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Introduction

Central to Bayesian nonparametrics is the specification of prior distributions over

infinite-dimensional spaces and the construction of probability measures over

these spaces, enabling the modelling of unknown underlying structures using

data. The mathematical demands are higher since defining well-structured

probability distributions on potentially infinite-dimensional spaces is more

difficult. Additionally, eliciting a prior in such a large space is a significant

challenge. However, these solutions are increasingly valuable for solving real-

world problems across a growing range of applications. For instance, genomic

applications have introduced challenging inferential problems due to their

unique characteristics, such as dealing with very large populations containing

numerous distinct species where only a small portion of the population has

been sampled. Species sampling problems are a significant area of application.

These problems involve drawing samples from a population of individuals,

which may belong to a possibly infinite number of species. When the number

of species in the population is large, it is reasonable to assume it is infinite.

Such problems are fundamental in ecological and biological studies, addressing

issues like species richness evaluation, sampling experiment design, and rare

species estimation. The main goal is to estimate the number of new species

in a future sample, given an existing sample from the same population. To

achieve this, Bayesian nonparametric models are employed, particularly discrete

random probability measures like the Dirichlet process (Ferguson (1973)) and the

two-parameter Poisson–Dirichlet process (Pitman & Yor (1997)). More generally,

the category of normalized random measures (Regazzini et al. (2003)), driven by

Gibbs-type priors—a generalization of well-known processes such as the Dirichlet

or Pitman-Yor processes—is frequently employed.

This work focuses on a specific case of Gibbs-type priors, the Gnedin model,

introduced by Gnedin (2010). The thesis is organized into three chapters. The

first chapter introduces Gibbs-type priors (De Blasi et al. (2015)), which provide
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Introduction 2

a framework with characterisation based on their predictive structure, making

them suitable for rigorous mathematical analysis. These priors enable Bayesian

nonparametric models to balance flexibility and regularization, which is crucial

for achieving robust and reliable inference, especially when the true underlying

data-generating process is complex and unknown. While the Dirichlet process

serves as a fundamental building block in Bayesian nonparametrics, Gibbs-type

priors, encompass a broader class of prior distributions.

The second chapter is the core of this thesis, providing a detailed description

of the Gnedin model. Some quantities within this model still lack precise

formulation and definition. In this thesis, we aim to derive new results. These will

include the prior expected value of distinct species and the posterior expected

value of new species discovered and not observed in the initial sample. The

posterior distribution of the random probability measure associated with the

Gnedin model will also be formulated. The prior expected values are fundamental

for creating a model-based rarefaction curve. This curve visually illustrates the

relationship between the number of individuals randomly sampled and the

corresponding number of distinct species observed. This tool offers insights

into the adequacy of the sample size and allows for comparisons of species

richness between samples with different sequencing volumes. The collection of

posterior expected values as the sample size changes represents a model-based

extrapolation of the accumulation curve, a useful tool for predicting the number

of species. Additionally, consider a population of animals, plants, or similar

entities. A fundamental problem is predicting how many new species will be

observed in a future sample. We aim to make inferences by analytically deriving

this statistic of interest and finding its probability law, leveraging the general

achievements of De Blasi et al. (2015). This approach allows us to address several

application problems, such as species richness estimation or prediction for rare

species. These new findings are presented in this chapter.

Another possible application of this specific prior distribution is as a latent

structure in a mixture model, useful for clustering and density estimation. In the

Gnedin model, the posterior distribution for the associated random probability

measure has not been previously discussed. In the second chapter, we build

on the work of Argiento & De Iorio (2022) on Normalized Independent Finite

Poisson Processes, of which Gibbs-type priors are a special case, to formalize the

posterior distribution. We also provide an equivalent, simpler representation of

this distribution.



Introduction 3

In the final chapter, we focus on applying this model to species sampling

problems. The new quantities defined in the previous chapter open up new

possibilities for the analysis and application of this model. We present and analyze

the results obtained using both simulated data and commonly used datasets,

which are well-suited for evaluating the performance of different processes.



Chapter 1

A particular type of priors for Bayesian non-

parametric methods

The Gnedin model is an example of a broader class of prior distributions known

as Gibbs-type priors, which also includes well-known processes such as the

Dirichlet process and the Pitman-Yor process. This chapter will discuss the

characteristics and construction of these priors in detail. It will begin with a brief

introduction to the fundamental concepts of Bayesian nonparametric statistics,

followed by an overview of Gibbs-type priors. Then, the chapter will describe

the Dirichlet and Pitman-Yor processes. Finally, it will explore species sampling

problems, where the Gnedin model is applied in the context of this thesis work.

1.1 Bayesian Nonparametrics Statistics

In the Bayesian parametric setting, we start by considering a sequence of data

points X1,X2, . . . and make the assumption that these data points are independent

and identically distributed (i.i.d.) given a certain parameter which is typically

drawn from a prior distribution. In contrast, the Bayesian nonparametric setting

assumes that the data are conditionally i.i.d. given a random probability measure

p̃. This random measure p̃ is not restricted to belong to a parametric family of

distributions but can be any probability measure on the sample space X. The

flexibility of p̃ allows it to adapt to the complexity of the data, making Bayesian

nonparametrics particularly useful in situations where the underlying distribution

is unknown or cannot be adequately captured by a finite number of parameters.

The central challenge in Bayesian nonparametrics lies in how to properly define

the random probability measure p̃ and its associated prior distribution. Defining

a prior in this context means specifying a probability distribution on the space of

4



Chapter 1. A particular type of priors for Bayesian nonparametric methods 5

all possible probability measures on X, PX. Each point in PX corresponds to a

complete probability distribution on X, and thus the prior distribution over PX

reflects our uncertainty about which probability distribution from this space best

represents the underlying data-generating process.

1.2 Gibbs-type priors

The Bayesian Nonparametrics field has mainly focused on proposing and study-

ing classes of random probability measures that act as nonparametric priors.

Some of these classes include the Dirichlet process (Ferguson (1973)) as a special

case, which is fundamental in the field. However, when moving beyond the

Dirichlet process, there is a trade-off between generality and tractability, both

analytically and computationally. The two-parameter Poisson-Dirichlet process

(Pitman & Yor (1997)) is likely the most successful proposal in this regard. It is

possible to identify a large class of priors, which embeds the Pitman-Yor process

as a special case and the Dirichlet process, too. Such a class is given by Gibbs–type

priors, introduced in Gnedin & Pitman (2005). With references to De Blasi et al.

(2015), in this section we will now introduce this particular general class of priors.

1.2.1 Discrete random probability measures

Consider an infinite exchangeable sequence (Xn)n⩾1, where each element Xi can

be interpreted as the observed species labels in a set X. We assume that (Xn)n⩾1

is exchangeable, i.e., the order in which the observations are recorded is irrelevant.

Moreover, PX is the set of all probability measures on X. According to the de

Finetti theorem (de Finetti (1937)) this is equivalent to the existence of a random

probability measure p̃ on X such that:

Xi | p̃
iid
∼ p̃ i = 1, ...,n, (1.1)

p̃ ∼ P,

for any n ⩾ 1 where P is said the de Finetti measure and it is defined on PX.

In Bayesian Nonparametrics, priors that assign probability one to discrete

distributions are called discrete nonparametric priors. Any random probability



Chapter 1. A particular type of priors for Bayesian nonparametric methods 6

measure associated with a discrete prior can be represented as

p̃ =

∞∑
j=1

p̃jδXj
, (1.2)

where δy represents the Dirac delta measure at y, (p̃j)j⩾1 is a sequence of

probability weights such that
∑

j⩾1 p̃j = 1 almost surely and (Xj)j⩾1 is a sequence

of X-valued random variables. We assume that Xj’s are independent and

identically distributed (i.i.d.) from P, a non-atomic probability measure on

X, and that (Xj)j⩾1 and (p̃j)j⩾1 are independent. The class of the Equation (1.2)

is said to be a proper species sampling model (Pitman (1996)) and in particular

Gibbs-type priors are notable species sampling models.

1.2.2 Excheangeable partition probability function

The random probability measure can be characterized by a random partition

Πn induced by a sample Xn = (X1, . . . ,Xn) of size n. Due to the discrete nature

of p̃, there will be identical values among X1, . . . ,Xn with positive probability,

containing a total of Kn = k distinct values with labels X∗1, . . . ,X∗k with frequencies

n1, . . . ,nk such that
∑k

j=1 nj = n. The ties among the observations X1, . . . ,Xn

induce a random partition Ψn = {C1, . . . ,Ck} of the indices {1, . . . ,n}, where

Cj = {i : Xi = X∗j } and nj = |Cj|. In Gibbs-type priors, the law of the partition is

such that:

Πn(n1, ...,nk) = P(Ψn = {C1, . . . ,Ck}) = Vn,k

k∏
j=1

(1− σ)nj−1, (1.3)

where (a)n = a(a+ 1) . . . (a+n− 1) denotes a rising factorial, also known as the

Pochhammer symbol, σ < 1 is the discount parameter, and Vn,k’s are non-negative

weights that satisfy the forward recursive equation

Vn,k = (n− σk)Vn+1,k + Vn+1,k+1,

for any n ⩾ 1 and 1 ⩽ k ⩽ n. The function (1.3) is called Exchangeable Partition

Probability Function (EPPF) and it characterises the Gibbs-type prior and so the

distribution of the random probability measure p̃. Specifically, the weights form

the basis of any priors of the Gibbs-type. It is always possible to express Gibbs

partitions as a mixture with respect to the parameters of the associated process.
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Moreover, the EPPF satisfies the following consistency relation:

Πn(n1, ...,nk) = Πn+1(n1, ...,nk, 1) +
k∑

j=1

Πn+1(n1, ...,nj + 1, . . . ,nk).

1.2.3 Predictive distributions

Given a sample X1, . . . ,Xn generated from (1.1), the one-step ahead predictive

distribution coincides with the posterior expected value of p̃:

P(Xn+1 ∈ · | X1, . . . ,Xn) =

∫
PX

p(·)Q(dp | X1, . . . ,Xn)

where Q( · | X1, . . . ,Xn) is the posterior distribution of p̃.

When choosing and assessing specific predictive models, it is important to

take into account the probability of encountering a new, unique value that has

not been already included in the existing sample X1, . . . ,Xn. In other words, we

need to consider:

P(Xn+1 = "new" | X1, . . . ,Xn).

The random partition Πn allows to derive directly the predictive distribution

(Lijoi et al. (2007)), given by:

P(Xn+1 ∈ · | X1, . . . ,Xn) =
Πn+1(n1, ...,nk, 1)
Πn(n1, ...,nk)

P(·)

+

k∑
j=1

Πn+1(n1, . . . ,nj + 1, . . . ,nk)

Πn(n1, ...,nk)
δX∗

j
(·)

=
Vn+1,k+1

Vn,k
P(·) +

Vn+1,k

Vn,k

k∑
j=1

(nj − σ)δX∗
j
(·), (1.4)

which is helpful to address posterior inference. In this way, we can predict

the label for new observations. The predictive distribution is a linear convex

combination of the prior guess P at the shape p̃ and of the weighted empirical

distribution P̂n = (n − kσ)−1
∑k

j=1(nj − σ)δX∗
j
. The mechanism of allocating

the predictive mass among “new” and previously observed data can be split

into two stages. Given a sample X1, . . . ,Xn, the first step involves allocating

the probability mass between a new value X∗k+1 sampled from P and the set of

observed values {X∗1, . . . ,X∗k}. This initial step depends only on n and k, and not

on the frequencies n1, . . . ,nk. The second step is as follows: conditionally, if Xn+1
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is a new value, it is sampled from the base measure P. However, if Xn+1 matches

one of the previously observed values X∗j for j = 1, . . . ,k, the probabilities of these

coincidences are determined by the size nj of each cluster and σ. Thus, while the

frequencies nj do not influence the probability of allocating a predicted value

between "new" and "old", they do play a significant role if the predicted value

coincides with a previously observed one: the more frequently a past observation

has been detected, the higher the probability of re-observing it. Additionally,

σ plays an interesting role in weighting the empirical measure, as for σ > 0, a

reinforcement mechanism driven by σ occurs for those having higher frequencies,

which represents an appealing feature in certain inferential contexts. If σ < 0,

the reinforcement mechanism works inversely, meaning that the probabilities of

coincidence are less than proportional to the cluster size. Moreover, the parameter

σ also determines the rate at which the number of clusters, Kn increases as the

sample size n increases. The larger σ, the faster the rate of increase of Kn or, in

other words, the more new values are generated.

