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Abstract

The investigation of flexible classes of discrete prior has been an active research line in
Bayesian statistics. Several contributions were devoted to the study of nonparametric
priors, including the Dirichlet process, the Pitman–Yor process and normalized random
measures with independent increments (nrmi). In contrast, only few finite-dimensional
discrete priors are known, and even less come with sufficient theoretical guarantees.
In this thesis we aim at filling this gap by presenting several novel general classes
of parametric priors closely connected to well-known infinite-dimensional processes,
which are recovered as limiting case. A priori and posteriori properties are extensively
studied. For instance, we determine explicit expressions for the induced random partition,
the associated urn schemes and the posterior distributions. Furthermore, we exploit
finite-dimensional approximations to facilitate posterior computations in complex models
beyond the exchangeability framework. Our theoretical and computational findings are
employed in a variety of real statistical problems, covering toxicological, sociological,
and marketing applications.





Chapter 1

Introduction

1.1 Discrete dependence structures

The statistical investigation of discrete random structures has been a very lively area of
research in recent years. Bayesian nonparametric (bnp) discrete priors have found wide
applicability in numerous settings that include, among others, flexible density estimation,
model-based clustering, density regression, functional data analysis, and hidden Markov
models (Hjort et al., 2010). The literature on discrete nonparametric priors flourished
after the seminal paper of Ferguson (1973), in which the Dirichlet process (dp) was
introduced. Well-known limitations of the dp have fostered the research of novel discrete
nonparametric priors, which are nowadays well established inferential tools. Among
them we recall the Pitman–Yor (py) process (Ishwaran & James, 2001; Pitman & Yor, 1997),
the normalized inverse-Gaussian process (Lijoi et al., 2005), the normalized generalized
gamma process (Lijoi et al., 2007) and the very general classes of Gibbs-type priors
(Gnedin & Pitman, 2005; De Blasi et al., 2015), and of homogeneous normalized random
measures with independent increments (nrmis) (Regazzini et al., 2003).

These priors have been employed to address predictive inference, with species
sampling data, and density estimation, through hierarchical mixture models. In such a
setting, the underlying assumption is that the observations θ1, . . . , θn are drawn from an
exchangeable sequence of random elements (θi)i>1. More formally, let Θ be the sample
space, which is assumed to be Polish, and let B(Θ) denote its Borel σ-algebra. Moreover,
PΘ stands for the space of probability measures on Θ. Then, the celebrated de Finetti’s
theorem guarantees the existence of a random probability measure conditionally on
which the Θ-valued random variables are independent and identically distributed (iid),
namely for any n > 1

(θ1, . . . , θn | p̃)
iid
∼ p̃,

p̃ ∼ Q,
(1.1)

1



2 Chapter 1. Introduction

where p̃ is a random probability measure, having either a parametric or a nonparametric
form, which in turns follows the law of Q on the space PΘ, the prior distribution in
Bayesian inference. The py process and the class of homogeneous nrmis are instances of
discrete prior laws Q, namely random probability measures of the form

p̃(∞) =

∞∑
h=1

ξhδφ̃h , (1.2)

where the sequence of random Θ-valued locations (φ̃h)h>1 and the random weights
ξ = (ξ1, ξ2, . . . ) are independent. Furthermore, the φ̃h’s are iid draws from a probability
measure P, which is often assumed to be diffuse, that is P({θ}) = 0 for any θ ∈ Θ. Allowing
the baseline measure P to have atoms is far from being inconsequential. Indeed, in such a
case the random probability measure p̃ can not be regarded as a species sampling model
and therefore the classical theoretical framework (Pitman, 1996) does not apply. For
example, Carlton (2002) stressed that the posterior distribution of a Pitman–Yor process
with a purely atomic baseline measure was, at the time, still unknown. This important
theoretical gap was recently addressed e.g. by Canale et al. (2017); Camerlenghi et al.
(2018). Such a setup entails challenging technical hurdles when it comes to determining
distributional properties of interest for Bayesian inference.

When investigating covariate-dependent data {(θxi)i>1 : x ∈ X} in a Bayesian
framework, with X being the covariate space, the standard assumption of exchangeability
is not appropriate since it amounts to considering the data as being homogeneous.
The covariate x ∈ X is actually a source of heterogeneity that one has to take into
account and a different symmetry condition among the data should be specified. The
case X = {1, . . . ,L}, corresponding to a finite covariate space, identifies data that are
recorded under L different, though related, experimental conditions. In view of this, a
natural dependence structure is implied by partial exchangeability, according to which
exchangeability holds true within each of the L separate groups each of n(l) observations,
for l = 1, . . . ,L, but not across them. Then, the array of Θ-valued random elements
{(θli)i>1 : l = 1, . . . ,L} is partially exchangeable if and only if for any il = 1, . . . ,n(l) and
l = 1, . . . ,L

(θ1i1 , . . . , θLiL) | (p̃1, . . . , p̃L)
iid
∼ p̃1 × · · · × p̃L,

(p̃1, . . . , p̃L) ∼ QL,
(1.3)

for some probability measure QL on the product space PL
Θ. Hence, conditionally on the

vector (p̃1, . . . , p̃L), the θli’s are independent and identically distributed within, but only
independent across groups. The measure QL plays the role of prior distribution and in
addition governs the dependence across groups.
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An early proposal for QL appeared in Cifarelli & Regazzini (1978), but the decisive
boost to the literature came after the seminal paper of MacEachern (1999). In this thesis
we will rely on a hierarchical construction of QL and assume that the elements of the
collection {p̃1, . . . , p̃L} are conditionally iid, given another discrete random probability
measure p̃0, such that

