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Introduction

There is a substantial difference between the classical and the Bayesian approaches

to probability. The first considers probability as an objective value, where

parameters are fixed and unknown, and inferential procedures are based on

repeated sampling under the same conditions. The latter is much more subjective.

As a matter of fact, in the Bayesian approach parameters are considered random

variables, and a prior distribution is assumed based on them, without considering

the data. Only afterwards, when the data is observed, the assumptions made are

updated to obtain the posterior distribution.

This thesis provides an introduction to the Bayesian approach, together with

focusing on the density estimation for the mixture models using the Gibbs

sampling, a particular technique which is well suited for the models of our

interest.

The thesis consists of four chapters. In the first chapter some key tools of Bayesian

statistics are explained in detail. The topics presented are very specific but, even

though not all of them will be used in the rest of the paper, they are fundamental

to understand the Bayesian approach to statistical inference.

The second chapter offers a general overview of already known sampling

algorithms such as the Monte Carlo method and Monte Carlo Markov Chain.

Finally, the Gibbs sampling method is introduced.

The third chapter focuses on mixture models. These are useful for density

estimation for populations composed by different sub-populations, each having

a different density distribution. Some of the difficulties that come with these

specific models are taken into consideration here, such as choosing the number

of components and the issues with label exchangeability when identifying

sub-populations. At the end, the Gibbs sampling method is detailed in the
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2 Introduction

framework of mixture models. These arguments are, in fact, necessary for

understanding the implementation of the algorithm and the examples provided

in the last chapter.

Chapter four is the core of this thesis, containing the description of the construc-

tion of the algorithm for the implementation in the R software. Brief descriptions

of the implemented code are provided through the use of a theoretical example.

In addition, there are several examples that include both basic datasets already

directly available from R in different libraries, like Old Faithful Geyser Data and

Galaxy Data, and a dataset of real data: Concrete Compressive Data. In this

way, this study demonstrates and verifies the functioning of the implemented

algorithm on data of varying complexity.



Chapter 1

Introduction to Bayesian inference

Within this chapter the definitions underlying Bayesian statistics will be discussed.

This section will provide the statement of the Bayes’ rule, as well as an explanation

of the meaning of random variables (in both the discrete and discontinuous cases),

the way independence is defined, and how such variables are distributed. We

will explain how to estimate variables and the concept of exchangeability related

to the concept of conjugacy.

Finally, the normal model that is the main character of this paper will be explored.

The main reference is Hoff (2009).

Bayesian inference is based on Bayes’ rule, which shows us how our beliefs should

change once we observe a sample y from the sample space Y .

The purpose of Bayesian inference is to use the data to quantify the reduction in

uncertainty about population parameters.

It is important to note that Bayes’ rule does not tell us what our beliefs on the

parameter should be after observing evidence; rather, it informs us how they

should change.

1.1 Bayes’ rule

We denote the parameter space by Θ which is the collection of potential parameter

values, as specified in the first chapter of Hoff (2009). The Bayesian method

begins with a numerical expression of joint beliefs about y and θ, i.e. the sample

and the parameter respectively, in terms of probability distributions over Y and

3



4 Chapter 1. Introduction to Bayesian inference

Θ. The prior distribution p(θ) expresses our view that θ represents real population

features for each numerical value θ in Θ. The sampling model is represented by

the conditional distribution of y given θ, p(y|θ), which expresses our hypothesis

that y would be the outcome of our study if we knew θ was true for each θ ∈ Θ

and y in Y .

We update our assumptions about θ once we observed the data y and we get the

posterior distribution p(θ|y), which expresses our opinion that θ is the real value,

given dataset y, as θ varies in Θ. Using the Bayes’ rule, the posterior distribution

is derived from the prior distribution and sampling model. In fact, the Bayes’ rule

is the tool to update the prior and get the posterior:

p(θ|y) =
p(y|θ)p(θ)∫

Θ p(y|θ̃)p(θ̃)dθ̃
.

Bayes’ rule is the best approach for updating beliefs about θ given new knowl-

edge, according to Cox (1946), Cox (1961) and Savage (1954), Savage (1972).

Their findings provide a solid theoretical foundation for using Bayes’ rule as

a quantitative learning approach. However, it might be difficult to accurately

mathematically define our prior beliefs in practical data analysis settings, hence

p(θ) is frequently used on an ad hoc basis or for computational efficiency.

1.2 Starting definitions

First of all, we introduce some definitions, in particular which of both continuous

and discrete random variables in the Bayesian context. These are important

notions for describing the sample we are going to consider and on which we will

make inference. For such a sample, the hypothesis of exchangeability will be

supposed, a fundamental assumption for the concept of conjugacy, both of which

are explained here.

We refer to Chapter 2 of the Hoff (2009) for additional details.

1.2.1 Random variables

Definition 1.1 (Random variables). Given (Ω,B), (R,B1) measurable spaces,

where B1 is the σ-algebra over R, a random variable is an application Y : Ω → R
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such that:

∀B1 ∈ B1 : Y
−1(B1) ∈ B .

In general, a random variable is an application from an underlying probability

space to a set of interest, which can be the sample space Y or the parameter

space Θ.

Definition 1.2 (Probability measure). A random variable induces on measurable

space (R,B1) a new probability measure, said distribution of Y, which we denote

with PY .

PY : B1 → R such that ∀B1 ∈ B1 PY(B1) = P(Y−1(B1)).

From now on, we will denote all probability distributions with P, where the

related variable will be clear from the context.

Discrete random variables

Let Y be a random variable and let Y be the set of all possible values of Y.

This variable is discrete if the set of possible outcomes is countable, meaning that

Y can be expressed as Y = {y1,y2, . . . }.

The set {Y = y} contains all the possible outcomes of an experiment which yield

the values y for the variable Y. The notation for P(Y = y) is shorted to p(y) for

each y ∈ Y . The probability mass function (pmf) of Y is a function of y that has the

following properties:

• 0 ⩽ p(y) ⩽ 1 ∀y ∈ Y ;

•
∑

y∈Y p(y) = 1.

The pmf may be used to generate general probability assertions regarding Y. For

example, supposed A a subset in Y , P(Y ∈ A) =
∑

y∈A p(y). If A and B are

disjoint subsets of Y , then

P(Y ∈ A, Y ∈ B) ≡ P(Y ∈ A∪B) = P(Y ∈ A) + P(Y ∈ B) =
∑
y∈A

p(y) +
∑
y∈B

p(y).
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Continuous random variables

Assume the sample space Y is equal to R. As a result, event probabilities cannot

be defined in terms of a pmf p(y), but rather in terms of a cumulative distribution

function (cdf):

FY(y) = P(Y ⩽ y).

Note that limy→+∞ FY(y) = 1, limy→−∞ FY(y) = 0, and FY(b) ⩽ FY(a) if b < a.

Probabilities of various events can be derived from the cdf:

• P(Y > a) = 1− FY(a);

• P(a < Y ⩽ b) = FY(b) − FY(a).

Definition 1.3 (Continuous random variable). A random variable Y is called an

absolutely continuous random variable if there exists a non-negative function p

of R such that:

FY(Y ⩽ y) =

∫y
−∞ p(y) dy, ∀y ∈ R.

This function is called the probability density function of Y and the following

properties hold:

• 0 ⩽ p(y) ∀y ∈ Y ;

•
∫

R p(y) dy = 1.

They are similar to those of a pdf for a discrete random variable. In addition, as

in the discrete case, probability statements about Y can be derived from the pdf:

P(Y ∈ A) =
∫
A p(y) dy, and if A and B are disjoint subsets of Y , then

P(Y ∈ A, Y ∈ B) ≡ P(Y ∈ A∪B) = P(Y ∈ A) + P(Y ∈ B)

=

∫
A
p(y) dy+

∫
B
p(y) dy.

1.2.2 Joint distributions

In the Bayesian context, it is constantly used to work with several random

variables simultaneously. In the following section, we will define how two

random variables are jointly distributed.
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Discrete joint distribution

Let Y1, Y2 be two countable sample spaces and Y1, Y2 be two random variables,

taking values in Y1, Y2 respectively. Joint beliefs about Y1 and Y2 can be

represented with probabilities. The joint pdf or joint density of Y1 and Y2 is

defined as

p(Y1, Y2)(y1,y2) = P({Y1 = y1}∩ {Y2 = y2}), for y1 ∈ Y1, y2 ∈ Y2.

The marginal density of Y1 can be computed from the joint density:

pY1(y1) ≡ P(Y1 = y1)

=
∑

y2∈Y2

P({Y1 = y1}∩ {Y2 = y2})

=
∑

y2∈Y2

p(Y1, Y2)(y1,y2).

