
University of Milano–Bicocca

School of Economics and Statistics

Master’s Degree Course in

Statistical and Economic Sciences

Bayesian nonparametric clustering

with variational inference and

Fusing of Localized Densities

Supervisor: Dr. Tommaso Rigon

Co-supervisor: Prof. Bernardo Nipoti

Degree thesis by:

Alessandro Colello

Student ID No. 851334

Academic Year 2024/2025

Contents

Introduction 1

1 Bayesian nonparametric clustering 3

1.1 Dirichlet process . 4

1.2 Dirichlet process mixture model . 6

1.3 Inference in Dirichlet process mixture models 8

1.3.1 Markov chain Monte Carlo methods 9

1.3.2 Variational inference . 14

2 Fusing of Localized Densities 19

2.1 Point estimation . 20

2.1.1 Strategies for optimizing the risk 20

2.1.2 Choice of the loss parameter 21

2.2 Uncertainty quantification . 22

2.3 Implementation with MCMC output 23

2.4 Implementation with VI output . 24

3 Dirichlet process Gaussian mixture model 27

3.1 Inference via sampling . 28

3.2 Inference via optimization . 30

3.3 FOLD implementations . 37

4 Simulation studies 41

4.1 Data generated from a Gaussian mixture 43

4.2 Data generated from a skewed Gaussian mixture 44

4.3 Data generated from a mixture of mixtures 46

5 Real data applications 51

5.1 Yeast dataset . 51

5.2 Flea beetles dataset . 54

5.3 Australian Institute of Sports dataset 56

iii

5.4 Wisconsin Diagnostic Breast Cancer dataset 60

6 Conclusions 65

Bibliography 67

A Implementation of the CAVI algorithm 69

Introduction

Clustering is a fundamental task in unsupervised learning that aims to discover

meaningful groupings within data. Unlike distance-based clustering (e.g., k-

means, hierarchical clustering), which relies on distance metrics to group similar

data points, model-based clustering assumes that data are generated from a

mixture of underlying probabilistic models, allowing uncertainty quantification

and interpretable inference. In recent years, Bayesian nonparametric models,

especially the Dirichlet process mixture model (dpmm), have gained significant

attention for their flexibility in inferring the number of clusters directly from the

data (Antoniak, 1974).

However, Bayesian inference in dpmms is computationally intensive. The

widely used Markov chain Monte Carlo (mcmc) methods provide asymptotically

exact inference, but suffer from high computational cost, slow convergence, and

the label switching problem. These issues hinder the scalability of the model

to large datasets and its usability in practice. Variational inference (vi) offers a

faster, deterministic alternative by approximating the posterior with a tractable

family of distributions (Blei et al., 2017). Although vi typically underestimates

the posterior variance, it provides a valuable trade-off between accuracy and

computational efficiency in many practical scenarios.

The Gaussian mixture model is the most popular choice when considering

continuous data. However, the data frequently does not accommodate for the

use of Gaussian kernels, leading to instances of kernel misspecification. This

issue results in an overestimation of the number of clusters by the model. To

address this problem, Dombowsky & Dunson (in press) introduced the Fusing

of Localized Densities (fold) procedure, which constructs a point estimate and

credible ball for clusterings by minimizing a kernel-based loss function. fold does

not require a posterior similarity matrix and aligns closely with decision-theoretic

principles.

This thesis contributes to the literature by exploring the combination of

vi and fold in the context of Bayesian nonparametric clustering. Specifically,

we implement a variational approach to estimate a Dirichlet process Gaussian

1

2 Introduction

mixture model with a conjugate Gaussian-Wishart prior, and apply fold to

the resulting posterior approximation to extract point estimates and quantify

uncertainty. Our goal is to evaluate the effectiveness of this approach both in

terms of clustering accuracy and computational cost, and compare it rigorously

against mcmc-based inference followed by fold. The proposed approach is

illustrated in three simulation studies and on benchmark datasets.

The structure of the thesis is as follows. We begin with a theoretical overview

of the dpmm, providing its general specification and detailing its properties. Then,

we describe inference strategies for dpmms, contrasting mcmc and vi in terms of

convergence behavior, computational complexity, and their impact on clustering

estimates.

The fold methodology is then introduced in detail, including its loss function

formulation, computational implementation, and interpretation of the resulting

credible ball. We extend the fold procedure to the variational setting by sampling

from the variational posterior and deriving clusterings accordingly.

We conduct simulation studies under both well-specified and misspecified

models, analyzing the performance of vb and mcmc estimates before and after

applying fold in terms of number of inferred clusters, accuracy, and runtime.

Besides the Hellinger distance, which is utilized in the implementation of the

fold method, the Wasserstein metric, which has recently gained popularity in

the context of optimal transport, is taken into consideration. Finally, we apply

the method to real datasets commonly used in clustering benchmarks.

Our findings from both simulated and real datasets show that variational

inference, when combined with fold, yields competitive clustering results

while reducing computational time compared to traditional mcmc methods.

These promising outcomes open up new avenues for further methodological

development and research.

Chapter 1

Bayesian nonparametric clustering

Bayesian nonparametric models offer a flexible approach to clustering by allowing

the complexity of the model to be determined by the data rather than being fixed

in advance. These models are particularly appealing for unsupervised learning

tasks as they avoid the need to predefine the number of mixture components.

Instead, they allow to incorporate prior information to center the expected number

of clusters around an estimate. Moreover, Bayesian nonparametric models inherit

the advantages of Bayesian modeling, including sequential updating of beliefs,

model interpretability, and principled quantification of uncertainty.

This chapter begins by introducing a foundational tool in Bayesian nonpara-

metrics: the Dirichlet process (dp). We start from the definition of this stochastic

process used as a prior over discrete probability measures, explore its properties,

and conclude with a constructive representation. Then, the Dirichlet process

mixture model, which arises when the dp is employed as a prior for the weights in

a mixture model, is introduced. We provide its basic definition and an augmented

version that is particularly useful for inference. The two strategies to perform

inference in dpmms are discussed: Markov chain Monte Carlo (mcmc) algorithms,

which provide asymptotically exact inference at the cost of high computational

demands, and variational inference (vi), which offer faster and deterministic

approximate solutions by optimizing a lower bound on the marginal likelihood.

For mcmc, we discuss the theoretical foundations and provide a widely used

algorithm as an example. For vi, we outline the general optimization framework

and describe a practical algorithm to solve it. Finally, we illustrate how clustering

is typically performed using the outputs of these inference strategies.

3

4 Chapter 1. Bayesian nonparametric clustering

1.1 Dirichlet process

The Dirichlet process (dp) is a fundamental object in Bayesian nonparametrics,

being a distribution over probability distributions. It was introduced by Ferguson

(1973) to solve the problem of defining a nonparametric prior distribution whose

support is large enough and which, given a sample, leads to an analytically

tractable posterior distribution.

The dp was first defined as a generalization of the well-known Dirichlet

distribution by considering a measurable space (X,A), where A is a σ-field of

subsets of X.

Definition 1.1. Let G1 be a non-null finite measure (non-negative and finitely

additive) on X. We say that a random probability measure P̃ is a Dirichlet process

DP(G1) on X if, for every k = 1, 2, . . . and measurable partition B1, . . . ,Bk of X,

the distribution of
[
P̃(B1), . . . , P̃(Bk)

]
is Dirichlet(G1(B1), . . . ,G1(Bk)).

It is often convenient to decompose the base measure G1 as G1 = αG0,

where α is a positive real number referred to as concentration parameter,

and G0 is a probability measure over X, called base distribution. Under this

reparameterization, we write that

P̃ ∼ DP(α,G0).

Considering Definition 1.1, it can be deducted that, for A ∈ X, P̃(A) follows a

beta distribution with parameters αG0(A) and α[1−G0(A)], that is

P̃(A) ∼ Beta
(
αG0(A),α[1−G0(A)]

)
.

Thus, by recalling the properties of the beta distribution, we can easily retrieve

the following results:

E
[
P̃(A)

]
= G0(A) and Var

[
P̃(A)

]
=
G0(A) [1−G0(A)]

α+ 1
.

This makes explicit the interpretation of G0 as the prior mean of the random

measure P̃, and of α as controlling the concentration of P̃ around G0. Therefore,

a small α yields sample distributions that are more discrete and exhibit higher

differences from G0, while a large α yields draws that more closely resemble G0.

A key property of the dp its is conjugacy to sampling from the unknown

distribution. Let us consider P̃ ∼ DP(α,G0) and Xi | P̃
iid
∼ P̃ for i = 1, . . . ,n. It can

Chapter 1. Bayesian nonparametric clustering 5

be shown that P̃ conditional on the observed values X1, . . . ,Xn is still a Dirichlet

process with updated parameters, that is

P̃ | X1, . . . ,Xn ∼ DP

(
α+n,

α

α+n
G0 +

1

α+n

n∑
i=1

δXi

)
.

The latter property allows to determine the posterior predictive distribution,

which will be useful in the following sections. Specifically, the posterior predictive

distribution of a new observation Xn+1 conditional on the observed values

X1 . . . ,Xn is given by

Xn+1 | X1, . . . ,Xn ∼
α

α+n
G0 +

n∑
i=1

1

α+n
δXi

assuming conditional independence, i.e. exchangeability. If we then assume that

the observed data presents repeated values, we can write

Xn+1 | X̃1, . . . , X̃k ∼
α

α+n
G0 +

k∑
j=1

nj

α+n
δX̃j

where X̃1, . . . , X̃k denote the unique values, i.e. clusters, within the data with

multiplicities n1, . . . ,nk. This says that Xn+1 will assume either a new value

drawn from the base distribution G0 with probability α/(α+n) or the value X̃j
with probability nj/(α+n) for j = 1, . . . ,k. This explains the so-called “rich get

richer” property of the dp according to which clusters with more observations are

more likely to attract new observations. The number of distinct values Kn among

the first n draws from a Dirichlet process is itself a random variable. In particular,

the following exact expression holds for its expectation (Ghosal & van der Vaart,

2017):

E[Kn] =

n∑
i=1

α

α+ i− 1
.

This result shows that the expected number of clusters depends on the dp solely

through the concentration parameter, and increases logarithmically with the

sample size n. Moreover, assuming that the base distribution is non-atomic, the

following bounds for the expected number of distinct values can be derived

(Ghosal & van der Vaart, 2017):

max
{
1,α log

(
1+

n

α

)}
⩽ E[Kn] ⩽ 1+α log

(
1+

n

α

)
.

6 Chapter 1. Bayesian nonparametric clustering

Besides Ferguson’s definition, there are multiple equivalent ways to define

and construct the Dirichlet process that provide more intuitive or computationally

convenient interpretations. One of the most widely used is the stick-breaking

representation (Sethuraman, 1994).

Theorem 1.1. If Z1,Z2, . . .
iid
∼ G0 and W1,W2, . . .

iid
∼ Beta(1,α) are independent se-

quences of random variables and πj =Wj

∏j−1
l=1(1−Wl), then

∑∞
j=1 πjδZj ∼ DP(α,G0).

This construction offers an explicit form for a random draw from a dp. The

name stick-breaking comes from interpreting the weights πj as the proportions

of a unit-length stick: W1 is the first break, W2(1−W1) is the second, and so on.

The atoms Xj are drawn independently from the base distribution G0 and are

associated with these weights.

The stick-breaking representation again emphasizes the discrete nature of

samples from a dp. This property of generating discrete probability distributions

almost surely makes the dp a valuable tool for clustering tasks, as it can be used

as a prior on the mixing distribution of a mixture model. We explore this in the

next section.

1.2 Dirichlet process mixture model

Since the realizations of a Dirichlet process are almost surely discrete measures,

it is generally inappropriate to use them directly for modeling continuous data.

Instead, a more suitable approach is to introduce a kernel function, that is any

function K : X× Θ → R+ such that for each θ ∈ Θ, the function K(·; θ) is a

probability density function. In this framework, the dp is placed as a prior

distribution over the latent parameters θ, leading to the Dirichlet process mixture

model (dpmm).

Definition 1.2. A Dirichlet process mixture model is a random density function

on X defined as

f̃(x) =

∫
Θ
K(x; θ)dP̃(θ)

where P̃ ∼ DP(α,G0) and K(x; θ) is a kernel function.

This model allows for a more convenient hierarchical representation:

Xi | θi
ind
∼ K (θi)

θi | P̃
iid
∼ P̃

P̃ ∼ DP(α,G0)

(1.1)

Chapter 1. Bayesian nonparametric clustering 7

for i = 1, . . . ,n. Each observation Xi is thus assumed to be independently drawn

from a distribution parametrized by a latent variable θi. Since P̃ is almost surely

discrete, the θi can only take a finite number of values. As a result, there is a

positive probability for observations i and j to have the same parameter value.

Hence, we can interpret Xi and Xj as belonging to the same cluster if θi = θj. To

make the cluster structure of the dpmm explicit, we introduce a sequence of latent

variables Zi ∈ N, where Zi = j indicates that the i-th observation is associated

with the j-th cluster. The assignment variables are drawn from a categorical

distribution governed by a sequence of random mixture weights
{
πj
}∞
j=1

, which

results from the stick-breaking representation. The cluster-specific parameters θ̃j
are drawn i.i.d. from the base measure G0, and observations Xi are then generated

conditionally on the assigned cluster. This augmentation facilitates inference by

revealing the partitioning structure induced by the Dirichlet process prior.

Let Z = [Z1, . . . ,Zn] be the vector of latent cluster assignments, θ̃ =
(
θ̃j
)∞
j=1

be

the infinite sequence of component parameters, and π =
(
πj
)∞
j=1

be the infinite

sequence of mixture weights.

The augmented model can be thus expressed as follows:

Xi | Zi, θ̃
ind
∼ K

(
θ̃Zi
)

Zi | π
iid
∼ Categorical (π)

θ̃
iid
∼ G0

π ∼ GEM(α)

(1.2)

for i = 1, . . . ,n, where GEM denotes the Griffiths-Engen-McCloskey distribution,

arising from the stick-breaking representation.

The likelihood of the data X given the assignments Z and the component

parameters θ̃ is

p(X |Z, θ̃) =
n∏
i=1

K(Xi | θ̃Zi).

The prior distribution of the component parameters π is

p(θ̃) =

∞∏
j=1

g0(θ̃j)

8 Chapter 1. Bayesian nonparametric clustering

where g0 denotes the density function associated with the base distribution G0.

The distribution of the assignments Z given the mixing weights π is

p(Z |π) =

n∏
i=1

πZi .

The distribution of the mixture weights is defined by the stick-breaking construc-

tion, and thus implicitly defined by the joint distribution of the independent Vj
variables:

p(π) =

∞∏
j=1

Beta(Vj | 1,α) =
∞∏
j=1

α(1− Vj)
α−1.

The posterior distribution p(Z, θ̃,π | X) is proportional to the product of the

likelihood of the data and the prior distributions of the parameters and latent

variables:

p(Z, θ̃,π |X) ∝ p(X |Z, θ̃)p(θ̃)p(Z |π)p(π).