(
p̃
(∞)
l | p̃

(∞)
0

)
=

∞∑
h=1

ξlhδφ̃lh ,
(
φ̃lh | p̃

(∞)
0

) iid
∼ p̃

(∞)
0 , l = 1, . . . ,L; h > 1,

p̃
(∞)
0 =

∞∑
h=1

ξ0hδφ̃0h , φ̃0h
iid
∼ P, h > 1,

(1.4)

where P is some diffuse probability measure on Θ. Note that in view of this specification,
one marginally has E(p̃l | p̃0) = p̃0 for each l = 1, . . . ,L. Thus, dependence across groups
in (1.3) is induced by considering an exchangeable collection {p̃

(∞)
1 , . . . , p̃(∞)

L } of random
probability measures. Note that the baseline distribution p̃(∞)

0 is almost surely purely
atomic, implying that specification (1.4) entails similar technical difficulties that arises in
the exchangeable model (1.2) when the baseline distribution is not diffuse. Such a model,
when the p̃(∞)

l ’s and p̃(∞)
0 are Dirichlet processes, has been proposed in Teh et al. (2006)

and takes on the name of hierarchical Dirichlet process (hdp). The hdp has been successfully
applied, e.g., to topic modeling (Teh et al., 2006), speaker diarization (Fox et al., 2011)
and the analysis of fMRI data (Zhang et al., 2016). For a stimulating account on its use
in several modeling and applied frameworks see Teh & Jordan (2010). An extension to
the wider class of normalized random measures was proposed in Camerlenghi et al. (2019),
which further provides a systematic investigation of the most relevant distributional
properties for Bayesian inference. The achievement of these results heavily benefits from
the nice probabilistic structure of the completely random measures (crms) that are used
to define the underlying random probability measures. It is worth recalling that other
examples of crm-based priors QL are available in the literature, the most recent examples
being Lijoi et al. (2014a,b), Lijoi & Nipoti (2014) and Griffin & Leisen (2017).

Exchangeable and the partially exchangeable settings constitutes a crucial building
block for the construction of more complex models in which latent quantities, rather
than the raw data, are assumed to be (partially) exchangeable. Hence, the theoretical
investigation of this framework is motivated by applications well-beyond models (1.1)
and (1.3). However, in some cases one might be interested in regression models where
the entire distribution of a response variable is unknown and changes with a general
vector of predictors x ∈ X ⊆ Rp. Indeed, the increased flexibility provided by these
procedures allows improvements in inference and prediction compared to classical
regression frameworks, as seen in applications (e.g. Dunson & Park, 2008; Griffin & Steel,
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2011; Wade et al., 2014). Mixture models based on (1.2), such as the Dirichlet process
mixture of Lo (1984), have key computational benefits (e.g. Escobar & West, 1995; Neal,
2000), and provides a consistent strategy for density estimation (e.g. Ghosal et al., 1999;
Tokdar, 2006; Ghosal & Van Der Vaart, 2007). This has motivated different generalizations
of (1.2) by allowing the random mixing measure p̃x to change with x ∈ X ⊆ Rp

(MacEachern, 1999, 2000). Popular representations consider predictor-independent
mixing weights ξh as in (1.2), and incorporate changes with x ∈ X in the atoms φ̃xh; see
for instance De Iorio et al. (2004); Gelfand et al. (2005); De la Cruz-Mesía et al. (2007).
As noted in MacEachern (2000) the predictor-independent assumption for the mixing
weights might have limited flexibility in practice. This has motivated more general
formulations in which also the weights ξxh = ξh(x) vary with the predictors. Relevant
examples include the order-based dependent Dirichlet process (Griffin & Steel, 2006),
the kernel stick-breaking process (Dunson & Park, 2008), and the infinite mixture model
with predictor-dependent weights (Antoniano-Villalobos et al., 2014). In this thesis we
will rely on a specific predictor-dependent formulation for p̃x called logit stick-breaking
process (lsbp), defined for any x ∈ X ⊆ Rp as

p̃x =

∞∑
h=1

ξh(x)δφ̃h , ξh(x) = νh(x)

H−1∏
l=1

{1− ξl(x)}, h > 2, (1.5)

with ξ1(x) = ν1(x) and φ̃h
iid
∼ P, where each stick-breaking weight νh(x) ∈ (0, 1) relates

to a function ηh(x) ∈ R of the covariates through the logit link. Such a formulation is
closely related to the probit stick-breaking prior (psbp) of Rodriguez & Dunson (2011)
and it has been employed in Ren et al. (2011) for image segmentation.

1.2 Main contributions of the thesis

The remarkable advances in the bnp literature—outlined in the previous section—have
not been paralleled by a similar wealth of proposals in the finite-dimensional setting,
namely priors characterized by finitely many parameters. This includes discrete law of
the form

p̃(H) =

H∑
h=1

πhδθ̃h , θ̃h
iid
∼ P, H > 1, (1.6)

where the positive weights
∑H
h=1 πh = 1 almost surely and the collections {θ̃1, . . . , θ̃H} and

{π1, . . . ,πH} are independent. Indeed, only few alternatives to (1.6) are known beyond
Dirichlet-like structures and most of them outside the Bayesian realm. For example, there
is an interesting piece of literature focusing on compositional data and spurred by the
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pioneering work in Aitchison (1985) on general classes of distributions on the simplex,
but none of them has been actually used as a prior distribution for modeling either the
data or some latent feature. Indeed, the lack of deep theoretical results has prevented the
development of more flexible classes of priors, as well as simple sampling algorithms
that may facilitate their usage in applications.

