speeding up the virus’s replication.
If a drug is able to inhibit the action of a virus’s enzyme, it can then stop the
replication. Therefore, in general, antivirals are inhibitors of viruses’ enzymes. For
this reason, antivirals are typically known by the name of the enzyme they inhibit,
followed by the term “inhibitor”. In (Barber & Candés, 2015a), three classes of
HIV antivirals have been considered, namely, Protease Inhibitors (PIs), Nucleoside
Reverse-Transcriptase Inhibitors (NRTIs), and Nonnucleoside Reverse-Transcriptase
Inhibitors (NNRTIs). In this application, we will focus only on Nelfinavir, a drug in
the class of Protease Inhibitors. Protease is an HIV enzyme whose function is to cut
the polyprotein produced after the translation of viral DNA. The cutting phase is
essential for producing the proteins that will be processed by the Golgi apparatus
and transformed into structural components of the virus. Preventing the cutting

action of the Protease means terminating the replication.

78 Chapter 3. Multiple Testing Application

However, treating viruses is not that simple. In fact, in response to the inhibitory
action of the drugs, HIV-1, like all viruses, tends to mutate its enzyme structures in
order to make it more difficult for drugs to recognize the enzymes to target. This
phenomenon, known as drug resistance, makes drugs less effective in combating
diseases. In our case, HIV-1 protease mutates in response to the action of Protease
inhibitors, therefore, our interest lies in detecting relevant mutations of HIV-1
Protease associated with Nelfinavir resistance. HIV-1 Protease is a protein composed
by a chain of 99 amino acids. In its non-mutated form, the enzyme is said to be
wild-type. A mutation in the Protease chain means that a specific wild-type amino
acid gets replaced by another one. Mutations are usually denoted with strings of
three elements: the initial of the wild-type protein, the position of the mutation
on the chain, and the initial of the replaced amino acid. The presence of multiple
mutations within the enzyme and across different patients makes it particularly
challenging to identify robust resistance-associated mutations. To conclude, I want
to thank Dorian Safa, a friend of mine and medical student at the Vita-Salute San
Raffaele University in Milan, for the fruitful conversations we had to understand the

biological background of this analysis.

3.3.2 Analysis

The dataset used for the analysis is PI_DATA, available at Stanford HIVDB and
described in (Rhee et al., 2006). In the study that created this dataset, scientists
extracted from each of n = 848 patients positive to HIV-1 a chemical sample of
HIV-1 Protease. For each sample, they recorded a measure of drug resistance and
the presence of mutations at each position of the Protease chain. Specifically, the
resistance y; of each chemical sample of HIV-1 Protease to Nelfinavir is measured as

a log fold increase in the following way:
ICsample
y; = logyo (L> : fori=1,...,n (3.6)
Csample

where IC5);"" is the Inhibitory Concentration, namely, the concentration of Nelfinavir
needed to inhibit 50% of the viral replication for the i*" patient Protease. Whereas,
ICY" is the inhibitory concentration of the wild-type (non-mutated) HIV-1 protease
chain. Intuitively, the higher the concentration of Nelfinavir needed to inhibit

50% of viral replication, the less effective the drug is. Therefore, since in (3.6)

https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/

Chapter 3. Multiple Testing Application 79

the denominator is constant across all patients and the logarithm is a monotonic
transformation, the higher the value of y;, the more resistant the i'" sample is to
Nelfinavir. The PI_DATA dataset contains not only the response variable y, which
measures resistance to Nelfinavir, but also the Protease mutation profiles across
patients. Specifically, each of the 99 columns corresponds to a position in the HIV-1
Protease sequence. For any given cell (4, j), the entry is a hyphen - if the i*® sample
has no mutation at position j relative to the wild-type protease. If a mutation is
present, the cell contains the initial of the amino acid that replaces the wild-type
at that position. Actually, PI_DATA contains measurements of drug resistance for
7 different Protease inhibitors; we have only chosen Nelfinavir because it was the
drug with the fewest amount of missing values, and also to simplify the analysis.
Once the columns of drug resistance to Protease inhibitors, different from Nelfinavir,
are removed, we end up having a dataset with n = 848 observations and p = 100
features. After having filtered patients with missing Nelfinavir resistance, the dataset
has n = 844 observations and p = 100 variables. However, this is not yet the matrix
of data to do multiple testing on. Following the analysis in (Barber & Candés,
2015a), we first need to consider different mutations at the same position as different
variables. Moreover, we need to quantify mutations, since, up to this point, the
entries of the matrix of data are either letters or hyphens. To do so, the dataset
has been transformed in order to have on the columns unique mutations such as
M46I, T10L etc... while on the rows the patients’ IDs. To be clear, a notation
like M461 means that a mutation from a wild-type Methionine to Isoleucine has
occurred at position 46. In this phase, the wild-type sequence of HIV-1 Protease
that is necessary to define mutations with a full notation (such as M46I) has been
downloaded from Uniprot. Then, using information from the original dataset and
following the approach in (Barber & Candeés, 2015a), a new matrix X has been
created with entries X;; € {0,1}. Specifically, X;; = 0 if sample ¢ does not show
the mutation expressed in column j, and vice versa, X;; = 1 if sample ¢ shows the
mutation expressed in column j. We have then filtered out all mutations appearing
in less than 3 samples and removed duplicated columns to avoid rank-deficiency
problems. As a consequence, we end up with a sparse matrix of zeros and ones with
n = 844 samples of HIV-1 protease and p = 205 unique mutations. We are now
able to fit a linear regression model and test the significance of coefficients to detect
relevant mutations using the six approaches mentioned throughout the thesis. We
have considered as response variable the continuous Nelfinavir resistance y and as

predictors dummy variables indicating the presence or absence of unique mutations

https://www.uniprot.org/uniprotkb/O90777/entry#sequences

80 Chapter 3. Multiple Testing Application

in each sample. The logic behind this approach is to explain the drug resistance
using mutations presence/absence. However, we are not interested in predicting drug
resistance for new patients, but in detecting provably significant mutations. The

linear regression model considered has the following structure:
yi:ﬁo—i_ﬂlDil—i_"'—i_ﬁpDip—i_Z forz'zl,...7n WichNN<O,O'2). (37)
To further clarify, we have that each dummy variable is defined as follows:

0, if sample ¢ does not show mutation j
1, if sample i shows mutation j.

We can now perform all six multiple testing methods to jointly test the p = 205
regression coefficients of the linear model; as a result, finding significant regression
coefficients will mean detecting relevant mutations. At this stage, in most of the
real cases, the analysis would be concluded by reporting to pharmacologists or drug
designers the selected mutations. however, in this specific case, we can also evaluate
the accuracy of all six multiple testing approaches by comparing selected mutations
with the ones in the Treatment-selected mutation (TSM) list, which provides a good
approximation of the ground truth. The TSM list is built by experts such as biologists
who fill it with mutations that are statistically more common in treated patients than
in untreated ones. Since the TSM list for HIV -1 Protease is an approximation of the
ground truth, we have compared only the positions of the mutations selected for each
of the six methods with the positions of the mutations in the TSM list. Figure 3.12
is a barplot showing across the six methods how they perform in detecting relevant
positions of mutations. Whereas, Figure 3.13 represents the plot of test statistics
Z;’s and Zj’s used by the Knockoff procedure to tease apart relevant mutations from
irrelevant ones. Red dots represent mutations whose position falls in the TSM list,
while black dots are the remaining mutations. All points under the diagonal line and
beyond the vertical threshold are the selected mutations by the Knockoff method.
Therefore, following the Knockoff procedure, the points in the light-green area that
are red represent true discoveries, while the black ones are false discoveries. On
the opposite side, in the light-red area, black dots represent true negatives, while
red points are false negatives. One of the strengths of the Knockoff approach lies
in its ability to identify a region, colored in light blue near the origin, that is an

indistinguishable mixture of true and false mutations and is therefore ignored by

Chapter . Multiple Testing Application 81

Resistance to Nelfinavir

304
204
Not in TSM list
In TSM list
) i
O-

HIV-1 protease positions selected

& N\ & Q X K\
& & S c‘}ps{\ &
@0(\ ‘1\5\ \L_Qo
Procedures

Figure 3.12: Results of applying Naive, Bonferroni, Holm, BHq, Knockoff, and Knockoff+
with ¢ = 20% to detect significant mutations in a linear model having as response variable
Nelfinavir resistance and as predictors Dummy variables representing mutations in the
HIV-1 Protease. The bar plots show the number of unique positions selected by the six
approaches. To validate the selections of the six methods, dark blue indicates Protease
positions that appear in the TSM panel for the PI class of drugs, while orange indicates
positions selected by the six methods that do not appear in the T'SM list. The horizontal
dashed line indicates the total number of HIV-1 protease positions appearing in the TSM
list.

the method. It is important to notice that in the Figure 3.12 and then Figure 3.13,
different quantities have been used to display the accuracy of the Knockoff filter. In
fact, in Figure 3.12, only the positions of selected mutations have been compared
against the positions appearing in the TSM list. On the contrary, in Figure 3.13 all
unique selected mutations (even at the same position) have been plotted and colored
based on whether the associated position appeared or not in the TSM list. This was
to clarify the apparent incoherence in the different numbers of selected mutations

and selected positions.

82 Chapter . Multiple Testing Application

Knockoff pairs: (Z;, Zj)

° l’ ® Null mutations
/ b @ Non-null mutations
b 1
q‘ 1
/’ O Selected mut.
l’ O Non selected mut.
™M — / O Ignored mut.
1
°
1
— i© ®
N 7
N T 4
[]]
!
X J
1
— — Se o
° §
© °
o o
o — ™ 3 00 4 [} °

Figure 3.13: Scatterplot of the pairs of Lasso entries (Zj, Zj) for j =1,...,205 for original
and knockoff variables. Red dots represent mutations whose position appears in the TSM
list, black dots represent mutations whose position does not appear in the TSM list. All
dots in the light-green area represent mutations selected by the knockoffs. Under this area,
red points represent truly relevant mutations while black dots are false discoveries. The
light blue area near the origin includes mutations that are too hard to detect and, therefore,
are ignored.

Appendix A

Theoretical details

A.1 Knockoff construction details

A.1.1 n > 2p framework

Requiring the number of observations n to be larger than or equal to 2p is essential
to define the matrix of knockoffs X in the standard way. Following the definition
of X specified in (2.16), a crucial quantity that needs to be computed is the matrix
U. This matrix is defined as the orthogonal complement of X, but it can also be
interpreted as the Kernel of the linear application X . This because we are looking

for a matrix U such that
U'X=0+« (U'X)'=0" < X'U=0, (A1)

where the first equality means that we want U to have all columns orthogonal to the
column space of X, the second equality is just the transpose of the first one and the
third equality, which is equivalent to the first one, requires U to be the Null space of
the transformation X '. At this point, using the well-known Rank-Nullity Theorem,
page 61 Lang (1987), on the linear application X", we have that:

dim(X ") = rank(X") + dim(Ker(X")). (A.2)

Therefore, since Ker(X") = U, the dim(X") = n and the rank(X") = p, we are
left with n — p dimensions for the null space. Hence, given that U must be an
orthogonal n x p matrix, we want the Kernel to be at least p dimensional in order
to properly define U; Thus n — p must be larger than or equal to p, which means
n > 2p. Another reason why n must be greater than 2p is that some test statistics

require the full rank of the columns-wise concatenation matrix [X X].

83

84 Chapter A. Theoretical details

A.1.2 Gram Matrix construction

The construction of the correlation matrix XX associated to the original data,
which is also a Gram matrix given the standardization procedure using the deviance,
starts from centering the design matrix. The following is the extended formula of the
linear transformation H that, once applied to the matrix of original features, centers
it.

X, = (I — %11T) X = HX, (A.3)

where H is the centering matrix and X, is the matrix having mean equal 0 for each
variable X.;. More precisely, in the expanded formula of the centering matrix, I is
a squared n x n identity matrix, while 1 is a column vector of ones and 1" is its
transpose. As a result, the effect of H is to subtract the respective column mean from
every entry of the design matrix. Once X has been centered, we can standardize it in
order to obtain unit variance for each variable. This can be done by multiplying on
the right X, by the diagonal matrix whose elements are the inverse of the standard

deviations of each original variable,

7 = X, diag (Al i) =X, D /2 (A.4)

011 O-pp

where ¢;; is the sample standard deviation computed on the values of the variable
X;. In this way, we obtain Z which is the matrix of standardized data having mean
0 and variance 1 for each variable. The standardization procedure could equivalently
be done by dividing each column of X, by the Euclidean norm associated with the
respective variable; with the only difference that, strictly speaking, in that case, we
would have standardized using the deviance rather than the standard deviation. At
this point, we can compute the correlation matrix of the original variables, which is

equal to the covariance matrix of the standardized data:

>=-7"Z (A.5)

n

An alternative way in which we could have obtained the correlation matrix 3 would
have been through the Gram matrix. Indeed, as mentioned above, by normalizing
each column such that | X;||3 = 1 which corresponds to standardizing using the
deviance of each variable, the division by n would not have been needed and the
resulting Gram Matrix would have been equal to the correlation matrix of original
data.

Chapter A. Theoretical details 85

A.1.3 Proof of Knockoffs constraints

In this section it is provided an extended proof that demonstrates how the formula
of knockoffs proposed in Barber & Candés (2015a), and detailed in (2.16), complies
with the constraints in (2.14) and (2.15).

Proof of constraint (2.14)
We want to show that XTX = 3. Firstly, we expand both X and X"

X = X(I — ¥ !diag{s}) + UC = X — X2 !diag{s} + UC,
X" =XT - (X2 diag{s})" + (UC)"T = X" — diag{s}(Z)"X" +C'U".

The second line follows from the properties of the transpose and observing that a
diagonal matrix is identical to its transpose. Then we proceed to show that XX =
3, by replacing the matrices with their explicit formulations and compute the one

by one term product.

XX = (X" —diag{s}(Z") X"+ CTU")(X — X="'diag{s} + UC)
= XX - X"XE diag{s} + X"UC — diag{s}(ZH)TX"X
+ diag{s} (=) TX"XZ'diag{s} — diag{s}(Z)'X"UC+C'U'X
— C'U'X2 diag{s} + C'UTUC.
Given the construction of U, all terms including UTX or its transpose are equal to
0 and then can be elided. Besides that, the orthonormality of U implies that UTU

is the Identity matrix; moreover, by replacing ¥ with its definition XX, we have

that several quantities can be simplified. Then, we can write:
XX = XX - X"X® diag{s} — diag{s}(ZT7") XX
+ diag{s}(Z") " X" XX !diag{s} + C'C
= XX - ¥¥ 'diag{s} — diag{s}(Z7H)'Z
+ diag{s}(X7") "2 'diag{s} + C'C.

At this point, we observe that the transpose and the inverse of a matrix can be

interchanged. Moreover, since 3 is symmetric, the expression can be further simplified.

86 Chapter A. Theoretical details

Finally, we substitute C"C with its definition given in (2.18).

XX = XX — I diag{s} — diag{s}(X") !X + diag{s}(X")"'I diag{s} + C'C
= XX — diag{s} — diag{s}X7'Z + diag{s} X 'diag{s} + C'C
= XX — 2diag{s} + diag{s}X'diag{s} + C'C
=X'X=3.

Therefore, we have shown that the correlation structure of the knockoffs is identical

to the one among original features.

Proof of constraint (2.15)
We want to show that XTX = ¥ — diag{s}. In this case the proof is straightforward:

XX = X"(X(I - £~ 'diag{s}) + UC) = X" (X — XX=!diag{s} + UC)

= X"X - X"X® !diag{s} + X"UC = X — diag{s}.

In doing so, we have verified that the cross-correlation structure between the knockoffs
and the original variables is identical to that within the knockoffs alone or the originals
alone, except for the correlation between each knockoff and its corresponding original

feature.

A.1.4 Positive semidefinitedness and symmetry

The following is a brief definition of positive semidefinite matrix, a property which is
crucial in constructing knockoff variables. In general, for a matrix A, being positive

semidefinite can equivalently be written in the following ways:
A-0 <= x'Ax>0 <= (Ax,x) >0 <= ||Ax]|2-||x]|2-cos(d) >0, (A.6)

namely, the dot product between x and its transformation through A is greater or
equal than 0. In other terms, the matrix A transforms each vector x into a new
vector Ax having an angle less than 90° with x. It can equivalently be shown that
this coincides with the matrix A having all eigenvalues larger than or equal to 0,
which means that in the vector space with the spectral basis, the matrix A is a

transformation that applies on each axis a positive scaling that is exactly equal to

Chapter A. Theoretical details 87

the corresponding eigenvalue.
A more straightforward property a matrix can have is symmetry. In general, a matrix
A is said to be symmetric if

A=AT

In the case of knockoffs, we are both interested in showing that 2diag{s} —
diag{s}>~!diag{s} is a symmetric matrix and that the condition 2% > diag{s}
is equivalent to require that the matrix 2diag{s} — diag{s}>X'diag{s} is positive
semidefinite. These requirements are essential to show that this matrix can be

decomposed using the Cholesky algorithm, leading as a consequence to the definition
of C.
Symmetry proof

(2diag{s} — diag{s} X 'diag{s})" = 2diag{s}' — diag{s} " (X7") diag{s}'
= 2diag{s} — diag{s}(Z ") 'diag{s}
= 2diag{s} — diag{s} X 'diag{s}.
This follows from the matrices diag{s} and X being symmetric. The second result

consists of showing that the condition 2% > diag{s} coincides with requiring that

the matrix 2diag{s} — diag{s}X'diag{s} is positive semidefinite.