Inferring the posterior distribution directly from its unnormalized form

is computationally challenging due to the infinite-dimensional nature of the

parameter space. Therefore, various inference algorithms have been developed to

explore this posterior distribution. The following section will expand on these

computational methods, distinguishing between sampling-based methods and

optimization-based methods.

1.3 Inference in Dirichlet process mixture models

This section discusses the two strategies for inference in Dirichlet process mixture

models: Markov chain Monte Carlo (mcmc) methods and variational inference

(vi). This introduction is based on Blei et al. (2017).

An mcmc method sets up a Markov chain, whose stationary distribution is the

intractable posterior distribution of a Bayesian model. After running the chain for

a sufficient number of iterations, the generated samples can be regarded as draws

from the posterior distribution. These samples can thus be used to summarize the

posterior, such as by estimating posterior expectations, or to study more complex

posterior structures, such as clustering configurations. Thanks to its theoretical

formulation, mcmc provides asymptotically exact results. This means that, given

enough computing time, it can characterize the posterior with high precision.

However, this computational intensity can also be a drawback, especially for large

datasets or very complex models, as convergence to the stationary distribution

can be slow and difficult to determine.

Chapter 1. Bayesian nonparametric clustering 9

On the other hand, vi turns the inference problem into an optimization prob-

lem. First, a family of approximating distributions is chosen. This family must

be flexible enough to capture the posterior features, but simple enough to allow

for efficient optimization. Then, we determine the element of this family that

best approximate the posterior distribution by minimizing the Kullback-Leibler

divergence. Especially when dealing with exponential families, the iterative

optimization algorithm becomes very simple and it tends to be faster than mcmc

methods. Although, variational inference is known to underestimate posterior

variance due to its objective function, and it lacks the theoretic guarantees of

mcmc methods.

mcmc and vi are therefore two different approaches to solving the same

problem. The former samples from a Markov chain, and the latter optimizes a

function. In general, mcmc is suited to smaller datasets or situations where a

heavier computational cost is accepted in exchange for more precise samples.

Instead, vi is preferred for large datasets or when rapid exploration of many

models is required.

In what follows, we provide basic definitions and theoretic results that justify

mcmc methods. We then discuss the Gibbs sampling approach to draw samples

from the stationary distribution in its generality, and illustrate Algorithm 8

of Neal (2000), a widely used Gibbs sampler to approximate the posterior

distribution of dpmms. Successively, after discussing alternatives to constraint the

infinite-dimensional parameter space of dpmms, we provide a general introduction

to vi, discussing the optimization problem and how it is solved.

1.3.1 Markov chain Monte Carlo methods

Markov chain Monte Carlo (mcmc) methods are fundamental tools for performing

inference in dpmms. These methods enable sampling from complex posterior dis-

tributions by constructing Markov chains whose stationary distribution matches

the target posterior. While these methods provide theoretically exact results,

they can be computationally intensive. This section is based on Robert & Casella

(2004), which offers a comprehensive treatment of mcmc techniques. We begin

by discussing the fundamentals of Markov chains to justify their use in Bayesian

inference. Then, we focus on Gibbs sampling, one of the most important mcmc

algorithms. Finally, we present a widely used Gibbs sampler tailored for dpmms,

which will be essential in the subsequent chapters.

10 Chapter 1. Bayesian nonparametric clustering

A Markov chain is a stochastic process, that is a sequence of random variables,

in which the transition probability that determines the transition to a state

depends only on the immediately preceding state.

Definition 1.3 (Markov chain). A sequence (X(n))∞n=0 of random variables is a

Markov chain if

P(X(n+1) ∈ · | X(0), . . . ,X(n)) = P(X(n+1) ∈ · | X(n)).

In the continuous case, the transition probability is determined by a transition

kernel. This kernel is identified by a conditional density, K(X(n+1) ∈ · | X(n)).

We say that a Markov chain is homogeneous if the distribution of (Xn1 , . . . ,Xnk)

given Xn0 is the same as (Xn1−n0 , . . . ,Xnk−n0) given X0 for every k and every

n0, . . . ,nk such that n0 ⩽ n1 ⩽ · · · ⩽ nk. It follows that, given its initial state, the

chain is completely determined by its transition kernel.

A Markov chain exhibits high stability when the marginal distribution of Xn
is independent of n. This is a requirement for the existence of an invariant or

stationary distribution π such that Xn ∼ π for each n. Therefore, it follows the

definition.

Definition 1.4 (Invariant distribution). A probability density function π is

invariant for the transition kernel K (and for the associated chain) if

π(x⋆) =

∫
K(x⋆ | x)π(x)dx.

The stability of a Markov chain is described by three properties: irreducibility,

aperiodicity, and Harris recurrence. Intuitively, a Markov chain is said to be

irreducible if it does not get stuck in a local region of the sample space, aperiodic

if it does not have deterministic cycles, and Harris recurrent if it visits any region

of the sample space frequently enough.

These properties alone do not guarantee the existence of an invariant distribu-

tion. To admit such a distribution, a Markov chain needs to satisfy the detailed

balance condition.

Definition 1.5. A Markov chain with transition kernel K satisfies the detailed

balance condition if there exists a function f satisfying

K(x⋆ | x)f(x) = K(x | x⋆)f(x⋆).

The following theorem (Robert & Casella, 2004) formalizes what was previ-

ously stated.

Chapter 1. Bayesian nonparametric clustering 11

Theorem 1.2. Suppose that a Markov chain with transition function K satisfies the

detailed balance condition with π a probability density function. Then:

(i) The density π is the invariant density of the chain.

(ii) The chain is reversible.

A Markov chain is called Harris positive if it is Harris recurrent and it admits

an invariant distribution.

The following theorem (Robert & Casella, 2004) states that, under certain

conditions, a chain converges in total variation to its invariant distribution,

regardless of the distribution of the initial state.

Theorem 1.3. If a Markov chain (X(n))∞n=0 is Harris positive and aperiodic, then

lim
n→∞∥πn(·) − π(·)∥TV = 0

where πn denotes the marginal probability density function of X(n) and ∥·∥TV denotes the

total variation norm.

This result is crucial for the theoretical foundation of mcmc methods, as

it gives strong convergence guarantees for chains that are Harris positive and

aperiodic. Moreover, it justifies using mcmc methods to sample from the posterior,

because it ensures that the distribution of the samples will get arbitrarily close to

the true posterior as n→ ∞.

Finally, the Ergodic Theorem (Robert & Casella, 2004) is what makes mcmc

useful in practice, as it ensures that sample averages from the Markov chain

converge to the correct posterior expectation.

Theorem 1.4 (Ergodic Theorem). If a Markov chain (X(n))∞n=0 is Harris positive with

stationary distribution π, then, for every integrable function g, it holds that

1

N

N∑
n=1

g(X(n))
a.s.−−→

∫
g(x)π(x)dx

as N→ ∞.

In practice, mcmc methods are used to generate R samples from a Markov

chain whose stationary distribution is the posterior distribution. To allow the

chain to approach this distribution, the first B iterations, known as the burn-in

period, are typically discarded. The value of B is chosen empirically using

12 Chapter 1. Bayesian nonparametric clustering

diagnostic tools. The remaining samples are then used to approximate posterior

expectations or other functionals of interest.

Several algorithms exist to construct such Markov chains, with Gibbs sampling

being one of the most widely used, particularly in mixture models.

Let Z denote the set of all the parameters and latent variables of a Bayesian

model, and let X = [X1, . . . ,Xn] be the observed data. Suppose that Z is decom-

posable into D > 1 elements such that we can simulate from the corresponding

conditional densities (called full conditional distributions). That is, for each

d = 1, . . . ,D, we can sample

Zd | Z−d,X ∼ p(Zd |Z−d,X).

where Z−d = [Z1, . . . ,Zd−1,Zd+1, . . . ,ZD] denotes all components of Z except the

d-th.

Gibbs sampling proceeds by repeatedly sampling each Zd from its full

conditional. This algorithm defines a Markov chain that has the posterior

distribution p(Z |X) as its stationary distribution, thereby yielding an mcmc

method that targets the posterior.

In practice, Gibbs samplers often generate highly autocorrelated trajectories.

To mitigate this, one may apply thinning, that is keeping only every k-th draw

from the chain, to reduce dependence between consecutive samples.

This basic Gibbs sampling framework can be extended to more complex

models, such as dppms, where the number of parameters theoretically infinite.

One of the most famous examples is Algorithm 8 of Neal (2000), also known as

marginal sampler, which exploits the cluster assignment variables and a finite

number of proposed new clusters to improve mixing. Specifically, the algorithm

alternate between:

• Sampling parameters of the clusters.

• Proposing new clusters via latent variables.

• Sampling cluster assignments for each data point given the current parame-

ters.

The generic iteration of Neal’s Algorithm 8 for the generic augmented dpmm

in Equation (1.2) is presented in Algorithm 1.

The key idea of this algorithm is to avoid directly sampling from the infinite

set of possible mixture components by instead introducing a finite number

m of auxiliary clusters at each iteration. These proposed clusters provide

Chapter 1. Bayesian nonparametric clustering 13

Algorithm 1: Generic iteration of the Algorithm 8 of Neal (2000)
1 Let the state of the Markov chain consist of Z = [Z1, . . . ,Zn] and

θ̃ =
{
θ̃z : z ∈ {Z1, . . . ,Zn}

}
. Let m denote the fixed number of auxiliary

clusters temporarily introduced during the update of cluster
assignments.

2 for i = 1, . . . ,n do
3 Let k− be the number of distinct Zj for j ̸= i, and let h = k− +m.
4 Label these Zj with values in {1, . . . ,k−}.
5 if Zi = Zj for some j ̸= i then
6 Draw values independently from G0 for θ̃j with j = k− + 1, . . . ,h.
7 else
8 Let Zi have label k− + 1, and draw values independently from G0

for θ̃j with j = k− + 2, . . . ,h.

9 Draw a new value for Zi from {1, . . . ,h} using the following
probabilities:

P(Zi = z | Z−i,Xi, θ̃1, . . . , θ̃h) ∝

{
n−i,z
n−1+αK(Xi | θ̃z) for 1 ⩽ z ⩽ k−
α/m
n−1+αK(Xi | θ̃z) for k− + 1 ⩽ z ⩽ h

where n−i,z is the number of Zj for j ̸= i that are equal to z.
10 Change the state to contain only those θ̃z that are now associated with

one or more observations.
11 for z ∈ {Z1, . . . ,Zn} do
12 Draw a new value from θ̃z | {Xi : Zi = z}, or perform some other

update to θ̃z, that leaves this distribution invariant.

14 Chapter 1. Bayesian nonparametric clustering

additional flexibility when updating the cluster assignments, improving posterior

exploration.

The choice of m plays a critical role in the performance of the algorithm. A

larger m offers more candidate clusters and thus can improve mixing, but also

increases computational cost per iteration.

Overall, Neal’s Algorithm 8 remains a foundational Gibbs sampling scheme

for dpmms, as it balances tractability with flexibility, making it well-suited for

Bayesian nonparametric inference.

1.3.2 Variational inference

In a Bayesian setting where the posterior distribution is intractable, variational

inference (vi) or variational Bayes (vb) provides an approximation with a

distribution that belongs to a pre-specified family of tractable distributions.

Variational inference for dpmms requires careful considerations due to the

infinite-dimensional nature of the Dirichlet process, particularly its stick-breaking

representation. One strategy, reviewed by Blei & Jordan (2006), circumvents this

by truncating only the variational family rather than the generative model itself.

In their formulation, the variational distribution is defined over a finite number T

of components, setting all mixture weights beyond the T -th component to zero

within the approximation.

Another approach consists in simplifying the model itself by introducing

a finite-dimensional approximation to the Dirichlet process directly in the

generative prior. This practical strategy, discussed in Ishwaran & Zarepour

(2002), replaces the infinite stick-breaking process with a symmetric Dirichlet

distribution over a fixed number H of mixture components:

p(π) = Dirichlet
(
π
∣∣∣ α
H
1H

)
. (1.3)

In this way, we obtain the finite-dimensional Dirichlet prior:

P̃H =

H∑
h=1

πhδθ̃h

where θ̃j are drawn i.i.d. from G0, independently of π.

Conditional on θ̃ = [θ̃1, . . . , θ̃H], P̃H is a Dirichlet process:

P̃H | θ̃ ∼ DP(α, ξH)

Chapter 1. Bayesian nonparametric clustering 15

where ξH = 1
H

∑H
h=1 δθ̃h is the empirical measure of θ̃1, . . . , θ̃H. Since ξH ≈ G0,

we expect P̃H ≈ DP(α,G0). Therefore, intuitively, P̃H is a good approximation of

the DP(α,G0).

It is demonstrated that functionals of the finite-dimensional Dirichlet prior

can be used to approximate functionals of the Dirichlet process. Ishwaran &

Zarepour (2002) give the following theorem.

Theorem 1.5. For each real-valued measurable function g, integrable with respect to G0,

P̃H(g)
d−→ P̃(g), where P̃(g) ∼ DP(α,G0).

Furthermore, Ishwaran & Zarepour (2002) compare the finite-dimensional

Dirichlet prior and the Dirichlet process by studying their clustering behavior

under sampling. In particular, they give the following theorem.

Theorem 1.6. Let KH and K∞ be the number of distinct values in Y = [Y1, . . . , Yn]

when sampled under P̃H and P̃ ∼ DP(α,G0), respectively. If G0 is non-atomic, then

H!
Hk(H− k)!

⩽
P(KH = k)

P(K∞ = k)
⩽ nαk/H, for k = 1, . . . , min{n,H}.

Note that the two distributions agree in limit as H→ ∞ because both the left

and right sides tend to 1 for each k.

These properties provide strong evidence for the finite-dimensional approxi-

mation being very accurate in practical scenarios. The choice of H is critical as it

must be sufficiently large to retain the flexibility of the Dirichlet process while

keeping the optimization problem manageable. In practice, H is selected based

on the sample size n and concentration parameter α, aiming to capture the data’s

clustering structure within the truncated model.

We will employ a finite-dimensional Dirichlet prior within the dpmm, resulting

in a finite mixture model with a Dirichlet prior on the weights. This formulation

facilitates a general discussion of variational Bayes.

Let us denote with p(Z |X) the posterior distribution arising from a Bayesian

model, where Z is the set of all parameters and latent variables, and X =

[X1, . . . ,Xn] is the set of observations. Let q(Z) be a density function, belonging

to a family of tractable densities, denoted by Q. The function q(·) is referred to as

variational distribution. Once chosen a divergence or metric D{·, ·} over the space

of probability distributions, we can define an optimal approximation q̂(Z) ∈ Q of

the posterior distribution p(Z |X) as

q̂(Z) = arg min
q∈Q

D{q(·),p(· | X)} .