A classical and popular prior choice for the weights (π1, . . . ,πH) in equation (1.6) is
the symmetric dirichlet(c/H, . . . , c/H) distribution. For instance Malsiner-Walli et al.
(2016) suggest its usage for sparse finite mixture models as a way to circumvent the issue
of selecting the number of mixture components, on the ground of asymptotic results
presented by Rousseau & Mengersen (2011). The symmetric Dirichlet specification above,

when directly used for exchangeable data (θ1, . . . , θn | p̃(H))
iid
∼ p̃(H), is often referred to

as Dirichlet multinomial model, finite-dimensional Dirichlet process, or Fisher process. See
for instance Kingman (1975); Ishwaran & Zarepour (2000, 2002) for further discussions.
In addition, it is well-known that for H large enough the Dirichlet multinomial might
be regarded as an approximation of the dp, and the implications of such a usage are
detailed for instance in Green & Richardson (2001) or Ishwaran & Zarepour (2000).

Given the amount of interesting properties characterizing the symmetric Dirichlet, it
is natural to ask whether there exist some equivalent and tractable formulations for the
Pitman–Yor process and for homogeneous nrmis. As we shall see, the answer is positive.
Specifically, in Chapter 2 and Chapter 3 we introduce and investigate novel classes of
finite-dimensional discrete priors that naturally generalize the Dirichlet multinomial
and whose limits are the aforementioned nonparametric priors. We drop the Dirichlet
specification since it displays serious drawbacks and limitations that are well-known in
the literature. For example, it is very sensitive to the choice of its hyperparameter, hence
requiring a careful calibration of the total mass parameter c. Moreover, the underlying
clustering structure induced by the Dirichlet distribution is somehow restrictive, since it
depends only on one parameter, thus calling for more flexible specifications. This has
some effects on the structure of the associated system of predictive distributions. In the
nonparametric case, these aspects are surveyed and illustrated in De Blasi et al. (2015).

Motivated by similar considerations, in Chapter 4 we present a novel enriched
finite-dimensional discrete prior whose limit is the enriched functional Dirichlet process
of Scarpa & Dunson (2014). The emphasis of such a contribution is on Bayesian functional
clustering and this allow us to illustrate the practical advantages that a finite-dimensional
specification might have in business applications.

The Dirichlet multinomial process has been exploited also as a computational tool for
approximating the dp. However, other approximations exist. For instance, Muliere &
Tardella (1998) rely on a truncation of the stick-breaking representation of the dp. Such
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an idea was popularized and extended to the Pitman–Yor case by Ishwaran & James
(2001). Following a similar line of reasoning, the contributions of Arbel & Prünster
(2017) and Arbel et al. (2018) discuss truncation-based approximations for homogeneous
nrmis and for the Pitman–Yor process, respectively. The excellent performance of the
above methods motivated us to develop similar approximate forms also for models (1.4)
and (1.5). Specifically, in Chapter 5 and Chapter 6 we present novel computational
strategies based on finite-dimensional prior for general hierarchical processes and for
the lsbp, respectively. In both cases these methods comes with theoretical guarantees as
we formally quantify the discrepancy between the finite- and the infinite-dimensional
processes.

As was made clear, the core concept which motivates and unifies the contributions of
this thesis is the notion of finite-dimensional nonparametric priors. The only exception to
this general scheme is the work of Chapter 7, in which we provide theoretical justifications
for a widely used variational Bayes approach for logistic regression. These theoretical
advances will play a central role in the derivation of variational strategies for the lsbp,
which are discussed in Chapter 6.

Before providing a concise account of each specific contribution, we owe a comment
about the “finite-dimensional nonparametric” terminology. Indeed, within the bnp

framework, the term “nonparametric” usually refers to the fact that the support of
the prior distribution is infinite-dimensional. In this thesis, we embrace a different
perspective and rely on classes of finite-dimensional priors whose flexibility can be
increased at will, eventually converging to some well-defined infinite-dimensional prior.
This argument is not completely new (Green & Richardson, 2001; Miller & Harrison,
2018) and leads to a broader definition of bnp, a perspective which seems to be supported
in the review paper “Bayesian nonparametric inference - why and how” by Müller & Mitra
(2013), who state in the conclusion:

«We started out by defining bnp as probability models for infinite-dimensional
random quantities like curves or densities. It might be more fittingly called “massively
parametric Bayes”. The label nonparametric has been used because inference under
bnp models often looks similar to (genuinely) nonparametric classical inference.»

The finite-dimensional priors we propose in this thesis well fit this broad definition of
“nonparametric”, being highly flexible, massively parametric, and well-defined at the
limit. We shall stress, however, that a large amount of parameters does not automatically
define a “nonparametric” prior. Indeed, a strong prerequisite of any nonparametric
procedure is the possibility of increasing the model flexibility at will, a requirement that
is not necessarily satisfied by general massively parametric proposals.
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1.3 Summary of the specific contributions

Each of the following sections corresponds to the homonymous chapter of the thesis
and summarizes its main findings. The notation through these Chapters is largely
consistent—and strongly consistent within the same Chapter—meaning that in some
cases the same symbol has been used along the thesis to denote different but conceptually
similar quantities. For example, the vector β = (β1, . . . ,βp)ᵀ always denote regression
coefficients through the thesis, although they will be appear e.g. in a convex mixture
regression model in Chapter 2 and in a logistic regression model in Chapter 7. Therefore,
to avoid confusions, each quantity is either recalled or re-defined within each Chapter.