The conditional density of Y1 can be computed from the joint density:

pY2|Y1(y2|y1) =
P({Y1 = y1}∩ {Y2 = y2})

P(Y1 = y1)

=
pY1Y2(y1,y2)

pY1(y1)
.

Continuous joint distributions

If Y1 and Y2 are absolutely continuous and given a continuous joint cdf

F(Y1,Y2)(a,b) ≡ P({Y1 ⩽ a}∩ {Y2 ⩽ b}), there is a function p(Y1,Y2) such that:

F(Y1,Y2)(a,b) =
∫a
−∞

∫b
−∞ p(Y1,Y2)(y1,y2) dy2dy1.

The function p(Y1,Y2) is the joint density of Y1 and Y2 and it holds that:

• pY1(y1) =
∫

R p(Y1,Y2)(y1,y2) dy2;

• pY2|Y1(y2|y1) =
p(Y1,Y2)

(y1,y2)
pY1(y1)

.
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Mixed continuous and discrete variables

Let Y1 be discrete and Y2 be continuous. Define a marginal density pY1

from our beliefs P(Y1 = y1) and a conditional density pY2|Y1(y2|y1) from

P(Y2 ⩽ y2|Y1 = y1) ≡ FY2|Y1(y2|y1) as above. The joint density of Y1 and Y2

is then:

p(Y1,Y2)(y1,y2) = pY1(y1)pY2|Y1(y2|y1).

1.2.3 Independent random variables

Assume that Y1, . . . , Yn are random variables and that θ is a parameter that

describes the conditions under which the random variables are formed. It is

important to remember that in the Bayesian context θ is a realisation of a random

variable. The random variables Y1, . . . , Yn are conditionally independent given θ if

for every collection of sets {A1, . . . ,An} we have

P(Y1 ∈ A1, . . . , Yn ∈ An|θ) = P(Y1 ∈ A1|θ)P(Y2 ∈ A2|θ) · · ·P(Yn ∈ An|θ). (1.1)

The Equation (1.1) is based on the notion of independent events, where each

{Yj ∈ Aj} represents an event.

Definition 1.4 (Independence of events). Two events F and G are conditionally

independent given H if P(F∩G|H) = P(F|H)P(G|H).

From Equation (1.1) if independence holds, then

P(Yi ∈ Ai|θ, Yj ∈ Aj) = P(Yi ∈ Ai|θ).

Knowing Yj, according to this understanding, provides no extra knowledge about

Yi beyond what θ provides. The product of marginal densities gives the joint

density under independence:

p(y1, . . . ,yn|θ) = pY1(y1|θ)pY2(y2|θ) · · ·pYn(yn|θ) =

n∏
i=1

pYi(yi|θ).
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If the marginal densities are all equal to some common density, and it results

that:

p(y1, . . . ,yn|θ) =

n∏
i=1

p(yi|θ),

the Y1, . . . , Yn are conditionally independent and identically distributed (i.i.d).

1.3 Bayes’ rule and parameter estimation

In the Bayesian context, parameter estimation allows us to understand how much

we need to update our beliefs in accordance with the observed data. In this

section, the estimation procedure will be explained.

Let consider the discrete random sample Y and the parameter θ. The joint

distribution p(y, θ), which captures our opinions about θ and the survey outcome

Y, is required to calculate the posterior distribution p(θ|y). It is frequently made

up of:

• p(θ), beliefs about θ;

• p(y|θ), beliefs about Y for each value of θ.

Having observed {Y = y}, it is needed to update beliefs about θ:

p(θ|y) =
p(θ,y)
p(y)

=
p(θ)p(y|θ)

p(y)
. (1.2)

The conditional density in the Equation (1.2) is called the posterior density of θ.

It results that:

p(θ|y) ∝ p(θ)p(y|θ). (1.3)

The constant of proportionality in the Equation (1.3) is 1/p(y) which could be

computed from:

p(y) =

∫
Θ
p(y, θ) dθ =

∫
Θ
p(θ)p(y|θ) dθ.

It follows that:

p(θ|y) =
p(θ)p(y|θ)∫

Θ p(θ)p(y|θ) dθ
.
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1.4 Exchangeability

An important property that we will assume to be valid throughout the rest of

the discussion, is that of exchangeability. It is very useful as it guarantees that for

random variables having this property, the joint distribution does not change,

whatever sequence they are taken with.

Definition 1.5. Let p(y1, . . . ,yn) be the joint density of Y1, . . . , Yn. If

p(y1, . . . ,yn) = p(yπ(1), . . . ,yπ(n)) for all permutations π and n ⩾ 1, then

Y1, . . . , Yn are exchangeable.

Definition (1.5) means that if Y1, . . . , Yn are exchangeable, labels convey no

information about the outcomes.

Lemma 1.1. If θ ∼ p(θ) and Y1, . . . , Yn are conditionally i.i.d given θ, then marginally

(unconditionally on θ), Y1, . . . , Yn are exchangeable.

1.4.1 de Finetti’s theorem

From the exchangeability property, the de Finetti theorem states that exchangeable

observations are i.i.d conditional on some latent variable.

Theorem 1.1. Let Yi ∈ Y for all i ∈ {1, 2, . . . }. Suppose that, for any n, our model for

Y1, . . . , Yn is exchangeable:

p(y1, . . . ,yn) = p(yπ(1), . . . ,yπ(n))

for all permutations π of {1, . . . ,n}. Then our model can be written as:

p(y1, . . . ,yn) =

∫ { n∏
i=1

p(yi|θ)

}
p(θ)dθ,

for some parameters θ, some prior distribution on θ and some sampling model p(y|θ).

The prior and the sampling model depend on the form of the belief model p(y1, . . . ,yn).
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These results can be summarised as follows:

Y1, . . . , Yn|θ are i.i.d

θ ∼ p(θ)

 ⇐⇒ Y1, . . . , Yn are exchangeable ∀n.

1.5 Conjugacy

Here we explain the notion of conjugacy, and we refer to Hoff (2009), Chapter 3

for additional details.

The importance of these particular distributions is due to the fact that they

provide a certain convenience in working with prior and posterior distributions.

The posterior distribution, in fact, does not need to be established again, but

will be like the prior one, with the parameters changed. Obtaining the posterior

distribution reduces to updating the parameters of the prior distribution.

All this is done on the assumption that we are working with exchangeable

observations.

Definition 1.6. A class P of prior distributions for θ is called conjugate for a

sampling model p(y1, . . . ,yn|θ) if

p(θ) ∈ P ⇒ p(θ|y1, . . . ,yn) ∈ P .

Example 1.1. It can be demonstrated the conjugacy of the beta family for the Bino-

mial sampling model. It results that if θ ∼ Beta(a,b) and Y|θ ∼ Binomial(m, θ),

then {θ|Y = y} ∼ Beta(a+ y,b+m− y).

Example 1.2. The conjugacy of the gamma family for the Poisson sampling

model is also valid. If θ ∼ Gamma(a,b) and Y1, . . . , Yn|θ ∼ Poisson(θ), then

{θ|Y1, . . . , Yn} ∼ Gamma(a+
∑n

i=1 Yi,b+n).

1.5.1 Exponential families and conjugate priors

A one-parameter exponential family model is any model whose densities can be

expressed as p(y|θ) = h(y)c(θ)eθt(y), where θ is the unknown parameter and t(y)

is the sufficient statistic that offers all the information needed to draw inferences

about θ.
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Diaconis & Ylvisaker (1979) investigate conjugate prior distributions for gen-

eral exponential family models, specifically priors of the kind p(θ|n0, t0) =

k(n0, t0)c(θ). The induced posterior distribution is obtained by combining such

prior information with information from Y1, . . . , Yn
i.i.d
∼ p(y|θ):

p(θ|y1, . . . ,yn) ∝ p(θ)p(y1, . . . ,yn|θ)

∝ c(θ)n0+nexp

{
θ

[
n0t0 +

n∑
i=1

t(yi)

]}
∝ p(θ|n0 +n,n0t0 +nt̄(yyy)),

where t̄(yyy) =
∑n

i=1 t(yi)/n.

The integer n0 represents a "prior sample size", a measure of how informative

the prior is, and t0 represents a "prior estimation" of t(Y).

1.6 The normal model

With references to Hoff (2009) Chapter 5, a random variable Y is normally

distributed with mean µ and variance σ2 > 0 if the density of Y is given by:

p(y|µ,σ2) =
1√
2πσ2

e−
1
2 (

y−µ
σ )2 , −∞ < y < ∞ .