Positive semidefinite proposition equivalence

2diag{s} — diag{s} X 'diag{s} = 0
2diag{s} = diag{s}X'diag{s}
2diag{s} 'diag{s} > diag{s} 'diag{s} X 'diag{s}
21 = IX 'diag{s}
2% = diag{s}.

In this case, the equivalence of the two propositions is demonstrated by multiplying

both sides by diag{s}~! and then simplifying the expression accordingly.

A.1.5 Test statistic properties

To work properly in combination with the knockoff framework, test statistics W;’s

have to satisfy the sufficiency and the antisymmetry property. As already mentioned,

88 Chapter A. Theoretical details

these two properties are in place to achieve the exchangeability result in A.1, which

is a crucial result to prove the FDR control of the knockoffs.

(Sufficiency) The statistic W = (W, ..., W,) is said to obey the sufficiency property
if W depends only on the Gram matrix associated with the column-wise concatenation
of the matrix of knockoff and original variables and on the feature-response inner

product. More precisely, we have that:
W= f(X X]"[X X],[X X]"y), (A.7)

in this case, f : S5, x R? — RP, where S, is the set of 2p x 2p positive semidefinite
matrices, containing for example [X X]T[X X], while R? is the vector space of
2p-dimensional real vector such as [X X]Ty. Therefore, the domain of f is the
Cartesian product of the spaces S;; and R?”. Finally, since we need p test statistics
to perform the knockoff procedure, the codomain of the vector function W is exactly
RP. This first property is called sufficiency because under Gaussian noise X 'y is a
sufficient statistic for 3. In general, given a parametric statistical model as in (1.1),
a statistic 7'(X) is said to be sufficient if the distribution of the data X given the
statistic does not depend on the model parameters. Intuitively, this means that the
statistic carries all the information needed to estimate the parameter of the statistical
model of the data.

(Antisymmetry property) The statistic W is said to obey the antisymmetry property
it swapping X; and Xj has the effect of switching the signs of W;?s; which means

that for any subset of indices S C {1,...,p}, we can write:

WX Koo y) = WX X,y) -4 T 780 (A8)

~1, jeSs.

Here, by writing [X X]Swap(g), we mean that the columns X; and Xj have been
swapped in the matrix [X X] for each index j € S. It can be proved that Lasso

statistics obey these two properties.

Chapter A. Theoretical details 89

A.2 Exchangeability Lemma

The following is the Lemma about the exchangeability result that is crucial to prove
both the formula of the knockoff estimate of FDP and the main FDR controlling
result of the knockoff+. It will not be proved in this appendix.

Lemma A.1. (i.i.d. signs for the nulls, Barber & Candes (2015a))

Let € € {£1}? be a sign sequence independent of W = {Wy,... , Wy}, with e; = +1
for all j such that X; truly belongs to the model and ¢; S {£1} for all j such that
X does not belong to the true model. Then

(Wi, W) L (W eer, . W, ep).

In this case = means equality in distribution, namely, as n grows, these two vectors
will tend to have the same cumulative distribution function. Therefore, the Lemma
A1 is saying that the signs of the statistics W;’s are i.i.d. random for the true null
hypotheses and additionally they are independent from the magnitudes of |W;| for
all j, and from sign(W;) for the true alternatives j.

In order for generic test statistics W; to be compatible with the knockoff method, they
must satisfy both the sufficiency and the antisymmetry property; these two properties
together with knockoff construction are in place to achieve the crucial result stated
in Lemma A.1 which allows us to explain why the estimated FDP has the expression
in (2.21). In other terms, we can only use test statistics which satisfy both (A.7)
and (A.8) because these two properties lead to satisfying Lemma A.1 on which is
based the definition of FDP that is crucial in defining the knockoff data-dependent
threshold 7' (2.21). Therefore, we can informally say that this Lemma asserts that
the signs of W,’s are i.i.d. random for all true null hypotheses (those for which 3; is

truly 0). Consequently, we have:
#{j:B;=0and W; >t} L #{j: 3, =0 and W; < —t}, (A.9)

Intuitively, this Lemma states that for the true null hypotheses, the number of false
discoveries (on the left) and the number of true negatives (on the right) as n grows

tend to have the same CDF. Hence, we can estimate the false discovery proportion

90 Chapter A. Theoretical details

at the threshold t as

#{j:Bj=0and W; >t} #{j:B;=0and W; < —t}
#GWi=tbve T # W=V

#{j: W; <t}

TH#{j W, >t vl

(A.10)

—: FDP(2),

where the first quantity is exactly the ratio between the number of false discoveries
and the number of total discoveries, given that we reject Hy; for high positive values
of W;. However, since the numerator of the first ratio is unobservable, we can
approximate it with the number of true nulls such that W; < —t using the result
in A.9, while the denominator remains unchanged. Lastly, since we cannot observe
which Hy;’s are true nulls, we simply remove the constraint 3; = 0 and we consider
the number of hypotheses such that W; < —t. In doing so we have defined the

knockoff estimate of the false discovery proportion.

A.3 Essential Concepts in Martingale Theory

This section does not claim to be comprehensive. Its sole purpose is to provide the
essential background needed to follow the proof of the FDR control theorem for the
knockoffs presented in Barber & Candés (2015a); The material of this section is
primarily based on Chapter V of Cinlar (2011) and section 34 of Billingsley (1995).
Moreover, appropriate excursuses will be included to bridge the knockoff framework

with the newly introduced concepts on Martingale Theory.

A.3.1 Filtration and Stopping Times

Consider a probability space (£2,H,P) and an index set T. We can then define
the associated stochastic process { X }ier, where each X is a measurable function
from the probability space to (Sx,, B), with Sx, denoting the support of X; and B
the Borel o-algebra on the support of the random variable. A filtration on T is an
increasing family of sub-o-algebras of H indexed by T. Namely, F = (F;)er is a
filtration if each F; is a o-algebra on 2, F; is a subset of H, and F; C F;, whenever
s < t. From an intuitive viewpoint, we can think of a filtration F as the flow of
information, with F; representing the body of information accumulated up to time ¢.
Furthermore, to prove the FDR control property of Knockoff+, we must also introduce

the concept of stopping time for a stochastic process.

Chapter A. Theoretical details 91

Definition A.1. (Stopping Time) Let F be a filtration on the index set T. A
random time 7' : Q — T U {400} is called a stopping time of F if

{I<t}eF foreach teT. (A.11)

T is a random variable whose realizations determine when the associated stochastic
process is stopped. In this regard, requiring that the event {7 < ¢} belong to F;
means that the decision to stop the process must depend solely on the information
available up to time ¢, as captured by the filtration, and not on future information.
In this sense, the knockoff+ data-dependent threshold 7" defined in (2.22) can be
interpreted as a stopping time for the super-martingale in (2.29). This holds true
because T corresponds to the first time the knockoff estimate of FDP falls below
q. Consequently, since FDP is controlled by the super-martingale in (2.29) and the
stopping decision is based only the past, we have that {T" < ¢} belongs to the filtration
generated by the super-martingale V*(7')/(1 4+ V~(T)). Finally, this interpretation
allows us to apply the Optional Stopping Time Theorem to the supermartingale
VHT)/(14+ V~(T)) using T as the stopping time. At this point, before proceeding,
we need to introduce the concepts of supermartingales, of conditional expectation

-which is essential in defining martingales- and the Optional Stopping Theorem.

A.3.2 Conditional Expectation and Supermartingales

The concept of conditional expectation is extremely relevant in Martingale theory; at
the same time, it is profoundly different from the standard notion of expectation. For
this reason, it is necessary to provide an overview of its construction. The following
section is based on Section 34 “conditional expectation” of the book Probability and
Measure by Billingsley (1995).

We start with a probability space (€2, F,P), and a random variable X : Q — R™,
with finite expectation. Then, we consider a sub g-algebra H C F that could be
thought of as the partial information we know about X. Clearly, F represents the full
information that, unfortunately, we do not possess. We can now observe that since
‘H is smaller than F, the random variable X might not be measurable with respect
of H, namely, there could exist Borel sets whose preimages through X ~!(-) do not
belong to H. Consequently, the idea is that we cannot fully observe X based only
on H. Despite that, fixing an event H € H, we might be interested in computing

92 Chapter A. Theoretical details

the expected value of X over H given the available information in H

/ XdPly, (A12)
H

where P|y is the restriction of P to H; however, as explained earlier, the quantity in
(A.12) cannot be defined in general since X is not necessarily H-measurable, which
is a crucial request in the definition of the Lebesgue integral. Therefore, to handle
this situation, we introduce the so-called conditional expectation E[X|#], which is

any H-measurable random variable that satisfies the following equality:
/ E[X|H]dP :/ XdP for each H € H. (A.13)
H H

Namely, the conditional expectation is that specific random variable that, over each
event H of the known o-algebra H, has the same expected variable of X; in other
terms, it is a new random variable that depends only on information in H, and
it approximates X as well as possible based on that information. Clearly, this
is not an operational definition of E[X|H]. In this regard, it can be proved that
the conditional expectation is unique up to sets with null measure. Moreover, an
explicit formulation is generally difficult to define due to the various structures the
conditioning o-algebra might take. However, for the purposes of the knockoff proof,
these details are secondary. In fact, to understand the following proofs, having just

an intuition of what a conditional expectation is will be enough.

Definition A.2. (Supermartingale) Let X = {X;};er be a real-valued stochastic
process on the probability space (2, H,P), and F = {F;}ier a filtration. If these

conditions are satisfied
1. X is adapted to F, namely, X; is F;-measurable for every ¢t € T,
2. each X, is integrable, meaning that E[|X;|] < +oo ,
3. E[X3|F] < X, for all t > s,

then, X is called a supermartingale.

It is worth noting that E[X;|F;] is not a standard expected value, instead, it is exactly
the above-mentioned conditional expectation of X; with respect to the o-algebra
Fs. Moreover, the < sign expresses a stochastic ordering between the conditional

expectation of X; and X;. Therefore, a super-martingale is a stochastic process that,

Chapter A. Theoretical details 93

given all information available up to each time s, summarized by the filtration Fj,

does not increase in expectation over time.

A.3.3 Optional Stopping Time Theorem

Theorem A.1. (Optional Stopping Theorem, Doob Joseph.L 1949) Let X = {X;}ier
be a supermartingale, and T" a stopping time, both with respect to the filtration {F; }ier.

Assuming that one of the following three conditions holds:

1. the stopping time is almost surely bounded, namely, there exists ¢ € R such
that T' < ¢ a.s.

2. The stopping time T has finite expectation E[T] < +oo, and the conditional
expectations of the absolute value of the martingale increments are almost surely
bounded, namely, B(| X1 — Xy| |F) < ¢ for all t.

3. There exists a constant ¢ such that]Xmin(tj)\ < ¢ almost everywhere for all t €
T.

Then:
E[X7] < E[X,] (A.14)

A.4 Knockoff+ FDR-control Proof details

Throughout the proof, a variant of the stochastic process {V*(¢)}iew will be heavily
used; therefore, it is crucial to define it carefully. The quantity {V(¢)}enw is a
collection of functions depending on ¢ € W and w € (2 defined between the following
spaces 2 x W — SYW_ where Q denotes the sample space and W the index set
composed by the ordered test statistics W;’s taken in absolute value; while 2 x W,
called the state-space, represents their cartesian product and it is the set of all
possible realizations of the stochastic process. For a fixed threshold ¢ and varying
data points w € Q, we obtain a random variable V' (t) representing the number of
false discoveries. On the other side, for a fixed realization w of the data, we can define
a deterministic trajectory over VW that represents the number of false discoveries as
the threshold ¢ varies. The same logic can be applied to define the stochastic process

{V~(t) }+eyy associated with the number of true negatives V= (t).

94 Chapter A. Theoretical details

A.4.1 Supermartingale Proof

The proof that shows why V*(T)/(1+V~(T)) can be considered a super-martingale
has been taken from the supplementary materials (Barber & Candés, 2015b) of
the article (Barber & Candeés, 2015a). To make the proof easier, the authors have
preferred to redefine the core quantities V*(¢) and V'~ (¢) based on p-values instead of
test statistics IW/;’s. In fact, as mentioned several times, performing multiple testing
using properly defined p-values is equivalent to using the respective test statistics.
Hence, the random variable analogous to V¥ (t) = {j : §; = 0 and W; > ¢} can be
defined as follow:

VFH(k) = #{null j: 1 <j <k, p; <c}, (A.15)

which is exactly the random variable determining the number of false positives
through the knockoff+ method that uses p-values instead of test statistics to perform
tests. Analogously, the random variable representing true negatives can be rewritten

using p-values as follows:
Vo) = #{mll j 1< <k, py > c} (A.16)

Therefore, since the rejection region for each test is determined by the condition
W; > T, with T the data-dependent threshold, the corresponding p-values are defined
as follows:

p; = sup P(W; >T) for j=1,...,p; (A.17)
B;€B0;

It turns out that defining each test statistic W, as in Step 3 of the knockoff
construction leads to a highly complex distribution IP, which makes p-values impossible
to compute. However, this complexity poses no issue, because knowing the explicit
form of P is completely unnecessary for proving the next Lemma. On the other side,
c is defined as the common p-value threshold determined by the knockoff procedure
such that:

T =F'(c) (A.18)

namely, ¢ is the probability value that, if plugged into the quantile function of t,
which is F;'(+), would produce T. Obviously, as with the definition of p;’s in (A.17),
this formula aims only to give an intuition of the quantities involved in the proof.
In practice, we are not interested in finding 7" through its quantile function, nor
determining the form of F, *(-) that is irrelevant to the proofs of the article. Thus,

having defined V*(k), we can also determine their corresponding stochastic processes.

Chapter A. Theoretical details 95

In this regard, the index set of the stochastic processes V*(¢) will no longer be the set
W of test statistics in absolute value, but the set K = {1,...,m} which represents
the indexes of the hypotheses Hy;’s being tested. On top of that, throughout this
proof, we will assume that the p-values associated with true nulls are independent
and identically distributed, and they satisfy p; > U(0, 1); specifically, p; > U(0, 1)
means that p-values are stochastically greater than a continuous uniform distribution
in [0, 1], and then P(p; <t) <t forallt € [0, 1]. Intuitively, under true nulls, p-values
are less likely to be small than a continuous uniform in [0, 1]. The following is the

Lemma that allows us to demonstrate that the quantity in (2.29) is a supermartingale.

Lemma A.2. (Barber & Candés, 2015a) For k = m,m — 1,...,1,0, define
V) =#{nullj: 1 <j <k, pj<ctand V- (k) =#{nullj: 1 < j <k, p; >c},
with the convention that VE(0) = 0. Let Fy be the filtration defined by knowing all
non-null p-values, as well as, VE(k') for all ¥’ > k. Then the process

wgy = W)

=TV (A.19)

1S a super-martingale running backward in time with respect to Fy,.

In this case, VT (k) represents the number of false discoveries, namely null hypotheses
for which p; < ¢, while V= (k) denotes the number of true negatives. These two
quantities are the same random variables as those defined in (2.26) and (2.28),
respectively, but in this proof they are defined in terms of p-values. Additionally,
c is the p-value threshold determined by the Knockoff filter, which plays a role
analogous to the data-dependent threshold 7'. It is worth noting that the martingale
is considered to run backward in time, from k£ = m to k = 0. Furthermore, the
hypotheses have been relabeled in ascending order according to p-values.
We observe that the filtration Fy, which is the family of o-algebras defined for each
index up to k, informs us about whether the ™ hypothesis is a true null or not;
whereas, the non-nulls are known exactly from the assumption of the lemma A.2.
Therefore, we have that if k£ is non-null (true alternative), then M(k — 1) = M(k);
this follows from having the ™ null hypothesis that is false, and hence neither the
number of false discoveries nor the number of true negatives is affected by a shift
from k — 1 to k. On the other hand, if k£ is null, then

V*t(k)—1 V*t(k)—1

ME=Y=Tv=m—a=n _ov-mwm+nvi el =l

96 Chapter A. Theoretical details

Specifically, I = 1 if the k'™ null hypothesis is rejected (p; < ¢), and I = 0 otherwise.
Since we are assuming that Hyy is a true null, I = 1 corresponds to a false discovery,
while I = 0 indicates a true negative for the k*" test. Now, because we are analyzing
the process in reverse (moving from k to k — 1), the quantity M (k — 1) reflects this
shift. Indeed, if a false discovery occurred at step k, the numerator of M (k—1), being
the number of false discoveries at k — 1, becomes VT (k) — 1 (one less false discovery),
while the denominator remains unchanged at V'~ (k) — 0, since no true negatives are
made in the k" test that need to be removed. Conversely, if the k™ hypothesis was
not rejected, resulting in a true negative, the numerator of M (k — 1) remains V' (k),
while the denominator becomes V'~ (k) — 1, accounting for the removal of one true
negative.