1.3 The Dirichlet process

The simplest nonparametric prior is the Dirichlet process, which was first defined

by Ferguson (1973) and has been presented by Müller et al. (2015) and Orbanz

(2014).

1.3.1 The Dirichlet distribution

Before introducing the Dirichlet process, it is necessary to review the Dirichlet

distribution. As a multivariate generalization of the Beta distribution, the Dirichlet

distribution can also be derived from the Gamma distribution.

Definition 1.1. Let Z = (Z1, . . . ,Zk) be a vector with k components, where Zi ⩾

0 for i = 1, 2, . . . ,k and
∑k

i=1 Zi = 1. Also, let α = [α1,α2, . . . ,αk], where αi > 0

for each i. Then the Dirichlet probability density function is

f(z) =
Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

z
αi−1
i ,

where α0 =
∑k

i=1 αi. We denote this distribution by Dir(α1,α2, . . . ,αk). The

Dirichlet distribution is a distribution with k positive parameters α with respect

to a k-dimensional space.
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The probability density function of the Dirichlet distribution for k random

variables is a k− 1 dimensional probability simplex that exists in a k-dimensional

space. It can be demonstrated that the marginal distribution of Zi is

Beta

αi,
k∑

j=1

αj −αi

 .

Gamma construction

We report here a useful result that will be exploited in the course of the thesis.

The Dirichlet distribution can be constructed using Gamma distributions, which

is a useful approach because it simplifies sampling from a Dirichlet distribution.

Suppose we want to construct a Dirichlet distribution Dir(α1,α2, . . . ,αk) with

parameters α1,α2, . . . ,αk all strictly positive. For each parameter αi, generate a

random variable Yi that follows a Gamma distribution with shape parameter αi

and scale parameter 1:

Yi ∼ Gamma(αi, 1) for i = 1, 2, . . . ,k.

Then, calculate the sum of the k generated Gamma variables:

S =

k∑
i=1

Yi.

and normalize each Gamma variable Yi by dividing by the sum S to obtain the

random variable Zi:

Zi =
Yi
S

for i = 1, 2, . . . ,k.

The obtained variables (Z1, . . . ,Zk) follow a Dirichlet distribution with parameters

α1,α2, . . . ,αk.

1.3.2 Distributional form

An initial definition of the Dirichlet Process is given here.

Definition 1.2. Given a measurable space (X,A) a random distribution p̃ is said

to follow a Dirichlet process prior with a base probability measure P and mass

parameter or concentration α if

(p̃(A1), . . . , p̃(Ak)) ∼ Dir(αP(A1), . . . ,αP(Ak))
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considering any arbitrary measurable partition {A1, . . . ,Ak} of X. We will write

p̃ ∼ DP(α,P).

For this definition to be valid, we must assume that P assigns positive mass

to any set of the partition A1, . . . ,Ak of X. For cases in which P attributes zero

mass, see van der Vaart & Ghosal (2017).

1.3.3 Stick-breaking construction

An alternative definition is based on the stick-breaking construction provided by

Sethuraman (1994).

Definition 1.3. Given a mass parameter α and a continuous distribution over

a generic space X, known as base measure, P. Considering two different

independent sequences of random variables of atoms (Xj)j⩾1 and of weights

(p̃j)j⩾1 defined as:

Xj
iid
∼ P

and

p̃j = vj

j−1∏
k=1

(1− vk) with vj
iid
∼ Beta(1,α).

If the sum of weights is equal to one almost surely, we obtain a random probability

measure defined as follows:

p̃(·) =
∞∑
j=1

p̃jδXj
(·)

is said a Dirichlet process with parameters P and α, DP(α,P).

It is important to note that this definition guarantees that p̃ is discrete, even if

P is a continuous distribution. The term stick-breaking refers to the construction of

the weights p̃j because we can think of the interval as a stick form in which pieces

(1− vk) are repeatedly broken off. Consider a sequence of random variables

v1, v2, . . . in [0, 1] which tells us how to break a stick of length 1. Each random

variable is sampled from a Beta distribution. The construction proceeds as follows.

Consider a stick of length 1 and break it into two pieces of length v1 and 1− v1,

putting p̃1 := v1. The remaining stick of length 1− v1 is again broken into two

pieces of relative lengths v2 and 1− v2. Hence we set p̃2 := (1− v1) · v2. The

remaining stick has length (1− v1) · (1− v2). Iterating such a procedure, we define
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the following infinite sequence of weights:

p̃1 = v1, . . . , p̃j = vj

j−1∏
k=1

(1− vk),

and (vj)j⩾1 such that vj
iid
∼ Beta(1,α). We can demonstrate that these weights

sum up to 1. Given this construction, the distribution of (p̃j)j∈N is usually called

the GEM(α) distribution, from the names of its authors Griffiths (1979), Engen

(1978), McCloskey (1965).

1.3.4 The Chinese restaurant process

The Chinese Restaurant Process (CRP) is an alternative representation of the

Dirichlet process, illustrating how data points cluster. Suppose we have a

sequence of data points X1,X2, . . . ,Xn generated from p̃ ∼ DP(α,P). The

CRP describes the probability of each data point joining an existing cluster

or generating a new cluster.

The CRP with concentration α is the distribution on partitions that we obtain

if we choose a Dirichlet process with parameters P and α as the distribution of a

random probability measure. The choice of the base measure P does not affect

the partition, and the CRP hence has only a single parameter.

This representation is useful for introducing predictive distribution. The CRP

is a metaphor for how customers (the observations) are seated at tables (clusters)

in a restaurant. When a new customer arrives, they either join an existing table

with a probability proportional to the number of customers already seated there,

or they start a new table with a probability proportional to the concentration

parameter α.

Theorem 1.1. Given a sample X1, . . . ,Xn generated from a p̃ ∼ DP(α,P), the predictive

distribution for a new data point Xn+1 can be expressed as:

P(Xn+1 ∈ · | X1,X2, . . . ,Xn) =
α

α+n
· P(·) +

n∑
i=1

1

α+n
δXi

(·)

where α is the mass parameter, P the base measure, and δXi
the Dirac delta measure at

Xi.

This means that there is a probability of α/(α+ n) for the new data point

Xn+1 to be drawn from the base measure P, indicating the potential for a new
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cluster. With a probability of ni/(α+n), the new data point is the same as one

of the existing data points Xi, demonstrating the clustering behaviour.

1.3.5 The Pólya urn scheme

The Pólya urn scheme offers a visual representation to help understand the

predictive distribution of new samples under the Dirichlet process. The sample

(X1, . . . ,Xn) can be generated as follows.

1. At the first step, generate a draw X1 from P(·)/α;

2. Generate X2 conditionally on X1 using the predictive distribution, in

particular

X2 | X1 ∼

δX1
(·) with probability 1/(α+ 1)

P(·)
α with probability α/(α+ 1)

...

n. Generate Xn conditionally in (X1, . . . ,Xn−1) using again the predictive

distribution

Xn | X1 . . . ,Xn−1 ∼



δX1
(·) with probability 1/(α+n− 1)

...

δXn−1
(·) with probability 1/(α+n− 1)

P(·)
α with probability α/(α+n− 1)

This process can be explained using an urn model. We will assume, for simplicity,

that α is an integer, but the same process can be applied in a general framework.

Imagine an urn containing α black balls, and let us also assume that the

distribution P(·)/α is uniform on the interval (0, 1). Each x in the interval (0, 1)

represents a different color, distinct from the black color. We now describe the

sampling procedure through the urn model. At step 1, draw a ball from the urn.

If the colour is black (and at step 1 this is true), we return the black ball in the urn

with an additional ball of a colour chosen uniformly at random in (0, 1), (we call

it X1). At step n of the procedure, we draw a ball from the urn and if the colour

is not black, then we return the ball in the urn with an additional ball of the same
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colour. On the other hand, if the colour is black, we return the black ball in the

urn with an additional ball of a new colour chosen uniformly at random in (0, 1).

Note that, according to such a procedure, at step 1 we select a new colour

with probability 1. At step 2, there are α+ 1 balls, of which α are black and one is

coloured. Then, the probability that the new ball belongs to a new colour equals

α/(α+ 1), while the probability that the new ball is equal to X1 coincides with

1/(α+ 1). At the nth step, we have α+ (n− 1) balls, more precisely α black balls

and n− 1 coloured balls. Xn is a new colour with probability α/(α+n− 1), Xn

is old and equals colour Xj, for j = 1, . . . ,n− 1, with probability 1/(α+ n− 1).

Hence, the urn scheme gives us the same predictive distribution as the Dirichlet

process.

1.3.6 Properties

Since the Dirichlet process places a distribution on the random measure p̃, the

quantity p̃(A) for any A ⊂ X, where X is a generic space, is a random variable.

Then we have:

E[p̃(A)] = P(A),

Var(p̃(A)) =
P(A) (1− P(A))

α+ 1
.

The distribution P represents the expected shape of the random measure p̃

and α determines how variable the realisations around the prior guess P are.

From the distributional form of the Dirichlet process and for the characterization

of the Dirichlet distribution we can say that the marginal distribution of p̃(A)

is Beta (αP(A),α(1− P(A))). Recalling that the Beta(a,b) distribution has an

expected value of a/(a+ b) and a variance of ab/((a+ b)2 · (a+ b+ 1)), we can

demonstrate the properties of the Dirichlet process.

A further particularly useful characteristic of the Dirichlet process is its

conjugacy under i.i.d. sampling. If X1,X2, . . . ,Xn is an i.i.d. sample with Xi | p̃ ∼ p̃

and p̃ ∼ DP(α,P) then:

p̃ | X1, . . . ,Xn ∼ DP

(
α+n,

αP+
∑n

i=1 δXi

α+n

)
.

The posterior mean is

E[p̃ | X1, . . . ,Xn] =
αP+

∑n
i=1 δXi

α+n
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which can be interpreted as a weighted average between the base measure P with

weight α and the empirical distribution 1
n

∑n
i=1 δXi

with weight n. This is the

same result as in Theorem 1.1.

Another important property of the Dirichlet process is the distribution of the

number of distinct clusters, Kn, in a sample of size n. Given n data points drawn

from a Dirichlet process DP(α,P), the number of distinct clusters Kn is a random

variable that represents the number of unique values among these n points. The

expected number of distinct clusters is given by:

E[Kn | α] =

n∑
i=1

α

α+ i− 1
. (1.5)

This summation can be approximated using the harmonic series, which is

known to grow logarithmically. Specifically, the harmonic series Hn =
∑n

i=1
1
i is

approximately ln(n) + γ, where γ is the Euler-Mascheroni constant. Therefore,

the expected number of distinct clusters is:

E[Kn] ≈ α

n∑
i=1

1

i
≈ α(ln(n) + γ).