1.3.1 On a finite-dimensional Pitman–Yor process

In Chapter 2 we aim at studying a novel finite-dimensional random probability measure
in the form of equation (1.6) which we term Pitman–Yor multinomial process. We show
that such a prior may be seen as a finite-dimensional analogue of the Pitman–Yor process
and naturally generalizes the Dirichlet distribution on the simplex. Besides yielding a
considerable degree of modeling flexibility, it preserves analytical and computational
tractability. In first place, the Pitman–Yor multinomial process may serve as a very
effective tool for computational purposes in a nonparametric setting. A popular class
of Markov chain Monte Carlo algorithms for nonparametric mixture models, usually
referred to as blocked Gibbs sampler, relies on the truncation of a stick-breaking
representation of the mixing Pitman–Yor process (Ishwaran & James, 2001). If (νj)j>1
is a sequence of independent random variables with νj ∼ Beta(1− σ, c+ jσ), σ ∈ [0, 1),
c > −σ, and P a probability measure defined over Θ, then a prior on the space of density
functions is the distribution of∫

Θ
K(y; θ)p̃(∞)(dθ), p̃(∞) =

∞∑
h=1

ξh δφ̃h , φ̃h
iid
∼ P, (1.7)

where ξ1 = ν1, ξh = νh
∏h−1
j=1 (1 − νj) for h > 2 and where K is some transition

kernel such that
∫

R K(y; θ)dy = 1 for any θ ∈ Θ. When it comes to evaluating
Bayesian inferences, the infinite series defining p̃(∞) in (1.7) cannot be computed and one
conveniently relies on a suitable finite-dimensional approximation obtained by truncating
p̃∞ at some level H, i.e.

p̃
(H)
tr =

H−1∑
h=1

ξh δφ̃h + (1− |ξ(H−1)|) δφ̃H , (1.8)
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where ξ(H−1) = (ξ1, . . . , ξH−1) and |ξ(H−1)| = ξ1 + · · ·+ ξH−1. This approach has some
limitations since one can hardly identify marginal probabilistic structures of interest
such as, for example, the law of the induced exchangeable random partition, the
probability distribution of the number of clusters or the prediction rule associated
to (1.8). The results that are displayed in Chapter 2 will successfully address the
above issues by relying on the Pitman–Yor multinomial process, which stands as an
alternative finite-dimensional approximation of p̃(∞). It will be shown that especially
for non-informative specifications of p̃(∞), namely those corresponding to values of
σ > 1/2, the Pitman–Yor multinomial process is a more accurate approximation of
p̃(∞) compared to the truncated stick-breaking representation (1.8). In addition, the
distributional results we achieve allow for a straightforward implementation of novel
generalised Blackwell–MacQueen sampling schemes for evaluating point estimates,
as well as conditional algorithms for uncertainty quantification. When σ = 0, the
finite-dimensional model we propose clearly boils down to the Dirichlet multinomial
with H atoms.

On top of its computational relevance in Bayesian nonparametrics, the Pitman–Yor
multinomial process has important applications in finite mixture modeling. In this
setting the value H represents a conservative upper bound for the number of mixture
components. As discussed in Section 1.2, when σ = 0, such an approach find asymptotic
justifications in Rousseau & Mengersen (2011). Hence, the Pitman–Yor multinomial
process stands as a natural generalisation of such a method and it translates the
advantages of the Pitman–Yor process into the finite-dimensional settings. This additional
flexibility permits a much finer control of the underlying random partition, and in
particular allows for more robust specification of the cluster distribution, which is
typically very informative in the Dirichlet setting (Lijoi et al., 2007).

The impact of our proposal, and of the related distributional results, will be displayed
by considering a covariate-dependent mixture. It will be assumed that the data Y1, . . . , Yn
are such that

(Yi | p̃xi)
ind
∼

∫
Θ
K(y; θ)p̃xi(dθ), i = 1, . . . ,n, (1.9)

where xi > 0 is a covariate associated to Yi and

p̃x = {1− f(x)}p̃(H) + f(x)δθ̃∞ , x > 0, (1.10)

is modeled as a convex linear combination of a discrete random measure p̃(H) on Θ,
and a random point mass at θ̃∞ ∈ Θ. This modeling framework is analogous to the
one proposed in Canale et al. (2018), who engage in a toxicological study originally
conducted by Longnecker et al. (2001) and later discussed also in Dunson & Park (2008).
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The aim of these investigations was to assess the relationship between the DDE persistent
metabolite of the pesticide DDT, and the risk of premature delivery. Hence, in (1.9)
the DDE and the gestational age at delivery for the ith woman in the study are the
covariate xi > 0 and the response Yi, respectively. While Canale et al. (2018) rely on
Dirichlet-like priors in various modeling steps, e.g. for the law of p̃, here we leverage
on the Pitman–Yor multinomial process. The smooth transition from p̃(H) to the point
mass at θ̃∞ is regulated by a nondecreasing bounded function f(x) ∈ [0, 1] defined for
x > 0, which equals zero in the origin, i.e. f(0) = 0. The Pitman–Yor multinomial process
might be used also for the semi-parametric estimation of f(x). Indeed, in quantitative
risk assessment one customarily assumes that the f(x) can be expressed as a linear
combination of pre-specified basis functions

f(x) =

M∑
m=1

Bm(x)βm, x > 0, (1.11)

where B1(x), . . . ,BM(x) are nondecreasing and such that Bm ∈ [0, 1] for m = 1, . . . ,M.
Under this choice, the constraints on f(x) are automatically satisfied if 0 6 βm 6 1 and∑M
m=1 βm = 1. Hence, a symmetric Dirichlet distribution, corresponding to the weights

of a Dirichlet multinomial random measure, might be adopted as prior choice for the
parameters β1, . . . ,βM. However, question remains on the choice of its hyperparameters,
which might affect the estimate of f(x) if not suitably calibrated. To overcome this issue,
we replace the symmetric Dirichlet with the more flexible ratio-stable distribution, the
law associated to the weights of a Pitman–Yor multinomial process, which is shown to
provide robust and reliable inferential results even under miscalibrated choices of the
hyperparameters.

1.3.2 Finite-dimensional normalized random measures

In Chapter 3 we move beyond the Pitman–Yor multinomial case and we study a much
broader class of finite-dimensional random probability measures having form (1.6) which
we term normalized infinitely divisible multinomial (nidm) processes. These priors are the
finite-dimensional analogue of the class of homogeneous nrmis. Our theoretical results
are general, but particular emphasis will be given to the special case called normalized
generalized gamma multinomial process.