16 Chapter 1. Bayesian nonparametric clustering

If we choose the Kullback-Leibler (kl) divergence to measure the goodness of

the approximation, that is D{·, ·} = KL{·∥·}, then we obtain what is called as

variational Bayes (vb) method. Exploiting the definition of the kl divergence, that

is

KL{q(·)∥p(· | X)} = −

∫
q(Z) log

p(Z |X)

q(Z)
dZ,

it can be shown that

KL {q(·)∥p(· | X)} = logp(X) −L(q(·)) (1.4)

where L(q(·)) denotes the evidence lower bound (elbo), defined as

L(q(·)) =
∫
q(Z) log

p(X,Z)
q(Z)

dZ

=

∫
q(Z) logp(X,Z)dZ−

∫
q(Z) logq(Z)dZ,

(1.5)

and logp(X) is the log marginal likelihood. The positivity of the kl divergence

clarifies the name of L(q(·)), since we can see that L(q(·)) ⩽ logp(X). Therefore,

the elbo is a lower bound of the log marginal likelihood, which is assumed to be

unknown, otherwise the posterior distribution would be tractable.

From Equation (1.4) we can see that minimizing the kl divergence with respect

to the variational distribution is equivalent to maximizing the elbo. For this

purpose, the choice of the family of variational distributions is crucial, as it can

affect the feasibility of the method. It is often convenient to restrict Q to the

family of density functions such that

q(Z) =

M∏
i=1

qi(Zi)

where Zi denotes the i-th subgroup of the latent variables. This restriction, known

as mean-field approximation, assumes the independence between groups, while

keeping dependence within them.

Under the latter assumption, the elbo can be written as

L(q(·)) =
∫

logp(X,Z)
M∏
i=1

qi(Zi)dZ−

M∑
i=1

∫
qi(Zi) logqi(Zi)dZi.

The maximization of the elbo is achieved numerically, by sequentially optimizing

with respect to the i-th group Zi, keeping the others fixed, and repeating these

M steps until a convergence criterion is reached. This optimization algorithm

Chapter 1. Bayesian nonparametric clustering 17

is know as coordinate ascent variational inference (cavi). In order to derive the

updating rule, we express the elbo in a convenient form, that is

L(q(·)) =
∫
qi(Zi)Eq−i

[logp(X,Z)]dZ−

∫
qi(Zi) logqi(Zi)dZi + c (1.6)

where

Eq−i
[logp(X,Z)] =

∫ ∏
j ̸=i
qj(Zj) logp(X,Z)dZ−i

is the expectation of the log marginal likelihood with respect to the distributions

qj over all Zj’s for j ̸= i and c is a constant that absorbs any integral that does

not depend on Zi.

The elbo as expressed in Equation (1.6) is the negative kl divergence between

qi(Zi) and exp{Eq−i
[logp(X,Z)]}. Therefore, that quantity is maximized when

qi(Zi) ∝ exp
{

Eq−i
[logp(X,Z)]

}
. (1.7)

In other terms, to obtain the optimal solution for the factor qi, we compute

the expectation of the logarithm of the joint distribution of the observed and

latent variables with respect to all the factors qj for j ̸= i, and then consider its

exponential. To make computation easier, it is convenient to take the logarithm

of the members of Equation (1.7):

logqi(Zi) ∝ Eq−i
[logp(X,Z)]. (1.8)

Finally, at each step of the cavi algorithm, each factor qi for i = 1, . . . ,M is

updated according to Equation (1.7). This process is repeated until a maximum

number of iterations is reached, or until the increment of the elbo with respect to

the previous iteration becomes negligible. It can be shown that each step of the

cavi algorithm increases the elbo, yielding a monotonic sequence that converges

to a local optimum of the variational objective. See Chapter 5 for examples of this

monotonic increase.

Chapter 2

Fusing of Localized Densities

Fusing of Localized Densities (fold) is a novel Bayesian clustering method

introduced by Dombowsky & Dunson (in press) to address the common issue of

kernel misspecification in mixture models, which often leads to the erroneous

splitting of true clusters into multiple smaller components. This new approach

offers a robust solution by merging these over-split components based on the

posterior of the kernels themselves.

Traditional Bayesian clustering relies on mixture models, where each compo-

nent is interpreted as a distinct cluster. Data is typically clustered by minimizing

a loss function that favors similarity to these component labels. However, if

the chosen kernels (e.g., Gaussian) don’t perfectly match the true underlying

data distribution within a cluster, even slight deviations can cause a single,

non-Gaussian cluster to be represented by several Gaussian components. This

over-clustering phenomenon motivates the development of fold, which aims to

provide more meaningful and accurate groupings by fusing these erroneously

separated components.

fold is built upon a Bayesian decision theoretic framework. Instead of directly

focusing on the component labels assigned by the mixture model, fold utilizes

“localized densities” for each data point. These localized densities are defined

by the kernel associated with the component to which a data point is assigned.

The core idea is to group observations if their respective localized densities are

statistically close, thereby encouraging the fusion of overlapping component

kernels.

At the heart of the fold methodology is a novel loss function designed to

counteract cluster splitting. This loss function is a continuous relaxation of

Binder’s loss function (Binder, 1978), and penalizes assigning two observations to

the same cluster if the statistical distance between their localized densities is large,

and conversely, penalizes assigning them to different clusters if this distance is

19

20 Chapter 2. Fusing of Localized Densities

small. Let us denote a clustering with ĉ = {ĉ1, . . . , ĉn} where each ĉi corresponds

to the label associated with the i-th observation. The loss for a given clustering ĉ

is defined as

L(ĉ, θ) =
∑
i<j

[
1ĉi=ĉjDij +ω1ĉi ̸=ĉj(1−Dij)

]
(2.1)

where Dij = d{K(·; θi),K(·; θj)} with a unit-bounded statistical distance d, and

ω is a positive parameter that calibrates the separation of clusters. In particular,

large values of ω promote the merging of clusters. In fact, as ω → ∞, the

partition that minimizes the loss in (2.1) assigns all observations to a single

cluster. Conversely, as ω→ 0, the optimal partition places each observation in its

own cluster.

The fold method determines the optimal clustering using a decision theoretic

approach, that leads to an interpretable way to quantify uncertainty, using credible

balls. The authors provide an implementation of the procedure using from the

output of any mcmc algorithm for mixture models.

We extend the implementation of fold using the output obtained when the

model is estimated via variational inference.

2.1 Point estimation

fold employs a Bayesian decision theoretic approach to determine the optimal

clustering. The risk of a particular clustering ĉ is its posterior expected loss:

R(ĉ) = E[L(ĉ, θ) |X] =
∑
i<j

[
1ĉi=ĉj∆ij +ω1ĉi ̸=ĉj(1−∆ij)

]
where ∆ij = E[Dij |X] is the posterior expected distance between the localized

densities of observations i and j. For a fixed ω, the estimated fold clustering,

denoted cFOLD, is the one that minimizes this risk function R(ĉ), that is

cFOLD = arg min
ĉ

R(ĉ).

2.1.1 Strategies for optimizing the risk

Minimizing R(ĉ) exactly is computationally challenging because the space of all

possible partitions of n observations is extraordinarily large, even for modest

n. Therefore, the fold methodology employs approximation strategies to find

cFOLD. Two primary approaches are discussed.

Chapter 2. Fusing of Localized Densities 21

The first approach involves significantly reducing the search space. Instead

of considering all possible partitions, the optimization is restricted to a tree of

candidate clusterings generated by performing hierarchical clustering on the

n×n matrix ∆ of posterior expected distances ∆ij. Average linkage is suggested

for generating these candidates, as the average linkage dissimilarity metric aligns

with the method’s intrinsic cluster merging criterion. This use of hierarchical

clustering to generate a manageable set of candidate partitions is a known

heuristic in Bayesian clustering.

A second approach leverages recent advancements in greedy search algorithms

designed to minimize risk functions for clustering. These algorithms typically

start with an initial candidate partition and iteratively make locally-optimal

adjustments, such as reallocating individual observations to different clusters or

splitting and merging existing clusters. An example of such an algorithm is salso

(Search Algorithm via Local Shift Operations), proposed by Dahl et al. (2021),

which initializes multiple clusterings and refines them through reallocations

and split/merge operations over several parallel runs, ultimately selecting the

partition with the lowest observed risk.

According to Dombowsky & Dunson (in press), implementing fold using

both the hierarchical clustering heuristic and salso generally yields consistent

optimal clustering results in simulations and applications.

2.1.2 Choice of the loss parameter

The loss minimization requires the choice of a value for ω. This can be achieved

in two ways, either manually or automatically.

Let us denote the fold point estimator associated with a specific ω with c∗ω,

and the partition associated with c∗ω with C∗
ω =

{
C∗
ω1, . . . ,C

∗
ωK∗ω

}
. Now, let us

consider the quantity

rω =

∑K∗ω
h=1 rωh∑
i<j∆ij

with rωh =
∑

i,j∈C∗
ωh

∆ij.

Note that, as ω → ∞, the optimal partition places all the observations in the

same cluster and then rω → 1. As we decrease the value of ω, more clusters are

created, leading to smaller values of rω. When ω→ 0, each observation belongs

to its own cluster and rω = 0. Thus, an elbow plot can be built by evaluating

rω at a grid of possible ω values. The optimal ω is the value after which the

22 Chapter 2. Fusing of Localized Densities

improvement in rω becomes negligible. See Chapter 5 for examples of elbow

plots and their interpretations.

On the other hand, one could use the default value

ωAVG =
γAVG

1− γAVG
with γAVG =

(
n

2

)−1∑
i<j

∆ij

where γAVG is an estimate of the average pairwise dissimilarity given by

D̄ =
(
n
2

)−1∑
i<jDij =

∑
k<k′ |Sk||Sk′ |

(
n
2

)−1
d{K(·; θ̃k),K(·; θ̃k′)}, assuming Sk =

{i : θi = θ̃k}. It has been proven that if D̄/(1− D̄) is used as the value of ω

in the loss function in Equation (2.1), fold will promote merging components

when d{K(·; θ̃k),K(·; θ̃k′)} < D̄. Moreover, the decision to merge two components

depends on how separated they are from the others and their sizes. For this

reason, ωAVG excels in settings where the true kernels are well-separated but

approximated by multiple components.

2.2 Uncertainty quantification

The fold framework allows for interpretable uncertainty quantification through

measures like credible balls around the point estimate clustering.

The notion of credible balls for Bayesian clustering estimators provided by

Wade & Ghahramani (2018) has been extended to the fold procedure. The 95%

credible ball around cFOLD is defined as

B(cFOLD) = {c : D(cFOLD, c) ⩽ ϵFOLD}

where D denotes either the variation of information (Meilă, 2007) or the Binder’s

loss (Binder, 1978), and ϵFOLD ⩾ 0 is the smallest radius such that

P(D(c, cFOLD) ⩽ ϵFOLD | X) ⩾ 0.95.

The credible ball characterizes the uncertainty in the clustering estimate, and is

interpreted as a neighborhood of clusterings centered at cFOLD with posterior

probability mass of at least 0.95. A larger value of ϵFOLD suggests that the fold

posterior mass is more dispersed around cFOLD, indicating greater uncertainty in

the specific cluster assignments of the point estimate.

To make credible balls more interpretable, Wade & Ghahramani (2018) define

specific representative partitions known as bounds, similar to how intervals are

described on the real line. The vertical upper bounds and the vertical lower bounds

Chapter 2. Fusing of Localized Densities 23

respectively consist of the partitions in the credible ball with the smallest and

largest number of clusters that are most distant from the clustering point estimate.

The horizontal bounds consist of the partitions in the credible ball that are most

distant from the clustering point estimate.

Formal definitions are given below, where the clustering point estimate is

denoted by c∗, and the number of clusters in a clustering c is denoted by k(c).

Definition 2.1 (vertical upper bounds). The vertical upper bounds of the credible

ball B(c∗), denoted vu(c∗), are defined as

vu(c∗) = {c ∈ B(c∗) : k(c) ⩽ k(c′) ∀ c′ ∈ B(c∗) and

D(c, c∗) ⩾ D(c′′, c∗) ∀ c′′ ∈ B(c∗) with k(c) = k(c′′)}.

Definition 2.2 (vertical lower bounds). The vertical lower bounds of the credible

ball B(c∗), denoted vl(c∗), are defined as

vl(c∗) = {c ∈ B(c∗) : k(c) ⩾ k(c′) ∀ c′ ∈ B(c∗) and

D(c, c∗) ⩾ D(c′′, c∗) ∀ c′′ ∈ B(c∗) with k(c) = k(c′′)}.

Definition 2.3 (horizontal upper bounds). The horizontal bounds of the credible

ball B(c∗), denoted h(c∗), are defined as

h(c∗) = {c ∈ B(c∗) : D(c, c∗) ⩾ D(c′, c∗) ∀ c′ ∈ B(c∗)}.

2.3 Implementation with MCMC output

The fold implementation is natively designed to work with Markov chain Monte

Carlo outputs. Suppose we have run an mcmc algorithm to estimate a mixture

model, producing T samples from the posterior distribution. Each sample consists

of the allocations vector s(t) = [s
(t)
1 , . . . , s(t)n], as well as the set of unique kernel

parameters θ̃(t) = [θ̃
(t)
1 , . . . , θ̃(t)

K(t)
]. These mcmc samples can be used to estimate

the pairwise distance matrix ∆, whose entries ∆ij quantify the dissimilarity

between the localized densities associated with observations i and j. Specifically,

at each iteration t, we compute the statistical distance

D
(t)
ij = d{K(·; θ(t)i),K(·; θ(t)j)}

where θ(t)i = θ̃
(t)
k if s(t)i = k. Since this definition depends only on the assigned

parameters and not on the label indexing, fold is inherently robust to the label-

switching problem. The pairwise distances ∆ij are approximated by averaging

24 Chapter 2. Fusing of Localized Densities

across the T iterations, that is

∆ij ≈
1

T

T∑
t=1

D
(t)
ij .

Once ∆ is estimated, the fold clustering cFOLD can be obtained by minimizing

the loss in Equation (2.1). This optimization can be carried out either manually

or automatically, as outlined in Section 2.1.

To assess the uncertainty associated with the fold point estimate, we need

to generate a sample from the distribution of fold clusterings by applying the

fold method to each replicate distance matrix ∆(t), where the generic entry is

D
(t)
ij . This yields a sample c(t)FOLD for t = 1, . . . , T . These samples can then be used

to construct a credible ball around cFOLD, following the procedure depicted in

Section 2.2.

2.4 Implementation with VI output

The fold method can also be applied to clustering outputs obtained via vari-

ational inference. Suppose a cavi algorithm has been used to approximate

the posterior distribution of a mixture model with H components. This yields

an n×H matrix of responsibilities r, where each row contains the variational

posterior probabilities of assignment to the mixture components, as well as

variational distributions over the component parameters θ̃h for h = 1, . . . ,H.