Additionally, we can observe that the filtration F; gives no further knowledge about
I. Consequently, by the exchangeability property of the true nulls (A.9), we have

that
V* (k)

PU=11= V() + V- (k)

(A.20)

namely, the probability of having a false discovery in the &*® test is the ratio between

the number of false discoveries and the total number of true nulls. Conversely, using

the same exchangeability property, we can also define the complementary probability
vV (k)

“(k) + VH(R)

P{I =0} = (A.21)

which is the ratio between the number of true negatives and the total number of

discoveries. As a consequence, in the case where k is null, we can write:

E[M(k—1) | Fe] = M(k— 11 =0)-P(I =0)+ M(k— 1| =1)-P(I =1)

VH(k) — 0 V=(k)
TR0V VTR V(R
V) — 1 v+ (k)
V-(k)+1 V*(k)+V-(k)
1) v VER) 1]
“moavm |V P eyt)

(A.22)

where the first equality derives from having expanded the expected value of M (k —1)
conditioned on the filtration Fj. The second step follows from having explicitly
written the probabilities in (A.21) and in (A.20) and having replaced I with its

Chapter A. Theoretical details 97

values. Finally, the third equality follows from factoring out m from the

k)
expression in the second step. At this point, through a basic simplification of the

last expression in (A.22), we can write:
V' (k)
E[M(k—1)|F] =4 L1+V(k) (A.23)
V*H(k) —1, V=(k)=0.

As a result, we have that

M(k), k non null,
EM(k—-1)|F) =4 M%), knulland V-(k) >0 (A.24)

M(k)—1, knull and V~(k) =0.

The first case follows from the fact that if Hyy is a false null, then by definition, no
false discoveries or true negatives can occur, and therefore M (k — 1) = M (k). The
second case corresponds to the compact notation of the first expression in (A.23).
Finally, the third case arises from noting that the second expression in (A.23) can
equivalently be obtained by setting V* (k) = 0 in M (k) — 1.

Consequently, through (A.24) we can show that

E[M(k = D[F] < M(k), (A.25)

which prove that M (k) is a super-martingale, as stated in definition A.2, but running
backward in time since k£ — 1 comes after k.
A.4.2 Binomial Property

The following is the property of Binomial random variables that, once applied to

V*(0), allows us to prove the FDR control property of the Knockoff+ method.

Proposition A.1. (Barber & Candés, 2015b) Given a Binomial random variable
Y ~ Bin(N,c), we have that:

Y c
E < .
L + N — Y] ~1l-c
In our context, the random variable considered is V(0) ~ Bin(py, 1/2), namely,
Y = V*(0), N is equal to py that is the number of true nulls, while ¢ = 1/2;

consequently, by proving proposition A.1, we are indirectly demonstrating the special

98 Chapter A. Theoretical details

case

V(0)
E [1+po—v+(0)] <1 (A.26)

The proof is detailed in the following page and is structured as follows. The first
equality follows from the observation that expanding the initial expected value with
or without the addend Y = 0 yields the same result; therefore, conditioning on the
indicator function 1y leaves the expected value unchanged. In the second step,
the expectation of Y is expanded using the definition of the expected value for a
transformation of a discrete random variable. The term corresponding to ¥ = 0 is

omitted, as it is negligible in this context.
Y Y
El———|=E|——— -1
[1+N—Y} [1+N—Y Y=o

N ;
~SNSpfy =i} . —
Z{ b N

N .
_ i1 — N _
2 1=c) AN —i) 1+ N i

N NI
_) i—1(1 _ \N—i+l :
1—c ;C (1=c) (i— 1IN —i+1)

N N-1
c c

= -EIP’Y:'—lz -E]P’Y:'
1—c¢ — { ! } 1—c¢ = { Z}

<

The third equality is obtained by replacing the general term P{Y = i} with the
probability mass function of a Binomial distribution with N trials and success
probability ¢. In the fourth step, the Binomial coefficient and the ratio of the

transformation are rewritten to form a new unique Binomial coefficient (Z]_V 1). In the
. 1_ .
fifth step, the entire expression is multiplied by ;= - ==¢ = 1, thus preserving the

value of the expectation. Specifically, the factor = is left outside the summation,
1—c

while the factor ¢ is incorporated in the sum and multiplied by the Binomial
kernel. Therefore, in the sixth step, the resulting summation corresponds to the total

probability mass of a Binomial distribution Bin(N, ¢) over a subset of its support.

Chapter A. Theoretical details 99

This may not be immediately obvious due to the shift in the index by —1. Finally,
in the sixth step, after adjusting the indices, it becomes clear that the summation
covers the entire support of the binomial distribution except for the final value
N. Therefore, the total sum is less than or equal to 1, which leads directly to the

conclusion that the original expected value is bounded above by .

A.5 FDR and power approximation

In this last section, we have described the algorithms used to approximate via
Monte Carlo the false discovery rate and the average power function of a generic
Multiple testing procedure. Both the pseudo-algorithms 6 and 7 are extensions and
adaptations of the Matlab code used in the simulation analysis proposed in Barber
& Candeés (2015a), which can be found at Knockoff Matlab Tutorial 2. It is worth
mentioning that only in a simulation setting is it possible to estimate the FDR or the
average power; this because in practice we never know the true status of hypotheses
and we cannot compare it with empirical results. An important remark is that the
order in which hypotheses are tested is irrelevant for the computation of the FDR or
the power. The logic behind the approximation of FDR stems from its definition as
the expected value of the false discovery proportion (FDP); therefore, it is natural to
approximate it with the sample mean of FDPs. On the other hand, the rationale for
the estimation of the average power function is less intuitive. In a multiple testing
framework, the concept of power needs to be clarified since the definition given in
(1.4) can no longer be applied. There exist different ways of defining the power in
multiple comparison problems; for example one could use the FWER or some form
of average of powers. In this work, the power for a specific parameter § € © has been
defined numerically as the average true positive rate over M montecarlo iterations.
As a result, by letting vary 6 € © we can obtain a Monte Carlo approximation of
the average power function. In Algorithm 6 is detailed the approximation of the
average power function, whereas in Algorithm 7 is described the pseudo-code for
the approximation of the false discovery rate, in both cases considering the signal
amplitude on the x-axis. It is assumed the nullity of the parameters under the null
hypothesis. Clearly, this algorithm provides a discrete and approximated version of
the mean power function and FDR associated with the multiple testing procedure
considered. Another important remark is that in the case of linear models, both

algorithms are slightly different from the ones given in this section; this is because

https://web.stanford.edu/group/candes/knockoffs/software/knockoffs/tutorial-2-matlab.html

100 Chapter A. Theoretical details

one could consider a fixed design and redrawing only the noise and the response at
each Monte Carlo iteration instead of the whole design matrix. For these details, the
full R code is provided in Appendix B. However, in section 3.2.4, both approaches

have been considered.

Chapter A. Theoretical details 101

Algorithm 6: Average power Function Approximation in Multiple Testing

via Monte Carlo
1. Fix a specific Multiple Testing approach.

2. Fix a number m of total hypotheses to be tested, of which mq are true nulls
and m; = m — myg are true alternatives. Generate the set 7 of true null
indices and F of false null indices.

3. Fix a true significance level a € [0, 1].
4. Fix the number M of Monte Carlo iterations.

5. Fix a grid {6,,...,6,} of parameter values on which to evaluate the
approximated power 7(6;) for all j € {1,...,p}.

6. For jin 1: p do:

(a) Fix a specific § = 6;.
(b) For kin 1: M do:
i. For vin 1:m do:
A. Simulate data from H;, : 0 = 0; it v € F, or from
Hy, :0=0ify€T.

B. Compute the corresponding test statistic 7', for
the hypothesis Hy,.

C. Reject or accept each Hy, based on the respective
test statistic 7T7,.
ii. End For
iii. Store the value of the k™ true positive rate TPRy(6;):

m

1(Hy, is rejected and v € F)
-1

TPR(6;) = 2

my
(c) End For
(d) Compute 7(6;) = A=l

7. End For
8. Plot {60y,...,6,} vs {7(01),...,7(0,)}.

102 Chapter A. Theoretical details

Algorithm 7: False Discovery Rate Approximation in Multiple Testing via

Monte Carlo
1. Fix a specific Multiple Testing approach.

2. Fix a number m of total hypotheses to be tested, of which mq are true nulls
and m; = m — my are true alternatives. Generate the set 7 of true null
indices and F of false null indices.

3. Fix a true significance level a € [0, 1].
4. Fix the number M of Monte Carlo iterations.

5. Fix a grid {6,,...,60,} of parameter val values on which to evaluate the
approximated false discovery rate FDR(Q) forall j € {1,...,p}.

6. For jin 1: p do:

(a) Fix a specific § = 6,.
(b) For kin 1: M do:
i. For vin 1:m do:
A. Simulate data from H;, : § =0, if v € F or from
HQWZQZOif’YET.
B. Compute the corresponding test statistic 7, for
the hypothesis Hy,.

C. Reject or accept each H, based on the respective
test statistic 7.

ii. End For
iii. Store the value of the k" false discovery proportion
FDP(6;):
> 1(Hy, is rejected and v € T)
771 FPk
FDP(0 —~ = R 1)
{Z]l Hy, is rejected)}} V1 rmaxi e,
y=1
(c) End For
M
- >_FDP(0;)
(d) Compute FDR(0;) = HT

7. End For
8. Plot {6y,...,0,} vs {FDR(6,),..., FDR(6,)}.

Appendix B

R code

B.1 Chapter I

The following is the commented R code used to generate Figure 1.1, Figure 1.2 and
Figure 1.5. Whereas, Fig. 1.3 and Fig. 1.4 have been generated by modifying the
code for Figure 1.1.

rm(list = 1s())
Sample mean on the = azis
arbitrarily chosen quantities to allow

an effective representation

n <- 1000
sd <- 1

mul0 <- 0
mul <- 0.08
mi <- -0.15
ma <- 0.2

X <- seq(mi, ma, length.out = 10000)

Values used to plot the densities under H_0 and H_1

yO <- dnorm(x, mean = mu0O, sd = sd / sqrt(n))

sd / sqrt(n))

yl <- dnorm(x, mean = mul, sd

Critical threshold and probability of committing a first type error

alpha <- 0.2
ct <- mu0 + gnorm(l - alpha) * (sd / sqrt(n))

103

104 Chapter B. R code

plot of the two densities (Figure 1.1)

plot(x, yoO,
type = "1", 1lwd = 1, col = "black",
xlim = c(mi, ma), ylim = c(0, max(y0, y1)),
xlab = expression(bar(x)), ylab = "probability density",

main = bquote("Sample mean PDFs" ~ alpha == 0.2)

points(x, yl, type = "1", lwd = 1, col = "black")
abline(h = 0)

segments(ct, 0, ct, max(dnorm(ct, mean = mul, sd = sd / sqrt(n)),

— dnorm(ct, mean = mu0, sd = sd / sqrt(n))), lwd = 1.5)
x1 <- x[x <= ct]

x2 <- x[x >= ct]

Probability of committing a type II error (False Negative)
polygon(c(xl, rev(xl)),
c(dnorm(x1, mul, sd / sqrt(n)), rep(0, length(x1))),
density = 20, angle = 45, col = "blue", border = NA

Probabtility of committing a type I error (False postitive)
polygon(c(x2, rev(x2)),
c(dnorm(x2, mu0, sd / sqrt(n)), rep(0, length(x2))),
density = 40, angle = -45, col = "red", border = NA

Probabtlity of making a true discovery (True positive)
polygon(c(x2, rev(x2)),
c(dnorm(x2, mul, sd / sqrt(n)), rep(0, length(x2))),
density = 10, angle = 30, col = "green", border = NA

segments(ct, 0, ma + 1, 0, col = "purple", lwd = 4)
segments (mu0, 0, muO, dnorm(mu0, muO, sd / sqrt(n)), col = "black", lwd =
- 1, 1ty = "dashed")

Chapter B. R code 105

segments (mul, 0, mul, dnorm(mul, mul, sd / sqrt(n)), col = "black", lwd =
< 1, 1ty = "dashed")

text(-0.04, 11, labels = expression(H[0]))
text(0.12, 11, labels = expression(H[1]))
legend(-0.15, 12,
£ill = c("blue", "green", "red"), bty = "n",
legend = c(expression(beta), expression(pi), expression(alpha)),

cex = 1, density = c(30, 30, 30), angle = c(45, 30, -45)

text(0.19, 0.8, labels = c("R"), col = "purple")
segments(mi - 1, 0, ct, 0, col = "dodgerblue", lwd = 4)
text(-0.11, 0.8, labels = c("A"), col = "dodgerblue")

Power function (Figure 1.2)
alpha <- 0.25

ct <- mu0 + gnorm(l - alpha) * (sd / sqrt(n))

power <- function(muO, mu, alpha, sd, n) {
p <- numeric(length(mu))
for (i in 1:length(mu)) {
pli]l <- 1 - pnorm(((mu0 - mu[i]) / (sd / sqrt(n))) + gnorm(l - alpha))
}
return(p)
}
mm <- seq(-0.5, 0.5, length.out = 2000)
pp <- power (mu0, mu = mm, alpha, sd, n)
pp
min <- -0.1
max <- 0.15
plot (mm, pp,
type = "1", col = "black", lwd = 1.5, xlim = c(min, max),
main = "Power function", xlab = expression(mu),

ylab = expression(pi * "(" * mu * ")")

106 Chapter B. R code

abline(v = muO, 1ty = "dashed")
abline(v = ct, 1ty = "dashed")
abline(h = 0)
abline(h = 1)

segments(0, 0, 0.3, 0, lwd = 3, col = "darkorange")

segments(-0.3, 0, 0, 0, lwd = 3, col = "lightblue")

text(0.12, 0.07, labels = c(expression(H[1])), col = "darkorange", cex =
- 1.2)

text(-0.087, 0.07, labels = c(expression(H[0])), col = "lightblue", cex =
- 1.2)

text(-0.01, 0.8, labels = c(expression(mul[0])))

text(-0.095, 0.29, labels = c(expression(alpha)), col = "red2", cex = 1.2)

text(ct + 0.03, 0.45, labels = expression(mul[0] + z[1

alpha] * sigma /
— sqrt(n)))

eps <- 0.009

segments(min - eps, 0, min - eps, alpha, lwd = 3, col = "red2")
segments(min - eps, alpha, 0, alpha, 1ty = "dashed")

segments(min - eps, alpha, min - eps, 1, lwd = 3, col = "green")

Power comparison (Figure 1.5)

alpha <- 0.1
ct <- mu0 + gnorm(l - alpha) * (sd / sqrt(n))

power <- function(muO, mu, alpha, sd, n) {
p <- numeric(length(mu))
for (i in 1:length(mu)) {
plil <- 1 - pnorm(((mu0 - muli]) / (sd / sqrt(n))) + gnorm(l - alpha))
}
return(p)
}
mm <- seq(-0.5, 0.5, length.out = 2000)
pp <- power(muO, mu = mm, alpha, sd, n)
pp
min <- -0.1
max <- 0.15

plot(mm, pp,

Chapter B. R code 107

type = "1", col = "black", lwd = 1.5, xlim = c(min, max),

main "Power function comparison", xlab = expression(mu),
ylab = expression(pi * "(" * mu * ")")

)

alphal <- 0.01

ppl <- power(mu0, mu = mm, alphal, sd, n)

points(mm, ppl, col = "red", type = "1", lwd = 1.5)
alpha2 <- 0.5
pp2 <- power(mu0, mu = mm, alpha2, sd, n)

points(mm, pp2, col = "turquoise", type = "1", lwd = 1.5)

legend(
x = -0.10, y = 0.8,
legend = c(
expression(alpha == 0.5),
expression(alpha == 0.1),

expression(alpha == 0.01)

Do
col = c("turquoise", "black", "red"),
1ty = 1,
lwd = 1.5,
bty = "n",
cex = 0.8
)
abline(v = mu0, 1ty = "dashed")
abline(h = 0)
abline(h = 1)

segments(0, 0, 0.3, 0, lwd = 3, col = "darkorange")

segments(-0.3, 0, 0, 0, 1lwd = 3, col = "lightblue")

text(0.12, 0.07, labels = c(expression(H[1])), col = "darkorange", cex =
- 1.2)

text(-0.087, 0.07, labels = c(expression(H[0])), col = "lightblue", cex =
o 1.2)

text(-0.01, 0.8, labels = c(expression(mu[0])))

108 Chapter B. R code

B.2 Chapter 111

B.2.1 p-values vs rank plot

The following is the commented code used to generate Figure 3.1 and Figure 3.2.