As an illustrative application, we consider the invalsi 2016-2017 dataset, a national
examination conducted in Italy. Specifically, we aim at measuring the teaching competen-
cies of a set of schools by taking into account the socio-demographic characteristics of
its students. Great effort has been made by the invalsi institution to provide reliable
quantifications of the effect of each school on the test performance. Indeed, such an
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indicator is nationally relevant especially for the development and the evaluation of
educational policies. We address this problem via semi-parametric modeling with
nonparametric school-specific random effects, which will be interpreted as a proxy of the
added-value of the school. Stated in more general terms, let Y1, . . . , Yn be a sequence of
Y–valued random elements (they will be schools’ effects in our motivating application),
and let K : Y×Θ→ R+ be a transition kernel such that y 7→ K(y; θ) is a density function
on Y, for any θ ∈ Θ. Then, conditionally on a random probability measure p̃(H), we
suppose that

(Y1, . . . , Yn | p̃(H))
iid
∼

∫
Θ
K(y; θ)p̃(H)(dθ),

with p̃(H) being a nidm process of the form (1.6). The proposed nidm processes allow for
a finer control of the underlying clustering mechanism and for a robustification of the
estimation process. We will provide both theoretical and empirical evidence in support
of this claim, in line to what was already noticed in the infinite-dimensional case (Lijoi
et al., 2007).

The study of this novel class of priors will benefit from its connection with homo-
geneous nmris, whose theory has achieved remarkable advances in the recent years
(Lijoi & Prünster, 2010), and such a connection suggests several practical advantages.
As a by-product of our investigation, we note that by virtue of their close relationship
to homogeneous nrmi, one might employ nidm as approximations of their infinite-
dimensional counterpart. Besides the theoretical interest that a result of this type may
give rise to, it is also very helpful from a practical standpoint since it helps lightening
computational bottlenecks. Indeed, posterior inference for nrmis might involve Ferguson
& Klass (1972) representations, hence requiring numerical and analytical approximations.
In contrast, the posterior structure of several nidms can be computed exactly. Such a
gain, however, does not come for free since the probabilistic structure of our model
yields some challenging technical hurdles when it comes to determining distributional
properties of interest for Bayesian inference. These difficulties parallel those that arise
when one uses a discrete base measure for a nonparametric prior process. See, e.g.,
Canale et al. (2017) for an example in the Pitman–Yor case.

1.3.3 Functional clustering via finite-dimensional enriched priors

There is an increasingly rich literature about bnp models for clustering functional
observations. However, most of the recent proposals rely on infinite-dimensional
characterizations that might lead to overly complex cluster solutions. Motivated by
an application in e-commerce, In Chapter 4 we propose a novel finite-dimensional dicrete
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Figure 1.1: Number of the web searches on an Italian website in the period between March 2017

and March 2018. The origin and the destination of each route are coded as follows: MIL = Milan,
NAP = Naples, AHO = Alghero. Smoothed trajectories are obtained using a nonparametrics loess

estimate.

prior that we term enriched Dirichlet multinomial process. Our proposal accommodates the
incorporation of functional constraints while bounding the model complexity.

In our motivating application, a private company selling flight tickets is interested in
understanding the preferences and the needs of its customers, to implement effective
marketing strategies and to provide tailored solutions to its clients. In this specific
industry, a major goal is to assess the interests of customers towards each flight route,
which represents the functional unit in our analysis. The involved number of flight routes
is quite large and therefore route-specific marketing actions are practically unfeasible,
since they would require massive human interventions. A possible solution is to consider
groups (clusters) of similar routes to allow the development of cluster-specific policies
which have an impact on homogeneous segments of the market. Such a strategy is highly
effective as long as the number of clusters is limited.

The entries of the dataset at our disposal are the number of times that each route
has been searched on the company’s website, comprising a collection of weekly counts
for each flight route. These longitudinal measurements are characterized by relevant
temporal patters that can be exploited to produce a finer partition of the market,
compared to approaches based on static indicators. This is immediately evident from
Figure 1.1, where the smoothed trajectories of two different routes are depicted. From
a modeling perspective, we are given a collection of functional observations—one for
each flight route—and we aim at partitioning them into groups. Let us assume that
the route-specific measurements Yi(t) can be regarded as error-prone realizations of



12 Chapter 1. Introduction

unknown functions fi(t), for each route i = 1, . . . ,n, and time value t ∈ R+, that is

Yi(t) = fi(t) + εi(t), i = 1, . . . ,n, (1.12)

with εi(t) denoting a random noise term, independent over flight routes and time. The
additive specification (1.12) customarily serves as starting point in functional data analysis
(Ramsay & Silverman, 2005). A natural way to group different functions in (1.12) is
through Bayesian mixtures. Functional clustering via finite mixtures have been provably
effective in applications (e.g. Heard et al., 2006), but question remains on the choice of
mixture components, i.e. the number of clusters. A possible solution is to rely on bnp

priors, and one may follow Bigelow & Dunson (2009) who proposed a spline formulation
for each fi together with a dp for the associated regression coefficients. Similarly, Ray
& Mallick (2006) adopted the dp in conjunction with wavelets. The resulting process
is called functional Dirichlet process (fdp). In Dunson & Park (2008) such a model has
been employed for joint modeling of functional observations with a response variable,
whereas in Petrone et al. (2009) a hybrid fdp is proposed, allowing realizations of fi(t) to
share atoms in different local regions.