This expression shows that the expected number of distinct clusters increases

logarithmically with the sample size n, and is influenced by the concentration

parameter α. Higher values of α lead to more clusters, as the process promotes

more diverse partitions of the data.

1.4 The Pitman-Yor process

Sometimes the Dirichlet process can be too restrictive. When we generate n

observations, x1, x2, . . . , xn, from a Dirichlet process, we have already observed

that the number of distinct clusters in this data, Kn, grows logarithmically. It

means that the clusters generated by the Dirichlet process are, on average, very

similar in terms of numerosity. However, for many real-world problems, this

kind of logarithmic growth is not a realistic assumption.

The Pitman-Yor process, PY(σ,α,P), follows a different distribution of the

number of distinct clusters Kn. This process was originally defined in Perman

(1990).Pitman & Yor (1997) worked a lot on this process, so it was later named

after Ishwaran & James (2001). This process is characterised by two parameters,
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not just one as in the Dirichlet process: the mass parameter α and the discount

parameter σ. The Dirichlet process is a special case of the Pitman-Yor one. It is a

Pitman-Yor process with a null discount parameter.

Definition 1.4. Given the base measure P on X, a discount parameter σ ∈ [0, 1)

and a mass parameter α > −σ. Considering two different independent sequences

of random variables of atoms (p̃j)j⩾1 and of weights (Xj)j⩾1 defined as:

Xj
iid
∼ P

and

p̃j = vj

j−1∏
k=1

(1− vk) with vj
ind
∼ Beta(1− σ,α+ j · σ).

Then the random probability measure

p̃(·) =
∞∑
j=1

p̃jδXj

is said Pitman-Yor process.

1.4.1 Properties

Let p̃ ∼ PY(α,σ,P) on a generic space X and A ⊂ X, a measurable subset of X,

then:

E[p̃(A)] = P(A),

Var(p̃(A)) = P(A) · (1− P(A)) · 1− σ

α+ 1
.

The expected value of the Pitman-Yor process, similar to the Dirichlet case,

is equal to the base measure evaluated on A. In this case, the variability of the

process is determined by two parameters: α and σ. The variability decreases as α

increases and for values of σ close to one.

1.4.2 Predictive distribution

Let Xi | p̃
iid
∼ p̃ with p̃ ∼ PY(α,σ,P). The predictive distribution of Xn+1 given

X1, . . . ,Xn is:

P(Xn+1 ∈ A | X1, . . . ,Xn) =
α+ k · σ
n+α

· P(A) +

k∑
i=1

ni − σ

α+n
· δX∗

i
(A),
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where {X∗1, . . . ,X∗k}, with k ⩽ n, denote the unique values in the set {X1, . . . ,Xn}.

From this expression, it follows that the joint distribution of X1, . . . ,Xn

can be defined from the generalisation of Polya’s urn scheme, such that:

X1 is sampled from P and Xn+1 | X1 = x1, . . . ,Xn = xn is a new value sampled by

P with probability (α+ k · σ)/(α+n), or a value that has already been observed

X∗i with probability (ni − σ)/(α+n).

In a Pitman-Yor process, the probability of observing a new observation

does not just depend on the concentration parameter α, but also on the penalty

parameter σ and the number of previously generated distinct observations. The

penalty coefficient σ affects the probability of generating new clusters and the

expansion of existing ones. When both σ and α are larger, the probability of

generating new distinct clusters increases while reducing the probability of

populating existing clusters. Unlike the Dirichlet process in this case we tend to

have many sparsely populated clusters and only a few highly populated clusters.

1.5 More considerations on the Gibbs-type priors

The EPPF is available in closed form for both Dirichlet and Pitman-Yor processes.

For the Dirichlet process with mass parameter α is equal to:

Πn(n1, ...,nk) =
αk

(α)n

n∏
i=1

(ni − 1)!

for any n ⩾ 1 and where αk/(α)n is the Vn,k(α) term. For the PY process with

mass parameter α and discount parameter σ, it coincides with:

Πn(n1, ...,nk) =

∏k−1
i=1 (α+ iσ)

(α+ 1)n−1

k∏
i=1

(1− σ)ni−1.

Gibbs-type priors can also be specified within other notable classes beyond

those previously discussed. These include the normalized inverse Gaussian

process Lijoi et al. (2005) and the normalized generalized Gamma process Lijoi

et al. (2007).
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1.6 Applications of Gibbs-type priors

Discrete nonparametric priors, such as Gibbs-type priors, are well-suited for

addressing inferential issues in species sampling problems and mixture modelling.

Species sampling problems refer to a broad class of statistical problems in which

samples are assumed to be drawn from a population of individuals belonging to

a possibly infinite number of species, suggesting that if the number of species in

the population is large, then it is reasonable to assume that it is infinite. They are

useful in ecological and biological studies and consent to address several issues,

including the evaluation of species richness, the design of sampling experiments,

and the estimation of rare species variety. The main objective is to estimate the

number of new species in a further sample of size m having previously observed

a sample of size n.

A discrete random probability measure is a powerful tool for describing

the composition of a population with different species and specific proportions.

The random proportions are represented as p̃j. The observed species labels are

denoted by the Xn’s, hence the terminology species sampling model. Additionally,

a sequence (Xn)n⩾1 is labelled as a species sampling sequence when it is

exchangeable and satisfies the condition (1.1), with p̃ being a species sampling

model. In several statistical applications, one typically observes a sample of

species labels X1, . . . ,Xn and then plans further sampling Xn+1, . . . ,Xn+m based

on estimates of various quantities of interest. Examples of such quantities include

the number of new distinct species that will be detected in a new sample of size

m; the number of species with a given frequency, or with a frequency below a

certain threshold, in X1, . . . ,Xn+m; and the probability that the (n+m+ 1)-th

draw will consist of a species with positive frequency in X1, . . . ,Xn+m. These

estimates provide measures of overall and rare species diversity, which are of

interest in fields such as biology, ecology, and linguistics, among others.

Moreover, discrete nonparametric priors are fundamental components for

hierarchical mixture models. These models are commonly applied in density

estimation, clustering, and more intricate dependent structures. In a univariate

scenario, where f( · | x) represents a density function on R for any x, we can
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define:

Yi | Xi
ind
∼ f( · | Xi) i = 1, . . . ,n (1.6)

Xi | p̃
iid
∼ p̃ i = 1, . . . ,n

p̃ ∼ Q.

We can use this model for both density estimation and clustering. The

sequence of latent exchangeable random elements (Xn)n⩾1 and the unobserved

number of distinct values Kn among X1, . . . ,Xn, where it is the number of clusters

into which the observations Y1, . . . , Yn can be grouped, are crucial. Posterior

inferences for Kn are very important, and the specification of a Gibbs-type prior

p̃ in equation (1.6) allows for an effective detection of the number of clusters that

have generated the data.

In this thesis, the focus will be on species sampling problems. Therefore, this

aspect will now be explored in greater detail.

1.6.1 Prediction in species sampling problems

Gibbs-type priors are a powerful tool for addressing prediction and estimation

in species sampling problems, particularly when observations come from a

population consisting of individuals from various types or species. An important

applied problem is the estimation of the overall species diversity, specifically by

predicting the number K
(n)
m = Kn+m − Kn of "new" distinct species that will be

observed in an additional sample of size m, given a sample of size n that has

already been observed with an in-sample richness denoted by Kn. Here, K(n)
m

represents the out-of-sample richness.

The a priori distribution of Kn induced by a Gibbs-type prior is provided by

De Blasi et al. (2015) and it has a simple form:

P(Kn = k) = Vn,k
C(n,k;σ)

σk
, (1.7)

where C(n,k;σ) denotes a generalised factorial coefficient (Charalambides (2005))

and it is equal to:

C(n,k;σ) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(−iσ)n.

We obtain this distribution marginalising Equation (1.3).
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Given the prior distribution, we can obtain the a priori expected values

E[K1], . . . ,E[Kn], which can be interpreted as a model-based rarefaction curve

(Zito et al. (2023)). The rarefaction curve is a visual tool often used in ecology

and biodiversity research to estimate species richness. It shows how the number

of observed species changes as more individuals are sampled. This tool helps

researchers understand how species richness increases with more sampling

and also allows for comparison of species richness across different habitats or

communities while taking into account differences in sample size. In the Dirichlet

process case, the rarefaction curve is given by the Equation (1.5).

One of the advantages of using Gibbs-type priors with σ belonging to the

interval [0, 1) is that they are particularly suited when the population is composed

of a large number of unknown species and the observed sample X1, . . . ,Xn

contains only a small fraction of the species in the population. Note that Kn = k

is a sufficient statistic for predictions. Based on the EPPF, an explicit expression

for the distribution of new observed distinct clusters in a new additional sample,

K
(n)
m , conditionally on the information provided by X1, . . . ,Xn, is defined by

De Blasi et al. (2015) and it is as follows:

P(K
(n)
m = j | X1, . . . ,Xn) =

Vn+m,k+j

Vn,k
· C(m, j;σ,−n+ kσ)

σj
(1.8)

where X1, . . . ,Xn are partitioned into Kn = k clusters with frequencies n1, . . . ,nk

and C(m, j;σ,−n+ kσ) is the non-central generalised factorial coefficient:

C(m, j;σ,−n+ kσ) = (j!)−1
j∑

r=0

(−1)r
(
j

r

)
(n− σ(r+ k))m.

The collection E[Kn+1 | X1, . . . ,Xn], . . . ,E[Kn+m | X1, . . . ,Xn] represents a

model-based extrapolation curve. Considering a Dirichlet process, we have:

E[Kn+m | α,X1, . . . ,Xn] = k+

m∑
i=1

α

α+n+ i− 1
.

The Bayesian nonparametric estimator for the number of distinct species consid-

ering a squared loss function is equal to the posterior expected values:

K̂
(n)
m = E[K

(n)
m | X1, . . . ,Xn]. (1.9)
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Considering a Pitman-Yor process with parameters (α,σ) the posterior distribu-

tion is:

P(K
(n)
m = j | X1, . . . ,Xn) =

(α/σ+ k)j
(α+n)m

C(m, j;σ,−n+ kσ).

As consequence, Equation (1.9) becomes:

K̂
(n)
m =

(
k+

α

σ

)(
(α+n+ σ)m
(α+n)m

− 1

)
.

The main advantage of this formulation is that it is explicit and can be exactly

evaluated even when the size m of the additional sample is large compared to

the size of the basic sample n.

Rarefaction and extrapolation curves are useful for understanding biodiversity,

but summarising biodiversity with a single number may be challenging. The

concept of richness, defined as the asymptotic value of an accumulation curve

limn→∞ Kn, is not a good measure of biodiversity. Richness diverges when σ ⩾ 0

regardless of the observed data, but remains finite when σ < 0. Even though it

could be tempting to stay away from models in the σ ⩾ 0 regime, there are good

reasons not to. Reliable richness estimation usually occurs when accumulation

curves stabilise, indicating saturation. In contrast, the estimation of richness

in the early stages is often imprecise and can be compared to a random guess.

Furthermore, models with σ ⩾ 0 often perform well in predicting future values

K
(n)
m in rapidly growing curves, compared to models with σ ⩽ 0. Estimating the

total number of distinct values present in a given area is also possible, even in

models where σ ⩾ 0. Models that currently exist focus on the σ ⩾ 0 case. This

discussion highlights the need for a broader and more informative concept of

diversity, called σ-diversity, introduced by Pitman (2003).