MULTIPLE TESTING PROCEDURES COMPARISON

p-value vs rank plot

rm(list = 1s())
library(tidyverse)
set.seed(123)

m <- 1000 # number of total hypotheses tested
m0 <- 900 # mnumber of true null HO

ml <- m - m0 # number of true alternatives HI

tni = true null indezes
tni <- sample(l:m, size = m0, replace = FALSE)
tar = true alternative indexes

tai <- c(1:m)[-tni]

the order of the hypotheses tested is mot important

they are invariant with respect to the index j
Stmulation
under true null HOj zj ~ N(0,1)

under the alternative H1j zj ~ N(muj,1)

the variance 1s fized at 1

HOR R W

We consider muj = mu (for all j in tat)

z7 15 the test statistics we will use to compute the p-value

zj <- numeric(m)

We will fill this vector zj drawing from a N(0,1) for the indexes tn%

and from a N(muj,1) for the indexzes tai. In other words we skip the

Chapter B. R code

109

data generation phase and we directly generate test statistics.

we are assuming a known variance

muj <- 3
sd <- 1
zj[tni] <- rnorm(m0, mean

zj[tai]l <- rnorm(ml, mean

two tailed test p-value

0, sd)
muj, sd)

pval <- 2 * (1 - pnorm(abs(zj)))

alpha <- 0.05

pval_asc <- sort(pval, decreasing = FALSE)

q <- alpha

upper <- m # mazimum inder we want to represent on the z-azrtis

pval_naive <- pval_asc[1:upper]

ind <- 1:upper

indx <- numeric()

for (j in 1:upper) {

indx[j] <- which(pval_asc[j] == pval)

}
indx

color <- numeric()

for (j in 1:upper) {
if (indx[j]1 %in’ tai) {
color[j] <- 1
} else {
color[j] <- O

Holm's threshold

thr_holm <- function(index) {

q / (m - index + 1)

110 Chapter B. R code

color <- factor(color)
levels(color) <- c("TRUE HO", "TRUE H1")
data <- data.frame(ind, pval_naive)

xmax <- 150

p-values vs rank plot (Figure 3.1)

plotl <- ggplot(data = datall:xmax,], mapping = aes(
X = ind, y = pval_naive,
color = color[1:xmax]

), xlab = "index j", ylab = "p-value") +
theme_light() +
geom_point(alpha = .4, size = 2.5) +
scale_color_manual (values = c("red", "green")) +
geom_abline(intercept = 0, slope = q / m, color = "blue") +
geom_text(data = datall,], aes(x = 140, y = 0.009, label = "BHq"),
< color = "blue", size = 4) +
geom_abline(intercept = q / m, slope = 0, colour = "deepskyblue") +
geom_text(data = datall,], aes(x = 145, y = 0.002, label = "Bonf."),
< color = "deepskyblue", size = 4) +
geom_abline(intercept = q, slope = 0, colour = '"green") +
geom_text(data = datall,], aes(x = 10, y = 0.052, label = "Naive"),
< color = "green", size = 4) +
geom_function(fun = thr_holm, color = "red", 1ty = "dashed") +
geom_text(data = datall,], aes(x = 120, y = 0.002, label = "Holm"),
< color = "red", size = 4) +
labs(x = "index j", y = "p-values", color = NULL, title = "p-values vs
< rank: Procedures Comparison")

plotil

same graph in logarithmic scale base = e

logpval <- log(pval_naive)
data <- data.frame(ind, logpval)

thr_naive <- function(index) {

log(q)

Chapter B. R code 111

thr_bonf <- function(index) {
log(q / m)
}
thr_holm <- function(index) {
log(q / (m - index + 1))
}
thr_BHq <- function(index) {
log((q * index) / m)
}
Naive
ind_naive <- which(pval <= alpha)
(TOTP_naive <- (length(ind_naive)))
Bonferroni
ind_bonf <- which(pval <= alpha / m)
(TOTP_bonf <- (length(ind_bonf)))
padj_bonf <- p.adjust(pval, method = "bonferroni")
ind_bonf_adj <- which(padj_bonf <= alpha)
Holm
pval_asc <- sort(pval)
indices <- 1:m
i0 <- min(which(pval_asc > alpha / (m - indices + 1)))
ind_holm <- which(pval < alpha / (m - i0 + 1))
TOTP_holm <- length(ind_holm)
padj_holm <- p.adjust(pval, method = "holm")
ind_holm_adj <- which(padj_holm <= alpha)
BHq
imax <- max(which(pval_asc <= (indices / m) * q))
ind_bhq <- which(pval <= (imax / m) * q)
TOTP_BH <- length(ind_bhq)
padj_bhq <- p.adjust(pval, method = "BH")
ind_bhq_adj <- which(padj_bhq <= alpha)

xmax <- 150
1n_breaks <- log(c(1, 0.1, 0.01, 0.001, 0.0001, le-5, 1e-6))

1n_labels <- c("1", "0.1", "0.01", "0.001", "le-4", "le-5", "le-6")

p-values vs rank plot (log-scale) (Figure 3.2)

112 Chapter B. R code

plot2 <- ggplot(data = datal[l:xmax,], mapping = aes(
x = ind, y = logpval,

color = color[1:xmax]

), xlab = "index j", ylab = "p-value") +
theme_light() +
geom_point(alpha = .4, size = 2.5) +
scale_color_manual(values = c("red", "green")) +
geom_function(fun = thr_BHq, color = "blue") +

geom_text(data = datall,], aes(x = xmax - 10, y = log((q * xmax) / m)
< - 0.5, label = "BHqQ"), color = "blue", size = 4) +
geom_function(fun = thr_bonf, colour = "deepskyblue") +
geom_text(data = datall,], aes(x = xmax - 10, y = log(q / m) - 0.5,
< label = "Bonf."), color = "deepskyblue", size = 4) +

geom_function(fun = thr_naive, colour = '"green") +

geom_text(data = datall,], aes(x = 10, y = log(q) + 0.5, label

< "Naive"), color = "green", size = 4) +

geom_function(fun = thr_holm, color = "red", lty = "dashed") +
geom_text(data = datal[l,], aes(x = xmax - 10, y = log(q / (m - xmax +
« 1)) + 0.5, label = "Holm"), color = "red", size = 4) +

TOTP_BH, 1ty = "dotted", alpha = 0.25) +
geom_vline(xintercept = TOTP_bonf, 1ty = "dotted", alpha = 0.25) +

TOTP_holm, 1ty 0.25) +

geom_vline(xintercept

geom_vline(xintercept "dotted", alpha

geom_vline(xintercept = TOTP_naive, lty = "dotted", alpha = 0.25) +
geom_text(data = datal[l,], aes(x = TOTP_bonf, y = -15, label
4) +

geom_text(data = datall,], aes(x = TOTP_holm, y = -15, label

< as.character(TOTP_bonf)), color = "red", size

< as.character(TOTP_holm)), color = '"red", size = 4) +
geom_text(data = datal[l,], aes(x = TOTP_BH, y = -15, label =
< as.character (TOTP_BH)), color = "red", size = 4) +

geom_text(data = datall,], aes(x = TOTP_naive, y = -15, label =

s as.character(TOTP_naive)), color = "red", size = 4) +

I

labs(x = "index j", y = "(p-value) log scale", color = NULL, title

< "p-values vs rank: Procedures Comparison(log scale)") +

scale_x_continuous(breaks = c(seq(0, xmax, by = 50)), minor_breaks =

— NULL,) +

scale_y_continuous(breaks = 1ln_breaks, labels = 1n_labels)

Chapter B. R code 113

plot2

B.2.2 Microarray simulation study

The following is the code used to generate Figure 3.3 and Figure 3.4

Microarray stmulation study

Power and FDR comparison using two-sample T tests
< (Natve,Bonferroni,Holm,Bhq)

No knockoffs, mo linear model setting, high-dimensional data p>n
rm(list = 1s())

set.seed(321)

par (mfrow = c(1, 1))

par(pty = "m"

M <- 1000 # Montecarlo iterations

AA <- seq(-1.8, 1.8, length.out = 150) # signal magnitude
len <- length(AA)

pwnaive <- numeric(len)

pwbonf <- numeric(len)

pwholm <- numeric(len)

pwbhg <- numeric(len)

fdrnaive <- numeric(len)

fdrbonf <- numeric(len)

fdrholm <- numeric(len)

fdrbhq <- numeric(len)

alpha <- 0.2 # FDR upper bound

n <- 50 # number of observations

p <- 100 # number of features

tp <- 15 # number of true significant features

fp <-p - tp

nl <- 25 # dimension of the first group

n2 <- 25 # dimension of the second group

sd <- 1 # shared variance

we are assuming unknown variance equal among groups

(in simulation we fiz a standard deviation of sd=1)

114 Chapter B. R code

for (i in 1:1len) {
cycle for different signal amplitudes
A <- AAT[i]
pwnaive_iter <- numeric(M)
pwbonf_iter <- numeric(M)
pwholm_iter <- numeric(M)
pwbhq_iter <- numeric(M)
fdrnaive_iter <- numeric(M)
fdrbonf_iter <- numeric(M)
fdrholm_iter <- numeric(M)

fdrbhq_iter <- numeric(M)

for (m in 1:M) {
cycle for Montecarlo iterations
mu <- numeric(p)
ind_tp <- sample(l:p, size = tp, replace = FALSE)
ind_fp <- c(1:p) [-ind_tp]
mu[ind_tp] <- A
mu[ind_fp] <- 0

pval <- numeric(p)

two sample T test with equal wvariance are done independently

for (j in 1:p) {
cycle to test all p hypotheses using a Two sample T statistics
x1 <- rnorm(nl, mean = 0, sd = sd)
x2 <- rnorm(n2, mean = mul[j], sd = sd)
xlbar <- mean(x1)
x2bar <- mean(x2)
varl <- var(x1l)
var2 <- var(x2)
varPool <- ((nl - 1) * varl + (n2 - 1) * var2) / (nl + n2 - 2)
T_stat <- (xlbar - x2bar) / sqrt(varPool * (1 / nl + 1 / n2))
pvalljl <- 2 * (1 - pt(abs(T_stat), df = nl + n2 - 2))
}
pval_asc <- sort(pval)

indices <- c(1:p)

Chapter B. R code 115

Naive

ind_naive <- which(pval <= alpha)

totp_naive <- length(ind_naive)

tp_naive <- sum(ind_naive %in’ ind_tp)
fp_naive <- totp_naive - tp_naive

Bonferront

ind_bonf <- which(pval <= alpha / p)

totp_bonf <- length(ind_bonf)

tp_bonf <- sum(ind_bonf %inj ind_tp)

fp_bonf <- totp_bonf - tp_bonf

Holm

i0 <- min(which(pval_asc > alpha / (p - indices + 1)))
ind_holm <- which(pval < alpha / (p - i0 + 1))
totp_holm <- length(ind_holm)

tp_holm <- sum(ind_holm %in% ind_tp)

fp_holm <- totp_holm - tp_holm

BHq

imax <- max(which(pval_asc <= (indices / p) * alpha))
ind_bhq <- which(pval <= (imax / p) * alpha)
totp_bhq <- length(ind_bhq)

tp_bhq <- sum(ind_bhq %in ind_tp)

fp_bhq <- totp_bhq - tp_bhq

pwnaive_iter[m] <- tp_naive / tp
pwbonf_iter[m] <- tp_bonf / tp
pwholm_iter[m] <- tp_holm / tp
pwbhq_iter[m] <- tp_bhq / tp

fdrnaive_iter[m] <- fp_naive / max(totp_naive, 1)
fdrbonf_iter[m] <- fp_bonf / max(totp_bonf, 1)
fdrholm_iter[m] <- fp_holm / max(totp_holm, 1)
fdrbhq_iter[m] <- fp_bhq / max(totp_bhg, 1)

}

pwnaive[i] <- mean(pwnaive_iter)

pwbonf [i] <- mean(pwbonf_iter)

pwholm[i] <- mean(pwholm_iter)

pwbhq[i] <- mean(pwbhq_iter)

116 Chapter B. R code

fdrnaive[i] <- mean(fdrnaive_iter)
fdrbonf [i] <- mean(fdrbonf_iter)
fdrholm[i] <- mean(fdrholm_iter)
fdrbhq[i] <- mean(fdrbhq_iter)

Power comparison (Figure 3.3)
plot (AA, pwbhqg,
type = "1", col = "blue", main = "Power Comparison", ylab = "Power",

xlab

"Signal Magnitude", lwd 1.25, cex.axis = 0.8, cex.lab = 0.8,

— cex.main = 0.9
)
points(AA, pwholm, type = "1", col

"red", lwd = 1.25)

points(AA, pwbonf, type = "1", col
-~ 1.25)

"deepskyblue", 1ty = "dashed", 1lwd =

points(AA, pwnaive, type = "1", col = "green", lwd = 1.25)
legend("bottomright",
legend = c("Naive", "BHq", "Holm", "Bonf."),

col = c("green", "blue", "red", "deepskyblue"), # line colors

1ty = c(1, 1, 1, 2), # line types
cex = 0.7,

1wd 1.25,

FDR comparison (Figure 3.4)
plot (AA, fdrbhg,
type = "1", ylim = ¢(-0.01, 0.9), col = "blue", main = "FDR
— comparison", xlab = "Signal magnitude",
ylab = "FDR", 1lwd = 1.25, cex.axis = 0.8, cex.lab = 0.8, cex.main = 0.9
)
points(AA, fdrholm, , type = "1", col = "red", lwd = 1.25)
lines(AA, fdrbonf, lty = "dashed", col = "deepskyblue", lwd = 1.25)
points(AA, fdrnaive, type = "1", col = "green", lwd = 1.25)
abline(h = alpha, col = "black", lty "dashed", 1lwd = 1.25)

legend(
"topright",

Chapter B. R code 117

legend = c("Naive", "BHq", "Holm", "Bonf.", expression(alpha)),

col = c("green", "blue", "red", "deepskyblue", "black"), # line colors
1ty = c(1, 1, 1, 2, 2), # line types

cex = 0.6,

lwd = 1.25,

B.2.3 Knockoff filter code

The following is the core code for the entire Knockoff procedure that has been
programmed from scratch following the construction detailed in (Barber & Candes,

2015a). It also includes the code to generate Figure 3.5.