To construct the distance matrix ∆, we approximate the expected pairwise

distances between the localized densities of observations i and j under the

variational distribution. Specifically, we compute

∆ij ≈ Eq[Dij] =

H∑
h,h′=1

rihrjh′Eq
[
d{K(·; θ̃h),K(·; θ̃h′)}

]
(2.2)

where Eq denotes expectation with respect to the variational distribution.

Since the responsibilities are directly available from the cavi output, the only

quantities requiring approximation in Equation (2.2) are the expectations over

the component parameters. We propose two strategies for computing these

expectations.

The first is a plug-in approximation, where the variational parameters are

replaced with their expected values. Specifically, we compute

Eq
[
d{K(·; θ̃h),K(·; θ̃h′)}

]
≈ d

{
K(·; Eq[θ̃h]),K(·; Eq[θ̃h′])

}
.

Chapter 2. Fusing of Localized Densities 25

Alternatively, the expectation can be approximated using a Monte Carlo

procedure. From the variational distribution of each θ̃h, we generate a sample θ̃(t)h
for t = 1, . . . , T , and compute the distance between the corresponding densities

for each replicate. These distance values are then averaged across replicates to

obtain a final estimate.

Because variational approximations often result in sparse responsibility matri-

ces, where only a few components carry substantial weight for each observation,

it may be computationally beneficial to ignore negligible contributions. That is,

we may approximate ∆ij by summing only over components with non-negligible

responsibilities for observations i and j.

Once the matrix ∆ has been computed, the fold estimate cFOLD can be

obtained by minimizing the loss in Equation (2.1), using the same strategies

outlined in Section 2.1.

Uncertainty quantification in the variational setting follows the same general

principles as in the mcmc-based approach, but requires generating both the cluster

allocations and the associated group-specific parameters from the variational

posterior. For each Monte Carlo replicate, we first sample a set of parameters θ̃(t)h
for each component h, and then sample allocations for all observations according

to the variational responsibilities. These samples are used to compute a replicate

distance matrix ∆(t), to which the fold method is applied, yielding a clustering

c
(t)
FOLD. Repeating this process over multiple replicates provides a collection of

clusterings that can be used to construct a credible ball around the point estimate

cFOLD, following the procedure described in Section 2.2.

Chapter 3

Dirichlet process Gaussian mixture model

A widely used dpmm when it comes to analyzing continuous data is the Dirichlet

process mixture model with Gaussian components and a normal-Wishart base

distribution. This model is specified as follows:

Xi | µi,Λi
ind
∼ Np(µi,Λ−1

i)

(µi,Λi) | P̃
iid
∼ P̃

P̃ ∼ DP(α,G0)

(3.1)

where i = 1, . . . ,n, and

G0(µ,Λ) = NWp(µ,Λ |m0,Λ−1/β0,W0,ν0)

= Np(µ |m0,Λ−1/β0)Wp (Λ |W0,ν0) .

To simplify the notation, we define the following objects:

X = [X1, . . . ,Xn], Z = [Z1, . . . ,Zn],

µ̃ =
(
µ̃j
)∞
j=1

, Λ̃ =
(
Λ̃j
)∞
j=1

, π =
(
πj
)∞
j=1

.

By introducing the cluster assignment latent variables Zi, the model becomes

Xi | Zi, µ̃, Λ̃
ind
∼ Np(µ̃Zi , Λ̃

−1
Zi
)

Zi | π
iid
∼ Categorical(π)

µ̃, Λ̃
iid
∼ NWp(µ̃j, Λ̃j |m0, Λ̃−1

j /β0,W0,ν0)

π ∼ GEM(α)

(3.2)

for i = 1, . . . ,n and j = 1, 2,

27

28 Chapter 3. Dirichlet process Gaussian mixture model

We can now study the posterior distribution of the model, that is the

distribution of both model parameters µ̃ and Λ̃, and the latent variables Z and

π, conditional on the data X. As usual when analyzing posterior distributions,

we can ignore the normalizing constant and focus on the joint distribution of

X, Z, µ̃, Λ̃, and π. This distribution factorizes in the complete-data likelihood

p(X |Z, µ̃, Λ̃), the allocation distribution p(Z |π), the prior over mixing weights

p(π), and the prior over the component-specific parameters p(µ̃, Λ̃). That is

p(Z,π, µ̃, Λ̃ |X) ∝ p(X,Z,π, µ̃, Λ̃) = p(X |Z, µ̃, Λ̃)p(Z |π)p(π)p(µ̃, Λ̃) (3.3)

where

p(X |Z, µ̃, Λ̃) =

n∏
i=1

∞∏
j=1

Np(Xi | µ̃j, Λ̃−1
j)1{Zi=j}

p(Z |π) =

n∏
i=1

Categorical (Zi |π)

p(µ̃, Λ̃) = p(µ̃ | Λ̃)p(Λ̃)

=

∞∏
j=1

Np(µ̃j |m0, Λ̃−1
j /β0)Wp

(
Λ̃j |W0,ν0

)
.

The prior over the infinite sequence of mixing weights π is defined by the

stick-breaking construction. The distribution p(π) is then implicitly defined by

the joint distribution of the independent Vj variables:

p(π) =

∞∏
j=1

Beta(Vj | 1,α).

The infinite-dimensional parameter space makes the posterior distribution

analytically intractable, requiring specific methods for inference. The following

sections provide an mcmc method and the cavi algorithm, both tailored for the

Dirichlet process Gaussian mixture model dpgmm with a normal-Wishart prior.

3.1 Inference via sampling

Inference in Dirichlet process Gaussian mixture models can be performed using

various sampling-based methods. In this section, we focus on the Algorithm 8 of

Neal (2000), presented in Subsection 1.3.1, and implement it for a dpgmm with a

normal-Wishart prior.

Chapter 3. Dirichlet process Gaussian mixture model 29

In a dpgmm, each cluster parameter θ̃z consists of a location vector µ̃z and a pre-

cision matrix Λ̃z. When drawing new values for the auxiliary parameters (µ̃z, Λ̃z)

from the base distribution G0, we need to simulate from the normal-Wishart

distribution:

(µ̃z, Λ̃z) ∼ NWp(m0, Λ̃−1
z /β0,W0,ν0).

This can be done by sampling Λ̃z from Wp(W0,ν0), and then µ̃z | Λ̃z from

Np
(
m0, Λ̃−1

z /β0
)
.

When updating the cluster assignment for the i-th observation, we compute

the assignment probabilities using the kernel

K(Xi | µ̃z, Λ̃z) = Np(Xi | µ̃z, Λ̃−1
z)

which is the multivariate Gaussian density evaluated at Xi.

Finally, to update the cluster parameters (µ̃z, Λ̃z) for clusters with assigned

observations, we exploit the conjugacy of the normal-Wishart prior to the Gaus-

sian model. Given the data assigned to cluster z, denoted by Xz = {Xi : Zi = z},

the posterior distribution is:

µ̃z, Λ̃z | Xz ∼ NWp(µ̃z, Λ̃z |m0, Λ̃−1
z /β0,W0,ν0)

∏
i:Zi=z

Np(Xi | µ̃z, Λ̃−1
z)

∼ NWp(µ̃z, Λ̃z |mz, Λ̃−1
z /βz,Wk,νk)

where

βz = β0 +nz

mz =
β0m0 +nzX̄z

βz

W−1
z =W−1

0 +nzSz +
β0nz

βz
(X̄z −m0)(X̄z −m0)

⊺

νz = ν0 +nz

with nz = Card(Xi), X̄z =
∑
i : Zi=z

Xi/nz and Sz =
∑
i : Zi=z

(Xi − X̄z)(Xi −

X̄z)
⊺/nz. Thus, similarly to the update for auxiliary cluster parameters, we

sample Λ̃z | Xz from Wp(Wz,νz), and then µ̃z | Λ̃z,Xz from Np(mz, Λ̃−1
z /βz).

With this setup, we are equipped to run mcmc-based inference in the dpgmm

and analyze posterior clustering behavior and component parameters.

After estimating the model, we obtain a sequence of partitions generated at

each iteration of the mcmc algorithm. As suggested by Wade & Ghahramani

(2018), to select the optimal partition, we minimize a clustering loss function

30 Chapter 3. Dirichlet process Gaussian mixture model

such as the variation of information (Meilă, 2007) or the Binder’s loss (Binder,

1978) a posteriori. Since the space of all possible partitions is too large to explore

exhaustively, we restrict our search to a subset of candidate partitions. This subset

is obtained by applying hierarchical clustering to a distance matrix derived from

the posterior similarity matrix, where the entry in position i, j is estimated as

P(Zi = Zj |X) ≈
1

R−B

R∑
r=B+1

1
(Z

(r)
i =Z

(r)
j)

where Z(r)
i denotes the cluster assignment of observation i at iteration r, B is the

number of burn-in iterations, and R is the total number of mcmc samples. The

corresponding distance matrix has entries

dij = 1− P(Zi = Zj |X)

and hierarchical clustering with average or complete linkage is applied to its

estimate to generate a set of candidate partitions. The final partition is chosen

as the one within the candidate set that minimizes the expected loss under the

posterior, where the expectation is approximated using the posterior similarity

matrix.

3.2 Inference via optimization

We now derive the cavi algorithm for the model in Equation (3.2), using the

finite Dirichlet approximation from Equation (1.3). This approximation limits

the maximum number of clusters to H. Consequently, the cluster assignment

variables will follow a multinomial distribution with one trial and probabilities π,

that is

Zi ∼Multinomial(1,π)

for i = 1, . . . ,n, and

µ̃ = [µ̃1, . . . , µ̃H] and Λ̃ = [Λ̃1, . . . , Λ̃H].

With this setup, we can derive the cavi algorithm similarly to what has been

done in Bishop (2006).

We consider the class of variational distributions that factorize as follows:

q(Z,π, µ̃, Λ̃) = q(Z)q(π, µ̃, Λ̃).

Chapter 3. Dirichlet process Gaussian mixture model 31

This assumption implies independence between the latent variables and the

parameters.

The update equations are determined by using the generic result in Equa-

tion (1.8).

We begin from the factor q(Z). The log optimal factor is

logq⋆(Z) ∝ Eπ,µ̃,Λ̃
[
logp(X,Z,π, µ̃, Λ̃)

]
. (3.4)

Using the decomposition of the posterior distribution in Equation (3.3) and

considering the terms depending on Z, we get

logq⋆(Z) ∝ Eµ̃,Λ̃
[
logp(X |Z, µ̃, Λ̃)

]
+ Eπ [logp(Z |π)] .

It can be shown that

Eµ̃,Λ̃
[
logp(X |Z, µ̃, Λ̃)

]
=

n∑
i=1

H∑
h=1

zih
2

{
EΛ̃h

[
log|Λ̃h|

]
− p log 2π

− Eµ̃h,Λ̃h

[
(xi − µ̃h)

⊺Λ̃h(xi − µ̃h)
]}

and that

Eπ [logp(Z |π)] =

n∑
i=1

H∑
h=1

zihEπh [logπh].

Substituting the latter two results into Equation (3.4), we obtain that

logq⋆(Z) ∝
n∑
i=1

H∑
h=1

zih log ρih (3.5)

where

log ρih = Eπh [logπh] +
1

2
EΛ̃h

[
log|Λ̃h|

]
−
p

2
log(2π)

−
1

2
Eµ̃h,Λ̃h

[
(xi − µ̃h)

⊺Λ̃h(xi − µ̃h)
]

.
(3.6)

Taking the exponential of both sides of Equation (3.5) and normalizing with

respect to h = 1, . . . ,H, we can see that each Zi has a multinomial variational

distribution. In particular,

q⋆(Z) =

n∏
i=1

Multinomial(Zi | 1, ri) (3.7)

32 Chapter 3. Dirichlet process Gaussian mixture model

where ri = [ri1, . . . , riH] with

rih =
ρih∑H
k=1 ρik

(3.8)

for i = 1, . . . ,n and h = 1, . . . ,H.

It is now useful to define some statistics of the observed data, as they will

arise from the next calculations:

Nh =

n∑
i=1

rih

x̄h =
1

Nh

n∑
i=1

rihxi

Sh =
1

Nh

n∑
i=1

rih(xi − x̄h)(xi − x̄h)
⊺

(3.9)

for h = 1, . . . ,H. Let us determine the optimal factor q(π, µ̃, Λ̃). Again, using

Equation (1.8), we have that

logq⋆(π, µ̃, Λ̃) ∝ EZ
[
logp(X |Z, µ̃, Λ̃)

]
+ logp(Z |π) + logp(π) + logp(µ̃, Λ̃).

(3.10)

Since π never appears in terms also involving µ̃ or Λ̃, π and (µ̃, Λ̃) are indepen-

dent under the variational distribution. Focusing on the terms of Equation (3.10)

that depend on π, we can determine q⋆(π):

logq⋆(π) ∝ EZ [logp(Z |π)] + logp(π)

where, using the result in Equation (3.7), it can be shown that

EZ [logp(Z |π)] =

n∑
i=1

H∑
h=1

rih logπh =

H∑
h=1

Nh logπh.

Thus,

logq⋆(π) ∝
(α
H

− 1
) H∑
h=1

logπh +
H∑
h=1

Nh logπh

∝
(α
H

+Nh − 1
) H∑
h=1

logπh.

(3.11)

Chapter 3. Dirichlet process Gaussian mixture model 33

Again, by taking the exponential of both sides of Equation (3.11), we realize that

π has a Dirichlet variational distribution, that is

q(π) = Dirichlet(π |α)

where α = [α1, . . . ,αH] with

αh =
α

H
+Nh (3.12)

for h = 1, . . . ,H.

Finally, we can derive the optimal factor q(µ̃, Λ̃). By considering the terms of

Equation (3.10) that depend on µ̃ and Λ̃, we obtain that

logq⋆(µ̃, Λ̃) ∝ EZ
[
logp(X |Z, µ̃, Λ̃)

]
+ logp(µ̃, Λ̃)

where

EZ
[
logp(X |Z, µ̃, Λ̃)

]
=

n∑
i=1

H∑
h=1

rih logNp(xi | µ̃h, Λ̃−1
h).

Consequently, we can write that

q⋆(µ̃, Λ̃) ∝
H∏
h=1

Np(xi | µ̃h, Λ̃−1
h)rihNp(µ̃h |m0, Λ̃−1

h /β0)Wp(Λ̃h |W0,ν0).

Now, if we focus on a fixed h and use the conjugacy property of the Gaussian-

Wishart prior to the Gaussian model, we can determine the joint variational

distribution of µ̃h and Λ̃h:

q⋆(µ̃h, Λ̃h) = q⋆(µ̃ | Λ̃h)q⋆(Λ̃h)

= Np(µ̃h |mh, Λ̃−1
h /βh)Wp(Λ̃h |Wh,νh)

where

βh = β0 +Nh

mh =
β0m0 +Nhx̄h

βh

W−1
h =W−1

0 +NhSh +
β0Nh
βh

(x̄h −m0)(x̄h −m0)
⊺

νh = ν0 +Nh.