The normal distribution is significant because of the central limit theorem, which

states that the sum of a set of random variables is nearly normally distributed

under extremely broad conditions. This suggests that the normal sampling

approach will be acceptable for data resulting from the additive impacts of

several factors.
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1.6.1 Inference for the mean, conditional on the variance

It is supposed a model like Y1, . . . , Yn|µ,σ2 i.i.d
∼ N(µ,σ2). Then the joint sampling

density is given by

p(y1, . . . ,yn|µ,σ2) =

n∏
i=1

p(yi|µ,σ2) =

n∏
i=1

1√
2πσ2

e
−1

2

(
yi−µ

σ

)2

= (2πσ2)−
n
2 exp

{
−
1

2

n∑
i=1

(
yi − µ

σ

)2
}

.

When we extend the quadratic term in the exponent, we observe that

p(y1, . . . ,yn|µ,σ2) simply depends on y1, . . . ,yn through

n∑
i=1

(
yi − µ

σ

)2

=
1

σ2

n∑
i=1

y2
i − 2

µ

σ2

n∑
i=1

yi +n
µ2

σ2
.

This demonstrates that
{∑n

i=1 y
2
i ,
∑n

i=1 yi

}
constitute a two-dimensional sufficient

statistic. From these quantities can be obtained the values of ȳ =
∑n

i=1 yi/n and

s2 =
∑n

i=1(yi − ȳ)/(n− 1). For this reason also {ȳ, s2} are a sufficient statistics.

This two-parameter model’s inference may be divided into two one-parameter

issues. We will start with the challenge of inferring θ when σ2 is known, and we

will employ a conjugate prior distribution to do it. We observe that the posterior

satisfies the following condition for any prior p(µ|σ2):

p(µ|y1, . . . ,yn,σ2) ∝ p(µ|σ2)e
1

2σ2

∑
(yi−µ)2

∝ p(µ|σ2)ec1(µ−c2)
2
.

We can see that if p(µ|σ2) is conjugate, it must contain quadratic terms such as

ec1(µ−c2)
2
. Thus, the normal family of probability densities on R is the simplest,

implying that if p(µ|σ2) is normal and y1, . . . ,yn are i.i.d normal(µ,σ2), then

p(µ|y1, . . . ,yn,σ2) is a normal density as well.
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If µ ∼ N(µ0, τ20) then:

p(µ|y1, . . . ,yn,σ2) =
p(µ|σ2)p(y1, . . . ,yn|µ,σ2)

p(y1, . . . ,yn|σ2)

∝ p(µ|σ2)p(y1, . . . ,yn|µ,σ2) (1.4)

∝ exp

{
−

1

2τ20
(µ− µ0)

2

}
exp

{
−

n

2σ2

n∑
i=1

(yi − µ)2

}
.

We can get from Equation (1.4) a function that has exactly the same shape as a

normal density curve. Thus, we obtain:

p(µ|y1, . . . ,yn,σ2) ∝ exp

−
1

2

(
µ− b

a
1√
a

)2
 ,

where

a =
1

τ20
+

n

σ2
, b =

µ0

τ20
+

∑n
i=1 yi

σ2
.

We refer to the mean and variance of this density as µn and τ2n where

τ2n =
1

a
=

1
1
τ20

+ n
σ2

and µn =
b

a
=

1
τ20
µ0 +

n
σ2
ȳ

1
τ20

+ n
σ2

.

The posterior parameters τ2n and µn combine the prior parameters τ20 and µ0 with

terms from the data. Posterior variance and precision:

1

τ2n
=

1

τ20
+

n

σ2
. (1.5)

The prior inverse variance is combined with the inverse of the data variance as

it can be seen in the Equation (1.5) . Inverse variance is often referred to as the

precision.

Let define some quantities:

• σ̃2 = 1/σ2 is the sampling precision;

• τ̃20 = 1/τ20 is the prior precision;

• τ̃2n = 1/τ2n is the posterior precision.
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These imply that Equation (1.5) becomes:

τ̃2n = τ̃20 +nσ̃2.

Posterior mean. Notice that:

µn =
τ̃20

τ̃20 +nσ̃2
µ0 +

nσ̃2

τ̃20 +nσ̃2
ȳ . (1.6)

Note that σ̃2 is the sampling precision. As a result of the Equation (1.6) the

posterior mean is a weighted average of the prior mean and the sample mean.

The weight on the sample mean is the sampling precision of the sample mean.

The weight on the prior mean is 1/τ20, the prior precision. If the prior mean

were based on k0 prior observations from the same population, we should put

τ20 = σ2/k0, which is the variance of the prior mean. The formula for the posterior

mean reduces to:

µn =
k0

k0 +n
µ0 +

n

k0 +n
ȳ .

1.6.2 Joint inference for the mean and the variance

Also with joint prior distributions p(µ,σ2) for µ and σ2, posterior inference

proceeds using Bayes’ rule:

p(µ,σ2|y1, . . . ,yn) =
p(y1, . . . ,yn|µ,σ2)p(µ,σ2)

p(y1, . . . ,yn)
.

A joint distribution for two quantities can be expressed as the product of a

conditional probability and a marginal probability:

p(µ,σ2) = p(µ|σ2)p(σ2) .

We say that if σ2 is known then a conjugate prior distribution for µ was N(µ0, τ20).

In the particular case in which τ20 = σ2/k0:

p(µ,σ2) = p(µ|σ2)p(σ2) = dnorm(µ,µ0, τ0 =
σ√
k0

p(σ2),
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the parameters µ0 and k0 can be interpreted as the mean and sample size from a

set of prior observations. For the variance is needed a family of prior distributions

that has support on (0,∞), such as the gamma family. However this family is not

conjugate for the normal variance σ2, but for the precision 1/σ2. For this reason,

when we consider such a prior distribution, σ2 has an inverse-gamma distribution:

precision =
1

σ2
∼ gamma(a,b)

variance = σ2 ∼ inverse-gamma(a,b)

In particular, instead of using generic parameters as a and b, we will work with

a prior distribution such as:

1

σ2
∼ gamma

(ν0

2
,
ν0

2
σ2
0

)
,

the parameters (σ2
0,ν0) can be interpret as the sample variance and sample size

of prior observations.

Posterior inference

Suppose our prior distribution and sampling model are as follows:

1

σ2
∼ gamma

(ν0

2
,
ν0

2
σ2
0

)
µ|σ2 ∼ N

(
µ0,

σ2

k0

)
Y1, . . . , Yn|µ,σ2 i.i.d

∼ N(µ,σ2).

Such as the prior distribution for µ and σ2, also the posterior distribution can be

decomposed:

p(µ,σ2|y1, . . . ,yn) = p(µ|σ2,y1, . . . ,yn)p(σ
2|y1, . . . ,yn).
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As a consequence of the previous considerations the conditional distribution of µ

given the data and σ2 is:

{
µ|y1, . . . ,yn,σ2

}
∼ N

(
µn,

σ2

kn

)
kn = k0 +n and µn =

k0µ0 +nȳ

kn
.

The posterior distribution of σ2 can be obtained from:

p(σ2|y1, . . . ,yn) ∝ p(σ2)p(y1, . . . ,yn|σ
2)

= p(σ2)

∫
p(y1, . . . ,yn|µ,σ2)p(µ|σ2)dµ.

Thus we get:

{
1

σ2
|y1, . . . ,yn

}
∼ gamma

(
νn

2
,νn

σ2
n

2

)
νn = ν0 +n

σ2
n =

1

νn

[
ν0σ

2
0 + (n− 1)s2 +

k0n

kn
(ȳ+ µ0)

2

]
.

The quantity ν0 can be interpreted as a prior sample size, from which is obtained

a prior sample variance of σ2
0. Point out that s2 =

∑n
i=1(yi − ȳ)2/(n− 1) is the

sample variance.



Chapter 2

Algorithms for random sampling

After discussing the basic concepts of Bayesian statistics, this chapter will

introduce the algorithms for random sampling. The Monte Carlo method will

be discussed first. Indeed, this method is the simplest one and it is the basis of

Markov Chain Monte Carlo (MCMC) algorithms, also discussed here.

The chapter will conclude with Gibbs sampling, the key object of this discussion,

an example of which will be given later on.

The basic idea of these algorithms is to use randomness to solve problems that

are, in principle, deterministic. In theory, Monte Carlo techniques can be used to

solve any problem with a probabilistic interpretation. The integrals given by the

expected value of a random variable can be approximated by taking the sample

average of independent samples of the variable, according to the law of large

numbers.

2.1 Monte Carlo approximation

We have already discussed the benefits of the conjugate priors for an unknown

parameter θ. They are particularly helpful since a conjugate prior guarantees

a posterior distribution for which there were simple formulas for posterior

means and variances. Other aspects of a posterior distribution are frequently

summarised. For example, for a random set A, we could be interested in

calculating P(θ ∈ A|y1, . . . ,yn). We could also be interested in the means and

standard deviations of some function of θ or the predictive distribution of missing

18
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or unobserved data.