Although the latter methods enable flexible clustering and they are excellent tools for
density estimation, their practical usage might be limited here. Indeed, the employment
of a model with an unbounded number of groups might undermine the original goal,
namely providing small dimensional summaries of flight routes. Furthermore, all the
above models seem to rely too much on data while ignoring accumulated knowledge
from past analyses. For example, it is known that some flight routes are characterized by
a strong cyclical component, e.g. the one depicted in Figure 1.1, and one may want to
include this aspect in the model. The latter remark motivated Scarpa & Dunson (2009) to
propose a contaminated fdp accounting for parametric functional specifications.

To overcome all the above limitations we propose an enriched functional Dirichlet
multinomial process (e-fdmp), which has a bounded complexity in terms of number of
clusters and can easily incorporate prior knowledge about functional shapes. We will
show that the proposed model converges to the enriched class of functional Dirichlet
processes (e-fdp) presented in Scarpa & Dunson (2014), when the number of clusters
is allowed to be infinite, while being reminiscent of the enriched Dirichlet process of
Wade et al. (2011). Specifically, the underlying clustering mechanism can be described
in terms of a two-step enriched urn-scheme, extending the well-know Blackwell &
MacQueen (1973) Pólya urn. Such a theoretical development clarifies the interpretation
of the involved random partition and it is helpful in the practical specification of the
hyperparameters.
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1.3.4 Computational advances for hierarchical models

Hierarchical normalized discrete random measures in equation (1.4) identify a general
class of priors that is suited to flexibly learn how the distribution of a response variable
changes across groups of observations. Although current theory on hierarchies of non-
parametric priors yields all relevant tools for drawing posterior inference (Camerlenghi
et al., 2019), their implementation comes at a high computational cost, especially when
one has to deal with the analysis of large datasets.

In Chapter 5 we fill this gap by proposing a finite-dimensional approximation
for a general class of hierarchical processes, which leads to an efficient conditional
Gibbs sampling algorithm. Most of the current algorithms for posterior inference with
hierarchical processes are of marginal type, that is they rely on the marginalization of
the random probability measures (p̃

(∞)
1 , . . . , p̃(∞)

L ). While having some computational
advantages, this rules out the possibility of obtaining complex posterior functionals of
the vector (p̃

(∞)
1 , . . . , p̃(∞)

L ), which are often of interest in several applied contexts such
as, for example, credible intervals. To overcome this difficulty, we propose a simple
and efficient conditional Gibbs sampler for a wide class of hierarchical discrete random
probability measures that includes the hdp as a special case. The actual implementation
of the algorithm is eased by an a priori approximation of the infinite-dimensional
process, based on a deterministic truncation of the random probability measure p̃0. We
provide theoretical support for such a truncation, borrowing ideas from the arguments
of Muliere & Tardella (1998), Ishwaran & James (2001), and Arbel et al. (2018) within the
exchangeable setting.

It is finally worth noting that building upon model (1.4) and, then, truncating to the
Hth term, one can obtain the building block of a mixture model for partially exchangeable
data that is discussed in detail Chapter 5. Most notably, such a model also has some
connections with the Latent Dirichlet Allocation (lda) of Blei et al. (2003), of which our
proposal is a generalization. In fact, we work with a wider class of distributions compared
to the Dirichlet distribution used in lda. Additionally, while in lda dependence among
mixing distributions is induced through an approximate empirical Bayes procedure
that determines the numerical value of certain hyperparameters of the model, here
our full Bayesian analysis makes use of suitable prior laws for all the parameters and
hyperparameters of the model. Finally, as for the choice of H, that is the number of latent
topics in the terminology of topic modeling, in lda it is selected so that it minimizes
some out-of-sample goodness-of-fit metric. On the other hand, we choose H in order
to achieve a satisfactory approximation of the infinite-dimensional process; the actual
number of latent topics is elegantly and effectively regulated by the prior. We stress that
our model is not confined to topic modeling with categorical data: indeed, they may
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cope with observations taking values in general Polish spaces, thus allowing for a much
broader applicability.

1.3.5 Computational advances for logit stick-breaking priors

The formulations for Bayesian density regression recalled in Section 1.2 are very flexible
covariate-dependent nonparametric priors. However, this comes at a computational cost.
In particular, the availability of simple algorithms for tractable posterior inference is
limited by the specific construction of these representations.

The above issue motivates alternative formulations which preserve theoretical proper-
ties, but facilitate tractable posterior computation under a broader variety of algorithms.
In Chapter 6 we aim to address this goal via a lsbp prior, that has been defined in
equation (1.5). The proposed formulation is closely related to the probit stick-breaking
prior (psbp) of Rodriguez & Dunson (2011). Indeed, as we will discuss in Chapter 6, both
lsbp and psbp are characterized by a continuation-ratio representation (Tutz, 1991), which
allows to express the underlying clustering assignment in terms of independent and
sequential binary regressions. This representation has key computational benefits and
has been exploited by Rodriguez & Dunson (2011) to derive a Markov chain Monte Carlo
(mcmc) algorithm for posterior inference. However, while the mcmc for psbp relies on the
truncated Gaussian data augmentation for probit regression (Albert & Chib, 1993), the
one for lsbp exploits the recent Pólya-gamma data augmentation for logistic regression
(Polson et al., 2013), which might improve mixing compared to the psbp, especially in
imbalanced situations (Johndrow et al., 2018). As we will clarify in Chapter 6, these
imbalanced settings can also occur in our case, since the binary regressions are associated
to latent clustering allocations.