KNOCKOFFS: CORE CODE

rm(list = 1s())

library(MASS) # to load the function murnorm
library(glmnet)

library(knockoff)

artifictal generation of the design matric

Setting: n >= 2p

n <- 1500 # number of observations

p <- 80 # number of wariables

rho <- 0.3 # correlation among wvariables

tp <- 12 # number of true postitives

A <- 3 # signal amplitude

q <- 0.15 # fdr upper bound

ind_tp <- sample(x = c(l:p), size = tp, replace = FALSE)
ind_fp <- c(1:p)[-ind_tp]

mu <- rep(0, p)

Sigma <- matrix(data = rep(rho, p~2), nrow = p, ncol = p) + diag(rep(l -
< rho, p))

X <- mvrnorm(n = n, mu = mu, Sigma = Sigma)

Xc <- scale(X, center = T, scale = FALSE) # centered matriz

118

Chapter B. R code

Xcn <- apply(Xc, 2, function(x) x / sqrt(sum(x~2)))

True positive wvariables

Xtp <- Xcn[, ind_tp]

z <- rnorm(n, mean = 0, sd = 1)

y <- A * rowSums(Xtp) + z
y <- (y - mean(y)) / sd(y)

Equicorrelated knockoffs

I <- diag(p) # tdentity matric

SIG <- crossprod(Xcn) # Gram Matriz
eig_min <- min(abs(eigen(SIG)$values))
s <- min(2 * eig_min, 1)

diags <- diag(rep(s, p))

Inverse gram matric

invSIG <- solve(SIG)

mat <- 2 * diags - diags %*’% invSIG %*), diags + diag(le-12, nrow = p)

Cholesky decomposition to find C
C <- chol(mat)

U matriz (orthonormal and orthogonal to the span of X)

U <- Null(Xen) [, 1:p]

apply (U, 2, function(z) norm(z,type="2")) # columns are normalized

(t(U)/*/Xcn) it can be wverified it is a null matriz

knockoff formula satisfying the two constraint on the correlation

— Sstructure

Xtil <- Xen %% (I - invSIG 7*J, diags) + U Jx*J, C

Xtilc <- scale(Xtil, center = T, scale = FALSE) # centered matriz

Xtilen <- apply(Xtilc, 2, function(x) x / sqrt(sum(x~2)))

Xtot <- as.matrix(cbind(Xcn, Xtilcn))

Chapter B. R code 119

nlambda <- 2 * p # number of penalization parameters to consider
lambda_max <- max(abs(crossprod(Xcn, y))) / n # mazimum lambda at which

— all regression coefficients go to zero

lambda_min <- lambda_max / 2000 # (arbitrartly chosen)

k <- (0:(nlambda - 1)) / nlambda

lambda_val <- lambda_max * (lambda_min / lambda_max) "k

in this way we have a logarithmic spaced penalization parameter sequence
between lambda_min and lambda_maz, namely lambdas are more densely

packed mear zero and gradually become sparser as they grow.

fitting the lasso path through glmnet to find the statistics Z_j and
Z_g7 tilde.
fit <- glmnet(Xtot, vy,

alpha = 1,

lambda = lambda_val,

standardize = FALSE,

standardize.response = FALSE,

intercept = FALSE
)
first_nz <- function(x) match(T, abs(x) > 0)
first_nz_ind <- apply(fit$beta, 1, first_nz)
sum(is.na(first_nz_ind))
Z_j <- as.numeric(ifelse(is.na(first_nz_ind), O,

< fit$lambda[first_nz_ind]) * n)

compute the statistics W_j's

W_j <- numeric(p)

ind_orig <- 1:p

W_j <- pmax(Z_jlind_origl, Z_jlind_orig + pl) * sign(Z_jlind_orig] -
< Z_jl[ind_orig + pl)

Compute the data-dependent threshold Th
W <- unique(abs(W_j))

W <- W[w = 0]

FDP <- numeric(length(W))

for (j in 1:length(W)) {

120 Chapter B. R code

t <- W[j]
FDP[j] <- (sum(W_j <= -t)) / max(sum(W_j >= t), 1)
}
j <- which(FDP <= q)
if (length(j) == 0) {
Th <- Inf
ind_knock <- integer(0)
} else {
Th <- min(W[j1)
ind_knock <- which(W_j >= Th)

ind_knock <- which(W_j >= Th) # selected indices by the knockoff method
TOTP_knockoff <- length(ind_knock) # total number of discoveries
TP_knockoff <- sum(ind_knock %in% ind_tp) # number of true discoveries
FP_knock <- sum(ind_knock %in’% ind_fp) # number of false discoveries
(FDP_knock <- FP_knock / (TOTP_knockoff + 1 / q))

(PW_iter <- TP_knockoff / tp)

Knockoff pair plot (Figure 3.5)

lim <- max(Z_j) * 8 / 7

par(pty = "s")

plot(Z_jlind_fpl, Z_j[ind_fp + pl,
pch = 19, asp = 1,

c(0, 1lim),

c(0, 1lim),

x1lim

ylim

xlab = expression(Z[j]),

ylab = expression(tilde(Z) [j]1),

cex = 0.8,

main = expression(paste("Knockoff pairs: (", Z[jl, ", ", tilde(Z)[j],
II)II))

)

abline(a = 0, b = 1, 1ty = "dashed", col = "grey50", lwd = 1.5)

Th, col = "black", 1lwd = 1.5)
1.5)

segments(x0 = Th, yO = 0 - 5, x1 = Th, yi
0 -5, y0="Th, x1 = Th, yl = Th, lwd

segments (x0
points(Z_j[ind_tpl, Z_jlind_tp + pl, col = "red", pch = 15, cex = 0.8)
xx <- ¢(-Th, -Th, Th, Th, lim * 3 / 2, 1lim * 3 / 2)

Chapter B. R code 121

yy <- ¢(lim * 3 / 2, Th, Th, O - Th, O - Th, lim * 3 / 2)
polygon(xx, yy, border = NULL, col = rgb(0.5, 0.5, 0.5, alpha = 0.1))
legend ("topright",

inset = ¢(-0.58, 0),

legend = c("Null features", "Non-null features"),
col = c("black", "red"),

pch = c(19, 15),

xpd = NA

Testing the Code programmed from scratch with the results of the actual
knockoff package of Candes and Barber. We needed a
customized version in order to adapt it to the construction shown in the
— article.
knock <- function(X) create.fixed(Xcn, method = c("equi"), randomize = F)
stats <- function(X, X_k, y, nlambda, standardize) {
stat.lasso_lambdasmax(
X = Xcn, X_k = Xtil, y = y, nlambda = 2 * p, ,
standardize = FALSE

by

result <- knockoff.filter(Xcn, y, knockoffs = knock, statistic = stats,
— fdr = q, offset = 0)

result # wector of indices selected by knockoff procedure implemente in
— the package knockoff

ind_knock # wector of indices selected by the code I've programmed

result and ind_knock are pretty much always identical wvectors.

there could still be differences since they used a computationally more
— effictent

way of constructing knockoffs (using SVD), while this code is less

— Trobust

to errors.

Wstats <- stats(Xcn, Xtil, y, nlambda = 2 * p)

W_j

Wstats

W_j, Wstats are the wvector of test statistics pretty much always

— tdentical

122 Chapter B. R code

for the same reasons explained above.

thresh <- knockoff.threshold(Wstats, fdr = q, offset = 0)
thresh

Th # these are the final data dependent threshold

pretty much always tdentical

the following are the essential commands to navigate and inspect

the functions of the Knockoff package of Candes (only those that were
interesting for this work)

and understand tts structure

getdnywhere(stat. lasso_lambdasmaz)
getdnywhere(stat.glmnet_lambdasmaz)

getAnywhere (lasso_maz_lambda)

getdnywhere (lasso_maz_lambda_glmnet)

getdnywhere(create. fized)

getdnywhere(create_equicorrelated)

get ("decompose", envir = asNamespace("knockoff"))

S T T R T T T S

getAnywhere (create. fized)

B.2.4 Effect of sparsity, feature correlation and signal magnitude

The following is the code used in the section on the effect of sparsity on FDR and

power to generate Figure 3.6 and Figure 3.7.

Comparison of Power and FDR as functions of the sparsity level

across sixz procedures: Naive, Bonferroni, Benjamini-Hochberg, Holm,
— Knockoff and Knockoff+

(equicorrelated knockoffs and non-orthogonal design)

(design matriz drawn only once, new noise at each montecarlo iteration)

rm(list = 1s())

set.seed(321)

par (mfrow = c(1, 1))

library(MASS) # to load the function murnorm

library(glmnet) # to compute lasso penalization parameters

Chapter B. R code

123

artificial generation of the design matric

setting: n >= 2p

n <- 200 # number of observations

p <- 100 # number of wariables

tp <- seq(l, 60, by = 1) # number of true positives

A <- 3.5

rho <- 0.4

q <- 0.2 # fdr upper bound

M <- 2000 # number of Montecarlo iterations

1tp <- length(tp)

FDR_bhq <- numeric(ltp)

PW_bhq <- numeric(ltp)

FDR_knock <- numeric(ltp)

PW_knock <- numeric(ltp)

FDR_knock_plus <- numeric(ltp)

PW_knock_plus <- numeric(ltp)

FDR_naive <- numeric(ltp)

PW_naive <- numeric(ltp)

FDR_bonf <- numeric(ltp)

PW_bonf <- numeric(ltp)

FDR_holm <- numeric(ltp)

PW_holm <- numeric(ltp)

Sigma <- matrix(data = rep(rho, p~2), p, p) + diag(l - rho, p) #
— covartance matriz of the data

mu <- rep(0, p) # mean vector of the data

X <- mvrnorm(n = n, mu = mu, Sigma = Sigma) # design matriz
Xc <- scale(X, center = T, scale = FALSE) # centered matriz

Xcn <- apply (X, 2, function(x) x / sqrt(sum(x~2))) # normalized design

equicorrelated knockoffs

I <- diag(p) # <dentity matriz

SIG <- crossprod(Xcn) # Gram matriz
eig_min <- min(abs(eigen(SIG)$values))

s <- min(2 * eig_min, 1)

diags <- diag(rep(s, p))

invSIG <- solve(SIG) # <nverse gram matriz

mat <- 2 * diags - diags ’%*), invSIG *J diags + diag(le-12, nrow = p)

124 Chapter B. R code

C <- chol(mat) # cholesky decomposition to find C

U <- Null(Xcn) [, 1:p] # U matriz orthogonal to the span of X

Xtil <- Xcn %*% (I - invSIG %x% diags) + U %x*}% C # knockoff matriz
Xtilc <- scale(Xtil, center = T, scale = FALSE) # centered matriz
Xtilen <- apply(Xtilc, 2, function(x) x / sqrt(sum(x~2)))

Xtot <- as.matrix(cbind(Xcn, Xtilcn))

nlambda <- 2 * p

for (i in 1:length(tp)) {
ind_tp <- c(1:tplil)
ind_fp <- c((tplil + 1):p)
FDP_iter_knock <- numeric(M)
PW_iter_knock <- numeric(M)
FDP_iter_bhq <- numeric(M)
PW_iter_bhq <- numeric(M)
FDP_iter_knock_plus <- numeric(M)
PW_iter_knock_plus <- numeric (M)
FDP_iter_naive <- numeric(M)
PW_iter_naive <- numeric(M)
FDP_iter_bonf <- numeric(M)
PW_iter_bonf <- numeric(M)
FDP_iter_holm <- numeric(M)
PW_iter_holm <- numeric(M)

betas <- matrix(c(rep(A, tpl[il), rep(0, p - tplil)), ncol = 1)

for (m in 1:M) {
eps <- rnorm(n)
y <- Xcn %*Y, betas + eps

y <- y - mean(y)

lambda_max <- max(abs(crossprod(X, y))) / n
lambda_min <- lambda_max / 2000
k <- (0:(nlambda - 1)) / nlambda

lambda_val <- lambda_max * (lambda_min / lambda_max) "k

lasso path to compute statistics Z_j and Z_j tilde
fit <- glmnet(Xtot, vy,

Chapter B. R code 125

alpha = 1,
lambda = lambda_val,
standardize = FALSE,

standardize.response = FALSE

first_nz <- function(x) match(T, abs(x) > 0)
first_nz_ind <- apply(fit$beta, 1, first_nz)

sum(is.na(first_nz_ind))

Z_j <- as.numeric(ifelse(is.na(first_nz_ind), O,

< fit$lambda[first_nz_ind] * n))

compute the statistics W_j's

W_j <- numeric(p)

ind_orig <- 1:p

W_j <- pmax(Z_jlind_orig], Z_j[ind_orig + p]) * sign(Z_j[ind_orig] -
< Z_jlind_orig + p])

Compute the data-dependent threshold for Knockoff and Knockoff+

W <- unique(abs(W_j))

W <- W[W !'= 0]

FDP <- numeric(length(W))

FDP_plus <- numeric(length(W))

for (j in 1:length(W)) {
t <- W[jl
FDP_plus[j] <- (sum(W_j <= -t) + 1) / max(sum(W_j >= t), 1)
FDP[j] <- sum(W_j <= -t) / max(sum(W_j >= t), 1)

j <- which(FDP <= q)

j_plus <- which(FDP_plus <= q)

if (length(j) == 0) {
Th <- Inf

126 Chapter B. R code

ind_knock <- integer(0)
} else {
Th <- min(W[j1)
ind_knock <- which(W_j >= Th)

ind_knock <- which(W_j >= Th)

TOTP_knockoff <- length(ind_knock)

TP_knockoff <- sum(ind_knock %in’ ind_tp)

FP_knock <- sum(ind_knock %in’% ind_fp)
FDP_iter_knock[m] <- FP_knock / max(TOTP_knockoff, 1)
PW_iter_knock[m] <- TP_knockoff / tp[i]

if (length(j_plus) == 0) {
Th_plus <- Inf
ind_knock_plus <- integer(0)
} else {
Th_plus <- min(W[j_plus])
ind_knock_plus <- which(W_j >= Th_plus)

ind_knock_plus <- which(W_j >= Th_plus)

TOTP_knockoff_plus <- length(ind_knock_plus)

TP_knockoff_plus <- sum(ind_knock_plus %inJ, ind_tp)

FP_knock_plus <- sum(ind_knock_plus %in) ind_£fp)
FDP_iter_knock_plus[m] <- FP_knock_plus / max(TOTP_knockoff_plus, 1)
PW_iter_knock_plus[m] <- TP_knockoff_plus / tpl[il

Benjamini-Hochberg

mod <- lm(y ~ Xcn - 1) # no intercept

pvalues <- coef (summary(mod)) [, 4]

cutoff <- max(c(0, which(sort(pvalues) <= q * (1:p) / p)))
ind_bhq <- which(pvalues <= q * cutoff / p)

TOTP_bhq <- length(ind_bhq)

TP_bhq <- sum(ind_bhq %in)% ind_tp)

FP_bhqg <- sum(ind_bhq %in% ind_fp)

FDP_iter_bhq[m] <- FP_bhq / max(TOTP_bhqg, 1)

Chapter B. R code 127

PW_iter_bhq[m] <- TP_bhq / tplil

Naive

alpha <- q

ind_naive <- which(pvalues <= alpha)

totp_naive <- length(ind_naive)

tp_naive <- sum(ind_naive %in’ ind_tp)

fp_naive <- totp_naive - tp_naive
FDP_iter_naive[m] <- fp_naive / max(totp_naive, 1)

PW_iter_naive[m] <- tp_naive / tpl[il

Bonferroni

ind_bonf <- which(pvalues <= alpha / p)
totp_bonf <- length(ind_bonf)

tp_bonf <- sum(ind_bonf %inj% ind_tp)

fp_bonf <- totp_bonf - tp_bonf

FDP_iter_bonf [m] <- fp_bonf / max(totp_bonf, 1)
PW_iter_bonf[m] <- tp_bonf / tpl[il

Holm
indices <- c(1:p)
i0 <- min(which(sort(pvalues) > alpha / (p - indices + 1)))
ind_holm <- which(pvalues < alpha / (p - i0 + 1))
totp_holm <- length(ind_holm)
tp_holm <- sum(ind_holm %in% ind_tp)
fp_holm <- totp_holm - tp_holm
FDP_iter_holm[m] <- fp_holm / max(totp_holm, 1)
PW_iter_holm[m] <- tp_holm / tpl[il

}

FDR_knock[i] <- mean(FDP_iter_knock)

PW_knock[i] <- mean(PW_iter_knock)

FDR_bhq[i] <- mean(FDP_iter_bhq)
PW_bhq[i] <- mean(PW_iter_bhq)

FDR_knock_plus[i] <- mean(FDP_iter_knock_plus)
PW_knock_plus[i] <- mean(PW_iter_knock_plus)

128 Chapter B. R code

FDR_naive[i] <- mean(FDP_iter_naive)

PW_naive[i] <- mean(PW_iter_naive)

FDR_bonf[i] <- mean(FDP_iter_bonf)
PW_bonf[i] <- mean(PW_iter_bonf)

FDR_holm[i] <- mean(FDP_iter_holm)
PW_holm[i] <- mean(PW_iter_holm)

Comparison of Powers as functions of sparsity level
across sixz multiple testing approaches (Figure 3.6)
plot(tp, PW_knock * 100,

type = "1", col = "darkorange",

xlab = "Sparsity Level", ylab = "Power(%)", main = "Power",

ylim = c¢(0, max(PW_naive * 100)), 1lwd = 1.2, cex.axis = 0.8, cex.lab =

— 0.8, cex.main = 0.9
)
points(tp, PW_bhq * 100, type = "1", col = "blue", lwd = 1.2)
points(tp, PW_knock_plus * 100, type = "1", col = "purple", lwd = 1.2)
points(tp, PW_naive * 100, type = "1", col = "green", lwd = 1.2)
points(tp, PW_holm * 100, type = "1", col = "red", lwd = 1.2)
lines(tp, PW_bonf * 100, 1ty = "dashed", col = "deepskyblue", lwd = 1.2)
legend(
x =44.4, y = 46,
legend = c("Naive", "BHq", "Holm", "Bonf.", "Knockoff", "Knockoff+"),
col = c(
"green", "blue", "red", "deepskyblue",
"darkorange", "purple"
Vs
1ty

c(1, 1, 1, 2, 1, 1),
cex = 0.6,

1wd 1.1,

Comparison of FDRs as functions of sparstity level

Chapter B. R code 129

across siz multiple testing approaches (Figure 3.7)
plot(tp, FDR_knock * 100,

ylim = c(0, max(FDR_naive * 100)),

type = "1", col = "darkorange",

xlab = "Sparsity Level", ylab = "FDR(%)", main = "False Discovery

— Rate", 1lwd = 1.2,

cex.axis = 0.8, cex.lab = 0.8, cex.main = 0.9
)
abline(h = q * 100, 1ty = "dashed", lwd = 1.2, col = "grey50")
points(tp, FDR_bhgq * 100, type = "1", col = "blue", lwd = 1.2)
points(tp, FDR_knock_plus * 100, type = "1", col = "purple", lwd = 1.2)
points(tp, FDR_naive * 100, type = "1", col = "green", lwd = 1.2)
points(tp, FDR_holm * 100, type = "1", col = "red", lwd = 1.2)
lines(tp, FDR_bonf * 100, 1ty = "dashed", col = "deepskyblue", lwd = 1.2)
legend ("topright",

legend = c("Naive", "BHq", "Holm", "Bonf.", "Knockoff", "Knockoff+",

< expression(alpha)),

col = c(

"green", "blue", "red", "deepskyblue",

"darkorange", "purple", "grey50"

b

lty = c(1, 1, 1, 2, 1, 1, 2),
cex = 0.65,

lwd = 1.1,

The following is the code used in the section on the effect of feature correlation on

FDR and power to generate Figure 3.8 and Figure 3.9.