(3.13)

Now that we determined the functional form of variational distribution,

we can complete the expression of the responsibilities by computing the three

34 Chapter 3. Dirichlet process Gaussian mixture model

expectations that appear in Equation (3.6). By using the properties of the Dirichlet,

Wishart, and Gaussian distributions, it is easy to see that

Eπh [logπh] = ψ(αh) −ψ(α+)

EΛ̃h
[log|Λ̃h|] = ψp

(νh
2

)
+ p log 2+ log|Wh|

Eµ̃h,Λ̃h

[
(xi − µ̃h)

⊺Λ̃h(xi − µ̃h)
]
=
p

βh
+ νh(xi −mh)

⊺Wh(xi −mh)

where ψ(·) and ψp(·) denote respectively the univariate and the p-variate

digamma functions, and α+ =
∑H
h=1 αh.

We are left to determine the expression of the elbo, which is both useful for

convergence checks and for validating the implementation of the algorithm, as

its value must be monotonically non-decreasing across iterations. We recall the

decomposition of the joint distribution of the observed data, latent variables,

and parameters in Equation (3.3) to plug it into the expression of the elbo in

Equation (1.5). Thereby, we obtain that

L(q⋆(·)) = E
[
logp(X |Z, µ̃, Λ̃)p(Z |π)p(π)p(µ̃, Λ̃)

]
− E

[
logq⋆(Z,π, µ̃, Λ̃)

]
= E

[
logp(X |Z, µ̃, Λ̃)

]
+ E [logp(Z |π)] + E [logp(π)] + E

[
logp(µ̃, Λ̃)

]
− E [logq⋆(Z)] − E [logq⋆(π)] − E

[
logq⋆(µ̃, Λ̃)

]
where the expectations are taken with respect to the whole variational distribution.

At this stage, it should be easy to show that they are equal to the following results:

E
[
logp(X |Z, µ̃, Λ̃)

]
=
1

2

{
H∑
h=1

NhE
[
log|Λ̃h|

]
− p log 2π

−

n∑
i=1

H∑
h=1

rihE
[
(xi − µ̃h)

⊺Λ̃h(xi − µ̃h)
]}

E [logp(Z |π)] =

n∑
i=1

H∑
h=1

rihE [logπh]

E [logp(π)] =
(α
H

− 1
) H∑
h=1

E [logπh] − logB
(α
H
1H

)

Chapter 3. Dirichlet process Gaussian mixture model 35

E
[
logp(µ̃, Λ̃)

]
= −

pH

2
log 2π−

ν0pH

2
log 2+

pH

2
logβ0 −

p

2

H∑
h=1

β0
βh

−
β0
2

H∑
h=1

νh(µ̃h −m0)
⊺Wh(µ̃h −m0) −

νh
2

log|W0|

+
1

2
(ν0 − p)

H∑
h=1

E
[
log|Λ̃h|

]
−
1

2

H∑
h=1

νh Tr(W−1
0 Wh)

−H log Γp
(ν0
2

)
E [logq⋆(Z)] =

n∑
i=1

H∑
h=1

rih log rih

E [logq⋆(π)] =
H∑
h=1

(αh − 1)E[logπh] − logB(α)

E
[
logq⋆(µ̃, Λ̃)

]
= −

pH

2
log 2π+

p

2

H∑
h=1

logβh −
pH

2

+
1

2

H∑
h=1

(νh − p)E
[
log|Λ̃h|

]
−
p

2

H∑
h=1

νh

−
p

2
log 2

H∑
h=1

νh −
1

2

H∑
h=1

νh log|Wh|−

H∑
h=1

log Γp
(νh
2

)
where B(·) denotes the normalizing constant of the Dirichlet distribution, and

Γp(·) denotes the p-variate gamma function, arising from the normalizing constant

of the Wishart distribution.

36 Chapter 3. Dirichlet process Gaussian mixture model

After performing some simplifications, we are left with the following expres-

sion of the lower bound:

L(q⋆(·)) =
H∑
h=1

log Γ(αh) − log Γ
(
α+
)
−H log Γ

(α0
H

)
+ log Γ(α0)

−

n∑
i=1

H∑
h=1

rih log rih +
pH

2
logβ0 −

p

2

H∑
h=1

logβh

−
β0
2

H∑
h=1

νh(mh −m0)
⊺Wh(mh −m0)

−
1

2

n∑
i=1

H∑
h=1

νhrih(xi −mh)
⊺Wh(xi −mh)

−
1

2

H∑
h=1

νh Tr(W−1
0 Wh) +

1

2

H∑
h=1

νh log|Wh|−
ν0H

2
log|W0|

+

H∑
h=1

log Γp
(νh
2

)
−H log Γp

(ν0
2

)
+
1

2

H∑
h=1

νh −
np

2
logπ

(3.14)

where Γ(·) denotes the univariate gamma function, arising from the normalizing

constant of the Dirichlet distribution.

In summary, the cavi algorithm consists of the following steps:

1. Initialize the responsibilities.

2. Compute the statistics in Equation (3.9).

3. Update the hyperparameters according to Equations (3.12), (3.13), and (3.8).

4. Compute the elbo in Equation (3.14).

5. Check for convergence. If convergence has not been reached, return to

step 2; otherwise, terminate the algorithm.

We conclude this section with a few of remarks regarding the algorithm and

the interpretation of its output clustering purposes.

Initialization. For the algorithm to proceed with the computations of the

statistics on the observed data, initial values for the responsibilities are essential.

Therefore, we initialize each ri with a sample drawn from the prior distribution

over the mixing weights, that is generating from a Dirichlet distribution with H

parameters all equal to α/H. The algorithm is sensitive to the initialization. For

this reason, it is common practice to run it multiple times from different starting

points and select the estimate associated with the highest lower bound value.

Chapter 3. Dirichlet process Gaussian mixture model 37

Termination. There are typically two primary ways to stop the iterations. The

first is to specify a maximum number of iterations to prevent indefinite running.

The second method involves assessing convergence, which is usually achieved

when the relative (or absolute) increment of a monitored objective function, such

as the elbo, between successive iterations falls below a predefined small tolerance

threshold ϵ. For instance, in our implementation, the algorithm might stop at

iteration t if
Lt −Lt−1

|Lt−1|
< ϵ,

for some small ϵ.

Cluster assignment. Upon convergence of the cavi algorithm, we obtain

for each observation i a probability vector rih for h = 1, . . . ,H, indicating the

posterior responsibility of cluster h. To produce the optimal partition, each

observation is assigned to the cluster with the highest posterior responsibility:

zi = arg max
h=1,...,H

rih.

See Appendix A for the R implementation of the cavi algorithm applied to

dpgmms with normal-Wishart priors.

3.3 FOLD implementations

In this section, we discuss the possible implementations of the fold method

for the Dirichlet process Gaussian mixture model. Although, this method is

very general and can be applied to a wide range of models, the Gaussian kernel

allows for some simplifications. In particular, the kernel plays a crucial role when

computing the distances between localized densities.

The fold loss function is well-specified when a unit-bounded distance between

probability distributions is chosen. In their paper, Dombowsky & Dunson (in

press) propose the Hellinger distance, as it is bounded in the interval [0, 1]

by definition, and its interpretation makes it particularly suitable for the fold

method. In general, the square of the Hellinger distance between two probability

density functions f and g is defined as

H2{f,g} =
1

2

∫ (√
f(x) −

√
g(x)

)2
dx.

The Hellinger distance measures the lack of overlap between f and g; that is,

it quantifies how much the two distributions disagree in the density that they

38 Chapter 3. Dirichlet process Gaussian mixture model

assign to different regions of the support. A value of zero indicates that the two

distributions are identical (i.e., complete overlap), while a value of 1 indicates

that one distribution assigns probability only to regions where the other assigns

none (i.e., no overlap).

The Hellinger distance simplifies and admits a closed-form expression when

applied to Gaussian distributions. Specifically, the square of the Hellinger distance

between f(·) = Np(· |µ1,Σ1) and g(·) = Np(· |µ2,Σ2) is defined as

H2{f,g} = 1−
|Σ1|

1/4|Σ2|
1/4∣∣∣Σ1+Σ22

∣∣∣1/2 exp

{
−
1

8
(µ1 − µ2)

⊺
(
Σ1 + Σ2
2

)−1

(µ1 − µ2)

}
.

This closed-form expression makes the Hellinger distance particularly convenient

and efficient to compute when comparing Gaussian distributions, which can

significantly speed up computations.

Furthermore, one could want to use a not unit-bounded statistical distance d.

In this case, we define the loss of assigning i and j to the same cluster as follows:

Dij = 1− exp{−d(K(·; θi),K(·; θj)}

This transformation enables us to explore how the fold method performs when

different statistical distances are used.

In recent years, the Wasserstein metric (or earth mover’s distance) has gained

significant attention in machine learning, statistics, and computational optimal

transport. It provides a geometrically meaningful way to compare probability

distributions by quantifying the “cost” of optimally transporting mass from one

distribution to another (Peyré & Cuturi, 2019). Unlike unit-bounded divergences

such as the Hellinger distance, the Wasserstein distance is not bounded, but offers

a more intuitive notion of discrepancy.

Formally, for p ⩾ 1, the p-Wasserstein distance between two probability

distributions µ and ν on an Euclidean space X is defined as

Wp{µ,ν} =
[

inf
γ∈Γ(µ,ν)

∫
X×X

∥x−y∥p2 dγ(µ,ν)
]1/p

where Γ(µ,ν) is the set of all couplings (i.e., joint distributions) with marginal

distributions µ and ν. Note that here p denotes the order of the Wasserstein

distance, not the dimension of the sample space. Intuitively, the Wasserstein

distance measures the minimum expected cost of transforming one distribution

into the other by moving mass through the space.

Chapter 3. Dirichlet process Gaussian mixture model 39

The Wasserstein metric has an appealing geometric interpretation: in Eu-

clidean spaces, it corresponds to the minimal “effort” required to rearrange the

mass of one distribution to match another.

A particularly useful result is the closed-form expression of the 2-Wasserstein

distance between two Gaussian distributions. Specifically, the square of the

2-Wasserstein distance between f(·) = Np(· |µ1,Σ1) and g(·) = Np(· |µ2,Σ2) is

defined as

W2
2 {f,g} = ∥µ1 − µ2∥22 + Tr

[
Σ1 + Σ2 − 2

(
Σ
1/2
1 Σ2Σ

1/2
1

)1/2]
This formula shows the decomposition of the Wasserstein distance into a mean

displacement term and a covariance mismatch term. The first term measures how

far apart the two distributions are. The second term, on the other hand, quantifies

the difference in the shape, scale, and orientation of the two distributions.

Thanks to this closed form, the 2-Wasserstein distance can be computed effi-

ciently and used to explore the behavior of the fold method under geometrically-

aware statistical distances.

The fold method is implemented by setting d{·, ·} to be either the Hellinger

distance H{·; ·} or the transformed 2-Wasserstein distance 1− exp {−W2{·; ·}}.
Finally, when computing the plug-in approximation of the expectation

Eq[d{Np(· | µ̃h, Λ̃−1
h),Np(· | µ̃h′ , Λ̃−1

h′)}], we compute the following expected values

with respect to the variational distribution:

Eq[µ̃h] = mh and Eq

[
Λ̃−1
h

]
=

Wh

νh − p− 1
.

Chapter 4

Simulation studies

This chapter presents a comparative study of the Dirichlet process Gaussian

mixture model estimates obtained via variational Bayes and Markov chain

Monte Carlo methods. We then apply the fold procedure to both outputs to

investigate its effectiveness in reducing the number of clusters while preserving

their interpretability and meaningfulness.

We design three simulation settings, each introducing an increasing degree

of kernel misspecification, to systematically assess model performance under

various deviations from model assumptions. The contour plots of the three

simulation settings are shown in Figure 4.1.

We compare the number of estimated clusters before and after using the fold

method. We use the adjusted Rand index (ari) to measure the meaningfulness

of the clusters. As in Hubert & Arabie (1985), the ari quantifies the degree of

agreement between two partitions beyond what would be expected by chance.

An ari of 1 indicates perfect agreement between the partitions. An ari around 0

indicates that the agreement is at the level expected by chance. Negative values

are possible, indicating less agreement than would expected by chance.

−4

0

4

−5 0 5

(a) Contour plot of the Gaus-
sian mixture.

−4

0

4

8

−5 0 5 10

(b) Contour plot of the
skewed Gaussian mixture.

5

10

15

0 5 10 15

(c) Contour plot of the mix-
ture of mixtures.

Figure 4.1: Contour plots of the three mixtures considered in the simulation studies.

41

42 Chapter 4. Simulation studies

We also take into account the runtime of the fold procedures on the vb output

and the mcmc output.

To facilitate comparison across the different methods and variants, we use the

following labels throughout the plots and tables of the following sections. The

models are estimated either via variational Bayes or Markov chain Monte Carlo,

without any post-processing. These are referred to as VB (Pre) and MCMC (Pre),

respectively. The fold method is then applied to these estimates using either

the Hellinger distance or the Wasserstein-2 distance, and using either the plug-in

approximation or the theoretic formulation. The resulting combinations are

denoted accordingly: VB + FOLD-H (Plug-in) and VB + FOLD-W (Plug-in) refer

to fold applied to the vb output using the plug-in method with the Hellinger

and Wasserstein metrics, respectively; VB + FOLD-H and VB + FOLD-W refer to

the same but using the theoretic version of fold; analogous labels are used for

the mcmc-based results: MCMC + FOLD-H, and MCMC + FOLD-W.

In each simulation study, the data are standardized to have zero mean and

unit variance along each dimension. The hyperparameter values are chosen

to reflect weak prior information. Specifically, the hyperparameters are set as

follows:

α = 1, β0 = 0.1, m0 = 0, ν0 = 4, W0 = I2.

The prior meanm0 centers the distribution of the cluster means around the origin.

The scaling parameter β0 controls the prior variance of the cluster means, yielding

to Var[µ] = 10I2. This allows substantial deviation from m0. The degrees of

freedom ν0 are set as the smallest value for which the expectation of the covariance

matrix Λ−1 exists in two dimensions, ensuring a proper yet weakly informative

inverse-Wishart prior. The scale matrix W0 implies E[Λ−1] = I2, which reflects

unit variance of the scaled data. Finally, the choice of concentration parameter

of the Dirichlet process strikes a balance between promoting parsimony in the

number of clusters and allowing the data to drive the discovery of additional

components. In this setting, the expected number of clusters is E[Kn] ≈ 6.21 for a

sample size of n = 500, according to the result in Ghosal & van der Vaart (2017).