Besides developing tractable Gibbs sampling methods, we further derive alternative
computational routines which address the scalability and mixing issues of mcmc in
high-dimensional studies. Specifically, in Chapter 6 we illustrate a tractable expectation-
maximization (em) routine for point estimation, and a simple variational Bayes (vb)
algorithm for scalable inference. Both strategies leverage again the sequential represen-
tation of the lsbp and the associated Pólya-gamma data augmentation. Note that a vb

routine for lsbp is also presented in Ren et al. (2011), but it is based on the bound of
Jaakkola & Jordan (2000). As a consequence of the recent theoretical findings in Durante
& Rigon (2019), which are broadly summarized in Chapter 7, it can be shown that our
approach is intimately related to the one of Ren et al. (2011), although being developed
by means of seemingly unrelated strategies. Finally, while tractable algorithms such
as em or vb could be possibly obtained also for psbp, we are not aware of any actual
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discussion or implementation. Indeed, the analytical derivations might be slightly more
complex in the psbp case compared to the lsbp.

We shall emphasize that the overarching focus of our contribution is not on developing
a novel methodological framework for Bayesian density regression, but on deriving a
broad set of routine-use computational strategies under a suitable and tractable repre-
sentation. To our knowledge this goal remains partially unaddressed, but represents a
fundamental condition to facilitate routine implementation of Bayesian density regression
by practitioners. The three proposed algorithms are empirically compared using a real
data toxicology study, previously considered in Dunson & Park (2008) as well as in
Chapter 2.

1.3.6 Conditionally conjugate variational Bayes for logistic models

Chapter 7 represents an exception to the common thread of finite-dimensional nonpara-
metric priors underlying this thesis. Nonetheless, the theoretical advances contained
there are key for a deeper understanding of vb approaches for logit-based models, like
those developed in Chapter 6 for the lsbp.

Variational Bayes (vb) is a common strategy for approximate Bayesian inference, but
simple methods are only available for specific classes of models including, in particular,
representations having conditionally conjugate constructions within an exponential
family. Models with logit components are an apparently notable exception to this
class, due to the absence of conjugacy between the logistic likelihood and the Gaussian
priors for the coefficients in the linear predictor. To facilitate approximate inference
within this widely used class of models, Jaakkola & Jordan (2000) proposed a simple
variational approach which relies on a family of tangent quadratic lower bounds of
logistic log-likelihoods, thus restoring conjugacy between these approximate bounds and
the Gaussian priors.

This strategy is still implemented successfully, but less attempts have been made
to formally understand the reasons underlying its excellent performance. Following a
review on vb for logistic models, in Chapter 7 we cover this gap by providing a formal
connection between the above bound and a recent Pólya-gamma data augmentation for
logistic regression. Such a result places the computational methods associated with the
aforementioned bounds within the framework of variational inference for conditionally
conjugate exponential family models, thereby allowing recent advances for this class to
be inherited also by the methods relying on Jaakkola & Jordan (2000), such as the lsbp

prior of Chapter 6.
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1.4 Related work and future directions

Before providing a concise account of possible future directions, it worth mentioning
some related works on finite-dimensional nonparametric priors and logit-based models
that have not been included in the thesis because of space constraints but also to provide
a more coherent and homogeneous treatment of the topic. In first place, the contribution
of Rigon, Durante & Torelli (2019) covers both nonparametric random effects via Dirichlet
multinomial process priors and logistic regressions via Pólya-gamma data augmentations.
Extensions of the ideas presented in Chapter 7, including stochastic variational inference
and em strategies for logistic regression models, are instead discussed in Durante &
Rigon (2019). In addition, the contributions of Chapter 6 and Chapter 7 fostered the
research of novel algorithms for covariate-dependent latent class analysis, which are
discussed in Durante, Canale & Rigon (2019). Finally, modeling strategies for functional
observations—covered in the contribution of Chapter 4—might have sensible applications
in neuroscience, especially for the analysis of fMRI data. Indeed, the development of
tailored models for fMRI data is an active research line, as testified by the contribution
of Caponera, Denti, Rigon, Sottosanti & Gelfand (2018).

Several generalizations and developments of the work developed in this thesis can
be envisioned. In first place, the enriched Dirichlet multinomial process presented
in Chapter 4 might be readily combined with the Pitman–Yor multinomial and nidm

processes introduced in Chapter 2 and Chapter 3. Such a generalization would allow
for an even finer control of the partition mechanism. While Gibbs sampling methods
in such a setting would be straightforward to implement, variational Bayes strategies
would not be trivial and therefore worthwhile of future research. Another possible usage
of the Pitman–Yor multinomial process is within the framework of hierarchical processes,
where it might be employed in place of the truncated stick-breaking representation in
Chapter 5. Further applications of such a process could be within the context of hidden
Markov models for speaker diarization, hence generalizing the model of Fox et al. (2011).

The contributions of this thesis will hopefully foster further research about finite-
dimensional discrete priors given that, so far, they have been extremely useful in a wide
variety of statistical problems.



Chapter 2

On a finite-dimensional Pitman–Yor process

2.1 Summary

The chapter is organized as follows. In Section 2.2 we define the Pitman–Yor multinomial
process and we provide different characterizations. In Section 2.3 we study its properties
and in particular we derive closed form expressions for the law of the random partition,
the distribution of the number of clusters, and the associated urn schemes. In Section 2.4
we characterize its posterior distribution, which can be regarded as quasi-conjugate,
paralleling the terminology used for the Pitman–Yor process. A sampling algorithm
which allows to draw independent posterior values is proposed. Finally, in Section 2.5,
we show that the Pitman–Yor multinomial process can be regarded as a weak-limit
approximation of the Pitman–Yor and we discuss its advantages over to the truncated
stick-breaking representation. In Section 2.6 we conduct a simulation study to assess the
empirical performance of the proposed prior. In Section 2.7 the Pitman–Yor multinomial
is employed for convex mixture regression modeling, and its practical gains over the
Dirichlet multinomial are emphasized.