The Monte Carlo approach may be used to estimate all of these posterior

quantities of interest if we can generate random sample values of the parameters

from their posterior distributions. For more details refer to Hoff (2009) Chapter 4.

2.1.1 The Monte Carlo method

Let θ be a parameter of interest and let y1, . . . ,yn be the numerical values

of a sample from a distribution p(y1, . . . ,yn|θ). Suppose we could sample S

independent random θ-values from the posterior distribution p(θ|y1, . . . ,yn):

θ(1), . . . , θ(S)
i.i.d
∼ p(θ|y1, . . . ,yn).

Then the empirical distribution of the samples {θ(1), . . . , θ(S)} would approximate

p(θ|y1, . . . ,yn), where the approximation improves as S increases. The empir-

ical distribution of {θ(1), . . . , θ(S)} is known as a Monte Carlo approximation to

p(θ|y1, . . . ,yn).

The empirical distribution of the Monte Carlo samples provides an increasingly

accurate approximation to the true density as S gets larger. Additionally, let g(θ)

be any function. The law of large numbers says that if {θ(1), . . . , θ(S)} are i.i.d.

samples from p(θ|y1, . . . ,yn), then:

lim
S→∞ 1

S

S∑
s=1

g(θ(s)) = E[g(θ)|y1, . . . ,yn] =

∫
g(θ)p(θ|y1, . . . ,yn)dθ.

This implies that:

• limS→∞ θ̄ = limS→∞∑S
s=1 θ

(s)/S = E[θ|y1, . . . ,yn]

The sample mean of the Monte Carlo samples, is approximately the true

expected value;

• limS→∞∑S
s=1(θ

(s) − θ̄)2/(S− 1) = Var[θ|y1, . . . ,yn]

The Monte Carlo standard error is the approximation to the standard

deviation;

• the empirical distribution of {θ(1), . . . , θ(S)} is approximated with the cumu-

lative distribution function.
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The denominator S is chosen so that the Monte Carlo standard error is smaller

than the precision selected to estimate E[θ|y1, . . . ,yn].

2.1.2 Posterior inference for arbitrary functions

Suppose we are interested in the posterior distribution of some function g(θ) of

θ.

The law of large numbers says that if we generate a sequence {θ(1), . . . , θ(S)} from

the posterior distribution of θ, then
∑S

i=1 g(θ
(i))/S converges to E[g(θ)|y1, . . . ,yn].

Other aspects of the posterior distribution of g(θ) can also be investigated.

It is necessary to use a Monte Carlo approach: for S times a θ value is

independently sampled.

sample θ(1) ∼ p(θ|y1, . . . ,yn), compute g(θ(1))

sample θ(2) ∼ p(θ|y1, . . . ,yn), compute g(θ(2))

...

sample θ(S) ∼ p(θ|y1, . . . ,yn), compute g(θ(S)).

The sequence {g(θ(1)), . . . ,g(θ(S))} constitutes S independent samples from

p(g(θ)|y1, . . . ,yn), and so all the properties before described are valid.

2.1.3 Sampling from predictive distributions

An important feature of Bayesian inference is the existence of a predictive distribu-

tion for new observations.

Let y1, . . . ,yn be the outcomes from a sample of n random variables, and

let Ỹ be an additional outcome from the same population that has yet to be

observed. The predictive distribution of Ỹ is the conditional distribution of Ỹ given

{Y1 = y1, . . . , Yn = yn}. For conditionally i.i.d variables this distribution can be

derived from the distribution of Ỹ given θ and the posterior distribution of θ:

P(Ỹ = ỹ|y1, . . . ,yn) =

∫
P(Ỹ = ỹ, θ|y1, . . . ,yn)dθ

=

∫
P(Ỹ = ỹ|θ,y1, . . . ,yn)p(θ|y1, . . . ,yn)dθ. (2.1)
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The Equation (2.1) is called posterior predictive distribution, because it conditions

on an observed dataset.

A predictive model that integrates over unknown parameters but is not con-

ditional on observed data like P(Ỹ = ỹ) =
∫
p(ỹ|θ)p(θ)dθ is called prior

predictive distribution. Such a distribution can be useful for evaluating whether

a prior distribution for θ actually translates into reasonable prior beliefs for the

observable data Ỹ.

We will be able to sample from p(θ|y1, . . . ,yn) and p(y|θ) in many modelling

situations, but p(ỹ|y1, . . . ,yn) will be too intricate to sample directly. We may

use a Monte Carlo technique to sample from the posterior predictive distribution

indirectly.

Since p(ỹ|y1, . . . ,yn) =
∫
p(ỹ|θ)p(θ|y1, . . . ,yn)dθ, we see that p(ỹ|y1, . . . ,yn) is

the posterior expectation of p(ỹ|θ). To obtain the posterior predictive probability

that Ỹ is equal to some specific value ỹ, we sample θ(1), . . . , θ(S)
i.i.d
∼ p(θ|y1, . . . ,yn)

and then approximate p(ỹ|y1, . . . ,yn) with
∑S

s=1 p(ỹ|θ
(s))/S. This procedure will

work well if p(y|θ) is discrete and the quantities of interest are easily computed

from this distribution. Obtaining a set of samples of Ỹ from its posterior predictive

distribution can be done as follows:

sample θ(1) ∼ p(θ|y1, . . . ,yn), sample ỹ(1) ∼ p(ỹ|θ(1))

sample θ(2) ∼ p(θ|y1, . . . ,yn), sample ỹ(2) ∼ p(ỹ|θ(2))

...

sample θ(S) ∼ p(θ|y1, . . . ,yn), sample ỹ(S) ∼ p(ỹ|θ(S)).

The sequence {(θ, ỹ)(1), . . . , (θ, ỹ)(S)} constitutes S independent samples from the

joint posterior distribution of (θ, Ỹ), and the sequence {ỹ(1), . . . , ỹ(S)} constitutes S

independent samples from the marginal posterior distribution of Ỹ, which is the

posterior predictive distribution.

It is important to note that the empirical distribution of sampled data does

not always match the distribution of the population from which the data were

generated, and in fact, if the sample size is small, it might appear quite different.

Sample empirical distributions produced from a smooth population distribution
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can be rather irregular. It may be useful in such instances to have a predictive

distribution that smooths out the bumps in the empirical distribution.

2.1.4 Markov Chain Monte Carlo methods

Previously, the parameters considered had the assumption of independence. We

are now in the case where they are dependent and follow a Markov chain. A

complete reference is the book of Robert & Casella (2004).

Definition 2.1 (Markov chain). A sequence Y(0), Y(1), . . . , Y(R) of random elements

is a Markov chain if:

P(Y(r+1) ∈ A|y(0), . . . ,y(r)) = P(Y(r+1) ∈ A|y(r)).

When a Markov chain admits an invariant or stationary probability distribution,

its level of stability increases. Invariant distribution means that the marginal

distributions of Y(r) and Y(r+1) are the same and are equal to the probability

density p(y), although Y(r) and Y(r+1) remain dependent.

A stationary law is not included in every Markov chain. However, for sampling

purposes, Markov chains should always converge to an invariant distribution.

Indeed, the stationary distribution p(y) in Markov Chain Monte Carlo reflects

the goal density from which we want to simulate.

Then we will employ the following approximation:

∫
g(y)p(y)dy ≈ 1

R

R∑
r=1

g(y(r)),

where y(1), . . . ,y(R) are generated according to a Markov chain, with y(0) ∼ p(y).

We assume that we will consider Markov chains that observes the following

properties, that are informally defined as follows:

• Irreducibility

The chain is irreducible if it does not lock in a local region of the sample

space. In the discrete case the chain is irreducible if all states are connected.
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• Aperiodocity

The chain is aperiodic if it does not have any deterministic cycle.

• Harris recurrent

In the discrete setting a state j ∈ N is recurrent if and only if the chain will

eventually reach j with probability 1.

Although aperiodic and Harris recurrent Markov chains are highly stable, they

do not necessarily admit an invariant distribution.

Definition 2.2 (Harris positive). A Markov chain is said to be Harris positive if it

is Harris recurrent and admits an invariant probability distribution.

Ergodic theorem

After introducing the essential arguments for the MCMC method, a fundamental

theorem is presented here, which corresponds to the law of large numbers for

Markov chains. It is the main justification for the use of MCMC methods. The

following result holds independently on the initial conditions Y(0) ∼ p0.

Theorem 2.1 (Ergodic Theorem). Let the Markov chain (Y(r))r⩾1 be Harris positive

with stationary distribution p. Let the function g be integrable with reference to p. Then:

lim
R→∞ 1

R

R∑
r=1

g(Y(r)) =

∫
g(y)p(y)dy

almost surely.