The model is estimated via variational inference and a Markov chain Monte

Carlo method. The variational inference algorithm, implemented in the R function

in Appendix A, terminates when it reaches 100 iterations, or when the relative

increase in the elbo between successive iterations falls below 10−4. The maximum

number of iterations is set to prevent excessive computation when convergence is

slow. In practice, this limit is never reached. The mcmc estimation is performed

using the marginal sampler implemented in the R package BNPmix (Corradin

Chapter 4. Simulation studies 43

et al., 2021), with the default number of auxiliary clusters (m = 100). We generate

10 000, discard the first 1 000 as burn-in, and keep one every three draws. The

optimal partition belongs to a set of candidates obtained using hierarchical

clustering with average linkage, and minimizes the posterior expectation of the

variation of information. Finally, to apply the fold method to the vb output, we

draw 1 000 samples from the optimal variational distribution.

4.1 Data generated from a Gaussian mixture

In the first simulation study, data are generated from a bivariate Gaussian mixture

with three well-separated components. In particular, the data generating process

is

f0 = a1N2 (µ1,Σ1) + a2N2 (µ2,Σ2) + a3N2 (µ3,Σ3)

where the mixing weights are (a1,a2,a3) = (0.45, 0.25, 0.3), the locations are µ1 =

(6.5, 5), µ2 = (0, 0), and µ3 = (−5,−5), and the covariance matrices are Σ1 = I2,

Σ2 = diag(5, 2), and Σ3 = diag(3, 2).

Figure 4.2, Figure 4.3, and Table 4.1 summarize the average number of clusters,

ari, and fold runtime for the different estimation and post-processing methods

applied to the bivariate Gaussian mixture.

In this setting, the model is well-specified. Both the vb and mcmc estimates

without post-processing yield interpretable and meaningful clusterings. On

average, they estimate 4 clusters with high values of the ari: 0.95 and 0.98,

respectively.

Applying fold improves the clustering produced by the vb estimate of the

model, regardless of the distance or approach. The estimated number of clusters

is nearly equal to the true number of clusters, that is 3. The values of the ari

increase to 0.97, indicating a slight refinement of the already good clusterings.

Some variability remains in the vb results due to sensitivity to initialization of

the cavi algorithm, which can occasionally yield suboptimal solutions and lead

to poorer clusterings even after fold is applied.

fold also improves the clusterings produced by the mcmc estimates. The

estimated number of clusters is reduced to near the true value, and the ari

maintains a value of 0.98, but with lower variance.

In summary, when the model is correctly specified, applying the fold method

to the vb estimates yields results similar to those produced by applying fold to

the mcmc estimates. Additionally, fold is significantly faster on vb estimates

because it operates on an i.i.d. sample drawn from the variational posterior, which

44 Chapter 4. Simulation studies

2

4

6

8

10

12

VB
(Pre)

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC
(Pre)

MCMC + FOLD−HMCMC + FOLD−W

Method

N
o.

 o
f C

lu
st

er
s

0.6

0.7

0.8

0.9

1.0

VB
(Pre)

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC
(Pre)

MCMC + FOLD−HMCMC + FOLD−W

Method

A
dj

us
te

d
R

an
d

In
de

x

Figure 4.2: Comparison of the number of clusters and adjusted Rand index on 500
observations from a bivariate Gaussian mixture.

0

1

2

3

4

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC + FOLD−H MCMC + FOLD−W

Method

R
un

tim
e

(s
ec

s)

Figure 4.3: Comparison of runtime on 500 observations from a bivariate Gaussian
mixture.

is typically smaller and easier to compute than the much larger, correlated sample

produced by mcmc. This results in notably reduced runtime for the vb-based

fold procedures.

4.2 Data generated from a skewed Gaussian mixture

In the second simulation study, data are generated from a bivariate skewed

Gaussian mixture. In particular, the data generating process is

f0 = a1SN2 (µ1,Σ1,ψ1) + a2SN2 (µ2,Σ2,ψ2) + a3SN2 (µ3,Σ3,ψ3)

where the mixing weights a1, a2, and a3 are all equal to 1/3, the locations are

µ1 = (9, 2), µ2 = (0, 4), and µ3 = (−2,−2), the covariance matrices are Σ1 = 2I2,

Chapter 4. Simulation studies 45

Method No. of Clusters ARI FOLD runtime

VB (Pre) 4.30 (1.679) 0.95 (0.043) −
VB + FOLD-H (Plug-in) 2.99 (0.333) 0.97 (0.072) 0.05 (0.013)
VB + FOLD-W (Plug-in) 2.96 (0.243) 0.97 (0.068) 0.05 (0.012)
VB + FOLD-H 2.96 (0.243) 0.97 (0.072) 0.05 (0.019)
VB + FOLD-W 2.96 (0.243) 0.97 (0.072) 0.06 (0.021)
MCMC (Pre) 3.95 (0.200) 0.98 (0.012) −
MCMC + FOLD-H 3.05 (0.261) 0.98 (0.010) 3.01 (0.375)
MCMC + FOLD-W 3.02 (0.141) 0.98 (0.010) 2.95 (0.378)

Table 4.1: Averages and standard deviations (in parentheses) for the number of clusters,
adjusted Rand index, and runtime of the fold procedure on 500 observations from a
bivariate Gaussian mixture.

Σ2 = diag(5, 3), and Σ3 = 3I2, and the skewness parameters are ψ1 = (1, 1),

ψ2 = (−10, 15), and ψ3 = (4,−17).

Figure 4.4, Figure 4.5, and Table 4.2 summarize the average number of clusters,

ari, and fold runtime for the different estimation and post-processing methods

applied to the bivariate skewed Gaussian mixture.

In this setting, where the data slightly deviate from Gaussianity due to

skewness in the mixture components, the performance of both vb and mcmc

estimates without post-processing deteriorates compared to the well-specified

case. Specifically, the unprocessed vb estimates yield an average of 5.38 clusters

with an ari of 0.91, while the unprocessed mcmc estimates tend to overcluster

slightly less, producing an average of 4.63 clusters but with a lower ari of

0.84. These results indicate that both methods are affected by the model

misspecification, though vb appears to offer slightly more stable clustering

performance in this case.

Applying the fold procedure leads to substantial improvements in both

estimation methods. For all combinations of statistical distance and approxima-

tion method, fold reduces the number of clusters toward the true value and

increases the ari, often approaching perfect clustering accuracy. Notably, all

Wasserstein-based fold methods, whether applied to vb or mcmc, consistently

recover the true partition, with an average ari of 1 and a very low standard

deviation. Hellinger-based approaches also perform well, though with slightly

higher variance in the number of clusters.

An exception is observed for the VB + FOLD-H (Plug-in) method. This

variant tends to overestimate the number of clusters (mean of 4.43), likely due

to limitations of the plug-in approximation. Specifically, the plug-in method can

overestimate the distance between localized densities when using the Hellinger

46 Chapter 4. Simulation studies

3

4

5

6

7

8

9

VB
(Pre)

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC
(Pre)

MCMC + FOLD−HMCMC + FOLD−W

Method

N
o.

 o
f C

lu
st

er
s

0.6

0.7

0.8

0.9

1.0

VB
(Pre)

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC
(Pre)

MCMC + FOLD−HMCMC + FOLD−W

Method

A
dj

us
te

d
R

an
d

In
de

x

Figure 4.4: Comparison of the number of clusters and adjusted Rand index on 500
observations from a bivariate skewed Gaussian mixture.

0

1

2

3

4

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC + FOLD−H MCMC + FOLD−W

Method

R
un

tim
e

(s
ec

s)

Figure 4.5: Comparison of runtime on 500 observations from a bivariate skewed Gaussian
mixture.

distance, preventing the proper merging of nearby clusters. This effect is not

present when using the Wasserstein metric, which is more robust to such

approximation.

Finally, the computational efficiency of the fold procedure is once again

evident: runtimes for vb-based methods remain below 0.1 seconds on average,

while mcmc-based versions require over 3 seconds due to their reliance on larger,

correlated posterior samples.

4.3 Data generated from a mixture of mixtures

In the third simulation study, data are generated from bivariate mixture of three

components f0 = a1g01+a2g
0
2+a3g

0
3 with mixing weights a1, a2, and a3 all equal

Chapter 4. Simulation studies 47

Method No. of Clusters ARI FOLD Runtime

VB (Pre) 5.38 (0.908) 0.91 (0.053) −
VB + FOLD-H (Plug-in) 4.43 (0.807) 0.95 (0.041) 0.06 (0.049)
VB + FOLD-W (Plug-in) 3.13 (0.367) 1 (0.003) 0.06 (0.050)
VB + FOLD-H 3.19 (0.419) 1 (0.004) 0.06 (0.014)
VB + FOLD-W 3.13 (0.367) 1 (0.003) 0.07 (0.017)
MCMC (Pre) 4.63 (0.928) 0.84 (0.111) −
MCMC + FOLD-H 3.14 (0.377) 1 (0.006) 3.06 (0.382)
MCMC + FOLD-W 3.05 (0.219) 1 (0.002) 3.05 (0.367)

Table 4.2: Averages and standard deviations (in parentheses) for the number of clusters,
adjusted Rand index and runtime of the fold procedure on 500 observations from a
bivariate skewed Gaussian mixture.

to 1/3. Two components, g01 and g03, are mixtures of two skewed Gaussian kernels:

g01 = 0.5 SN2

([
0

4

]
, I2,

[
15

−5

])

+ 0.5 SN2

([
0

6

]
,

[
5 3

3 2

]
,

[
7

−3

])
,

g03 = 0.5 SN2

([
12

6

]
,

[
1 0

0 3

]
,

[
11

0

])

+ 0.5 SN2

([
0

6

]
,

[
5 3

3 2

]
,

[
9

−7

])
.

Instead, the second component g02 is a mixture of two skewed Gaussian kernels

and a Gaussian kernel:

g02 = 1/3 SN2

([
3

15

]
, 3I2,

[
−3

2

])

+ 1/3N2

([
6

15

]
,

[
5 −2

−2 1

])

+ 1/3 SN2

([
8

15

]
, I2,

[
3

−5

])
.

Figure 4.6, Figure 4.7, and Table 4.3 summarize the average number of clusters,

ari, and fold runtime for the different estimation and post-processing methods

applied to the bivariate mixture of mixtures.

First, we observe that the vb estimate without post-processing results in a

number of clusters close to the expected value (6.24), with a high ari of 0.71.

48 Chapter 4. Simulation studies

2

4

6

8

10

VB
(Pre)

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC
(Pre)

MCMC + FOLD−HMCMC + FOLD−W

Method

N
o.

 o
f C

lu
st

er
s

0.5

0.6

0.7

0.8

0.9

1.0

VB
(Pre)

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC
(Pre)

MCMC + FOLD−HMCMC + FOLD−W

Method

A
dj

us
te

d
R

an
d

In
de

x

Figure 4.6: Comparison of the number of clusters and adjusted Rand index on 500
observations from a mixture of mixtures.

Applying fold improves the clustering quality significantly: both the plug-in and

theoretic versions of FOLD-W reduce the number of clusters to about 3.45 and

achieve the highest ari (0.95), indicating near-perfect alignment with the true

partition. The Hellinger-based versions also reduce the number of clusters while

improving ari, though to a lesser extent than Wasserstein. Notably, the plug-in

methods perform comparably to the theoretic versions, but with slightly faster

runtime.

In contrast, the mcmc-based estimate without post-processing overestimates

the number of clusters (6.91) and yields a lower ari of 0.55, suggesting a less

accurate clustering. After applying fold, the results improve substantially: both

FOLD-H and FOLD-W reduce the number of clusters to more interpretable

levels (around 4.52 and 3.04, respectively), with FOLD-W achieving a perfect

ari of 1, suggesting exact recovery of the true clustering structure. However,

these improvements come at the cost of higher computational time, compared to

vb-based fold procedures.

Overall, the results show that applying fold, especially with the Wasserstein

metric, substantially improves the accuracy and parsimony of clustering for both

vb and mcmc estimates. While MCMC + FOLD-W achieves the best clustering

accuracy, VB + FOLD-W offers a favorable trade-off between performance and

computational efficiency.

Chapter 4. Simulation studies 49

0

1

2

3

4

VB + FOLD−H
(Plug−in)

VB + FOLD−W
(Plug−in)

VB + FOLD−H VB + FOLD−W MCMC + FOLD−H MCMC + FOLD−W

Method

R
un

tim
e

(s
ec

s)

Figure 4.7: Comparison of runtime on 500 observations from a mixture of mixtures.

Method No. of Clusters ARI FOLD Runtime

VB (Pre) 6.24 (0.830) 0.71 (0.079) −
VB + FOLD-H (Plug-in) 4.82 (0.936) 0.82 (0.080) 0.06 (0.008)
VB + FOLD-W (Plug-in) 3.46 (0.610) 0.95 (0.071) 0.06 (0.008)
VB + FOLD-H 4.01 (0.559) 0.88 (0.060) 0.07 (0.012)
VB + FOLD-W 3.45 (0.609) 0.95 (0.073) 0.08 (0.014)
MCMC (Pre) 6.91 (0.793) 0.55 (0.033) −
MCMC + FOLD-H 4.52 (0.731) 0.81 (0.090) 3.05 (0.339)
MCMC + FOLD-W 3.04 (0.197) 1 (0.004) 2.95 (0.279)

Table 4.3: Averages and standard deviations (in parentheses) for the number of clusters,
adjusted Rand index, and runtime of the fold procedure on 500 observations from a
bivariate mixture of mixtures.

Chapter 5

Real data applications

In this chapter, we use the dpgmm with a normal-Wishart prior to address

clustering in different real scenarios. As in the previous chapter, the model is

first estimated via variational Bayes, using the R function in Appendix A, and

via marginal sampler, using the R package BNPmix. The cavi algorithm is run by

fixing the maximum number of components at 100, the maximum number of

iterations at 100, and a relative increase in the elbo between successive iterations

at 10−4. The marginal sampler is run by letting the number of auxiliary clusters

equal to the default value (100). The optimal partition derived from the mcmc

estimates belongs to a set of candidates obtained using hierarchical clustering

with average linkage, and minimize the posterior expectation of the variation of

information.

The fold procedure is then applied to each model estimate. In particular,

to apply fold to vb estimates, we generate 1 000 samples from the variational

posterior.

The elbow plot diagnostic is used to select the number of clusters to consider.

In each elbow plot, we seek the “elbow” point, that is a point where the metric

stops decreasing significantly with the addition of more clusters. The number of

clusters at the “elbow” is often the best balance between performance and model

complexity.

Finally, each data partition is evaluated with the adjusted Rand index.

5.1 Yeast dataset

The Yeast dataset (Nakai, 1991) contains data on protein localization sites in

the yeast Saccharomyces cerevisiae. Each observation corresponds to a protein,

and the goal is to predict the subcellular location where the protein functions,

based on its sequence-derived features. We consider a subset of this dataset.

51

52 Chapter 5. Real data applications

Specifically, we aim to distinguish the two localization sites, CYT (cytosolic or

cytoskeletal) and ME3 (membrane protein, no N-terminal signal), by considering

three variables: McGeoch’s method for signal sequence recognition (mcg), the

score of the ALOM membrane spanning region prediction program (alm), and

the score of discriminant analysis of the amino acid content of vacuolar and

extracellular proteins (vac). This subset of the dataset contains a total of 626

observations, with 463 labeled as CYT and 163 as ME3. Figure 5.1 shows the

pairwise scatterplots of the selected variables, with points colored by cluster

assignment, illustrating the data partition.