Chapter 2

The Gnedin Model

In 2010, Alexander Gnedin introduced a new model that can be seen as a special

case of the Gibbs-type priors family, like the Dirichlet and the Pitman-Yor

processes. This chapter is focused on the definition and investigation of the

Gnedin model. We want to demonstrate some new results, like the prior

expected value of distinct species and the posterior expected value of new species

discovered and not observed in the initial sample. or the posterior distribution of

the random probability measure of the Gnedin model.

2.1 Model definition

The innovative model introduced by Gnedin is a two-parameter species sampling

model, provided with a straightforward update mechanism (Gnedin (2010)). Each

partition is defined by a Dirichlet sampling model with a random number of

components, H, representing the total distinct values in the entire population.

This model is a specific type of Gibbs-type prior where σ is equal to −1, and

the characterising parameter γ belongs to the interval (0, 1). We have seen in

the previous chapter that Gibbs-type priors are characterized by their associated

Exchangeable Partition Probability Function (EPPF). For this model, the weights

also have a closed-form expression, as defined in Section 6 of Gnedin (2010).

Given this result, we can specify the EPPF in Equation (1.3) and provide a

definition for the Gnedin model.

Definition 2.1. Given a sample of n observations with k distinct values among it,

the weights Vn,k of the Gnedin model are as follows:

Vn,k =
(k− 1)! (1− γ)k−1 (γ)n−k

(n− 1)! (1+ γ)n−1
. (2.1)

21
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If σ = −1 and γ ∈ (0, 1) the EPPF for the Gnedin model is defined as:

Πn(n1, . . . ,nk) = Vn,k

k∏
j=1

nj! (2.2)

where (n1, . . . ,nk) are the counts of the k distinct values in the sample such that∑k
j=1 nj = n and the weights Vn,k as in (2.1).

We can demonstrate that when σ = −1, the product in Equation (1.3) simplifies

as follows:
k∏

j=1

(1− σ)nj−1 =

k∏
j=1

(1− (−1))nj−1 =

k∏
j=1

(2)nj−1.

Next, we express the rising factorial (2)nj−1 using the gamma function:

(2)nj−1 =
Γ(2+nj − 1)

Γ(2)
.

Substituting this into the product, we get:

k∏
j=1

(2)nj−1 =

k∏
j=1

Γ(2+nj − 1)

Γ(2)
=

k∏
j=1

nj!.

Thus, the product simplifies to
∏k

j=1 nj!, confirming that Equation (2.2) is indeed

satisfied.

Since we have defined the model, we can determine the random probability

measure associated with the Gnedin model as in Section 5 of Gnedin (2010).

Remark 2.1. Given a distribution P on X, termed base measure, a parameter

σ = −1 and a parameter γ ∈ (0, 1) and considering two different independent

sequences of weights (πh)h⩾1 and atoms (Xh)h⩾1, defined as:

Xh
iid
∼ P

(π1, . . . ,πH) | H ∼ DirH(1, . . . , 1)

the random measure p̃ in de Finetti representation of X1,X2, . . . is as follows:

Xh | p̃
iid
∼ p̃ (2.3)

p̃ =

H∑
h=1

πhδXh
.



Chapter 2. The Gnedin Model 23

An important consideration is that the random number of components in the

entire population, H, has a highly treatable and heavy-tailed prior distribution. It

is defined in Gnedin (2010) [Equation (9)] as follows:

P(H = h) =
γ (1− γ)h−1

h!
. (2.4)

2.1.1 Posterior distribution for the true number of distinct species

From the prior distribution of H, we can obtain a closed-form expression for the

posterior distribution, as provided by Gnedin (2010) [Equation (10)].

Theorem 2.1. Given a sample (X1, . . . ,Xn) with Kn = k ⩽ n distinct values among it,

the posterior distribution for the number of components H is as follows:

P(H = h | X1, . . . ,Xn) =
(n− 1)!

(k− 1)!(h+n− 1)

k−1∏
i=1

(h− i)

k∏
j=1

(γ+n− j) (2.5)

×
h−1∏
l=k

(l− γ).

Moreover, the expected value associated with the posterior distribution has

an important role. It is defined as follows:

E[H | X1, . . . ,Xn] =

∞∑
h=1

P(H = h | X1, . . . ,Xn) · h. (2.6)

We will show in the next chapter that given a sufficiently large value for h, the

truncated posterior expected value for H, E[H | X1, . . . ,Xn] converges to the total

number of distinct species in the population, H, also known as species richness

in the ecology problems. This provides a strong framework for predicting species

diversity in large samples.

2.1.2 Predictive distribution

In Section 1.2.3 we have defined the general form of the predictive distribution in

Equation (1.4). With the EPPF, we can easily derive this distribution as defined by

Gnedin (2010) in Section 5. In particular, the probability of being a new sample

from P(·), is

Pnew =
Vn+1,k+1

Vn,k
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and the probability of being a value that has already been observed X∗j is

P
(j)
old =

Vn+1,k

Vn,k
(nj − σ) j = 1, . . . ,k.

For the Gnedin model, considering the definition of the EPPF and its associated

weights provided in Equation (2.1), with fixed σ = −1, the probabilities become

Pnew =
k(k− γ)

n(γ+n)
P
(j)
old =

γ+n− k

n(γ+n)
(nj + 1). (2.7)

Hence, substituting these probabilities into the generic predictive distribution for

the Gibbs-type priors in Equation (1.4), it becomes:

P(A | X1, . . . ,Xn) =
k(k− γ)

n(γ+n)
P(A) +

k∑
j=1

(γ+n− k)

n(γ+n)
(nj + 1)δX∗

j
(A)

where (X∗1, . . . ,X∗k) with k ⩽ n are the distinct values among (X1, . . . ,Xn) and A

is a measurable set.

2.2 Posterior distribution of the Gnedin model

Among the quantities not yet detailed for the Gnedin model is the posterior

distribution of the random probability measure p̃. The prior and posterior

expected values of the number of unique species Kn within the sample will

be defined later in the chapter. We want to determine and use this posterior

distribution for future applications, like mixture models.

2.2.1 Hierarchical representation of the posterior distribution

We have previously observed that the Gnedin model can be interpreted as

a Dirichlet process with a random number of components. This insight is

particularly useful because it ensures that the conjugacy property (see Section

1.3.6) still holds, conditionally on the total number of components. This implies

that the posterior distribution of weights remains a Dirichlet distribution:

(π1, . . . ,πH) | H,X1, . . . ,Xn ∼ DirH(1+n1, . . . , 1+nH). (2.8)

We have two methods for obtaining the posterior distribution, and we can

show that the final result is identical using both ways. The first solution
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uses a hierarchical representation. Considering the Gnedin model defined as

Equation (2.3), this method can be summarized in two steps: firstly, we sample

H | X1, . . . ,Xn from the posterior distribution in Equation (2.5) and then given H,

we sample (π1, . . . ,πh) | H,X1, . . . ,Xn from the Dirichlet distribution in Equation

(2.8).

2.2.2 Latent variable representation of the posterior distribution

The second approach for obtaining the posterior distribution exploits the results

of Argiento & De Iorio (2022) on Normalised Independent Finite Point Processes

(NIFPPs), which include Gibbs-type priors as a special case. This work provides

a detailed description of the posterior distribution of NIFPPs. Starting from these

results, we adapt and specify them for the Gnedin model. We will first define the

NIFPPs in the next section and then specify the posterior distribution of these

processes and, in particular, the Gnedin model.

Normalized Independent Finite Poisson Processes

Firstly, we introduce the concept of Independent Finite Point Processes (IFPP)

and their normalized version

Definition 2.2. Let ν(·) be a density on R and P(H = h), h = 0, 1, . . . be a

probability mass function. X is an Independent Finite Point Process (IFPP),

denoted as X ∼ IFPP(ν, P(H = h)), if its Janossy density (see Appendix B) can be

written as:

j(ξ1, . . . , ξh) = h! P(H = h)

h∏
j=1

ν(ξj)

where:

i. ξ1, . . . , ξh are the locations of the points;

ii. P(H = h) is the probability mass function that gives the probability of

having h points;

iii. ν(ξj) is the density function evaluated at the location ξj.

Definition 2.3. Let P = {(S1, τ1), . . . , (SH, τH)} ∼ IFPP(ν, P(H = h),P), with

P(H = 0) = 0. A normalized independent finite point process with parameters ν,



Chapter 2. The Gnedin Model 26

P(H = h), and P, is a discrete probability measure on X defined by

p̃(A) =

H∑
h=1

πhδτh(A)
d
=

H∑
h=1

Sh
T

δτh(A), (2.9)

where T =
∑H

h=1 Sh and A denotes a measurable set of X. We will write

p̃ ∼ NIFPP(ν, P(H = h),P).

For example, suppose ν, which represents the distribution of the random

weights Sh, is a Gamma(τ, 1) density with a shape parameter τ greater than

0 and rate 1. Then, the NIFPP is a finite Dirichlet process, as in Equation

(2.9). Conditionally on H > 0, the jump sizes (π1, . . . ,πH) of p̃ are a sample

from the H-dimensional DirH(τ, . . . , τ) distribution. The same result can also be

interpreted as a Gibbs-type prior with a negative parameter. For more details,

see De Blasi et al. (2015).

Having defined these quantities, we will now review the work of Argiento &

De Iorio (2022) to establish the posterior distribution. Finally, we will provide

proof of the equivalence of the two posterior representations.

Given the observations (Xh)h⩾1 such that

Xh | p̃
iid
∼ p̃.

Assume that the prior distribution for p̃ is a NIFFP:

p̃ =

H∑
h=1

Sh
T
δZh

(2.10)

where:

i. the atoms Z1, . . . ,ZH are distributed as Zi
iid
∼ P;

ii. the random weights (S1, . . . ,SH) are such that

Sh ∼ Gamma(τ, 1) h = 1, . . . ,H

with shape parameter τ and scale parameter 1;

iii. T =
∑H

h=1 Sh, this choice is necessary because p̃ must be a probability, so

the weights must be normalized.
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The model we have depicted above is equal to the one defined in Equation (2.3).

However, in this case, we have characterized the weights differently, using the

construction of the Dirichlet distribution via a Gamma distribution as described

in Section 1.3.1. It follows that (S1/T , · · · ,SH/T) ∼ DirH(τ, · · · , τ). Given the

prior distribution for H as in Equation (2.4), we aim to demonstrate that this

construction leads to the Gnedin model. To achieve this, we will consider the

Exchangeable Partition Probability Function (EPPF) associated with the model

we have just defined, because, as we have said before, EPPF is characterising the

model.

Theorem 2.2. Consider the statistical model Xi | p̃
iid
∼ p̃, where p̃ is the random

probability measure in (2.10). Assume that the parameter τ is equal to 1. The EPPF of a

sample of size n equals that obtained by considering the random probability measure p̃

constructed from Dirichlet weights and defined in Equation (2.2).

Proof. We aim to prove that the EPPFs of both representations are equal. The

EPPF associated with the random probability measure in Equation (2.10) is given

by:

Πn(n1, . . . ,nk) = Vn,k ·
H∏

h=1

Γ(1+nh)

Γ(1)
,

where

Vn,k =

+∞∑
h=0

(h+ k)!
h!

P(H = h+ k)
Γ(k+ h)

Γ(k+ h+n)
.

Substituting the expression for P(H = h+ k), we have:

Vn,k =

+∞∑
h=0

(h+ k)!
h!