2.1.5 Sampling the path of a Markov chain

Below there is a description of how to sample the Markov chain’s path. Firstly it

is simulated Y(0) ∼ p0 and then the following values (Y(r+1)|Y(r)) according to the

transition kernel. If a Markov chain has a stationary distribution p, simulating

from it leads to a practical method for simulating from p as well. Moreover, the

distribution pr of Y(r) will eventually converge to the stationary law p we wish to

simulate. Thus, Y(B) for B > 0 large enough can be regarded as a sample from

p. The values Y(1), Y(2), . . . , Y(B) represent the so-called burn-in period, that is the

values the chain needs to reach convergence. These values should be discarded,
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but the choice of B is not so easy.

Hence, the approximations of functions of interest are based on the values:

∫
g(y)p(y)dy ≈ 1

R−B

R∑
r=B+1

g(y(r)),

which it relies on the Ergodic Theorem.

2.2 Gibbs sampling

There are several models for which sampling directly from the joint distribution

is difficult. For such situations, it is more convenient to consider another

distribution: the full-conditional of each parameter. In these cases, approximation

of the posterior distribution can be done with the Gibbs sampler. This is an

iterative algorithm that constructs a dependent sequence of values for parameters,

whose distribution converges to the target joint posterior distribution.

This section will explain how the Gibbs sampler works in the context of normal

models. See the Chapter 6 of Hoff (2009) for more details.

2.2.1 Semiconjugate prior distribution

In Section 1.6 we discussed the normal model and we characterised our

uncertainty about µ as being dependent on σ2:

µ|σ2 ∼ N

(
µ0,

σ2

k0

)
.

In some situations we may want to specify our uncertainty about µ as being

independent of σ2, for that reason we will consider a distribution like:

1

σ2
∼ gamma

(ν0

2
,
ν0

2
σ2
0

)
µ ∼ N

(
µ0, τ20

)
.

These distributions are named semiconjugate prior distribution.
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2.2.2 Full-conditional distributions

The aim of the algorithm is not to sample directly from the complete function,

but from the conditional distribution of each parameter with respect to the

remaining parameters and the observed data. These are the so-called full

conditional distributions.

The posterior probability density can be written in the following way, which

comes from the Bayes’ rule:

p(µ,σ2|y1, . . . ,yn) = p(µ|σ2,y1, . . . ,yn)p(σ
2,y1, . . . ,yn),

the same rule is valid also for the other parameters. For that reason sampling

each full conditional distribution in turn, gives values that are proportional to

the posterior distribution.

In our case, if {Y1, . . . , Yn|µ,σ2}
i.i.d
∼ N(µ,σ2), it results that: {µ|σ2,y1, . . . ,yn} ∼

N(µn, τ2n) where:

µn =

µ0

τ20
+n ȳ

σ2

1
τ20

+ n
σ2

, τ2n =

(
1

τ20
+

n

σ2

)−1

.

Furthermore, for 1/σ2, which we named σ̃2, the full conditional distribution given

µ and {y1, . . . ,yn} is:

p(σ̃2|µ,y1, . . . ,yn) ∝ p(y1, . . . ,yn, σ̃2,µ)

= p(y1, . . . ,yn|µ, σ̃2)p(µ|σ̃2)p(σ̃2).

We supposed that µ and σ̃2 are independent in the prior distribution, then

p(µ|σ̃2) = p(µ) and

p(σ̃2|µ,y1, . . . ,yn) ∝p(y1, . . . ,yn|µ, σ̃2)p(σ̃2)

∝
(
(σ̃2)

n
2 exp

{
−σ̃2

∑n
i=1(yi − µ)2

2

})
·(

σ̃2)
ν0
2 −1exp

{
−σ̃2ν0

σ2
0

2

})

=(σ̃2)
ν0
2 −1exp

{
−σ̃2

[
ν0σ

2
0 +

∑n
i=1(yi − µ)2

2

]}
.
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This is the form of a gamma density, and so

{σ2|µ,y1, . . . ,yn} ∼ Inverse-Gamma
(
νn/2,νnσ

2
n(µ)/2

)
,

where

νn = ν0 +n; σ2
n(µ) =

ν0σ
2
0 +ns2n(µ)

νn

and s2n(µ) =
∑n

i=1(yi − µ)2/n, the unbiased estimate of σ2 if µ were known.

2.2.3 Sampling from the full conditional distributions

As we have seen we can easily sample directly from p(σ2|µ,y1, . . . ,yn), as well as

from p(µ|σ2,y1, . . . ,yn). However, we do not yet have a way to sample directly

from the joint posterior distribution p(µ,σ2|y1, . . . ,yn).

Gibbs sampler uses the relation between the full conditional distribution and the

posterior distribution to suggest sampling each variable iteratively, while leaving

the other variables in their previous state in time. When a full conditional is

sampled in this way, a new value for the conditioned variable is picked and then

immediately used to sample the other variables that have not been sampled yet.

Suppose we were given σ2(1), a single sample from the marginal posterior

distribution p(σ2|y1, . . . ,yn). Then we could sample:

µ(1) ∼ p(µ|σ2(1),y1, . . . ,yn)

and {µ(1),σ2(1)} would be a sample from the joint distribution of {µ,σ2}. Addi-

tionally, {µ(1),σ2(1)} can be considered a sample from the marginal distribution

p(µ|y1, . . . ,yn). From this µ-value, we can generate

σ2(2) ∼ p(σ2|µ(1),y1, . . . ,yn).

But since µ(1) is a sample from the marginal distribution of µ, and σ2(2) is a

sample from the conditional distribution of σ2 given µ(1), then {µ(1),σ2(2)} is also

a sample from the joint distribution of {µ,σ2}. This generates samples iteratively

with a Markov approach, in which the samples tend towards the posterior density

ones.
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More precisely given a current state of the parameters φ(s) = {µ(s),σ2(s)}, we

generate a new state as follows:

• sample µ(s+1) ∼ p(µ|σ̃2(s),y1, . . . ,yn);

• sample σ̃2(s+1) ∼ p(σ2|µ(s+1),y1, . . . ,yn);

• let φ(s+1) = {µ(s+1), σ̃2(s+1)}.

This algorithm is called Gibbs sampler, and generates a dependent sequence of

our parameters {φ(1),φ(2), . . . ,φ(S)}.

It is important to note that it is a Markov chain: it is a chain of dependent

values, in which φ(s) depends on φ(0), . . . ,φ(s−1) only through φ(s−1), i.e. φ(s) is

conditionally independent of φ(0), . . . ,φ(s−2) given φ(s−1).

Since it is a specific MCMC method, the following properties are valid:

lim
s→∞ P(φ(s) ∈ A) →

∫
A
p(φ)dφ

with A a generic measurable set. This means that the sampling distribution of φ(s)

approaches the target distribution as s → ∞, no matter what the starting value

φ(0) is. Furthermore, for most functions g of interest:

lim
S→∞ 1

S

S∑
s=1

g(φ(s)) → E[g(φ)] =

∫
g(φ)p(φ) dφ.

We can approximate E[g(φ)] with the sample average of {g(φ(1)), . . . ,g(φ(S))}. To

be a good approximation for a wide range of functions g, we need the empirical

distribution of the simulated sequence {φ(1), . . . ,φ(S)} to look like the target

distribution p(φ).

As we have already explained, the Markov chain produced by the Gibbs sampler

possibly begins to converge after the generation of many samples. Thus, it is good

practice to discard the first k produced values, where k depends on the speed of

convergence of the chain. These are usually referred to as burn–in iterations.

An example of the Gibbs Sampler algorithm will be given in Chapter 4 of this

discussion.
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Finite Mixture Models

Mixture models can be employed in situations when the population of sampling

units is divided into several sub-populations, each having its own simple model.

This chapter will introduce these models and more insights can be found in

Chapter 22 of Gelman et al. (2015) and in Green (2018).

The essential idea behind mixture models is to incorporate unseen random

variables, commonly labelled as a vector or matrix z, that indicate the mixture

component from which each specific observation is chosen. As a result, a mixture

model has a hierarchical representation; the observed variables y are conditionally

modelled on the vector z, and the vector z is given a probabilistic specification.

It is sometimes helpful to consider the mixing indicators as missing data. Doing

the average across the distribution of the indicator variables yields inferences

about quantities of interest, such as parameters inside the probability model for y.

This means pulling (θ, z) from their joint posterior distribution in the simulation

framework.