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8
mcg

al
m

0.2

0.4

0.6

0.2 0.4 0.6 0.8
mcg

va
c

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1.0
alm

va
c Site

CYT

ME3

Figure 5.1: Pairwise scatterplots of selected features (mcg, alm, vac) from the Yeast
dataset, showing two classes of protein localization sites: CYT (cytosolic or cytoskeletal)
and ME3 (membrane protein, no N-terminal signal). Each point represents a protein,
colored according to its class.

The following hyperparameters are used for the estimations of the dpgmm with

a normal-Wishart prior. The prior mean m0 of the Gaussian components is set to

the empirical mean of the observed data. The scalar precision parameter β0 that

controls the strength of the prior on the component means is set to 10. The scale

matrix W−1
0 for the prior on the covariance matrices of the Gaussian components

is set to the sample covariance of the data. The degrees of freedom ν0 for the

Wishart prior is set to 5, which ensures that the corresponding inverse-Wishart

distribution has a finite expectation. The concentration parameter α of the

Dirichlet process is set to 1, implying a prior expectation of 6.44 clusters.

The cavi algorithm is run multiple times with different initializations to

identify the starting values that yield the highest value of the elbo. Figure 5.2

shows the progression of the elbo across iterations for the best run.

The mcmc sampling is run for 10 000 iterations after a burn-in of 10 000

iterations.

Chapter 5. Real data applications 53

900

1200

1500

1800

2100

0 10 20 30 40 50
Iteration

E
LB

O

Figure 5.2: Progression of the elbo during the estimation of the dpgmm with a normal-
Wishart prior on the Yeast dataset.

fold is applied to post-process the estimates obtained from both vb and mcmc,

resulting in the elbow plots shown in Figure 5.3.

Table 5.1 presents the number of clusters identified by the raw vb and mcmc

estimates, along with those obtained after post-processing with fold. Each

clustering result is evaluated with the ari.

The raw vb estimate overestimates the number of clusters, identifying 6

clusters with a relatively low ari of 0.362. Post-processing this estimate using

fold with both the Hellinger distance and the Wasserstein metric reduces the

number of clusters to 5. When using the Hellinger distance, the improvement

in ari is marginal (0.373 and 0.389, respectively, for the standard and plug-in

implementations). In contrast, employing the Wasserstein metric substantially

enhances the partitioning, achieving an ari of 0.715. Notably, the highest

performance is obtained by combining the plug-in approximation with the

Wasserstein metric, which reduces the number of clusters to 3 while achieving an

ari of 0.726.

Similarly, the raw mcmc estimate tends to overestimate the number of clusters,

identifying 5 and achieving an ari of 0.441. While this result is slightly better than

the raw vb estimate, it still reflects a suboptimal partitioning of the data. Applying

fold post-processing improves clustering quality in all cases. Specifically, using

the Hellinger distance reduces the number of clusters to 4 and raises the ari

to 0.593. Employing the Wasserstein metric maintains the original number of

clusters but achieves a higher ari of 0.653, indicating a better alignment with the

true data partition.

54 Chapter 5. Real data applications

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(a) VB + FOLD-H

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(b) VB + FOLD-W

0.2

0.4

0.6

0.8

1.0

5 10 15 20
No. of Clusters

r ω

(c) VB + FOLD-H (Plug-in)

0.4

0.6

0.8

1.0

5 10 15 20
No. of Clusters

r ω

(d) VB + FOLD-W (Plug-in)

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(e) MCMC + FOLD-H

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(f) MCMC + FOLD-W

Figure 5.3: Elbow plots used to select the number of clusters for each combination of
estimation method and fold implementation in the dpgmm with a normal-Wishart prior,
applied to the Yeast dataset.

Despite improvements in number of clusters and ari, none of the methods

successfully recovers the true number of clusters.

5.2 Flea beetles dataset

The Flee beetles dataset (Lubischew, 1962) consists of six physical measurements

of 74 flea beetles from three different species: concinna, heptapotamica, and

heikertingeri. Both the original and the standardized datasets are available in the

Chapter 5. Real data applications 55

Method No. of Clusters ARI

VB (Pre) 6 0.362
VB + FOLD-H 5 0.373
VB + FOLD-W 5 0.715
VB + FOLD-H (Plug-in) 5 0.389
VB + FOLD-W (Plug-in) 3 0.726
MCMC (Pre) 5 0.441
MCMC + FOLD-H 4 0.593
MCMC + FOLD-W 5 0.653

Table 5.1: Comparison of the number of clusters and adjusted Rand index for each
combination of estimation method and fold implementation in the dpgmm with a
normal-Wishart prior, applied to the Yeast dataset.

R package tourr (Wickham et al., 2011). The whole standardized dataset is used

in the analysis.

The following hyperparameters are used for the estimations of the dpgmm

with a normal-Wishart prior. The prior mean m0 of the Gaussian components

is set to the origin. The scalar precision parameter β0 that controls the strength

of the prior on the component means is set to 1. The scale matrix W−1
0 for the

prior on the covariance matrices of the Gaussian components is set to the identity

matrix. The degrees of freedom ν0 for the Wishart prior is set to 8, which ensures

that the corresponding inverse-Wishart distribution has a finite expectation. The

concentration parameter α of the Dirichlet process is set to 1, implying a prior

expectation of 4.31 clusters.

The cavi algorithm is run multiple times with different initializations to

identify the starting values that yield the highest value of the elbo. Figure 5.4

shows the progression of the elbo across iterations for the best run.

The mcmc sampling is run for 3 000 iterations after a burn-in of 3 000 iterations.

fold is applied to post-process the estimates obtained from both vb and mcmc,

resulting in the elbow plots shown in Figure 5.5.

Table 5.2 presents the number of clusters identified by the raw vb and mcmc

estimates, along with those obtained after post-processing with fold. Each

clustering result is evaluated with the ari.

The raw vb estimate oversegments the data, identifying 8 clusters, yet it

achieves a relatively high-quality partition with an ari of 0.803. All fold

implementations successfully recover the true number of clusters (3). Among

them, the plug-in approximation with the Hellinger distance yields an ari of

0.875, while all other fold-based methods perfectly match the ground truth with

an ari of 1.

56 Chapter 5. Real data applications

−1250

−1000

−750

5 10 15
Iteration

E
LB

O

Figure 5.4: Progression of the elbo during the estimation of the dpgmm with a normal-
Wishart prior on the Flea beetles dataset.

In contrast, the raw mcmc estimate already recovers the correct clustering

structure, identifying exactly 3 clusters with an ari of 1. Applying fold in this

case does not alter the results, preserving both the number of clusters and the

perfect clustering accuracy.

Method No. of Clusters ARI

VB (Pre) 8 0.803
VB + FOLD-H 3 1

VB + FOLD-W 3 1

VB + FOLD-H (Plug-in) 3 0.875
VB + FOLD-W (Plug-in) 3 1

MCMC (Pre) 3 1

MCMC + FOLD-H 3 1

MCMC + FOLD-W 3 1

Table 5.2: Comparison of the number of clusters and adjusted Rand index for each
combination of estimation method and fold implementation in the dpgmm with a
normal-Wishart prior, applied to the Flea beetles dataset.

5.3 Australian Institute of Sports dataset

The Australian Institute of Sports dataset (Cook & Weisberg, 1994) contains

physical measurements and blood measurements from 202 high performance

athletes. The sex and the practiced sport of each athlete are known. This dataset

is available in the R package locfit (Loader, 2025). We consider a subset of the

dataset. Specifically, we aim to distinguish the sex of the athlete, by considering

three physical measurements: the body mass index (BMI) in kilograms, the lean

Chapter 5. Real data applications 57

0.00

0.25

0.50

0.75

1.00

4 8 12
No. of Clusters

r ω

(a) VB + FOLD-H

0.00

0.25

0.50

0.75

1.00

4 8 12
No. of Clusters

r ω

(b) VB + FOLD-W

0.00

0.25

0.50

0.75

1.00

4 8 12
No. of Clusters

r ω

(c) VB + FOLD-H (Plug-in)

0.00

0.25

0.50

0.75

1.00

4 8 12
No. of Clusters

r ω

(d) VB + FOLD-W (Plug-in)

0.00

0.25

0.50

0.75

1.00

4 8 12
No. of Clusters

r ω

(e) MCMC + FOLD-H

0.00

0.25

0.50

0.75

1.00

4 8 12
No. of Clusters

r ω

(f) MCMC + FOLD-W

Figure 5.5: Elbow plots used to select the number of clusters for each combination of
estimation method and fold implementation in the dpgmm with a normal-Wishart prior,
applied to the Flea beetles dataset.

body mass (LBM) in kilograms, and the percentage of body fat (BFat). Figure 5.6

shows the pairwise scatterplots of the selected variables, with points colored by

cluster assignment, illustrating the data partition.

The following hyperparameters are used for the estimations of the dpgmm

with a normal-Wishart prior. The prior mean m0 of the Gaussian components is

set to the origin. The scalar precision parameter β0 is set to 1. The scale matrix

W−1
0 for the prior on the covariance matrices of the Gaussian components is set

to the identity matrix. The degrees of freedom ν0 for the Wishart prior is set to

58 Chapter 5. Real data applications

50

70

90

20 25 30 35
BMI

LB
M

10

20

30

20 25 30 35
BMI

B
Fa

t
10

20

30

50 70 90
LBM

B
Fa

t sex

female

male

Figure 5.6: Pairwise scatterplots of selected features (BMI, LBM, and BFat) from the
Australian Institute of Sports dataset. Each point represents an athlete, colored according
to their sex.

5. The concentration parameter α of the Dirichlet process is set to 1, implying a

prior expectation of 5.13 clusters.

The cavi algorithm is run multiple times with different initializations to

identify the starting values that yield the highest value of the elbo. Figure 5.2

shows the progression of the elbo across iterations for the best run.

−1500

−1250

−1000

−750

5 10 15
Iteration

E
LB

O

Figure 5.7: Progression of the elbo during the estimation of the dpgmm with a normal-
Wishart prior on the Australian Institute of Sports dataset.

The mcmc sampling is run for 4 000 iterations after a burn-in of 4 000 iterations.

fold is applied to post-process the estimates obtained from both vb and mcmc,

resulting in the elbow plots shown in Figure 5.8.

Chapter 5. Real data applications 59

0.00

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(a) VB + FOLD-H

0.00

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(b) VB + FOLD-W

0.00

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(c) VB + FOLD-H (Plug-in)

0.00

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(d) VB + FOLD-W (Plug-in)

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(e) MCMC + FOLD-H

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(f) MCMC + FOLD-W

Figure 5.8: Elbow plots used to select the number of clusters for each combination of
estimation method and fold implementation in the dpgmm with a normal-Wishart prior,
applied to the Australian Institute of Sports dataset.

Table 5.3 presents the number of clusters identified by the raw vb and mcmc

estimates, along with those obtained after post-processing with fold. Each

clustering result is evaluated with the ari.

Both the raw vb and mcmc estimates identify 4 clusters and their clusterings

attain ari values of 0.602 and 0.760, respectively. Each fold method recovers

the true number of clusters (2). However, using the Wasserstein metric yields to

higher quality clusterings than using the Hellinger distance.

60 Chapter 5. Real data applications

Method No. of Clusters ARI

VB (Pre) 4 0.602
VB + FOLD-H 2 0.724
VB + FOLD-W 2 0.829
VB + FOLD-H (Plug-in) 2 0.707
VB + FOLD-W (Plug-in) 2 0.829
MCMC (Pre) 4 0.760
MCMC + FOLD-H 2 0.690
MCMC + FOLD-W 2 0.829

Table 5.3: Comparison of the number of clusters and adjusted Rand index for each
combination of estimation method and fold implementation in the dpgmm with a
normal-Wishart prior, applied to the Australian Institute of Sports dataset.

5.4 Wisconsin Diagnostic Breast Cancer dataset

The Wisconsin Diagnostic Breast Cancer dataset (Wolberg et al., 1993) contains

data obtained from digitized images of fine needle aspirates of breast masses.

Each observation corresponds to a tumor mass, which is categorized either as

benign or malignant. We consider a subset of this dataset. Specifically, we

aim to distinguish the diagnosis, B (benign) and M (malignant), by considering

three variables: the mean texture, the “worst” area, and the “worst” smoothness.

Figure 5.9 shows the pairwise scatterplots of the selected variables, with points

colored by cluster assignment, illustrating the data partition.

0

1000

2000

3000

4000

10 20 30 40
mean_texture

w
or

st
_a

re
a

0.10

0.15

0.20

10 20 30 40
mean_texture

w
or

st
_s

m
oo

th
ne

ss

0.10

0.15

0.20

0 1000 2000 3000 4000
worst_area

w
or

st
_s

m
oo

th
ne

ss

Diagnosis

B

M

Figure 5.9: Pairwise scatterplots of selected features (mean_texture, worst_area, and
worst_smoothness) from the Wisconsin Diagnostic Breast Cancer dataset. Each point
represents a tumor sample, colored according to its diagnostic category (benign or
malignant).

Chapter 5. Real data applications 61

The dpgmm with a normal-Wishart prior is estimated on the standardized

data. The following hyperparameters are used for the estimations. The prior

mean m0 of the Gaussian components is set to the origin. The scalar precision

parameter β0 is set to 1. The scale matrix W−1
0 for the prior on the covariance

matrices of the Gaussian components is set to the identity matrix. The degrees of

freedom ν0 for the Wishart prior is set to 5. The concentration parameter α of the

Dirichlet process is set to 1, implying a prior expectation of 5.13 clusters.

The cavi algorithm is run multiple times with different initializations to

identify the starting values that yield the highest value of the elbo. Figure 5.10

shows the progression of the elbo across iterations for the best run.

−3400

−3000

−2600

−2200

0 10 20 30
Iteration

E
LB

O

Figure 5.10: Progression of the elbo during the estimation of the dpgmm with a normal-
Wishart prior on the Wisconsin Diagnostic Breast Cancer dataset.

The mcmc sampling is run for 5 000 iterations after a burn-in of 5 000 iterations.

Finally, fold is applied to post-process the estimates obtained from both vb

and mcmc, resulting in the elbow plots shown in Figure 5.11.

Table 5.4 presents the number of clusters identified by the raw vb and mcmc

estimates, along with those obtained after post-processing with fold. Each

clustering result is evaluated with the ari.

The raw vb estimate detects 7 clusters, considerably oversegmenting the data

and yielding a moderate ari of 0.534. Post-processing with fold significantly

improves performance. Using the Hellinger distance reduces the number of

clusters to 2 and raises the ari to 0.837. The plug-in version of the Hellinger-based

post-processing further improves the clustering quality, achieving the highest ari

of 0.842 with 3 clusters. The Wasserstein-based methods (the original version and

its plug-in counterpart) also improve the clustering compared to the raw estimate,

identifying 4 clusters with ari values of 0.805 and 0.812, respectively.