· γ · (1− γ)h+k−1

(h+ k)!
· Γ(k+ h)

Γ(k+ h+n)
.

Now, simplifying the terms and explicitly writing the Pochhammer symbol

(a)n = Γ(a+n)/Γ(a):

Vn,k =

+∞∑
h=0

1

h!
· Γ(h+ k− γ)

Γ(1− γ)
· γ · Γ(k+ h)

Γ(k+ h+n)
.

This simplifies further to:

Vn,k =
γ

Γ(1− γ)
·
+∞∑
h=0

Γ(h+ k− γ)

Γ(h+ 1)
· Γ(k+ h)

Γ(k+ h+n)
.
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Rewrite the terms of the summation using the definition of the Pochhamer

symbol.

+∞∑
h=0

Γ(h+ k− γ)

Γ(h+ 1)

Γ(k+ h)

Γ((k+ h) +n)
=

+∞∑
h=0

(k− γ)h Γ(k− γ)

h!
Γ(k+ h)

Γ(k+ h+n)

=

+∞∑
h=0

(k− γ)h Γ(k− γ)

h!
(k)h Γ(k)

(k+n)h Γ(k+n)
.

To simplify the expression, we first recall the definition of the hypergeometric

function 2F1 given in Equation (A.2). Using this, we can identify the constant

factor and reduce the summation to a hypergeometric function form.

+∞∑
h=0

Γ(h+ k− γ)

Γ(h+ 1)

Γ(k+ h)

Γ((k+ h) +n)
=

Γ(k− γ) Γ(k)

Γ(k+n)

+∞∑
h=0

(k− γ)h
h!

(k)h
(k+n)h

=
Γ(k− γ) Γ(k)

Γ(k+n)

+∞∑
h=0

(1)h

h!
(k− γ)h (k)h
(k+n)h

=
Γ(k− γ) Γ(k)

Γ(k+n)
· 2F1(k− γ,k,k+n, 1)

=
Γ(k− γ) Γ(k)

Γ(k+n)
· Γ(k+n)Γ(k+n− k− k+ γ)

Γ(k+n− k)Γ(k+n− k+ γ)

=
Γ(k− γ) Γ(k)

Γ(k+n)
· Γ(k+n) Γ(n− k+ γ)

Γ(n) Γ(n− γ)
.

As consequence, the weights Vn,k results as follows:

Vn,k =
γ

Γ(1− γ)
· Γ(k− γ)Γ(k)

Γ(k+n)
· Γ(k+n)Γ(n− k+ γ)

Γ(n)Γ(n− γ)

= γ · (1− γ)k−1 · (k− 1)! · Γ(n− k+ γ)

Γ(n)Γ(n+ γ)

= γ · (1− γ)k−1 · (k− 1)! · (γ)n−k · Γ(γ)
(n− 1)! · Γ(n+ γ)

= (1− γ)k−1 · (k− 1)! · (γ)n−k · Γ(γ+ 1)

(n− 1)! · Γ(n− 1+ γ+ 1)

= (1− γ)k−1 · (k− 1)! · (γ)n−k

(n− 1)! · (γ+ 1)n−1
.



Chapter 2. The Gnedin Model 29

This result matches the weights Vn,k for the Gnedin model as specified in Equation

(2.1). The EPPF becomes

Πn(n1, . . . ,nk) = Vn,k ·
H∏

h=1

Γ(1+nj)

Γ(1)
= Vn,k ·

H∏
h=1

nj!

the same as the one defined above in Equation (2.2). It proves we can use the

results from Argiento & De Iorio (2022).

Before determining the posterior distribution, we first reformulate the prior

distribution of p̃ in Equation (2.10) as follows:

µ =

H∑
h=1

Sh δXh
,

where Sh and Xh are defined accordingly. Consequently,

p̃ =
µ

µ(X)
,

where X denotes the entire space and µ(X) = T . We will now proceed to

characterize the posterior distribution of µ and, as a consequence, the posterior

distribution of p̃. As shown in Example 4.3 of Argiento & De Iorio (2022), to

determine the required distribution, we introduce a suitable latent variable Un,

such that the density distribution is as follows:

fUn
(u | x) ∝ un−1

Γ(n)
·

{
+∞∑
h=0

(h+ k)!
h!

· (Ψ(u))h ·P(H = h+ k)

}
·

k∏
j=1

κ(nj,u), (2.11)

where

Ψ(u) =
1

(1+ u)1
,

κ(nj,u) =
1

(1+ u)nj+1
·nj!.
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Using the prior distribution of H in Equation (2.4), the summation term in the

density distribution of Un can be simplified as:

+∞∑
h=0

(h+ k)!
h!

· 1

(1+ u)h
· γ · (1− γ)h+k−1

(h+ k)!

=
γ

Γ(1− γ)

+∞∑
h=0

1

h!
· 1

(1+ u)h
· Γ(h+ k− γ).

Use the definition of Gamma function: Γ(z) =
∫+∞
0 e−t tz−1 dt into the expression

of the weights Vn,k and it results as:

Vn,k =
γ

Γ(1− γ)

+∞∑
h=0

1

h!
· 1

(1+ u)h

∫+∞
0

e−x · xh+k−γ−1 dx

=
γ

Γ(1− γ)

∫+∞
0

e−x · xk−γ−1
+∞∑
h=0

(
x

1+u

)h
h!

dx

=
γ

Γ(1− γ)

∫+∞
0

e−x · xk−γ−1 · e
x

1+u dx

=
γ

Γ(1− γ)

∫+∞
0

e−x(1− 1
1+u) · xk−γ−1 dx

=
γ

Γ(1− γ)

∫+∞
0

e−x· u
1+u · xk−γ−1 dx =

γ

Γ(1− γ)
· Γ(k− γ)(

u
1+u

)k−γ
.

Then, the kernel of the density distribution of Un is:

fUn
(u | x) ∝ un−1

Γ(n)

(
u

1+ u

)γ−k

γ(1− γ)k−1 ·
k∏

j=1

1

(u+ 1)nj+1
·nj!.

We can derive the distribution of µ as a special case of Theorem 2 in Argiento

& De Iorio (2022).

Proposition 2.1. Conditional on the observed data X1, . . . ,Xn and latent variable Un the

posterior distribution of the random variable µ is the sum of two independent components:

µ | X1, . . . ,Xn,Un
d
= µ(a) + µ(na).

Proof. To prove this equivalence in distribution, we must demonstrate that the

two components, µ(a) and µ(na), are independent. Additionally, we need to

analyze these two processes to ensure that they satisfy the conditions stipulated
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by the theorem of Argiento & De Iorio (2022). The first term, µ(a), is the allocated

jumps process defined as follows:

µ(a) =

Kn∑
j=1

S
(a)
j · δX∗

j
.

Here, Kn is the number of distinct clusters identified in the sample (X1, . . . ,Xn).

For each cluster j, S(a)j represents the size (or weight) of the jump at location X∗j .

The notation δX∗
j

is a Dirac delta function. The density function of the weight S(a)j

is given as:

f
S
(a)
j

(s) ∝ e−ussnjϕ(s)

where nj is the number of observations in cluster j. Since ϕ(s) follows a Gamma

distribution with scale and shape parameters both equal to 1, it is equivalent to

an exponential distribution with a rate 1 and so we have:

ϕ(s) = e−s.

Substituting this result into the density function, we get:

f
S
(a)
j

(s) ∝ e−ussnje−s = e−s(u+1)snj .

This is the density function of a Gamma distribution with shape parameter nj +

1 and rate parameter u+ 1. Therefore,

S
(a)
j ∼ Gamma(nj + 1,u+ 1).

We have demonstrated that the distribution of Sj aligns with the conditions

specified in the theorem by Argiento & De Iorio (2022). The second term is the

non-allocated jumps process, µ(na), which is defined as:

µ(na) =

M∗∑
m=1

s∗mδτ∗m .

Here, M∗ is the number of non-allocated jumps, s∗m is the size of the m-th non-

allocated jump, and τ∗m is the location of the m-th non-allocated jump, with τ∗m

i.i.d. according to the base measure P:

τ∗m
iid
∼ P.
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The distribution of M∗ is given by:

P(M∗ = m) ∝ (m+ k)!
m!

· (Ψ(u))m ·P(H = m+ k) (2.12)

where

Ψ(u) =
1

(1+ u)
.

The size of each non-allocated jump, s∗m, follows a modified distribution:

ϕ∗(s) = e−us ·ϕ(s).

Since ϕ(s) is Gamma(1, 1) or equivalently Exp(1), we have:

ϕ∗(s) = e−use−s = e−s(u+1).

Thus, s∗m ∼ Exp(u+ 1), and the non-allocated jumps process µ(na) is an indepen-

dent finite point process, as required. Given the definition and construction of

µ(a) and µ(na), and their conditional distributions given Un and M∗, these two

processes are independent. Consequently, the random measure µ is distributed

as the sum of two independent components: the allocated jumps process µ(a)

and the non-allocated jumps process µ(na). This completes the proof.

Lastly, the total number of jumps H given the data X1, . . . ,Xn and the latent

variable Un, is decomposed into the number of allocated jumps Kn and the

number of non-allocated jumps M∗, where:

H | X1, . . . ,Xn,Un = Kn +M∗.

Here, Kn is the number of distinct components observed in the data, and M∗ is

the number of additional predicted but not yet observed clusters. Summarizing,

this second strategy involves the following steps: sample Un | X1, . . . ,Xn. Given

an observation for the latent variable, sample H | X1, . . . ,Xn,Un. Then, derive

µ | X1, . . . ,Xn,Un,H. Given these steps, the posterior distribution for p̃ can be

obtained as described previously.

2.2.3 Equivalence of the two posterior representations

In this section, we want to show the equivalence of the two methods. We want

to demonstrate that by marginalizing the latent variable, Un, we obtain the
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hierarchical representation. The advantage of applying this representation is

that it is easier to use, as sampling from the density of the latent variables is

not straightforward. We first determine the normalizing constant of the density

function of Un as follows:

∫+∞
0

fUn
(u | x)du =

∫+∞
0

un−1

Γ(n)
γ

(
u

1+ u

)γ−k

(1− γ)k−1
1

(u+ 1)n+k

k∏
j=1

nj! du

=
γ Γ(k− γ)

Γ(n)Γ(1− γ)

k∏
j=1

nj! ·
∫+∞
0

un−1−k+γ

(u+ 1)n+γ
du.

Let focus on the last term∫+∞
0

un−1−k+γ

(u+ 1)n+γ
du =

∫+∞
0

(
u

u+ 1

)n+γ

u−1−k du.

To simplify this, we perform a change of variable. Let u
1+u = x, i.e. u = x

1−x .

Substituting these into the integral, we have:

∫1
0
xn+γ

(
x

1− x

)−1−k
1

(1− x2)
dx =

∫1
0
xn+γ−1−k(1− x)k−1 dx = B(n+ γ− k,k)

where B(z1, z2) =
∫1
0 x

z1−1(1− x)z2−1 dx is the Beta function. The density function

of Un can be expressed as follows:

fUn
(u | x) =

un−1

Γ(n)
γ

(
u

1+ u

)γ−k

(1− γ)k−1
1

(u+ 1)n+k

k∏
j=1

nj!

× 1
γ Γ(k−γ)

Γ(n)Γ(1−γ)

∏k
j=1 nj! B(n+ γ− k,k)

.