3.1 The set up and the interpretation of mixture models

Suppose we want to model the distribution of a random sample y = (y1, . . . ,yn)

as a mixture of H components. It is considered that it is unknown which

component of the mixture underlies any specific observation. The h-th component

distribution, fh(yi|θh), is considered to depend on a parameter vector θh for

h = 1, . . . ,H and on the parameter λh expressing the proportion of the population

from component h, which is a non-negative value with
∑H

h=1 λh = 1. It is common

28
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to suppose that the mixing components all belong to the same parametric family,

such as normal, but have distinct parameter vectors. In that situation, the

sampling distribution of y is:

p(yi|θ,λ) = λ1f(yi|θ1) + λ2f(yi|θ2) + · · ·+ λHf(yH|θH) =

H∑
h=1

λhf(yi|θh).

In other words in mixture models, the component density f is fixed and known,

the component-specific parameters θh and the weights λh are usually considered

to be unknown and H is also sometimes unknown. It can be useful to allow

slightly more generality:

p(yi|θ,λ) =
H∑

h=1

λhfh(yi|θh),

where different components are allowed to to have different parametric forms.

Modern inference for mixture models almost always uses the likelihood function,

which in the case of n independently and identically distributed observations

from a mixture model has the form:

p(y|θ,λ) =
n∏
i=1

H∑
h=1

λhf(yi|θh). (3.1)

Many problems with mixture models derive from this product-of-sums.

3.1.1 Latent allocation variables

Suppose the population from which we are sampling is heterogeneous: there

are multiple groups, indexed by h = 1, 2, . . . ,H, present in the population in

proportions λh. When sampling from group h, observations are assumed drawn

from density f(·|θh). Thus, in every mixture model there is an unobserved

indicator variable zih, with

zih =

 1 if the i-th unit is drawn from the h-th mixture component

0 otherwise.
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Then we can imagine that an observation y drawn from the population is realised

in two steps: first, the group z is drawn from the index set h = 1, 2, . . . ,H, with

P(zh = 1) = λh; and secondly, given z,y is drawn from f(·|θh).

The zi are latent random variables, they are usually called allocation variables in

the mixture model context.

Given λ, Multin(1; λ1, . . . , λH) is the distribution of each vector zi = (zi1, . . . , ziH).

In this case, the mixing parameters are regarded as hyperparameters that deter-

mine the distribution of z. The conditional joint distribution of the observable

data y and the unseen indicators z can be stated:

p(y, z|θ,λ) = p(z|λ)p(y|z,θ) =
n∏
i=1

H∏
h=1

(λhf(yi|θh))
zih , (3.2)

with exactly one of zih equaling 1 for each i. This is the complete data likelihood.

The number of the mixture components H, is assumed to be known and

fixed. The finite mixture is a special case of the more general specification

p(yi) =
∫
p(yi|θ)λ(θ) dθ.

3.1.2 Some possible difficulties with mixture models

The model parameters are not recognised if more than one option of the likelihood

function is obtained. All finite mixture models are non-identifiable in one sense;

if the group labels are permuted, the distribution remains unchanged. For many

problems, an informative prior distribution has the effect of identifying specific

components with specific sub-populations. The prior distribution for the finite

mixture model parameters (θ,λ) is taken, in most applications, to be a product

of independent prior distributions on θ and λ. The natural conjugate prior

distribution is the Dirichlet, λ ∼ Dirichlet(α1, · · · ,αH), if the vector of mixture

indicators zi = (zi1, . . . , ziH) is treated as a multinomial with parameter λ. The

mean of the prior distribution for λ is described by the relative sizes of the

Dirichlet parameters αh, and the sum of the αh’s is a measure of the prior

distribution’s strength. The generic Dirichlet distribution is:

f(x1, . . . , xH|α1, . . . ,αH) =
Γ(α1 +α2 + · · ·+αH)

Γ(α1)Γ(α2) · · · Γ(αH)
x
α1−1
1 x

α2−1
2 · · · xαH−1

H



Chapter 3. Finite Mixture Models 31

We use θ to represent the vector consisting of all of the parameters in the mixture

components, θ = (θ1, . . . ,θH). For now we do not make any assumptions about

the prior distribution p(θ).

An improper non-informative prior distribution for λ, corresponding to αi = 0,

may cause a problem if the data do not indicate that all H components are present

in the sample. When inappropriate prior distributions are used for the component

parameters, issues are more likely to occur.

3.1.3 Posterior modes using EM

For finite mixture models there is often uncertainty concerning the number of

mixture components H to include in the model. Although computing models

with high values of H might be expensive, it is preferable to start with a small

mixture and test the fit. The posterior predictive distribution of an appropriate

test quantity can be used to see if the present number of components adequately

describes the range of observed data. Each of the i = 1, . . . ,n items in the sample

belongs to one of H sub-populations, with each latent sub-population or latent

class having a distinct value for one or more parameters in a parametric model.

Let zi ∈ {1, . . . ,H} denote the sub-population index for item i, with this index

commonly referred to as the latent class status. Then, the response yi for item i

conditionally on zi has the distribution

yi|zi ∼ f(·|θzi).

In marginalising out the latent class status, assuming that the fraction of the

population belonging to sub-population h equals P(zi = h) = λh, the following

probability is obtained:

p(y|λ,θ) =
H∑

h=1

λhf(y|θh),

which corresponds to a finite mixture with H components, with component

h assigned probability weight λh. The most common form of inference is

maximum likelihood, which is based on maximising of Equation (3.1), again

using numerical methods. Such an approach is immediately interesting for lots
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of reasons, including its relevance when the basic model is developed, such as

through the inclusion of covariates, assuming the numerical issues are resolved.

The usual numerical approach to maximum likelihood estimation of mixture

models uses the EM algorithm.

The EM algorithm can be used to estimate the parameters of a finite mixture

model, averaging over the indicator variables. If the latent allocation variable zi

were known, we would have separate independent samples for each component

h so that it would be a simple practice to estimate p. If the parameters θh were

known, instead, the allocation of the observations yi to the different components

could be done by choosing zi = h to maximise f(yi|θh). The E-step frequently

requires the computation of the expected value of the sufficient statistics of the

joint model of (y, z). This is done using the log of the complete-data likelihood,

defined in the Equation (3.2), conditional on the last guess of the value of the

mixture component parameters θ and the mixture proportions λ. In finite

mixtures this is equivalent to compute the conditional expectation of the indicator

variables by Bayes’ rule. We suggest choosing a fairly large number starting

points by simplifying the model or random sampling. Each zih is replaced by

its conditional expectation E(zih|θ,λ,yi) = τih given the current values of the

parameters and weights that is:

τih =
λhf(yi|θh)∑H

h ′=1 λh ′f(yi|θh ′)
.

In the M-step, λh and θh are updated to maximise the corresponding expected

complete-data log likelihood,

n∑
i=1

H∑
h=1

τihlog(λhf(yi|θh)).

When the λh and θh vary independently for each component h, this maximisation

may be done separately for each one.

3.1.4 Posterior simulation using the Gibbs sampler

Starting values for the Gibbs sampler can be derived from an appropriate

approximation to the posterior via relevance re-sampling. Given the current
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values of {λh} and {θh} the Gibbs sampler update for the allocation variables zih is

to draw them independently from P(zih = 1|θ,λ,yi) = τih, where τih is defined

in the E-step Section 3.1.3; this is simply Bayes’ rule. The algorithm alternates

two key steps for mixture models: drawing from the distribution of the indicators

given the model parameters and drawing from the model parameters given the

indicators. To update all of the model parameters, the second step may include

numerous stages. Using conjugate families as prior distributions might be useful.

In finite mixture models, obtaining draws from the distribution of the indicators,

is typically simple: these are multinomial draws. Modeling problems, such as

incorrectly applying a prior density, are frequently discovered during the iterative

simulation stage of calculations. For example, a Gibbs sequence started near zero

variance may never leave the area.

By ignoring the drawn indications once the Gibbs sampler has reached ap-

proximate convergence, posterior inferences about model parameters can be

made. Each observation is chosen from the posterior distribution of the indicator

variables, which provides information about the probable components.

3.1.5 Label switching and posterior computation

If there is interest in inferences on mixture component-specific parameters and

clustering due to identifiability issues such as the so-called label ambiguity and

label switching problem, it makes a significant difference in conducting the

analysis and defining priors. The label ambiguity problem refers to the issue for

which there is nothing in the likelihood to distinguish mixture component h as

different from h ′. When employing the EM method to maximise the probability

of a finite mixture model, this problem becomes evident. If the method converges

to a point estimate (λ̂1, . . . , λ̂H), (θ̂1, . . . , θ̂H), there will be another estimate with

an identical likelihood (λ̂K1
, . . . , λ̂KH

), (θ̂K1
, . . . , θ̂KH

), where (K1, . . . ,KH) is any

permutation of the indexes 1, . . . ,H. A joint prior distribution for (λ1, . . . , λH),

(θ1, . . . ,θH) is required in a Bayesian model. The marginal posterior distribution

of θh will be similar for all h if the mixture components 1, . . . ,H are exchangeable

in the prior distribution. As a result, it is impossible to estimate a posterior

distribution for mixture component h without distinguishing it from the rest.
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A typical exchangeable prior would let

(λ1, . . . , λH) ∼ Dirichlet(a, . . . ,a) and θh
i.i.d
∼ P0,

independently, with P0 an arbitrary common prior from which the mixture

component-specific parameters are drawn.