Comparison of Power and FDR as functions of the feature correlation
across six procedures: Naive, Bonferroni, Benjamini-Hochberg, Holm,
— Knockoff and Knockoff+

(equicorrelated knockoffs and mon-orthogonal design)

design and error and response redrawn at each montecarlo tteration

vector of betas fized.

rm(list = 1sQ))

130

Chapter B. R code

set.seed(321)

par(mfrow = c(1, 1))

library(MASS) # to load the function murnorm
library(glmnet)

library(knockoff)

artificial generation of the design matric
#mn >= 2p

n <- 300 # number of observations

p <- 150 # number of wariables

tp <- 10 # number of true positives

A <- 3.5

q <- 0.2 # fdr upper bound

ind_tp <- c(1:tp)

ind_fp <- c((tp + 1):p)

M <- 800 # number of Montecarlo iterations
rho <- seq(0, 0.99, length.out = 30)
FDR_bhq <- numeric(length(rho))

PW_bhq <- numeric(length(rho))
FDR_knock <- numeric(length(rho))
PW_knock <- numeric(length(rho))
FDR_knock_plus <- numeric(length(rho))
PW_knock_plus <- numeric(length(rho))
FDR_naive <- numeric(length(rho))
PW_naive <- numeric(length(rho))
FDR_bonf <- numeric(length(rho))
PW_bonf <- numeric(length(rho))
FDR_holm <- numeric(length(rho))
PW_holm <- numeric(length(rho))

mu <- rep(0, p)

betas <- matrix(c(rep(A, tp), rep(0, p - tp)), ncol = 1)

for (i in 1:length(rho)) {
FDP_iter_knock <- numeric(M)
PW_iter_knock <- numeric(M)
FDP_iter_bhq <- numeric(M)
PW_iter_bhq <- numeric(M)

Chapter B. R code 131

FDP_iter_knock_plus <- numeric(M)
PW_iter_knock_plus <- numeric (M)
FDP_iter_naive <- numeric(M)
PW_iter_naive <- numeric(M)
FDP_iter_bonf <- numeric(M)
PW_iter_bonf <- numeric(M)
FDP_iter_holm <- numeric(M)
PW_iter_holm <- numeric(M)

Sigma <- matrix(data = rep(rhol[il, p~2), p, p) + diag(l - rholil, p)

for (m in 1:M) {
X <- mvrnorm(n = n, mu = mu, Sigma = Sigma)
Xc <- scale(X, center = T, scale = FALSE) # centered matriz
Xcn <- apply (X, 2, function(x) x / sqrt(sum(x~2)))
y <- Xcn 7*J betas + rnorm(n)

y <- y - mean(y)

equicorrelated knockoffs
I <- diag(p) # identity matriz

SIG <- crossprod(Xcn) # Gram matriz

eig_min <- min(eigen(SIG)$values)
s <- min(2 * eig_min, 1)

diags <- diag(rep(s, p))

Inverse gram matric
invSIG <- solve(SIG)
mat <- 2 * diags - diags %*’ invSIG %x), diags + diag(le-12, nrow = p)

Cholesky decomposition to find C

C <- chol(mat)

U <- Null(Xcn) [, 1:p] # U matriz orthogonal to the span of X

Xtil <- Xen %% (I - invSIG %*J, diags) + U Ux*), C # knockoff matriz
Xtilc <- scale(Xtil, center = T, scale = FALSE) # centered matriz
Xtilen <- apply(Xtilc, 2, function(x) x / sqrt(sum(x~2)))

Xtot <- as.matrix(cbind(Xcn, Xtilcn))

132 Chapter B. R code

nlambda <- 2 * p

lambda_max <- max(abs(crossprod(X, y))) / n
lambda_min <- lambda_max / 2000

k <- (0:(nlambda - 1)) / nlambda

lambda_val <- lambda_max * (lambda_min / lambda_max) "k

Lasso path to compute statistics Z_j and Z_j tilde
fit <- glmnet(Xtot, y,

alpha = 1,

lambda = lambda_val,

standardize = FALSE,

standardize.response = FALSE
)
first_nz <- function(x) match(T, abs(x) > 0)
first_nz_ind <- apply(fit$beta, 1, first_nz)
sum(is.na(first_nz_ind))
Z_j <- as.numeric(ifelse(is.na(first_nz_ind), O,

« fit$lambda[first_nz_ind] * n))

compute the statistics W_j's

W_j <- numeric(p)

ind_orig <- 1:p

W_j <- pmax(Z_jlind_orig], Z_j[ind_orig + p]) * sign(Z_j[ind_orig] -
< Z_jlind_orig + p])

Compute the data-dependent threshold for Knockoff and Knockoff+
W <- unique(abs(W_j))
W <- Ww = 0]
FDP_plus <- numeric(length(W))
FDP <- numeric(length(W))
for (j in 1:length(W)) {
t <- W[j]
FDP_plus[j] <- (sum(W_j <= -t) + 1) / max(sum(W_j >= t), 1)
FDP[j] <- sum(W_j <= -t) / max(sum(W_j >= t), 1)

j_plus <- which(FDP_plus <= q)

Chapter B. R code 133

j <- which(FDP <= q)

if (length(j) == 0) {
Th <- Inf
ind_knock <- integer(0)
} else {
Th <- min(W[j])
ind_knock <- which(W_j >= Th)

ind_knock <- which(W_j >= Th)

TOTP_knockoff <- length(ind_knock)

TP_knockoff <- sum(ind_knock %in% ind_tp)

FP_knock <- sum(ind_knock %in’% ind_fp)
FDP_iter_knock[m] <- FP_knock / max(TOTP_knockoff, 1)
PW_iter_knock[m] <- TP_knockoff / tp

if (length(j_plus) == 0) {
Th_plus <- Inf
ind_knock_plus <- integer(0)
} else {
Th_plus <- min(W[j_plus])
ind_knock_plus <- which(W_j >= Th_plus)

ind_knock_plus <- which(W_j >= Th_plus)

TOTP_knockoff_plus <- length(ind_knock_plus)

TP_knockoff_plus <- sum(ind_knock_plus %in), ind_tp)

FP_knock_plus <- sum(ind_knock_plus %in’ ind_£fp)
FDP_iter_knock_plus[m] <- FP_knock_plus / max(TOTP_knockoff_plus, 1)
PW_iter_knock_plus[m] <- TP_knockoff_plus / tp

Benjamini-Hochberg

mod <- Im(y ~ Xcn - 1) # no intercept

pvalues <- coef (summary(mod)) [, 4]

cutoff <- max(c(0, which(sort(pvalues) <= q * (1:p) / p)))
ind_bhq <- which(pvalues <= q * cutoff / p)

134 Chapter B. R code

TOTP_bhq <- length(ind_bhq)

TP_bhq <- sum(ind_bhq %inj% ind_tp)

FP_bhqg <- sum(ind_bhq %in% ind_fp)
FDP_iter_bhq[m] <- FP_bhq / max(TOTP_bhq, 1)
PW_iter_bhq[m] <- TP_bhq / tp

Naive

alpha <- q

ind_naive <- which(pvalues <= alpha)

totp_naive <- length(ind_naive)

tp_naive <- sum(ind_naive %in’% ind_tp)

fp_naive <- totp_naive - tp_naive
FDP_iter_naive[m] <- fp_naive / max(totp_naive, 1)

PW_iter_naive[m] <- tp_naive / tp

Bonferront

ind_bonf <- which(pvalues <= alpha / p)
totp_bonf <- length(ind_bonf)

tp_bonf <- sum(ind_bonf %inj ind_tp)

fp_bonf <- totp_bonf - tp_bonf

FDP_iter_bonf [m] <- fp_bonf / max(totp_bonf, 1)
PW_iter_bonf [m] <- tp_bonf / tp

Holm
indices <- c(1l:p)
i0 <- min(which(sort(pvalues) > alpha / (p - indices + 1)))
ind_holm <- which(pvalues < alpha / (p - i0 + 1))
totp_holm <- length(ind_holm)
tp_holm <- sum(ind_holm %inj ind_tp)
fp_holm <- totp_holm - tp_holm
FDP_iter_holm[m] <- fp_holm / max(totp_holm, 1)
PW_iter_holm[m] <- tp_holm / tp

}

FDR_knock[i] <- mean(FDP_iter_knock)

PW_knock[i] <- mean(PW_iter_knock)

FDR_bhq[i] <- mean(FDP_iter_bhq)

Chapter B. R code 135

PW_bhq[i] <- mean(PW_iter_bhq)

FDR_knock_plus[i] <- mean(FDP_iter_knock_plus)
PW_knock_plus[i] <- mean(PW_iter_knock_plus)

FDR_naive[i] <- mean(FDP_iter_naive)

PW_naive[i] <- mean(PW_iter_naive)

FDR_bonf[i] <- mean(FDP_iter_bonf)
PW_bonf[i] <- mean(PW_iter_bonf)

FDR_holm[i] <- mean(FDP_iter_holm)
PW_holm[i] <- mean(PW_iter_holm)

Comparison of Powers as functions of feature correlation
across siz multiple testing approaches (Figure 3.8)
plot(rho, PW_knock * 100,

type = "1", col = "darkorange",

xlab

"Feature correlation", ylab = "Power(’%)", main = "Power",

ylim = c(-2, max(PW_naive * 100)), lwd = 1.2, cex.axis = 0.8, cex.lab =
-~ 0.8, cex.main = 0.9
)
points(rho, PW_bhq * 100, type = "1", col = "blue", lwd = 1.2)
points(rho, PW_knock_plus * 100, type = "1", col = "purple", lwd = 1.2)
points(rho, PW_naive * 100, type = "1", col = "green", lwd = 1.2)
points(rho, PW_holm * 100, type = "1", col = "red", lwd = 1.2)
lines(rho, PW_bonf * 100, 1ty = "dashed", col = "deepskyblue", lwd = 1.2)
legend("topright",
legend = c("Naive", "BHq", "Holm", "Bonf.", "Knockoff", "Knockoff+"),
col = c(

"green", "blue", "red", "deepskyblue",

"darkorange", "purple"
Vo
1ty = c(1, 1, 1, 2, 1, 1),
cex = 0.57,
lwd = 1.1,

136 Chapter B. R code

Comparison of FDEs as functions of feature correlation
across stz multiple testing approaches (Figure 3.9)
plot(rho, FDR_knock * 100,

ylim = c(0, 100),

type = "1", col = "darkorange",

xlab = "Feature correlation", ylab = "FDR(%)", main = "False Discovery

— Rate", 1lwd = 1.2, cex.axis = 0.8, cex.lab = 0.8, cex.main = 0.9
)
abline(h = q * 100, 1ty = "dashed", lwd = 1.2, col = "grey50")
points(rho, FDR_bhq * 100, type = "1", col = "blue", lwd = 1.2)
points(rho, FDR_knock_plus * 100, type = "1", col = "purple", lwd = 1.2)
points(rho, FDR_naive * 100, type = "1", col = "green", lwd = 1.2)
points(rho, FDR_holm * 100, type = "1", col = "red", lwd = 1.2)
lines(rho, FDR_bonf * 100, 1ty = "dashed", col = "deepskyblue", lwd = 1.2)
legend(

x = 0.75, y = 75,

legend = c("Naive", "BHq", "Holm", "Bonf.", "Knockoff", "Knockoff+",

— expression(alpha)),

col = c(

"green", "blue", "red", "deepskyblue",

"darkorange", "purple", "grey50"

b

lty = c(1, 1, 1, 2, 1, 1, 2),
cex = 0.57,

lwd = 1.1,

The following is the code used in the section on the effect of signal magnitude on

FDR and power to generate Figure 3.10 and Figure 3.11

Comparison of Power and FDR as functions of the signal amplitude

across stz procedures: Naive, Bonferront, Benjamint-Hochberg, Holm,
— Knockoff and Knockoff+

(equicorrelated knockoffs and non-orthogonal design)

Design matrixz drawn only once, new noise at each montecarlo iteration

Chapter B. R code 137

rm(list = 1s())

set.seed(321)

par (mfrow = c(1, 1))

library(MASS) # to load the function murnorm
library(glmnet)

artifictal generation of the design matric

setting: n >= 2p

n <- 100 # number of observations

p <- 50 # number of wariables

rho <- 0.4 # features correlation

tp <- 8 # number of true positives

AA <- seq(from = -10, to = 10, length.out = 60) # signal amplitude vector
q <- 0.2 # FDR upper bound

ind_tp <- c(l:tp) # <ndices of true positives

ind_fp <- c((tp + 1):p) # indices of false positives

M <- 2000 # number of Montecarlo iterations

nlambda <- 2 * p # number of lasso penalization parameter to compute using
— glmnet
W_j <- numeric(p) # initializing knockoff test statistics

ind_orig <- 1:p

anitializations of wvectors of Powers and FDR
FDR_bhq <- numeric(length(AA))

PW_bhq <- numeric(length(AA))

FDR_knock <- numeric(length(AA))
PW_knock <- numeric(length(AA))
FDR_knock_plus <- numeric(length(AA))
modFDR_knock_plus <- numeric(length(AA))
PW_knock_plus <- numeric(length(AA))
FDR_naive <- numeric(length(AA))
PW_naive <- numeric(length(AA))

FDR_bonf <- numeric(length(AA))

PW_bonf <- numeric(length(AA))

138 Chapter B. R code

FDR_holm <- numeric(length(AA))
PW_holm <- numeric(length(AA))

Knockoff construction

destgn matriz X is generated by sampling each row from a N(mu,Sigma)
Sigma <- matrix(data = rep(rho, p~2), p, p) + diag(l - rho, p) #

— covariance matric

mu <- rep(0, p) # mean vector

X <- mvrnorm(n = n, mu = mu, Sigma = Sigma) # fized design

Xc <- scale(X, center = T, scale = FALSE) # centered matriz

Xcn <- apply (X, 2, function(x) x / sqrt(sum(x~2))) # normalized design
I <- diag(p) # tdentity matric

SIG <- crossprod(Xcn) # Gram matriz

equicorrelated knockoffs construction

eig_min <- min(eigen(SIG)$values)

s <- min(2 * eig_min, 1)

diags <- diag(rep(s, p))

inverse gram matriT

invSIG <- solve(SIG)

Knockoff formula construction

mat <- 2 * diags - diags %*’ invSIG %x), diags + diag(le-12, nrow = p)
C <- chol(mat)

U <- Null(Xen) [, 1:p]

Xtil <- Xen %% (I - invSIG %x*), diags) + U Ux*), C # matriz of knockoffs
Xtilc <- scale(Xtil, center = T, scale = FALSE) # centered knockoffs
Xtilen <- apply(Xtilc, 2, function(x) x / sqrt(sum(x~2))) # normalized
— knockoffs

Xtot <- as.matrix(cbind(Xcn, Xtilcn)) # column-wise concatanation matrix

first for cycle used to set the true signal amplitude
for (i in 1:length(AA)) {

A <- AATH]

FDP_iter_knock <- numeric(M)

PW_iter_knock <- numeric(M)

FDP_iter_bhq <- numeric(M)

PW_iter_bhq <- numeric(M)

Chapter B. R code 139

FDP_iter_knock_plus <- numeric(M)
PW_iter_knock_plus <- numeric (M)
FDP_iter_naive <- numeric(M)
PW_iter_naive <- numeric(M)
FDP_iter_bonf <- numeric(M)
PW_iter_bonf <- numeric(M)
FDP_iter_holm <- numeric(M)
PW_iter_holm <- numeric(M)
modFDR_iter_knock_plus <- numeric(M)
betas <- matrix(data = c(rep(A, tp), rep(0, p - tp)), ncol = 1) # true
— regression coefficients

sparse wvector of betas all equal to 4.