We focus on the non-allocated jumps M∗. We want to show that by integrating

Un from the normalized posterior distribution of M∗, we can obtain the posterior

distribution of H defined by Gnedin (2010) and in this thesis reported in Equation

(2.5). We have already defined the distribution of M∗ in Equation (2.12). In

this context, we use the equivalent notation P(M∗ = m | Un) to highlight the

connection with Un. Marginalizing out the variable Un from P(M∗ = m | Un)

means: ∫+∞
0

P(M∗ = m | Un) fUn
(u | x) du. (2.13)
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To make the calculations easier, we rewrite the density function of Un in Equation

(2.11) considering the distribution P(M∗ = m) and the integral becomes:

∫+∞
0

P(M∗ = m | Un)
un−1

Γ(n)

M∗∑
m=1

P(M∗ = m)
1

(u+ 1)n+k

×
k∏

j=1

nj!
1∫+∞

0 fUn
(u | x) du

du

=

∫+∞
0

(m+ k)!
m!

(
1

1+ u

)m
γ(1− γ)m+k−1

(m+ k)!
un−1

Γ(n)

1

(u+ 1)n+k

×
k∏

j=1

nj!
1

γ Γ(k−γ)
Γ(n)Γ(1−γ)

∏k
j=1 nj! B(n+ γ− k,k)

du

=
1

m!
(1− γ)m+k−1 ·

Γ(1− γ)

Γ(k− γ)B(n+ γ− k,k)

∫+∞
0

un−1

(u+ 1)m+k+n
du

=
(1− γ)m+k−1

(1− γ)k−1

1

B(n+ γ− k,k)
1

m!

∫+∞
0

un−1

(u+ 1)m+k+n
du.

Let us focus on the last term∫+∞
0

un−1

(u+ 1)m+k+n+1−1
du =

∫+∞
0

(
u

1+ u
)n−1 1

(u+ 1)m+k+1
du.

By exploiting the change of variables u
1+u = x, i.e. u = x

1−x and du
dx = 1

(1−x)2
, we

obtain:∫1
0
xn−1(1− x)m+k+1 1

(1− x)2
dx =

∫1
0
xn−1(1− x)m+k−1 dx = B(n,m+ k).

The initial integral in Equation (2.13) is therefore:

(1− γ)m+k−1

(1− γ)k−1

1

B(n+ γ− k)

1

m!
B(n,m+ k)

=
Γ(m+ k+�

�−1��+1− γ)

Γ(��1− γ+ k��−1)

1

m!
B(n,m+ k)

B(n+ γ− k,k)
.
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A key property of the Beta function is its close relationship to the Gamma function:

B(z1, z2) = (Γ(z1)Γ(z2))/Γ(z1 + z2). We use now this property:

=
Γ(m+ k− γ)

Γ(k− γ)

1

m!
Γ(n) Γ(m+ k)

Γ(n+m+ k)

Γ(n+ γ)

Γ(n+ γ− k) Γ(k)

=
Γ(n)

Γ(n+m+ k) Γ(k)

Γ(m+ k)

m!
Γ(m+ k− γ)

Γ(k− γ)

Γ(n+ γ)

Γ(n+ γ− k)

=
(n− 1)!

(n+m+ k− 1)! (k− 1)!
Γ(m+ k)

Γ(m+ 1)

Γ(m+ k− γ)

Γ(k− γ)

Γ(n+ γ)

Γ(n+ γ− k)
.

Let us assume m+ k = h, the expression is rewritten as:∫+∞
0

P(M∗ = m | Un) fUn
(u | x) du =

(n− 1)!
(n+ h− 1)!(k− 1)!

× (m+ k− 1) . . . (m+ 1) · (m+ k− 1) . . . (k− γ)(n+ γ− 1) . . . (n+ γ− k)

=
(n− 1)!

(n+ h− 1)!(k− 1)!)

k−1∏
i=1

(h− i)

h−1∏
l=k

(l− γ)

k∏
j=1

(n+ γ− j).

We obtain the same distribution as in Equation (2.5). This result is very important

because allows us to demonstrate that by marginalizing the latent variable, Un,

we obtain the hierarchical representation, and so the same posterior distribution

of H.

Remark 2.2. The posterior distribution we just defined is essential for the use

of discrete nonparametric priors, especially the Gnedin model, in hierarchical

mixture models. In this thesis, we have focused exclusively on species sampling

problems, for which we will provide some applied results in the next chapter.

However, the definition of this new quantity opens up new and interesting

prospects. Currently, the only way to perform posterior inference with the

Gnedin model in mixture models is through the predictive distribution. For more

details, see Moya & Walker (2024).

2.3 Expected values of distinct species: prior and posterior

distributions

In the context of species sampling, this model has never been used before, and

the necessary quantities have not yet been formalized. The objective of this thesis

is to formalise the expected values for the number of unique species in a sample,
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both a priori and a posteriori. This will allow us to verify the validity of this new

model in this specific context.

2.3.1 Prior distribution of the number of distinct species in a sample

In Section 1.6.1, we have already defined the prior distribution of the number of

distinct species Kn induced by a Gibbs-type prior in Equation (1.7). When σ is

equal to −1, the generalized factorial coefficient in the prior distribution is given

by:

C(n,k;−1) = (−1)k
(
n− 1

k− 1

)
n!
k!

.

In particular, the normalization constant

dn,k =

(
n− 1

k− 1

)
n!
k!

is known as the Lah number (Charalambides (2005)). For the Gnedin model, the

prior distribution for the number of distinct species is then specified as follows:

P(Kn = k) = Vn,k · dn,k. (2.14)

All these results are provided by Gnedin (2010). Based on these, here we derive an

important new result: the prior expected value for the number of distinct species

Kn. As previously mentioned, this is a very useful result because it underlies the

rarefaction curve and until now it had not yet been defined.

Theorem 2.3. For the Gnedin model, the expected value for the number of distinct species

Kn in a generic sample of size n is as follows:

E[Kn] =
n!

(1+ γ)n−1

where γ ∈ (0, 1).

Proof. We are going to calculate the following quantity: E[Kn]

E[Kn] =

n∑
k=1

P(Kn = k) · k.
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We begin by substituting the probability function defined in Equation (2.14) and

simplifying the expression:

E[Kn] =

n∑
k=1

(k− 1)!(1− γ)k−1(γ)n−k

(n− 1)!(1+ γ)n−1
· (n− 1)!
(k− 1)!(n− k)!

· n!
k!
· k

=

n∑
k=1

n!(1− γ)k−1(γ)n−k

(1+ γ)n−1(k− 1)!(n− k)!
.

Next, we change the index of summation:

E[Kn] =

n−1∑
k=0

n!(1− γ)k(γ)n−k−1

(1+ γ)n−1k!(n− k− 1)!
.

We then gather the constant terms and focus on the remaining terms of the

summation:

E[Kn] =
n

(1+ γ)n−1
·
n−1∑
k=0

(n− 1)!
k!(n− k− 1)!

· (1− γ)k · (γ)n−k−1

=
n

(1+ γ)n−1

n−1∑
k=0

(
n− 1

k

)
· (1− γ)k · (γ)n−k−1.

Applying Vandermonde’s identity:

(a1 + a2)q =

q∑
i=0

(
q

i

)
· (a1)i · (a2)q−i,

we simplify the summation term and we obtain:

E[Kn] =
n

(1+ γ)n−1
· (1− γ+ γ)n−1 =

n

(1+ γ)n−1
· Γ(n)
Γ(1)

=
n!

(1+ γ)n−1
.

This concludes the proof, we have obtained the prior expected value for the

number of distinct species.

2.3.2 Posterior distribution of the number of new distinct species discovered

We now look for the posterior distribution of the number of new distinct species

discovered, as provided by Gnedin (2010). In Equation (1.8), we have defined the

distribution of new observed distinct species K
(n)
m in an additional sample of size

m, conditionally on the information provided by X1, . . . ,Xn, for the Gibbs-type
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priors. As explained in Charalambides (2005), we know that when σ is equal to

−1, the non-central generalized factorial coefficient coincides with the non-central

Lah number, except for a difference in sign. Thus, it holds that:

C(n,k;−1, r) = | L(n,k, r) | = (−1)nL(n,k, r) =
n!
k!

(
n− r− 1

k− r− 1

)
(−1)k.

As a consequence, for the non-central generalized factorial coefficient in the

distribution of K(n)
m , the following equality holds:

C(m, j;−1,−n− k) = L(m, j,−n− k),

and the posterior distribution becomes:

P(K
(n)
m = j | X1, . . . ,Xn) =

Vn+m,k+j

Vn,k
· m!
j!

(
m+n+ k− 1

j+n+ k− 1

)
.

We want to define the posterior distribution of the number of distinct species in a

sample for the Gnedin model, where the weights are defined as in Equation (2.1).

Let us examine the ratio between the weights in the posterior distribution just

provided:

Vn+m,k+j

Vn,k
=

(k+ j− 1)! (n− 1)!
(k− 1)! (n+m− 1)!

·
(1− γ)k+j−1

(1− γ)k−1
· (1+ γ)n−1

(1+ γ)n+m−1
·
(γ)n+m−k−j

(γ)n−k

=
(k+ j− 1)! (n− 1)!
(k− 1)! (n+m− 1)!

· Γ(1− γ+ k+ j− 1) Γ(1− γ)

Γ(1− γ) Γ(1− γ+ k− 1)

× Γ(1+ γ+n− 1) Γ(1+ γ)

Γ(1+ γ) Γ(1+ γ+n+m− 1)
· Γ(γ+n+m− k− j) Γ(γ)

Γ(γ+n− k) Γ(γ)

=
(k+ j− 1)! (n− 1)!
(k− 1)! (n+m− 1)!

·
(k− γ)j (γ+n− k)m−j

(γ+n)m
.

By formulating this ratio more effectively, in the Gnedin model, the posterior

distribution of the number of distinct species in a sample can be expressed as:

P(K
(n)
m = j | X1, . . . ,Xn) =

(k+ j− 1)! (n− 1)!
(k− 1)! (n+m− 1)!

·
(k− γ)j (γ+n− k)m−j

(γ+n)m

× m!
j!

(
m+n+ k− 1

j+n+ k− 1

)
. (2.15)
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As in the a priori case, it is essential to derive the expected value associated with

this posterior distribution. In the posterior case as well, we prove the following

result.

Theorem 2.4. Given a sample X1, . . . ,Xn of size n with k distinct value among it and

considering an additional sample of size m, the posterior distribution for the number of

distinct species K(n)
m is as in Equation (2.15). The associated expected value is as follows:

E[K
(n)
m | X1, . . . ,Xn] = m (k− γ) (k+ 1)

Γ(n) (n+m)k (γ+n− k)m−1

(n+m)m

× 3F2(−(m+ 1),k+ 1,k− γ+ 1;k+n+ 1,−(γ+n− k+m− 2); 1)

where pFq(a1, . . . ap;b1, . . . ,bq; z) is the generalized hypergeometric function. See (A.1).

Proof. We proceed by demonstrating that

E[K
(n)
m | X1, . . . ,Xn] =

m∑
j=1

P(K
(n)
m = j | X1, . . . ,Xn) · j.

Firstly, substitute the probability function of K(n)
m , defined in Equation (2.15) and

explicit the binomial term:

E[K
(n)
m | X1, . . . ,Xn] =

m∑
j=1

(k+ j− 1)! (n− 1)!
(k− 1)! (n+m− 1)!

·
(k− γ) j (γ+n− k)m−j

(n+ γ)m
· m!
j!

× (n− 1)! m! (n+m+ k− 1)!
(j+n+ k− 1)! (m− j)!

· j.