We said that due to excheangeability of the mixture components, the marginal

posterior distribution of θh is identical for all h ∈ {1, . . . ,H} and hence the chains

for each of the mixture component parameters have the same target distribution.

For example, supposed a mixture of two Gaussians with means µ1 and µ2 in

which one mixture component is located at µ = 0 and the other component is

located at µ = −1. The Gibbs sample for µ1 should then randomly jump between

values close to 0 and values close to −1 if mixing is good. The posterior for µh

has a multimodal form with one mode close to 0 and one close to −1. Due to this

mode are well separated and there is a region of low probability density between

the modes, then the Gibbs sampler will remain stuck for long intervals in one

mode. For example, for the first 5000 iterations the µ1 samples may be close to 0

and µ2 samples close to −1.

It is important to avoid choosing a P0 that is improper as the results may be

sensitive to the size of the variance chosen. Instead, best results are obtained

when P0 is chosen to generate mixture components that are close to the support

of the data. One way to accomplish this in practice is normalising the data in

advance of the analysis to facilitate selection on P0. An alternative way is to select

the hyperparametrs in P0 based on one’s prior knowledge about the location and

scale of the data.

3.1.6 Clustering and classification

Mixture models can be adopted by thinking of the data as clustered. The term

cluster commonly suggests a degree of homogeneity within a cluster and a degree

of separation between clusters, but it does not imply any specific within-cluster

distribution.

Since the supposed parametric form of the component densities is incorrect, a

fitted mixture model may require more components than there are apparent
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clusters in the data. Each homogeneous cluster may require many components

to fit it well. Nevertheless, finite mixture modelling does provide one of the few

simple and rigorous model-based approaches to clustering. It appears that a

second level of indexing of weights and parameters is required for reasonable

model-based inference about clusters using a within-cluster data distribution that

is likely to be a mixture as

y ∼

H∑
h=1

Gh∑
g=1

λhgf(·|θhg),

where h indexes clusters and g components within clusters. The request of

homogeneity within clusters and separation between clusters can be satisfied by

appropriately modelling the θhg.



Chapter 4

Applications of the Gibbs sampler to mixture

models

This chapter will show how the Gibbs sampler algorithm may be used with

Gaussian mixture models. In particular, the first section will focus on simulated

theoretical example in which the function of the algorithm implemented in R

software will be defined and shown. Then, some examples will be provided

using two datasets that are currently available in R: Old Faithful Geyser Data a

base dataset of R and Galaxy Data from the bmixture library. Finally with Concrete

Compressive Data, a real dataset, will be tested.

4.1 Construction of the algorithm

The starting example was taken from Chapter 7 of Robert & Casella (2010).

Consider a normal mixture of two components that has the same variance and

fixed weights

pN(µ1,σ2) + (1− p)N(µ2,σ2).

We assume in addition a normal prior distribution N(0,ν2σ2), with ν2 known, on

both means µ1 and µ2. The latent variables Zi are defined as

P(Zi = 1) = 1− P(Zi = 2) = p and Xi|Zi = k ∼ N(µk,σ2).

36
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In other words, Zi ∼ Bern(p). Then, the complete data likelihood is:

p(µ1,µ2, z|y) ∝ exp

{
−
µ2
1 + µ2

2

ν2σ2

}
·

∏
i: zi=1

pexp

{
−
(yi − µ1)

2

2σ2

} ∏
i: zi=2

(1− p)exp

{
−
(yi − µ2)

2

2σ2

}
,

from which we can easily see that the full conditional distributions for the means

are:

p(µj|y, z,σ2) ∝ exp

{
−

µ2
j

2ν2σ2

}
exp

−
1

2σ2

∑
i: zi=j

(
yi − µj

)2
with j = 1, 2 and p1 = p, p2 = 1− p. As a consequence we get:

µj|y, z,σ2 ∼ N

 ν2

1+njν2

∑
i: zi=j

yi,
σ2ν2

1+njν2

 (4.1)

with nj the number of zi that are equal to j.

For the latent variables the full conditional distribution is:

P(Zi = j|yi,µ1,µ2) =
pjexp

{
−

(yi−µj)
2

2σ2

}
∑

j ′∈{1,2} pj ′exp

{
−

(yi−µj ′)
2

2σ2

} . (4.2)

Then, we consider a simulated dataset y of 500 points from the 0.7N(0, 1) +

0.3N(2.7, 1) distribution. We want to improve the Gibbs sampler under this

condition. The algorithm we have implemented is shown below:

Algorithm 1: Gibbs sampler for means

Load: the dataset, σ2, ν2, p
Initialize: z
for i = 1, . . . ,Niter do

sample µ1 from Equation (4.1);
sample µ2 from Equation (4.1);
sample z from Equation (4.2)

Result: A vector containing the Niter values of µ1 sampled and another
containing the Niter values of µ2 sampled

With this algorithm 1500 values for the means were sampled, where we have
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selected the following values: p = 0.7, σ2 = 0.01 and ν2 = 10. Figure 4.1

represents the plot of the result over the log-posterior surface:
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Figure 4.1: Gibbs sample of 1500 points for the mixture posterior against the log-posterior
surface.

In order to make the algorithm more general, assume that σ2 is no longer

known and fixed, and also the number of components is an arbitrary value,

k = 1, 2, . . . ,n. Consider a value σ2
j for each component of the mixture, where

j = 1, 2, . . . ,k. Assume respectively such a prior distributions InvGamma(αj,βj).

The distribution for the latent elements is specified as follows:

Zi|p ∼ Multinomk(1,p)

p ∼ Dir(ω).

Then the full conditionals for the means are:

µj|y, z ∼ N

 ν2

σ2
j +njν2

∑
i: zi=j

yi,
σ2
jν

2

σ2
j +njν2

 . (4.3)
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As for the variances, we have:

σ2
j |y, z ∼ InvGamma

αj −
nj

2
,βj +

1

2

∑
i: zi=j

(yi − µj)
2

 , (4.4)

assuming that the parameter αj is equal for all the k components, and also for

the parameter βj this assumption is satisfied. For the weights:

p ∼ Dir(ω +n) (4.5)

where ω = (ω1,ω2, . . . ,ωk) and n = (n1,n2, . . . ,nk), which is equivalent to

p1 ∼ Beta(ω1 +n1,ω2 +n2) and p2 = 1− p2 when we consider two components.

The Dirichlet distribution is a generalisation of the Beta distribution and describes

the posterior parameters of a multinomial distribution of an observation. The

Dirichlet distribution with two parameters is exactly the Beta distribution.

The Gibbs sampler is changed as follows:

Algorithm 2: Gibbs sampler for means and variances

Load: the dataset, the support, α1, β1, ν2, k

Initialize: z, σ2, burnin

for i = 1, . . . , (burnin +Niter) do

for j = 1, . . . ,k do

sample µj from Equation (4.3);

sample σ2
j from Equation (4.4).

sample p from Equation (4.5).
Result: A matrix (Niter × j) containing the Niter values of µj sampled, one

of dimension (Niter × j) containing the Niter values of σ2
j sampled,

another of dimension (Niter × j) containing the Niter values of p

sampled and a matrix (Niter × #support) containing the values

density estimated for the support with the parameters considered

for all the Niter iterations
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Since we are considering a theoretical example, it is possible to evaluate the

goodness of the estimated density with the true one.

For each iteration, a density estimate can be obtained with the estimated

parameters. The average of all estimated densities after the burn-in period

is compared with the true density.

Let consider a mixture model with two components and the following distribution:

0.3N(0, 0.1)+ 0.7N(2.7, 0.1) from which the dataset of 500 observations is sampled.

The support of this distribution is [−1, 4]. The parameter ν2 is initialized as 10. It

is considered a burn-in period of 2300 iterations and then another 1100 iterations.

The result obtained applying the algorithm is as follows:
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(a) Density estimated in red compared
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(b) Densities estimated in the last 110

iterations

Figure 4.2: Density estimation for 2 components

Suppose a model with three components and a distribution like: 0.8N(1, 0.1) +

0.1N(5, 0.1) + 0.1N(10, 0.1). It is sampled a dataset of 500 observations. The

support is [0, 12]. Once again ν2 = 10 and 3400 iterations are performed of which

2300 constitute burn-in period. The result obtained is as above:
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Figure 4.3: Density estimation for 3 components

After implementing the code on a theoretical example and verifying its operation,

now we will apply the algorithm to two datasets provided by R to estimate their

density.