for (m in 1:M) {
W_j <- numeric(p)
eps <- rnorm(n)
y <- Xcn %*), betas + eps # model artificially created

y <- y - mean(y)

lambda_max <- max(abs(crossprod(Xcm, y))) / n
lambda_min <- lambda_max / 2000
k <- (0:(nlambda - 1)) / nlambda

lambda_val <- lambda_max * (lambda_min / lambda_max) “k

fit <- glmnet(Xtot, y,
alpha = 1,
lambda = lambda_val,
standardize = FALSE,

standardize.response = FALSE

first_nz <- function(x) match(T, abs(x) > 0)

first_nz_ind <- apply(fit$beta, 1, first_nz)

Z_j <- as.numeric(ifelse(is.na(first_nz_ind), O,

« fit$lambda[first_nz_ind] * n))

140

Chapter B. R code

compute the statistics W_j's

W_j <- pmax(Z_jlind_orig]l, Z_jlind_orig + pl) * sign(Z_jlind_orig] -
< Z_jlind_orig + pl)

Compute the data-dependent threshold (for Knockoff and Knockoff+)

W <- unique(abs(W_j))

W <- W[W !'= 0]

FDP <- numeric(length(W))

FDP_plus <- numeric(length(W))

for (j in 1:length(W)) {
t <- W[jl
FDP[j] <- sum(W_j <= -t) / max(sum(W_j >= t), 1)
FDP_plus[j] <- (sum(W_j <= -t) + 1) / max(sum(W_j >= t), 1)

j < which(FDP <= q)
j_plus <- which(FDP_plus <= q)

if (length(j) == 0) {
Th <- Inf
ind_knock <- integer(0)
} else {
Th <- min(W[j])
ind_knock <- which(W_j >= Th)

ind_knock <- which(W_j >= Th)

TOTP_knockoff <- length(ind_knock)

TP_knockoff <- sum(ind_knock %in% ind_tp)

FP_knock <- sum(ind_knock %in’% ind_fp)
FDP_iter_knock[m] <- FP_knock / max(TOTP_knockoff, 1)
PW_iter_knock[m] <- TP_knockoff / tp

if (length(j_plus) == 0) {
Th_plus <- Inf

Chapter B. R code 141

ind_knock_plus <- integer(0)

} else {
Th_plus <- min(W[j_plus])
ind_knock_plus <- which(W_j >= Th_plus)

ind_knock_plus <- which(W_j >= Th_plus)

TOTP_knockoff_plus <- length(ind_knock_plus)

TP_knockoff_plus <- sum(ind_knock_plus %inJ, ind_tp)

FP_knock_plus <- sum(ind_knock_plus %in) ind_£fp)
FDP_iter_knock_plus[m] <- FP_knock_plus / max(TOTP_knockoff_plus, 1)
PW_iter_knock_plus[m] <- TP_knockoff_plus / tp
modFDR_iter_knock_plus[m] <- FP_knock_plus / (TOTP_knockoff_plus + 1
- /qQ

Benjamini-Hochberg

mod <- 1lm(y ~ Xcn - 1) # no intercept

pvalues <- coef (summary(mod)) [, 4]

cutoff <- max(c(0, which(sort(pvalues) <= q * (1:p) / p)))
ind_bhq <- which(pvalues <= q * cutoff / p)

TOTP_bhq <- length(ind_bhq)

TP_bhq <- sum(ind_bhq %in}% ind_tp)

FP_bhq <- sum(ind_bhq %in% ind_£fp)

FDP_iter_bhq[m] <- FP_bhq / max(TOTP_bhqg, 1)
PW_iter_bhq[m] <- TP_bhq / tp

Nazive

alpha <- q

ind_naive <- which(pvalues <= alpha)

totp_naive <- length(ind_naive)

tp_naive <- sum(ind_naive %inJ ind_tp)

fp_naive <- totp_naive - tp_naive
FDP_iter_naive[m] <- fp_naive / max(totp_naive, 1)

PW_iter_naive[m] <- tp_naive / tp

Bonferroni

ind_bonf <- which(pvalues <= alpha / p)

142 Chapter B. R code

totp_bonf <- length(ind_bonf)

tp_bonf <- sum(ind_bonf %inj% ind_tp)

fp_bonf <- totp_bonf - tp_bonf

FDP_iter_bonf [m] <- fp_bonf / max(totp_bonf, 1)
PW_iter_bonf [m] <- tp_bonf / tp

Holm

indices <- c(1:p)

i0 <- min(which(sort(pvalues) > alpha / (p - indices + 1)))
ind_holm <- which(pvalues < alpha / (p - 10 + 1))

totp_holm <- length(ind_holm)

tp_holm <- sum(ind_holm %in% ind_tp)

fp_holm <- totp_holm - tp_holm

FDP_iter_holm[m] <- fp_holm / max(totp_holm, 1)
PW_iter_holm[m] <- tp_holm / tp

FDR_knock[i] <- mean(FDP_iter_knock)
PW_knock[i] <- mean(PW_iter_knock)

FDR_bhq[i] <- mean(FDP_iter_bhq)

PW_bhq[i] <- mean(PW_iter_bhq)
FDR_knock_plus[i] <- mean(FDP_iter_knock_plus)
PW_knock_plus[i] <- mean(PW_iter_knock_plus)
modFDR_knock_plus[i] <- mean(modFDR_iter_knock_plus)
FDR_naive[i] <- mean(FDP_iter_naive)
PW_naive[i] <- mean(PW_iter_naive)

FDR_bonf [i] <- mean(FDP_iter_bonf)

PW_bonf [i] <- mean(PW_iter_bonf)

FDR_holm[i] <- mean(FDP_iter_holm)

PW_holm[i] <- mean(PW_iter_holm)

Compartson of Powers functions (signal amplitude on the z-azis)
across siz multiple testing approaches (Figure 3.10)
plot (AA, PW_knock * 100,

type = "1", col = "darkorange",

xlab = "Signal Magnitude", ylab = "Power(%)", main = "Power function",

Chapter B. R code 143

ylim = c(0, max(PW_naive * 100)), lwd = 1.2, cex.axis = 0.8, cex.lab =
- 0.8, cex.main = 0.9
)
points(AA, PW_bhq * 100, type = "1", col = "blue", lwd = 1.2)
points(AA, PW_knock_plus * 100, type = "1", col = "purple", lwd = 1.2)
points(AA, PW_naive * 100, type = "1", col = "green", lwd = 1.2)
points(AA, PW_holm * 100, type = "1", col = "red", lwd = 1.2)
lines(AA, PW_bonf * 100, 1ty = "dashed", col = "deepskyblue", lwd = 1.2)
legend ("bottomright",
legend = c("Naive", "BHq", "Holm", "Bonf.", "Knockoff", "Knockoff+"),
col = c(
"green", "blue", "red", "deepskyblue",
"darkorange", "purple"
),
1ty

C(l, 1) 1, 2) 15 1)5
cex = 0.5,

1wd 1Lodlg

Comparison of FDRs as functions of the signal amplitude
across siz multiple testing approaches (Figure 3.11)
plot (AA, FDR_knock * 100,

c(0, max(FDR_naive * 100)),

ylim
type = "1", col = "darkorange",

xlab = "Signal Magnitude",

ylab = "FDR(%)", main = "FDR", lwd = 1.2, cex.axis = 0.8, cex.lab =

- 0.8, cex.main = 0.9

)
abline(h = q * 100, 1ty = "dashed", col = "grey50", lwd = 1.2)
points(AA, FDR_bhq * 100, type = "1", col = "blue", lwd = 1.2)

points(AA, FDR_knock_plus * 100, type = "1", col = "purple", lwd = 1.2)
points(AA, FDR_naive * 100, type = "1", col = "green", lwd = 1.2)
points(AA, FDR_holm * 100, type = "1", col = "red", lwd = 1.2)
points(AA, modFDR_knock_plus * 100, type = "1", col = "darkgreen", lwd =
o 1.2)

lines(AA, FDR_bonf * 100, 1ty = "dashed", col = "deepskyblue", lwd = 1.2)

144 Chapter B. R code

legend(
"topright",
legend = c("Naive", "BHq", "Holm", "Bonf.", "Knockoff", "Knockoff+",
— '"modif. FDR (K.+)", expression(alpha)),
col = c(
"green", "blue", "red", "deepskyblue",

"darkorange", "purple", "darkgreen", "grey50"

Vs

lty = c(1, 1, 1, 2, 1, 1, 1, 2),
cex = 0.4,

lwd = 1.1,

B.2.5 HIV data application

The following is the code to recreate the entire analysis on HIV-1 Protease mutations
associated with Nelfinavir resistance. This code includes both the data pre-processing

phase and the assessment of competing multiple testing procedures. It is also provided

the code used to generate Figure 3.12 and Figure 3.13

Exzperiment on real data: HIV-1 resistance

Our attenation ts focused on HIV 1 restistance to Protease inhibitors, in

— particular

to the antiviral NFV (Nelfinavir).

link for the matriz predictors and responses (matriz of positions of the
— mutations and drug resistance measurements

for 7 protease inhibitors) https://hivdb.stanford.edu/_wrapper/pages/pu
— blished_analysis/genophenoPNAS2006/DATA/PI_DATA. txt

link for the TSM list containing relevant mutation of the HIV-1 protease
— regardless of the specific protein inhibitor used

https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/M
— UTATIONLISTS/NP_TSM/PI

rm(list = setdiff(1s(), c("PI_data", "PI_TSM")))

Chapter B. R code 145

postition selected by treatement selected mutation (approzimately the
- ground truth)

pos <- PI_TSM$V1

npos <- length(pos) # number of mutations selected

amm <- PI_TSM$V2

Structure of PI_TSM: each row ts a relevant postition in the chain of

HIV protease that has provably shown mutations. In the second column

each cell 1s a list of mutation at a specific position in the Protease
— chain

spectified in the first column.

The following is the code to create the full notations (like ML6I etc
- .)
for the mutations in table PI_TSM (whose structure is not directly

M46I, 1309 etc...)

wt is the wild type sequence (not-mutated of HIV-1) protease

1t has been taken from https://www.uniprot.org/uniprotkb/090777/entry
wt <- unlist(strsplit("PQVTLWQRPIVTIKIGGQLKEALLDTGADDTVLEEMSLPGKWKPKMIGGT
— GGFIKVRQYDQVSIEICGHKAIGTVLIGPTPVNIIGRNLLTQLGCTLNF", split =

< "))

names (wt) <- as.character(1:99)

amm <- strsplit(amm, " ")
amm_unlist <- unlist(amm)
namm <- length(amm_unlist)
wtmut <- list()
k<-1
for (i in 1:npos) {
position <- pos[i]
amm_position <- unlist(amm[[i]])
nmu <- length(amm_position)
for (j in 1:nmu) {
wtmut [[k]] <- paste(c(wt[position], position, amm_position[j]),

< collapse = "")

146 Chapter B. R code

k <-k +1

b
length (wtmut)
wtmut contains the full list of mutations in TSM list for HIV-1 protease

the list 7s composed by mutation with the notation such as M{61

data <- PI_data

adjusting the column mnames

colnames(data) <- datal[l,] # naming the columns with the first row
data <- datal[-1, 1 # removing the first column of %d's

n <- dim(data)[1] # the number of initial rows

- are missing value that are structural

the NA in the response drug reststance are wmportant to take into

— account

summary(is.na(data)) # assessing the presence of NA in the drug restistance
— measurements
We choose the drug Nelfinavir (among the Protease inhibitors)

because it has the least amount of missing values.

These are the indices of missing values in the response of drug

— Tresistance

ind_na_nfv <- which(is.na(data$NFV) == TRUE) # tsolating the inidices
length(ind_na_nfv)

The response 1s computed as a log-fold change, namely is the log

base = 10 of the ratio between

the concentration of drug to imhibit 50/ of the replication of the wvirus
when the HIV-1 Protease ts mutated

divided by the concentration of drug needed to rTeduce by 50/ the

— replication of

the virus when HIV 1 protease is wild type

y <- as.numeric(data$NFV[-ind_na_nfv])

1f y=1 the patient virus is resistant as wild type

1f y>1 patient virus s more resistant than wild type

1f y<l patient virus is less restistant than wild type

Chapter B. R code 147

We also remove from the predictors the rows that have a missing value in
— the response
of log-fold change of Nelfinavir
data <- data[-ind_na_nfv,]
We remove all responses (in this way dataX ts the matriz of predictors)
dataX <- datal, -c(1:10)]
structure of dataX: we have a matriz approxrimately 844x99
where each columns represent a posttion. in this way we have for a fized
position/column all ammino actids mutated at that specific position
obviously we could have several different mutations at the same
— posttion.
We would like to have specific mutations like M461 instead of positions
- like P70
as features. In dataX the value in cell (%,75) is either - &if the the
— HIV-1
Protease sample of the pattient © doesn't show a mutation in postition j
or 1t is the first letter of the ammino acid that represents the
— mutation 1f the mut. s actually present.
we would like to have only "-" or letters in dataX; We don't want any
— other symbol.
therefore we replace "." with "-".
mut_list <- list()
n_X <- dim(dataX) [1]
p_X <- dim(dataX) [2]
anyNA (dataX)
for (j in 1:p_X) {

for (i in 1:n_X) {

if (dataX[i, jl == ".") {
dataX[i, jl <- "-"

b

In the following for cycles we create the list of all mutations in the
— standard notation

that can be found in dataX. So mut_list is a list of characters such as
M46I, I10L and so on.

k<-1

148 Chapter B. R code

for (j in 1:p_X) {
for (i in 1:n_X) {

if (dataX[i, j]1 '= "-") {
mut_list[k] <- paste(c(wt[jl, j, dataX[i, jl), collapse = "")
k <- k + 1

+

b

Obviously we will have several mutations that will be ezxzactly equal.
therefore we take the wvector of unique mutations umut.

numut <- length(unique(mut_list))

umut <- unique(mut_list)

with the following code we want to create a list of lists.

more precisely we want a list for each HIV-1 sample including all
— mutations appearing for that

sample. so we will have a list of n_X lists, where n_X list 7s the
number of filtered patients. each list in the big list will have a
— different number

of mutations since different samples have different mutations

mut_grouped_by_sample <- list() # list of list of mutations for each
— sample of HIV1 protease
for (i in 1:n_X) {

mut_list_i <- list()

k <- 1
for (j in 1:p_X) {
if (dataX[i, j] '= "-") {
mut_list_i[k] <- paste(c(wt[jl, j, dataX[i, jl), collapse = "")
k <- k + 1
}
+
mut_grouped_by_sample[[i]] <- mut_list_i
}

str (mut_grouped_by_sample)
now we are able to create a matriz having on the columns unique
— mutations in standard notations

and on the rows the HIV-1 Protease samples. The entry in cell (4,7)

Chapter B. R code 149

will be either 0 or 1 depending whether sample t-th of HIV-1 Protease
— contains the mutation

that labels column j-th or not.