Then, change the index of the summation:

E[K
(n)
m | X1, . . . ,Xn] =

m−1∑
j=0

(k+ j)!
j! (m− j− 1)!

· 1

(j+n+ k)!
·
(k− γ)j+1 (γ+n− k)m−j−1

(n+ γ)m

× (n− 1)! m! (n+m+ k− 1)!
(n+m− 1)! (k− 1)!

.
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Rewrite the expression collecting the constant terms and focus on the summation

term of E[K(n)
m | X1, . . . ,Xn], as follows:

E[K
(n)
m | X1, . . . ,Xn] =

(n− 1)! m! (n+m+ k− 1)!
(n+m− 1)! (k− 1)! (n+ γ)m

×
m−1∑
j=0

(k+ j)!
j! (m− j− 1)!

·
(γ+n− k)m−j(k− γ)j+1

(j+n+ k)!

=
(n− 1)! m (n+m+ k− 1)!

(n+m− 1)! (k− 1)! (n+ γ)m
·
m−1∑
j=0

(k+ j)! (m− 1)!
j! (m− j− 1)!

·
(γ+n− k)m−j(k− γ)j+1

(j+n+ k)!

=
(n− 1)! m (n+m+ k− 1)!

(n+m− 1)! (k− 1)! (n+ γ)m
·
m−1∑
j=0

(
m− 1

j

)
Γ(k+ j+ 1)

Γ(k+n+ j+ 1)

× Γ(k− γ+ j+ 1)

Γ(k− γ)
(γ+n− k)m−j−1.

It is important to note this equivalence:

Γ(k− γ+ j+ 1)

Γ(k− γ)
=

Γ(k− γ+ j+ 1)

Γ(k− γ+ 1)

Γ(k− γ+ 1)

Γ(k− γ)
= (k− γ+ 1)j · (k− γ),

due to use it in the equation above:

E[K
(n)
m | X1, . . . ,Xn] =

(n− 1)! m (n+m+ k− 1)! (k− γ)

(n+m− 1)! (k− 1)! (n+ γ)m

m−1∑
j=0

(
m− 1

j

)
(2.16)

× Γ(k+ j+ 1)

Γ(k+n+ j+ 1)
(k− γ+ 1)j (γ+n− k)m−j−1.

Focusing on the summation, it should be noted that the binomial term can be

written as: (
m− 1

j

)
=

(m− 1)!
j! (m− 1− j)!

=
(m− 1) · · · (m− j− 1+ 1)

j!

=
(−1)j(−(m− 1)) · · · (−(m− j))

j!

=
(−1)j (−(m− 1))j

j!
.
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Recalling that Γ(a+n) = (a)n · Γ(a), the summation in Equation (2.16) becomes

m−1∑
j=0

(−1)j(−(m− 1))j
j!

(k+ j)j Γ(k+ 1)

(k+n+ 1)j Γ(k+n+ 1)
(k− γ+ 1)j (γ+n− k)m−j−1

=
Γ(k+ 1)

Γ(k+n+ 1)

m−1∑
j=0

(−1)j(−(m− 1))j
j!

(k+ 1)j(k− γ+ 1)j(γ+n− k)m−j−1 := R(γ).

Let us analyze the last term in R(γ), specifically (γ+n− k)m−j−1:

(γ+n− k)m−j−1 =
Γ(γ+n− k+m− 1− j)

Γ(γ+n− k)
.

Let us set γ+n− k = b, so the expression simplifies to:

Γ(b+m− 1− j)

Γ(b)
=

(b+m− 1− j− 1) · · ·b · Γ(b)
Γ(b)

= (b+m− 1− j− 1) · · ·b.

To further simplify, we multiply and divide this expression by the same factor

and we obtain the following expression:

(b+m)(b+m− 1) · · · (b+m− 1− j)

(b+m)(b+m− 1) · · · (b+m− 1− j)
· Γ(b+m− 1− j)

Γ(b)

=
Γ(b+m+ 1)

(b+m)(b+m− 1) · · · (b+m− (j+ 1)) · Γ(b)

=
Γ(b+m+ 1)

Γ(b)
· (−1)j

(−(b+m))(−(b+m) + 1) · · · (−(b+m− 2) + j− 1)

=
Γ(b+m+ 1)

Γ(b)
· (−1)j

(b+m))(b+m− 1)
· 1

(−(b+m− 2))j

=
Γ(b+m− 1) · (−1)j

Γ(b) · (−(γ+n− k+m− 2))j
.

Substituting this into R(γ) and using the definition of the generalized hypergeo-

metric function 3F2, we obtain:

R(γ) =
Γ(k+ 1)

γ(k+n− 1)

m−1∑
j=0

1

j!
·
(−(m− 1))j · (k+ 1)j · (k− γ+ 1)j · Γ(b+m− 1)

Γ(b) · (−(γ+n− k+m− 2))j
.

This simplifies to:

R(γ) =
Γ(k+ 1)

γ(k+n− 1)
· Γ(b+m− 1)

Γ(b)
·
m−1∑
j=0

1

j!
·
(−(m− 1))j · (k+ 1)j · (k− γ+ 1)j

(−(γ+n− k+m− 2))j
.
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Recognizing the sum as a generalized hypergeometric function, we get:

R(γ) =
Γ(k+ 1)

γ(k+n− 1)
· Γ(b+m− 1)

Γ(b)

× 3F2 (−(m− 1),k+ 1,k− γ+ 1;k+n+ 1,−(γ+n− k+m− 2); 1) .

Finally, substituting this expression for R(γ) into the expected value, we obtain:

E[K
(n)
m | X1, . . . ,Xn] =

(n− 1)! ·m · (n+m+ k− 1)!
(n+m− 1)! · (k− 1)! · (n+ γ)m

× Γ(k+ 1)

γ(k+n− 1)
· Γ(b+m− 1)

Γ(b)

× 3F2 (−(m− 1),k+ 1,k− γ+ 1;k+n+ 1,−(γ+n− k+m− 2); 1) .

Recalling that b equals γ+ n− k and using the definition of the Pochhammer

symbol, we get

E[K
(n)
m | X1, . . . ,Xn] = m (k− γ) (k+ 1)

Γ(n) (n+m)k (γ+n− k)m−1

(n+m)m

× 3F2(−(m− 1),k+ 1,k− γ+ 1;k+n+ 1,−(γ+n− k+m− 2); 1).

Therefore, the theorem is proved.



Chapter 3

Applications of the Gnedin model to species

sampling

The definition of new quantities reported in the previous chapter has opened

up new possible analyses and considerations regarding the application of this

model. In this chapter, we will present and analyze the results obtained by

considering both simulated data and commonly used datasets that are well-suited

for evaluating the performance of different processes.

3.1 Simulation studies

In this first section, we report the results obtained by considering simulated data

that follow both the theoretical distribution, i.e. when the weights πh of the

random probability measure p̃ follow a Dirichlet distribution, and when this

distribution is not respected. We want to assess the goodness of the model both

in ideal and non-ideal situations. For each simulated dataset, we will evaluate

the empirical a priori expected value curve and the rarefaction curve. We will

then evaluate the predictive performance of the Gnedin model by studying the

extrapolation curve and the asymptote to which it converges.

3.1.1 Data generation

The first dataset is generated through simulation based on the Gnedin model’s

definition. Fixed the number of distinct components in the entire population H,

we sample the weights

(π1, . . . ,πH)
iid
∼ DirH(1, . . . , 1).

43
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Fixed a sample size n, we sample with replacement n values from the integer

vector containing values from 1 to H, i.e., the vector of atoms Zh as h = 1, . . . ,H,

to obtain a sample X1, . . . ,Xn. This construction can indeed be extended beyond

the theoretical model. It is possible to consider generic weights, which are not

necessarily distributed according to a Dirichlet distribution. For example, the

weights could be sampled from a Weibull distribution with a shape parameter

equal to 2 and a scale parameter equal to 1, or one could randomly select H

integer values and normalize them by their sum to obtain the weights. In this way,

it is possible to evaluate the performance of the Gnedin model under conditions

that deviate from the theoretically required ones.

3.1.2 Prior quantities of interest

First, we focus on analysing the model in its a priori component by estimating

the rarefaction curve and empirically approximating the prior expected value of

the number of distinct species Kn. Remember that in the previous chapter, in

Theorem 2.3 we defined the a priori expected value of the number of distinct

species. The empirical estimation of this quantity consists of obtaining an estimate

of the parameter γ that characterises the Gnedin model and substituting it into

the formula. The first attempt is to estimate the γ parameter using a maximum

likelihood estimator. Recalling the EPPF formula for the Gnedin model in

Equation (2.2) and the associated weights Vn,k in Equation (2.1), the log-likelihood

function results as:

log(Πn(n1, . . . ,nk)) = log(k− 1)! + log(1− γ)k−1 + log(γ)n−k−

− log(n− 1)! − log(1+ γ)n−1 +

k∑
j=1

lognj!.

Using a numerical optimisation algorithm, we obtain the maximum of this

function, γ̂ML.

We perform a sort of model checking to assess how well the expected value

aligns with the observed data. To do this, we estimate the rarefaction curve.

The estimation of this curve is obtained by making several permutations of

the available sample X1, . . . ,Xn. For each sample size from 1 to n we estimate

the number of distinct species within each permutation. Then we average the

values obtained by keeping the sample size fixed. This procedure can be easily

implemented by using a function within the Vegan package (RDocumentation
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(2024)), known as rarefy. This function takes as input the community data, a

matrix-like object or a vector and the sample size. The results obtained are the

same as we see in Figure 3.1.
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Figure 3.1: Comparison of estimation methods for the rarefaction curve considering
simulated data with (π1, . . . ,πH) ∼ DirH(1, . . . , 1).

However, the comparison between the rarefaction curve and the empirical

expected value of the number of distinct species does not provide good results.

Indeed there is no coincidence in the final points of the two curves. The results

are reported in Figure 3.2.
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Figure 3.2: Simulated data with (π1, . . . ,πH) ∼ DirH(1, . . . , 1). Comparison between the
rarefaction curve (orange) and the empirical expected value with γ̂ML (blue).

The second estimation procedure for the parameter γ is the method of

moments. We equal the a priori expected value E[Kn] of the number of distinct

species to the value of distinct species k in the observed sample and derive γ by

solving the equation:

γ̂MOM w.r.t. E[Kn] = k.
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Figure 3.3 shows how the curves change. In this second case, the results are

improved: the final points of the rarefaction curve and that of the empirical

expected value coincide.
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Figure 3.3: Simulated data with (π1, . . . ,πH) ∼ DirH(1, . . . , 1). Comparison between the
rarefaction curve (orange) and the empirical expected value with γ̂MOM (blue).

A mismatch between the rarefaction curve and the empirical curve of the a

priori expected value of the number of distinct species Kn leads us to conclude

that the model does not fit the data well a priori. However, the prior distribution

for the number of distinct species is a heavy-tailed distribution, which makes

it possible to sample huge values that make the expected value explosive. This

study is focused on evaluating the predictive abilities of the model, and thus we

will continue with our analysis.

3.1.3 Posterior inference and prediction

This thesis aims to evaluate the predictive performance of the Gnedin model.