4.2 Application of the Gibbs sampler to R datasets

The initial examples of datasets have been taken from R because they are suitable

for use as tests as they are known and treated to be easily employed.

4.2.1 Old Faithful Geyser Data

As we read in RDocumentation (2022b), the Old Faithful Geyser Data is a

data frame with 272 observations on 2 variables. The first variable represents

the waiting time between eruptions, the second the duration of the eruption,

considering the Old Faithful geyser in Yellowstone National Park, Wyoming,

USA. Both variables are numeric.

Looking at the histogram of both variables, waiting and eruptions, a mixture

model with two components is assumed for both. For further confirmation, a

model-based clustering specific to finite mixture models of normals was used,

provided by the Mclust library. The output obtained confirms the presence of two

clusters.

The Gibbs sampler is used to estimate the respective density of the variables. It is
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considered the following values for the parameters for eruptions: k = 2, αj = 1

and βj = 5, ωj = 0.5 for all j = 1, . . . ,k and ν2 = 10. Otherwise, for waiting it is

used αj = 15.

These are the results obtained:
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(a) Density estimated for waiting scaled
in red with the Gibbs sampler, in black
with the classic inference
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(b) Density estimated for eruptions
scaled in red with the Gibbs sampler,
in black with the classic inference

Figure 4.4: Density estimation for the variables of Old Faithful Geyser Data

Looking at the traceplot of the averages confirms the convergence of the algorithm

and the relevance of the averages identified. Distinct and appropriate values were

identified.
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Figure 4.5: Traceplot of means
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4.2.2 Galaxy Data

The library bmixture contains the Galaxy dataset, more information on which can

be found at this link RDocumentation (2022a).

This dataset considers 82 observations of the velocities (in 1000 km/second) of

distant galaxies diverging from our own, from six well-separated conic sections

of the Corona Borealis. It contains only one variable named speed.

The same procedure adopted with the Old Faithful Geyser Data, will be used

here. Four components are assumed through graphic histogram analysis, and

the same number is obtained with Mclust. Although the number of components

is bigger, the Gibbs sampler still works well as we can see in Figure 4.6. The

parameters assume these values: ν2 = 10, αj = 50 and βj = 70, ωj = 0.5 for all

j = 1, . . . , 4.
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Figure 4.6: Density estimation for the variable speed in red with the Gibbs sampler, in
black with the classic inference
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4.3 Application of the Gibbs sampler to a real dataset

4.3.1 Concrete Compressive Data

The last dataset considered concerns concrete, more details can be find at the

following page Gediya (2021). The Compressive Strength of Concrete determines

the quality of Concrete. This is generally determined by a standard crushing test

on a concrete cylinder. This requires engineers to build small concrete cylinders

with different combinations of raw materials and test these cylinders for strength

variations with a change in each raw material. One of the materials is fly ash. This

is the established variable for tested the Gibbs sampler.

Unlike the datasets before considered, this is not thought for performing well,

this represents real data. This means that estimate the density is more interesting,

but also more difficult.

The chosen variable do not present an easily interpretable histogram, so using

Mclust the number of components for the mixture model is set at six. The values

for the parameters needed are ν2 = 10, αj = 1700, βj = 10 and ωj = 0.5 for all

j = 1, . . . , 6.

The result obtained is:
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Figure 4.7: Density estimation for the variable fly ash
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4.4 Observations after application

At the end of this chapter we would like to point out some results.

4.4.1 Label Switching and Burn-in period

Applying the algorithm allows us to observe occurrences such as label switching

and the consequent need to set a burn-in period in order to eliminate iterations

where convergence has not yet been achieved.

Consider once again the theoretical example described in the Section 4.1 with

three components and assume that no burn-in period was provided. It is possible

to see the trend of the values that the averages take as the iterations pass through

a traceplot.

It is shown here:
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Figure 4.8: Traceplot of means

As can be observed, convergence is not immediately achieved. For the first 130

iterations, the averages continue to switch, until they reach stability around three

distinct values. This phenomenon is the so-called label switching and the 130
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iterations constitute the burn-in period. This number of iterations changes every

time the algorithm is applied to the data. As consequence, a large number of

iterations is usually chosen so that a high burn-in period can be set to guarantee,

with certainty, that convergence can be achieved and still obtain acceptable results.

4.4.2 Starting values for the parameters

One of the delicate aspects of implementing the algorithm is the choice of starting

values to be assigned to the parameters for the full conditionals. The Gibbs

sampler is done in such a way that convergence is always guaranteed to be

achieved. However, the choice of these initial parameters determines the speed

with which convergence is reached and the quality of the density estimation.

One possible basic criterion for choosing these parameters is to look at the starting

graph. The parameter βj influences the smoothing of the distribution, whereas it

follows from αj that the greater the value taken, the more the peaks identified

will tend to be accentuated. Lastly, ν2 influences where the peaks will be centred.





Bibliography

Cox, R. T. (1946). Probability, frequency and reasonable expectation. American

Journal of Physics 14, 1 , 1–13.

Cox, R. T. (1961). The algebra of probable inference. The Johns Hopkins Press .

Diaconis, P. & Ylvisaker, D. (1979). Conjugate priors for exponential families.

Ann. Statist. 7 (2), 269–281.

Gediya, V. (2021). Concrete Compressive Strength Data. https://www.kaggle.

com/datasets/vivekgediya/concrete-data?resource=download.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin,

D. B. (2015). Bayesian Data Analysis. Chapman and Hall/CRC.

Green, P. J. (2018). Handbook of Mixture Analysis - Chapter 1. Chapman and

Hall/CRC.

Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Springer New

York.

RDocumentation (2022a). RDocumentation. Galaxy Data. https://search.

r-project.org/CRAN/refmans/bmixture/html/galaxy.html.

RDocumentation (2022b). RDocumentation. Old Faithful Geyser Data.

https://www.rdocumentation.org/packages/datasets/versions/3.6.2/

topics/faithful.

Robert, C. P. & Casella, G. (2004). Monte Carlo Statistical Methods. Springer New

York.

Robert, C. P. & Casella, G. (2010). Introducing Monte Carlo Methods with R.

Springer New York.

1

https://www.kaggle.com/datasets/vivekgediya/concrete-data?resource=download
https://www.kaggle.com/datasets/vivekgediya/concrete-data?resource=download
https://search.r-project.org/CRAN/refmans/bmixture/html/galaxy.html
https://search.r-project.org/CRAN/refmans/bmixture/html/galaxy.html
https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/faithful
https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/faithful


2 Bibliography

Savage, L. J. (1954). The foundations of statistics. John Wiley & Sons Inc.

Savage, L. J. (1972). The foundations of statistics, revised edn. Dover Publications

Inc.


	Introduction
	1 Introduction to Bayesian inference
	1.1 Bayes' rule
	1.2 Starting definitions
	1.2.1 Random variables
	1.2.2 Joint distributions
	1.2.3 Independent random variables

	1.3 Bayes' rule and parameter estimation
	1.4 Exchangeability
	1.4.1 de Finetti's theorem

	1.5 Conjugacy
	1.5.1 Exponential families and conjugate priors

	1.6 The normal model
	1.6.1 Inference for the mean, conditional on the variance
	1.6.2 Joint inference for the mean and the variance


	2 Algorithms for random sampling
	2.1 Monte Carlo approximation
	2.1.1 The Monte Carlo method
	2.1.2 Posterior inference for arbitrary functions
	2.1.3 Sampling from predictive distributions
	2.1.4 Markov Chain Monte Carlo methods
	2.1.5 Sampling the path of a Markov chain

	2.2 Gibbs sampling
	2.2.1 Semiconjugate prior distribution
	2.2.2 Full-conditional distributions
	2.2.3 Sampling from the full conditional distributions


	3 Finite Mixture Models
	3.1 The set up and the interpretation of mixture models
	3.1.1 Latent allocation variables
	3.1.2 Some possible difficulties with mixture models
	3.1.3 Posterior modes using EM
	3.1.4 Posterior simulation using the Gibbs sampler
	3.1.5 Label switching and posterior computation
	3.1.6 Clustering and classification


	4 Applications of the Gibbs sampler to mixture models
	4.1 Construction of the algorithm
	4.2 Application of the Gibbs sampler to R datasets
	4.2.1 Old Faithful Geyser Data
	4.2.2 Galaxy Data

	4.3 Application of the Gibbs sampler to a real dataset
	4.3.1 Concrete Compressive Data

	4.4 Observations after application
	4.4.1 Label Switching and Burn-in period
	4.4.2 Starting values for the parameters


	Bibliography