62 Chapter 5. Real data applications

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(a) VB + FOLD-H

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(b) VB + FOLD-W

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(c) VB + FOLD-H (Plug-in)

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(d) VB + FOLD-W (Plug-in)

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(e) MCMC + FOLD-H

0.25

0.50

0.75

1.00

5 10 15 20
No. of Clusters

r ω

(f) MCMC + FOLD-W

Figure 5.11: Elbow plots used to select the number of clusters for each combination of
estimation method and fold implementation in the dpgmm with a normal-Wishart prior,
applied to the Wisconsin Diagnostic Breast Cancer dataset.

For the mcmc approach, the raw estimate yields 4 clusters and an ari of

0.738. Post-processing with fold again leads to improved clustering performance.

Using the Hellinger distance, the number of clusters is reduced to 2, with a

resulting ari of 0.824. The Wasserstein-based post-processing identifies 3 clusters

and achieves an ari of 0.813. These results confirm that fold, particularly in

combination with plug-in approximations and the Hellinger distance, effectively

improves both the clustering accuracy and alignment with the ground truth.

Chapter 5. Real data applications 63

Method No. of Clusters ARI

VB (Pre) 7 0.534
VB + FOLD-H 2 0.837
VB + FOLD-W 4 0.805
VB + FOLD-H (Plug-in) 3 0.842
VB + FOLD-W (Plug-in) 4 0.812
MCMC (Pre) 4 0.738
MCMC + FOLD-H 2 0.824
MCMC + FOLD-W 3 0.813

Table 5.4: Comparison of the number of clusters and adjusted Rand index for each
combination of estimation method and fold implementation in the dpgmm with a
normal-Wishart prior, applied to the Wisconsin Diagnostic Breast Cancer dataset.

Chapter 6

Conclusions

In this manuscript, we presented the Bayesian nonparametric framework with a

particular focus on the Dirichlet process. We discussed its theoretical properties

and demonstrated its role in constructing flexible mixture models. Two major

inference strategies were examined in depth: Markov chain Monte Carlo methods

and variational inference. We presented the foundational theory behind mcmc,

along with the widely used Neal’s Algorithm 8, and then transitioned to the

variational framework, where we derived the coordinate ascent variational

inference algorithm.

We then introduced the Fusing of Localized Densities procedure, originally

proposed as a post-processing method for mcmc outputs. Our contribution

extended this method to the variational inference setting. In particular, we

proposed two implementations of fold that differ in how they estimate expected

distances between localized densities: a plug-in approximation and a Monte

Carlo approximation. Both approaches offer substantial improvements in runtime

compared to the original mcmc-based fold procedure.

These general techniques were applied to the Dirichlet process Gaussian

mixture model with a normal-Wishart prior, one of the most widely used Bayesian

nonparametric models for continuous data. With proper modifications, however,

they can be applied to any Bayesian mixture model.

We conducted simulation studies and real data applications to compare clus-

tering results from mcmc and vi estimates under well-specified and misspecified

models. We used the fold procedure, employing both the Hellinger distance and

the Wasserstein metric, to post-process these results and evaluated the resulting

partitions. Notably, vi provided clustering results comparable to those obtained

using mcmc, suggesting that the known drawback of underestimating posterior

variance may be acceptable in exchange for substantially faster inference in certain

scenarios. Interestingly, the use of the Wasserstein metric in the fold procedure

65

66 Chapter 6. Conclusions

often led to fewer clusters being identified, providing the advantage of more

interpretable clusterings.

There are several avenues for future research. It would be interesting to

further investigate the behavior of mcmc and vi estimates, both before and

after fold post-processing, in more complex settings. This includes exploring

different sample sizes and higher-dimensional data. A particular focus should be

placed on the trade-off between computational efficiency and inference accuracy.

Additionally, the sensitivity of fold to different statistical distances could be

examined, paying special attention to the tendency of the Wasserstein metric

to yield more parsimonious clusterings. Finally, the cavi algorithm could be

extended to accommodate models with more relaxed specifications, and the

previous analyses could be replicated under these alternative model choices.

Specifically, hyperpriors over key model hyperparameters could be incorporated.

Notably, placing a hyperprior over the Dirichlet process concentration parameter

(Escobar & West, 1995) would provide a more data-driven determination of the

number of clusters, reducing the reliance on subjective specifications. These

directions are left for future work.

Bibliography

Antoniak, C. E. (1974). Mixtures of Dirichlet Processes with Applications to

Bayesian Nonparametric Problems. The Annals of Statistics 2, 1152 – 1174.

Binder, D. A. (1978). Bayesian cluster analysis. Biometrika 65, 31–38.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Berlin, Heidelberg: Springer-Verlag.

Blei, D. M. & Jordan, M. I. (2006). Variational inference for Dirichlet process

mixtures. Bayesian Analysis 1, 121 – 143.

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. (2017). Variational Inference:

A Review for Statisticians. Journal of the American Statistical Association 112,

859–877.

Cook, R. D. & Weisberg, S. (1994). Transforming a response variable for linearity.

Biometrika 81, 731–737.

Corradin, R., Canale, A. & Nipoti, B. (2021). BNPmix: An R package for

Bayesian nonparametric modeling via Pitman-Yor mixtures. Journal of Statistical

Software 100, 1–33.

Dahl, D. B., Johnson, D. J. & Mueller, P. (2021). Search Algorithms and Loss

Functions for Bayesian Clustering.

Dombowsky, A. & Dunson, D. B. (in press). Bayesian clustering via fusing of

localized densities. Journal of the American Statistical Association .

Escobar, M. D. & West, M. (1995). Bayesian Density Estimation and Inference

Using Mixtures. Journal of the American Statistical Association 90, 577–588.

Ferguson, T. S. (1973). A Bayesian Analysis of Some Nonparametric Problems.

The Annals of Statistics 1, 209 – 230.

67

68 Bibliography

Ghosal, S. & van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian

Inference. Cambridge Series in Statistical and Probabilistic Mathematics.

Cambridge University Press.

Hubert, L. & Arabie, P. (1985). Comparing partitions. Journal of Classification 2,

193–218.

Ishwaran, H. & Zarepour, M. (2002). Exact and Approximate Sum Represen-

tations for the Dirichlet Process. The Canadian Journal of Statistics / La Revue

Canadienne de Statistique 30, 269–283.

Loader, C. (2025). locfit: Local Regression, Likelihood and Density Estimation. R

package version 1.5-9.12.

Lubischew, A. A. (1962). On the Use of Discriminant Functions in Taxonomy.

Biometrics 18, 455–477.

Meilă, M. (2007). Comparing clusterings—an information based distance. Journal

of Multivariate Analysis 98, 873–895.

Nakai, K. (1991). Yeast. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5KG68.

Neal, R. M. (2000). Markov Chain Sampling Methods for Dirichlet Process

Mixture Models. Journal of Computational and Graphical Statistics 9, 249–265.

Peyré, G. & Cuturi, M. (2019). Computational optimal transport. Foundations

and Trends in Machine Learning 11, 355–607.

Robert, C. P. & Casella, G. (2004). Monte Carlo Statistical Methods. Springer

Verlag.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica

Sinica 4, 639–650.

Wade, S. & Ghahramani, Z. (2018). Bayesian Cluster Analysis: Point Estimation

and Credible Balls (with Discussion). Bayesian Analysis 13, 559 – 626.

Wickham, H., Cook, D., Hofmann, H. & Buja, A. (2011). tourr: An R package

for exploring multivariate data with projections. Journal of Statistical Software

40, 1–18.

Wolberg, W., Mangasarian, O., Street, N. & Street, W. (1993). Breast

Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5DW2B.

Appendix A

Implementation of the CAVI algorithm

Listing A.1: Implementation of the cavi algorithm for Dirichlet process Gaussian mixture

models with normal-Wishart priors.
1 cavi_dpgmm_nw <- function(data, # Data matrix

2 m_0, # Prior mean of the Gaussian components

3 beta_0, # Strength of the prior on the mean

4 W_0, # Scale matrix of the prior on the precision matrix

5 nu_0, # Degrees of freedom for the prior on the precision matrix

6 alpha_0, # Concentration parameter

7 H = 100, # Maximum number of mixture components

8 max_iter = 50, # Maximum number of iterations

9 threshold = 1e-3, # Maximum relative elbo decrement

10 print_message = TRUE) {

11 t_0 <- Sys.time()

12 n <- nrow(data)

13 p <- ncol(data)

14

15 # Initialization

16 convergence <- FALSE

17 iter <- 0

18 elbo <- numeric(max_iter)

19

20 r <- bmixture::rdirichlet(n, rep(alpha_0 / H, H))

21 W_0_inv <- qr.solve(qr(W_0))

22 log_det_W_0 <- determinant(W_0)$modulus[1]

23

24 while (!convergence) {

25 iter <- iter + 1

26 if (print_message) cat(sprintf("\rIteration %3d", iter))

27

28 # Compute statistics on observed data

29 N <- colSums(r)

30 means <- matrix(0, nrow = H, ncol = p)

31 S <- array(0, dim = c(p, p, H))

32 for (h in which(N != 0)) {

33 means[h,] <- crossprod(r[, h], data) / N[h]

34 centered_data <- sweep(data, 2, means[h,], "-")

35 S[, , h] <- crossprod(centered_data, (centered_data * r[, h])) / N[h]

36 }

37

69

70 Implementation of the CAVI algorithm

38 # Update hyperparameters of the Dirichlet distribution

39 alpha <- alpha_0 / H + N

40

41 # Update strength parameters

42 beta <- beta_0 + N

43

44 # Update means

45 m <- (beta_0 * matrix(m_0, nrow = H, ncol = p, byrow = TRUE) + N * means) / beta

46

47 # Update scale matrices

48 W_inv <- sapply(1:H, function(h) {

49 means_h <- matrix(means[h,])

50 W_0_inv + N[h] * S[, , h] + beta_0 * N[h] / beta[h] * tcrossprod(means_h - m_0)

51 }, simplify = FALSE)

52 W_inv <- abind::abind(W_inv, along = 3)

53

54 W <- apply(W_inv, 3, function(x) qr.solve(qr(x)), simplify = FALSE)

55 W <- abind::abind(W, along = 3)

56

57 # Update degrees of freedom

58 nu <- nu_0 + N

59

60 # Compute useful expected values

61 alpha_plus <- sum(alpha)

62 E_log_pi <- digamma(alpha) - digamma(alpha_plus)

63 log_det_W <- apply(W, 3, function(x) determinant(x)$modulus[1])

64 E_log_det_Lambda <- CholWishart::mvdigamma(nu / 2, p) + p * log(2) + log_det_W

65 Nu <- matrix(nu, nrow = n, ncol = H, byrow = TRUE)

66 quad_form_x <- sapply(1:H, function(h) {

67 centered_data <- sweep(data, 2, m[h,], "-")

68 rowSums(tcrossprod(centered_data, W[, , h]) * centered_data)

69 })

70 E_quad_form_lik <- matrix(p / beta, nrow = n, ncol = H, byrow = TRUE) + Nu * quad_form_x

71

72 # Update responsibilities

73 log_rho <- tcrossprod(matrix(rep(1, n)), E_log_pi + 0.5 * E_log_det_Lambda) - 0.5 * E_quad_form_lik

74 max_log_rho <- apply(log_rho, 1, max)

75 r <- exp((log_rho - max_log_rho) - log(rowSums(exp(log_rho - max_log_rho))))

76

77 # Compute ELBO

78 quad_form_m <- vapply(1:H, function(h) {

79 diff_vec <- m[h,] - m_0

80 weighted_diff <- crossprod(W[, , h], diff_vec)

81 as.numeric(crossprod(diff_vec, weighted_diff))

82 }, FUN.VALUE = numeric(1))

83 trace_W_0_inv_W <- apply(W, 3, function(x) sum(W_0_inv * x))

84

85 elbo[iter] <- c(

86 sum(lgamma(alpha)) - lgamma(alpha_plus)

87 - H * lgamma(alpha_0 / H) + lgamma(alpha_0)

88 + 0.5 * p * H * log(beta_0) - 0.5 * p * sum(log(beta))

89 - sum(r * log(r + .Machine$double.eps))

90 - 0.5 * beta_0 * sum(nu * quad_form_m)

91 - 0.5 * sum(rowSums(r * Nu * quad_form_x))

92 - 0.5 * sum(nu * trace_W_0_inv_W)

93 + 0.5 * sum(nu * log_det_W) - 0.5 * nu_0 * H * log_det_W_0 +

Implementation of the CAVI algorithm 71

94 sum(CholWishart::lmvgamma(nu / 2, p)) - H * CholWishart::lmvgamma(nu_0 / 2, p)

95 + 0.5 * p * sum(nu) - 0.5 * p * n * log(pi)

96)

97

98 # Convergence check

99 rel_growth <- ifelse(iter > 1, (elbo[iter] - elbo[iter - 1]) / abs(elbo[iter - 1]), threshold + 1)

100 convergence <- iter == max_iter | rel_growth <= threshold

101 }

102 t_1 <- Sys.time()

103 tot_time <- as.numeric(difftime(t_1, t_0, units = "secs"))

104

105 if (print_message) {

106 cat(sprintf("\rConvergence reached at iteration %d in %.3f seconds.\nELBO: %.3f\n",

107 iter, tot_time, elbo[iter]))

108 }

109

110 # Output

111 list(elbo = elbo[1:iter], tot_time = tot_time,

112 z = apply(r, 1, which.max),

113 m = m,

114 beta = beta,

115 W = W,

116 W_inv = W_inv,

117 nu = nu,

118 r = r

119)

120 }

	Introduction
	1 Bayesian nonparametric clustering
	1.1 Dirichlet process
	1.2 Dirichlet process mixture model
	1.3 Inference in Dirichlet process mixture models
	1.3.1 Markov chain Monte Carlo methods
	1.3.2 Variational inference

	2 Fusing of Localized Densities
	2.1 Point estimation
	2.1.1 Strategies for optimizing the risk
	2.1.2 Choice of the loss parameter

	2.2 Uncertainty quantification
	2.3 Implementation with MCMC output
	2.4 Implementation with VI output

	3 Dirichlet process Gaussian mixture model
	3.1 Inference via sampling
	3.2 Inference via optimization
	3.3 FOLD implementations

	4 Simulation studies
	4.1 Data generated from a Gaussian mixture
	4.2 Data generated from a skewed Gaussian mixture
	4.3 Data generated from a mixture of mixtures

	5 Real data applications
	5.1 Yeast dataset
	5.2 Flea beetles dataset
	5.3 Australian Institute of Sports dataset
	5.4 Wisconsin Diagnostic Breast Cancer dataset

	6 Conclusions
	Bibliography
	A Implementation of the CAVI algorithm