Therefore, we focus now on estimating the extrapolation curve using a Monte

Carlo procedure. Before describing the implemented Monte Carlo algorithm, it is

necessary to recall the probability of sampling a new value Pnew in the predictive

distribution of the Gnedin model in Equation (2.7). Given a sample X1, . . . ,Xn

with k distinct values within it and fixing the size m of the additional sample, we

proceed as follows. For a specified number of simulations, sample m times from a

Bernoulli distribution with parameter Pnew, where the sample size increases from

n+ 1 to n+m. The value of k is updated at each iteration. A generated value

of 1 indicates the presence of a new species in the additional sample, instead,

a value of 0 indicates that the species found is already known and present in

the observed sample. The m values generated from the Bernoulli distribution

are iteratively summed to k and then these sums are averaged over all the final
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values obtained from the different simulations for each sample size from n+ 1 to

n+m.

Algorithm 1: Monte Carlo algorithm for extrapolation curve
Load: n, m, k, Nsim

Initialize: Matrix K
(n)
m with dimensions Nsim ×m with NA values

Set K(n)
m [ , 1]← k;

for j← 1 to Nsim do

for i← (n+ 1) to (n+m) do

Sample r from Bernoulli(Pnew);

K
(n)
m [j, i− (n− 1)]← K

(n)
m [j, i−n] + r;

Result: A vector containing means of columns of K(n)
m .

It is important to note that the extrapolation curve conditional on the data is

not a direct continuation of the rarefaction curve, instead, the slope changes

between the two curves. This change is crucial because it ensures the possibility

of convergence. However, the mismatch between the a priori curves and the

initial path of the rarefaction curve does not preclude the model from having

good forecasting abilities.

Since the true value for H is unknown, we want to determine whether the

value to which the extrapolation curve converges is a good estimate for the

overall species variety. We use the limit of the a posteriori expected value of H

as an estimate. This quantity is essential because it can be interpreted as a point

estimate of richness, a fundamental measure of biodiversity which evaluates

the number of distinct species. However, there persists the problem with the

estimation: we have decided to adopt the following procedure that simplifies the

code. As is already known, in Gnedin (2010) the posterior distribution for H in

Equation (2.5) can also be written as:

P(H = h | X1, . . . ,Xn) =
Γ(n) Γ(h) Γ(h− γ) Γ(n+ γ)

Γ(n+ h) Γ(h− k+ 1) Γ(k− γ) Γ(n+ γ− k)
. (3.1)

From this result, the associated expected value can be found by evaluating the

expression in Equation (2.6). The challenge lies in calculating this quantity

because it involves an infinite sum. Several approaches can be taken. One

approach is to truncate the posterior expected value, which involves evaluating

the value for a fixed and arbitrarily large h. This means that for larger sample
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sizes, the probability of sampling a new value, Pnew, is nearly zero. Another

procedure may be to evaluate the posterior expected value not of H, but of the

number of distinct species K
(n)
m as the sample size m of the additional sample

diverges. This strategy requires calculating the hypergeometric function as

determined in Theorem 2.4, but that is more difficult to implement. Therefore, we

opt for the first method. For each dataset, we fix a sufficiently large value of h to

ensure convergence, and once established, we calculate the expected value with

the Equation (2.6) using the formulation for the posterior distribution of H as in

Equation (3.1) and then the asymptote is identified. This allows us to understand

better the predictive power of the Gnedin model. The excellent predictive ability

of such a model can be best appreciated with simulated theoretical data, where

the true value of the number of distinct species in the entire population H is

known.
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Figure 3.4: Extrapolation curve for simulated data with (π1, . . . ,πH) ∼ DirH(1, . . . , 1).

The value to which the extrapolation curve converges aligns with the estimated

posterior expected value of H and differs only slightly from the true value of H.

Despite the excellent results for the future, some challenges remain. For

example, when we simulate data by sampling weights πh from a Weibull

distribution with arbitrarily chosen parameters (shape equal to 2, and rate equal

to 1) using a random sampling function in R, or by generating πh by normalizing

arbitrarily chosen integer values, we observe weaknesses in the model.
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(a) Extrapolation curve for simulated data
with weights as normalized integers.
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(b) Extrapolation curve for simulated data
with πh ∼ Weibull(2, 1) for h = 1, . . . ,H.

Figure 3.5: Extrapolation curves.

When the weights πh are specified manually or are derived from a distribution

different from a Dirichlet, there is a sudden change in the slope from the

rarefaction curve to the extrapolation curve. This is a sign that the model is likely

not correctly specified as it is. In the future, improving the model to perform

well even when the weights are not the theoretical ones would be interesting. For

example, one possible solution could be introducing a new parameter within the

model.

Finally, we want to focus on the posterior distribution of H given to us in

Gnedin (2010). This is a very useful measure of richness, and our Bayesian

approach allows us also to assess the associated uncertainty. The estimation of

the distribution is done by evaluating the function on a finite grid of values. Such

values are chosen so that the sum of the probabilities obtained is 1. Again we

consider the posterior distribution for H formulated as in Equation (3.1).

Since it has never been visualized, we want to understand the shape of this

distribution for example to determine if it is symmetric. Without visualising it,

we would not be able to tell whether the distribution is strongly skewed or not.

We expect to have validation of the estimated posterior expected value of H by

obtaining a distribution roughly centred around this value or if the distribution

is skewed with the highest probability assigned to a value close to that of the

estimated expected value of the number of distinct species H. The results are

reported in Figure 3.6 and 3.7.
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Figure 3.6: Estimation of the posterior distribution of H when (π1, . . . ,πH) ∼

DirH(1, . . . , 1). The true value of H is in red, and in blue is the estimated expected
value of H.

In this scenario, the distribution is symmetric and centred around the esti-

mated expected value of H, indicating a good match between the model and the

data.
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Figure 3.7: Estimation of the posterior distribution of H when πh are normalized integers.
The true value of H is in red and in blue is the estimated expected value of H.

This figure highlights the poor performance of the model when the weights

πh are not derived from the theoretical distribution. The results are quite similar,

whether the weights are sampled from a Weibull distribution or obtained by

normalizing random integers. Thus, only the distribution for normalized integers

is presented here as an example.
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3.2 Real data applications

In this section, we report the results obtained by applying what was previously

described for the simulated data to data belonging to two distinct datasets: the

Dune and Butterfly datasets.

3.2.1 Dune dataset

The Dune dataset is a community dataset with variables representing different

species and data showing the abundance of each species in each of the selected

sites. The dataset comes from a 1982 research project conducted on the Dutch

island of Terschelling. The research aimed to study the connection between

vegetation and management in dune meadows. The data was collected using an

ordinal scale and out of a total of 80 sites, 20 were randomly chosen for analysis

to account for overall variability. The dataset includes data on 30 recorded species

and is part of the Vegan package of R. The species names are abbreviated to eight

characters (4+4), such as Agrostol for Agrostis stolonifera. For our research, the

subdivision into sites for species abundance is unnecessary. Therefore, we only

account for the total number of times each species was observed, regardless of

the site where the observation occurred. For more details, see RDocumentation

(2024).

Achimill Agrostol Airaprae Alopgeni
1 16.00 48.00 5.00 36.00

Table 3.1: Here is an example of the first four species from the dataset.

3.2.2 Butterfly dataset

During World War II, the naturalist Alexander Corbet spent two years trapping

butterflies in Malaysia. He found 118 rare species, that he caught only one of each.

The dataset consists in Table 3.2, which presents the number y of species observed

at each trapping frequency x over the two years. 74 species were trapped twice,

and 44 species three times and so on.
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x 1 2 3 4 5 6 7 8 9 10 11 12

y 118 74 44 24 29 22 20 19 20 15 12 14

x 13 14 15 16 17 18 19 20 21 22 23 24

y 6 12 6 9 9 6 10 10 11 5 3 3

Table 3.2: Butterfly dataset.

3.2.3 Analysis and Results from the Dataset

First of all, we focused on the a priori results. Again, in order to have a good

comparison between the empirical curve of the a priori expected value and the

rarefaction curve, we had to use a MOM estimator for the parameter γ as we can

see from the Figures 3.8 and 3.9.
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Figure 3.8: Comparison between the rarefaction curve (orange) and the empirical expected
value with γ̂ML (blue).
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Figure 3.9: Comparison between the rarefaction curve (orange) and the empirical expected
value with γ̂MOM (blue).
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Then we focus on the posterior inference. First, we calculated the corre-

sponding extrapolation curves and verified their consistency with the previously

obtained results. Once again, the curves converged to the estimate of the posterior

expected value for H. However, since the data are not simulated in this case, we

cannot compare them with the true value of the number of distinct species in the

entire population H.
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Figure 3.10: Extrapolation curves.

Finally, we estimated the posterior distribution of H.
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Figure 3.11: Estimation of the posterior distribution of H for Dune dataset.

The distribution for the Dune dataset shows less symmetry compared to the

other scenarios. This is likely due to the limited support for H, with only a

few values present. Consequently, the symmetry is less pronounced and the

distribution is not as well-centered.
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Figure 3.12: Estimation of the posterior distribution of H for Butterfly dataset.

For the Butterfly dataset, the distribution is highly symmetric, exceeding what

is observed in other cases. This is due to the large number of values required to

cover the entire probability, ensuring a well-distributed and balanced posterior.



Appendix A

Hypergeometric functions

Definition A.1. The generalized hypergeometric function pFq is defined as a

hypergeometric series:

pFq(a1,a2, . . . ,ap;b1,b2, . . . ,bq; z) =
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
(A.1)

where: (ai)n for i = 1, . . . ,p and (bj)n for j = 1, . . . ,q are the Pochhammer

symbols, representing the rising factorials:

(ai)n = ai(ai + 1)(ai + 2) · · · (ai +n− 1) with (ai)0 = 1.

When p = 2 and q = 1, the generalized hypergeometric function reduces to the

ordinary hypergeometric function 2F1(a,b; c; z), also called Gauss’s hypergeometric

function.

Definition A.2. The hypergeometric function is denoted as 2F1(a,b; c; z) and is

defined by the series:

2F1(a,b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(A.2)

where (q)n is the Pochhammer symbol, representing the rising factorial:

(q)n = q(q+ 1)(q+ 2) · · · (q+n− 1) with (q)0 = 1.

A special hypergeometric identity includes Gauss’s hypergeometric theorem.

Indeed, when z = 1, the sum that characterizes the hypergeometric function is
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finite, and it reduces as follows:

2F1(a,b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
if c > a+ b. (A.3)



Appendix B

Janossy density

The distribution of point processes whose realizations are almost surely finite can

be described as follows. A finite point process X consists of a finite collection of

points X1, . . . ,Xn within Rn, where both the number of points n and the locations

X1, . . . ,Xn are random variables. This can be represented as:

X = {X1, . . . ,Xn}.

This means that a finite point process is defined by a discrete probability

distribution pn over N, which describes the distribution of the number of points

n in X, along with a family of joint probability density functions (PDFs) of the

form:

S = {πn(x1, . . . , xn)}n∈N+

which describes how the points in X are distributed in Rn. Since X is a set,

it remains unchanged under any permutation of the points X1, . . . ,Xn. This

symmetry implies that the joint PDFs in S must be permutation invariant,

meaning:

πn(xσ(1), . . . , xσ(n)) = πn(x1, . . . , xn)

for any permutation σ of the indices.

Definition B.1. The Janossy density of order n is defined as:

jn({x1, . . . , xn}) :=

n!πn(x1, . . . , xn)pn, if n > 0

p0, if n = 0.
(B.1)

It provides a way to describe the probability distribution of finding a specific

number of points at particular locations in a given space.

57



Chapter B. Janossy density 58

In an infinitesimal sense, jn(x1, . . . , xn)dx1 . . . dxn represents the probability

of finding exactly n points, with one point located in each of the infinitesimal

regions centered at x1, . . . , xn. For n = 0, Equation (B.1) is typically interpreted

as j0(∅) = p0.
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