X <- matrix(data = 0, nrow = n_X, ncol = length(umut))
colnames(X) <- umut
for (i in 1:n_X) {
for (j in 1:length(umut)) {
X[i, j] <- as.numeric(ifelse(umut[j] %in%

< unlist(mut_grouped_by_sample[[i]]), 1, 0))

We remove mutations that appears in less than 3 samples (namely we
- remove columns)

ind_rm <- which(apply(X, 2, sum) < 3)

length(ind_rm)

X <- X[, -ind_rm]

we also remove duplicates in order to have a full rank matriz

X <- X[, which(!'duplicated(t(X)) == T)]

dim(X)

we standardize the response
y <- (y - mean(y)) / sd(y)

we now apply the sixz methods

Knockoff filter

library(MASS) # to load the function murnorm
library(glmnet)
library(knockoff)

n <- nrow(X) # number of observations
p <- ncol(X) # number of wariables
q <- 0.2 # fdr upper bound

Xc <- scale(X, center = T, scale = FALSE) # centered matriz

150 Chapter B. R code

Xcn <- apply(Xc, 2, function(x) x / sqrt(sum(x~2)))
Xcn <- as.matrix(Xcn)

attr(Xcn, "dimnames") <- NULL

equicorrelated knockoffs

I <- diag(p) # identity matriz

SIG <- crossprod(Xcn) # Gram matriz
anyNA (SIG)

eig_min <- min(eigen(SIG)$values)

s <- min(2 * eig_min, 1)

diags <- diag(rep(s, p))

inverse gram matric
invSIG <- solve(SIG)
mat <- 2 * diags - diags %*J invSIG %xJ diags + diag(le-10, nrow = p)

cholesky decomposition to find C

C <- chol(mat)

U <- Null(Xen) [, 1:p]

Xtil <- Xen %*% (I - invSIG %*% diags) + U %*) C

Xtilc <- scale(Xtil, center = T, scale = FALSE) # centered matriz
Xtilen <- apply(Xtilc, 2, function(x) x / sqrt(sum(x~2)))

Xtot <- as.matrix(cbind(Xcn, Xtilcn))

nlambda <- 2 * p

lambda_max <- max(abs(crossprod(Xcn, y))) / n
nlambda <- 2 * p

lambda_min <- lambda_max / 2000

k <- (0:(nlambda - 1)) / nlambda

lambda_val <- lambda_max * (lambda_min / lambda_max) "k

fit <- glmnet(Xtot, vy,
alpha = 1,
lambda = lambda_val,
standardize = FALSE,
standardize.response = FALSE, intercept = FALSE

Chapter B. R code

151

first_nz <- function(x) match(T, abs(x) > 0)

first_nz_ind <- apply(fit$beta, 1, first_nz)

Z_j <- as.numeric(ifelse(is.na(first_nz_ind), 0, fit$lambdal[first_nz_ind]

< * mn))

compute the statistics W_j's
W_j <- numeric(p)

ind_orig <- 1:p

W_j <- pmax(Z_jlind_orig]l, Z_jlind_orig + pl) * sign(Z_jlind_orig] -

< Z_jlind_orig + pl)

Compute the data-dependent threshold

W <- unique(abs(W_j))
W <- W[w = 0]
FDP <- numeric(length(W))
FDP_plus <- numeric(length(W))
for (j in 1:length(W)) {

t <- W[jl

FDP[j] <- (sum(W_j <= -t)) / max(sum(W_j >= t), 1)
FDP_plus[j] <- (sum(W_j <= -t) + 1) / max(sum(W_j >= t), 1)

}
j <- which(FDP <= q)
j_plus <- which(FDP_plus <= q)

if (length(j) == 0) {
Th <- Inf
ind_knock <- integer(0)
} else {
Th <- min(W[j])
ind_knock <- which(W_j >= Th)

ind_knock <- which(W_j >= Th)
TOTP_knockoff <- length(ind_knock)

ind_knock represent the indices of the columns that have been selected.

152 Chapter B. R code

However mutations doesn't correspond directly to columns

so we need to find the mutations that have been selected

selected mutations are knock_mut.

mutations <- colnames (X)

knock_mut <- mutations[ind_knock]

at this point we consider the set of approxzimately true mutations

— deriving from the

TSM list. even though we have for each postition the type of mutations
and we could compare standard motation mutation with the ones selected
we decide only to compare positions selected and not the complete

— mutations

since the list of TSM is approximated and besides that it is gemeral for
— PIs not

specific for Nelfinaveir.

we therefore extract the posttions of mutations selected
pos_sel_knock <- numeric(length(knock_mut))
for (i in 1:length(knock_mut)) {

pos_sel_knock[i] <- as.numeric(gsub("\\D", "", knock_mut[i]))

we take unique values of postitions selected and we look for
how many unique positions selected are also in the TSM list of positions
tp_knock_sel <- sum(unique(pos_sel_knock) %inJ, pos)
tot_knock_sel <- length(unique(pos_sel_knock))
tot_in_TSM <- length(pos)
fp_knock_sel <- tot_knock_sel - tp_knock_sel
then we repeat the same thing for the other multiple testing methods
if (length(j_plus) == 0) {
Th_plus <- Inf
ind_knock_plus <- integer(0)
} else {
Th_plus <- min(W[j_plus])
ind_knock_plus <- which(W_j >= Th_plus)

ind_knock_plus <- which(W_j >= Th_plus)

Chapter B. R code 153

TOTP_knockoff_plus <- length(ind_knock_plus)
knock_plus_mut <- mutations[ind_knock_plus]
pos_sel_knock_plus <- numeric(length(knock_plus_mut))
for (i in 1:length(knock_plus_mut)) {

pos_sel_knock_plus[i] <- as.numeric(gsub("\\D", "", knock_plus_mut[i]))
}
tp_knock_plus_sel <- sum(unique(pos_sel_knock_plus) %inj pos)
tot_knock_plus_sel <- length(unique(pos_sel_knock_plus))
fp_knock_plus_sel <- tot_knock_plus_sel - tp_knock_plus_sel

knockoff graph code (Figure 3.13)

pos_tot <- numeric()
for (j in 1:p) {
pos_tot[j] <- as.numeric(gsub("\\D","",mutations[j]))
}
index <- which(pos_tot’in’pos)
par(mfrow=c(1,1))
par (pty="s")
plot(Z_jlind_orig],Z_j[ind_orig+p] ,pch=19,

xlab = expression(Z[j]l),
ylab

expression(tilde(Z) [j]),cex=0.5,x1lim=c(0,max(Z_j[ind_orig]l)),
ylim=c(0,max(Z_j[ind_orig+p]l)) ,main=expression(paste("Knockoff pairs:
o (", z[31, ", ", tilde(2) [31, ")™))

abline(a=0,b=1,1ty="dashed",col="grey20",lwd=1)

segments (x0=Th,y0=-Th,x1=Th,y1=Th,col="grey20",1lwd=1,1ty="dashed")

segments (x0=-Th,y0=Th,x1=Th,y1=Th,col="grey20",1lwd=1,1ty="dashed")

points(Z_j[index] ,Z_j[index+p] ,pch=19,col="red",cex=0.5)

lim<-max(Z_j)

xx1 <- c(Th,Th,6,1im*3/2,1im*3/2)

yyl<-c(-Th-10,Th,6,1im*3/2, -Th-10)

xx2<-c(-Th-10,-Th-10,Th,6)

yy2<-c(1im*3/2,Th,Th,6)

xx3 <- ¢(-Th-10,-Th-10,Th,Th)

yy3 <- c(-Th-10,Th,Th,-Th-10)

polygon(xxl, yyl, border = NA, col = rgb(0.2, 0.6, 0.3, alpha = 0.33))

154 Chapter B. R code

0.33))
0.33)) #

rgb(0.8, 0.3, 0.2, alpha
rgb(0.0, 0.0, 1.0, alpha

polygon(xx2, yy2, border = NA, col

polygon(xx3, yy3, border = NA, col
— muted green
legend("topright",
inset = c(-0.5, 0),
legend = c("Null mutations", "Non-null mutations"),
c("black", "red"),
pch = c(19, 19),
xpd = NA,
cex=0.6)

col

legend("bottomright",
inset = c(-0.52, 0.59),
legend = c("Selected mut.", "Non selected mut.", "Ignored mut."),
— # labels
fill = c(rgb(0.2, 0.6, 0.3, alpha = 0.33),
rgb(0.8, 0.3, 0.2, alpha = 0.33),
rgb(0.0, 0.0, 1.0, alpha = 0.33)),
xpd = NA,
cex=0.6)

Benjamini-Hochberg
mod <- 1lm(y ~ Xcn - 1) # no intercept
pvalues <- as.numeric(coef (summary(mod)) [, 4]1)
cutoff <- max(c(0, which(sort(pvalues) <= q * (1:p) / p)))
ind_bhq <- which(pvalues <= q * cutoff / p)
TOTP_bhq <- length(ind_bhq)
bhq_mut <- mutations[ind_bhqg]
bhq_mut <- mutations[ind_bhqg]
pos_sel_bhq <- numeric(length(bhq_mut))
for (i in 1:length(bhq _mut)) {
pos_sel_bhq[i] <- as.numeric(gsub("\\D", "", bhq_mut[i]))
}
tp_bhqg_sel <- sum(unique(pos_sel_bhq) %in’ pos)
tot_bhqg_sel <- length(unique(pos_sel_bhq))
fp_bhq_sel <- tot_bhq_sel - tp_bhq_sel

Naive

Chapter B. R code 155

alpha <- q
ind_naive <- which(pvalues <= alpha)
TOTP_naive <- length(ind_naive)
naive_mut <- mutations[ind_naive]
naive_mut <- mutations[ind_naive]
pos_sel_naive <- numeric(length(naive_mut))
for (i in 1:length(naive_mut)) {
pos_sel_naive[i] <- as.numeric(gsub("\\D", "", naive_mut[i]))
}
tp_naive_sel <- sum(unique(pos_sel_naive) 7%inJ, pos)
tot_naive_sel <- length(unique(pos_sel_naive))

fp_naive_sel <- tot_naive_sel - tp_naive_sel

Bonferroni
ind_bonf <- which(pvalues <= alpha / p)
bonf_mut <- mutations[ind_bonf]
pos_sel_bonf <- numeric(length(bonf_mut))
for (i in 1:length(bonf_mut)) {
pos_sel_bonf[i] <- as.numeric(gsub("\\D", "", bonf_mut[i]))
}
tp_bonf_sel <- sum(unique(pos_sel_bonf) %inj, pos)
tot_bonf_sel <- length(unique(pos_sel_bonf))
fp_bonf_sel <- tot_bonf_sel - tp_bonf_sel

Holm
indices <- c(1:p)
i0 <- min(which(sort(pvalues) > alpha / (p - indices + 1)))
ind_holm <- which(pvalues < alpha / (p - i0 + 1))
TOTP_holm <- length(ind_holm)
holm_mut <- mutations[ind_holm]
pos_sel_holm <- numeric(length(holm_mut))
for (i in 1:length(holm mut)) {
pos_sel_holm[i] <- as.numeric(gsub("\\D", "", holm mut[i]))
}
tp_holm_sel <- sum(unique(pos_sel_holm) %inj pos)
tot_holm_sel <- length(unique(pos_sel_holm))
fp_holm_sel <- tot_holm_sel - tp_holm_sel

156 Chapter B. R code

Bar plot to assess the perfomance of Multiple testing procedure

on HIV data. The following is the code for figure (3.12)

library(tidyverse)
data_comp <- data.frame(
Procedures = c("Naive", "Bonferroni", "Holm", "BHq", "Knockoff",
< "Knockoff+"),
Not_in_TSM_list = c(fp_naive_sel, fp_bonf_sel, fp_holm_sel, fp_bhq_sel,
— fp_knock_sel, fp_knock_plus_sel),
In_TSM_list = c(tp_naive_sel, tp_bonf_sel, tp_holm_sel, tp_bhq_sel,
< tp_knock_sel, tp_knock_plus_sel)

data_comp_long <- data_comp 7%>%

gather(key = "Type", value = "Count", Not_in_TSM_list, In_TSM_list)

data_comp_long$Type <- recode(data_comp_long$Type,
"Not_in_TSM_list" = "Not in TSM list",
"In_TSM_1ist" = "In TSM list"

data_comp_long$Type <- factor(data_comp_long$Type, levels = c("Not in TSM
— 1list", "In TSM list"))
colors <- c("Not in TSM list" = "salmon", "In TSM list" = "blue")
ggplot(data_comp_long, aes(x = Procedures, y = Count, fill = Type)) +
geom_bar(stat = "identity", position = "stack", alpha = 0.7, color =
< "black") +
scale_fill_manual (values = colors, name = NULL) +
labs(
y = "# HIV-1 protease positions selected",
title = "Resistance to Nelfinavir"
) +
geom_hline(yintercept = length(pos), 1ty = "dashed", color = '"grey50") +
theme_bw() +
theme (axis.text.x = element_text(angle = 45, hjust = 1))

the grey line represents the number of positions selected in the TSH

Chapter B. R code

list. each bar represents the total amount of positions selected

where the blue part are true positives, namely positions selected
— appearing in the TSM list, while

the orange part are false positives, mamely it represents for each
— approach the number of

mutations selected that were not wm the TSM list.

157

Bibliography

(2006). Hiv drug resistance database: https://hivdb.stanford.edu/pages/
published_analysis/genophenoPNAS2006/.

(2019). Knockoff matlab tutorial 2: https://web.stanford.edu/group/candes/
knockoffs/software/knockoffs/tutorial-2-matlab.html.

(2025). Uniprot hiv-1 protease wild-type sequence: https://www.uniprot.org/
uniprotkb/090777/entry#sequences.

(2025). Wikipedia, hiv/aids: https://en.wikipedia.org/wiki/HIV/AIDS.

BARBER, R. & CANDES, E. (2015a). Controlling the false discovery rate via knockoffs.
The Annals of Statistics , 2055—-2085.

BARBER, R. & CANDES, E. (2015b). Supplement to "controlling the false discovery

rate via knockoffs". The Annals of Statistics .

BENJAMINI, Y. & HOCHBERG, Y. (1995). Controlling the false discovery rate: A

practical and powerful approach to multiple testing. Journal of the Royal Statistical
Society: series B, 289-300.

BILLINGSLEY, P. (1995). Probability and Measure. Wiley.

BREIMAN, L. (2001). Statistical modeling: The two cultures. Statistical Science ,
199-231.

CASELLA, G. & BERGER, R. (2008). Statistical Inference. Brooks/Cole.

EFRON, B. & HASTIE, T. (2021). Computer Age Statistical Inference. Cambridge

University Press.

GELMAN, A. & LOKEN, E. (2014). The statistical crisis in science. American
scientist , 102(6),460-465.

159

https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/
https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/
https://web.stanford.edu/group/candes/knockoffs/software/knockoffs/tutorial-2-matlab.html
https://web.stanford.edu/group/candes/knockoffs/software/knockoffs/tutorial-2-matlab.html
https://www.uniprot.org/uniprotkb/O90777/entry#sequences
https://www.uniprot.org/uniprotkb/O90777/entry#sequences
https://en.wikipedia.org/wiki/HIV/AIDS

160 Bibliography

HorLwm, S. (1979). A simple sequentially rejective multiple test procedure. Scandina-
vian Journal of Statistics , Vol.6, No.2,65-70.

[IOANNIDIS, J. (2005). Why most published research findings are false. PLoS Medicine
L 2(8),124.

LANG, S. (1987). Linear Algebra. Springer.
PACE, L. & SALVAN, A. (2001). Introduzione alla statistica II. Cedam.

RHEE, S.-Y., TAYLOR, J., WADHERA, G., BEN-HUR, A., BRUTLAG, D. L. &
SHAFER, R. W. (2006). Genotypic predictors of human immunodeficiency virus
type i drug resistance. Proc. Natl. Acad. Sci. USA | 17355-17360.

SOLARI, A. (2023). Lecture notes on multiple testing and knockoff filter. Statistical
Inference II, PhD in Economics, Statistics and Data Science , University of

Milano—Bicocca.

CINLAR, E. (2011). Probability and Stochastics. Springer.

	1 Classical Inferential Tools
	1.1 Statistical models
	1.2 Hypothesis testing
	1.2.1 Statistical test procedure
	1.2.2 Significance Level
	1.2.3 Power function
	1.2.4 Observed significance level
	1.2.5 Two-tailed Z-test
	1.2.6 Examples

	1.3 Multiple Hypothesis Testing
	1.3.1 Introduction
	1.3.2 Union-Intersection and Intersection-Union Tests
	1.3.3 Multiple testing
	1.3.4 Errors
	1.3.5 Family wise error rate
	1.3.6 FWER Controlling procedures

	2 False Discovery Rate Controlling Procedures
	2.1 False Discovery Rate
	2.2 Benjamini-Hochberg approach
	2.3 Variable Selection
	2.3.1 The two cultures
	2.3.2 The Lasso
	2.3.3 Limitations of standard procedures

	2.4 Knockoff filter
	2.4.1 Introduction
	2.4.2 Construction
	2.4.3 FDR control
	2.4.4 Knockoff Extensions

	3 Multiple Testing Application
	3.1 Introduction
	3.2 Simulation
	3.2.1 Comparison: p-value vs rank plot
	3.2.2 Microarray simulation study
	3.2.3 The Knockoff filter
	3.2.4 Effect of sparsity level, signal amplitude, and feature correlation

	3.3 Experiment on real data: HIV-1 drug resistance
	3.3.1 Background
	3.3.2 Analysis

	A Theoretical details
	A.1 Knockoff construction details
	A.1.1 n2p framework
	A.1.2 Gram Matrix construction
	A.1.3 Proof of Knockoffs constraints
	A.1.4 Positive semidefinitedness and symmetry
	A.1.5 Test statistic properties

	A.2 Exchangeability Lemma
	A.3 Essential Concepts in Martingale Theory
	A.3.1 Filtration and Stopping Times
	A.3.2 Conditional Expectation and Supermartingales
	A.3.3 Optional Stopping Time Theorem

	A.4 Knockoff+ FDR-control Proof details
	A.4.1 Supermartingale Proof
	A.4.2 Binomial Property

	A.5 FDR and power approximation

	B R code
	B.1 Chapter I
	B.2 Chapter III
	B.2.1 p-values vs rank plot
	B.2.2 Microarray simulation study
	B.2.3 Knockoff filter code
	B.2.4 Effect of sparsity, feature correlation and signal magnitude
	B.2.5 HIV data application

	Bibliography