2.2 The Pitman–Yor multinomial process

The Pitman–Yor multinomial process is built upon the Pitman–Yor (Perman et al., 1992),
also known as the two-parameter Poisson–Dirichlet process, briefly recalled in (1.7).
Notice that the probability distribution P of the atoms φ̃h is sometimes termed the
baseline measure and is such that E{p̃(∞)(A)} = P(A) for any measurable subset A of
Θ. We will henceforth use the notation p̃(∞) ∼ py(σ, c;P) and P is typically chosen to be
diffuse, i.e. P({θ}) = 0 for any θ ∈ Θ. The Pitman–Yor multinomial process corresponds
to the case where P is replaced by some discrete random probabiity measure with finitely
many support points, as the following definition clarifies.

17
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Definition 2.1. A discrete random probability measure p̃(H) is a Pitman–Yor multinomial
process if it admits the hierarchical representation

(p̃(H) | p̃
(H)
0 ) ∼ py(σ, c; p̃(H)0 ), p̃

(H)
0 =

1

H

H∑
h=1

δθ̃h , H > 1, (2.1)

where θ̃h are independent and identically distributed Θ-valued random variables with
common distribution P. We will write p̃(H) ∼ pym(σ, c;P).

When σ = 0, the random probability measure p̃H in Definition 2.1 reduces to the
Dirichlet multinomial process, which indeed admits such a hierarchical representation
(Ishwaran & Zarepour, 2000). Though p̃(H) is finite-dimensional, one can give an
alternative and equivalent definition in terms of the infinite-dimensional counterpart
p̃(∞) ∼ py(σ, c;P). Indeed, for any finite and measurable partition B1, . . . ,Bd of Θ the
vector {p̃(∞)(B1), . . . , p̃(∞)(Bd−1)} identifies a probability distribution on the simplex
known as ratio-stable (Carlton, 2002), so that

{p̃(∞)(B1), . . . , p̃(∞)(Bd−1)} ∼ rs{σ, c;P(B1), . . . ,P(Bd)},

where we agree that p̃(Bi) = 0 almost surely if P(Bi) = 0, for any i = 1, . . . ,d. Moment
formulae for ratio-stable laws can be found in Carlton (2002). Unsurprisingly, the weights
of a Pitman–Yor multinomial process follow a ratio-stable distribution, as summarized in
the following proposition, whose proof is straightforward.

Proposition 2.1. A Pitman–Yor multinomial process p̃(H) ∼ pym(σ, c;P) admits the following
marginal representation

p̃(H)
d
=

H∑
h=1

πhδθ̃h , (π1, . . . ,πH−1) ∼ rs(σ, c; 1/H, . . . , 1/H), θ̃h
iid
∼ P. (2.2)

The density function of the weights (π1, . . . ,πH−1) is generally not available in closed
form, besides some special cases. When σ = 0, corresponding to the Dirichlet multinomial
process, the distribution of the weights is that of a symmetric Dirichlet distribution with
parameters (c/H, . . . , c/H). When σ = 1/2 the density function is available in closed form,
and it was firstly obtained by Carlton (2002). The lack of a closed form expression of the
density function is not a concern for Bayesian inference, since a ratio-stable distribution
can be sampled for any admissible value of σ and c both a priori and a posteriori, as
detailed henceforth. The proposed algorithm will arise from a hierarchical representation
of ratio-stable distributions in terms of tempered-stable and gamma random variables,
which can be easily simulated. To this end, we briefly recall that a positive random
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variable J is tempered-stable if for some c > 0, σ ∈ (0, 1) and κ > 0, its Laplace transform is

E(e−λJ) = exp [−c{(λ+ κ)σ − κσ}] , λ > 0,

and we shall use the notation J ∼ ts(c,σ, κ). Note that such a random variable can be
efficiently sampled, for instance by means of the algorithm of Ridout (2009). When
σ = 1/2, the random variable J ∼ ts(1/H, 1/2, κ) has inverse Gaussian distribution, while
setting κ = 0 leads to the positive-stable distribution. The main result we will rely on for
computational purposes is the following.

Proposition 2.2. Let p̃(H) ∼ pym(σ, c;P) with σ ∈ (0, 1) and c > 0. Then the weights of p̃(H)

in (2.2) admit the representation (π1, . . . ,πH)
d
= (J1/

∑H
h=1 Jh, . . . , JH/

∑H
h=1 Jh) and

(Jh | U)
iid
∼ ts(1/H,σ,U), Uσ ∼ ga(c/σ, 1),

where we agree that U = 0 almost surely if c = 0.

Although the above hierarchical representation holds only for c > 0, one can make it
fully general through the following argument. For any c one can conveniently represent
the distribution of weights in Proposition 2.1 as

(π1, . . . ,πH)
d
=W(ζ1, . . . , ζH) + (1−W)(π∗1, . . . ,π

∗
H),

where the random variable W ∼ beta(1−σ, c+σ), and the random vectors (ζ1, . . . , ζH) ∼
multinom(1/H, . . . , 1/H) and (π∗1, . . . ,π

∗
H−1) ∼ rs(σ, c+ σ; 1/H, . . . , 1/H) are mutually

independent. See Carlton (2002). Since c+ σ is positive, the simulation of (π∗1, . . . ,π
∗
H)

can be addressed by means of Proposition 2.2 and this allows sampling of (π1, . . . ,πH)
for any c > −σ.

Remark 2.1. The simulation of each Jh in Proposition 2.2 might be the source of
numerical issues, for values of σ close to 0. This occurs because the distribution
of U, then, places mass on very large values that might cause overflows. However,
such a problem can be easily circumvented by considering the rescaled random
variables J̃h = Jh/{(σ/c)

1/σ} whose distribution is (J̃h | Ũ) ∼ ts{c/(σH),σ, Ũ} with
Ũσ ∼ ga(c/σ, c/σ). This leads to more stable algorithms because E(Ũσ) = 1. The
rescaling constant cancels in the normalization and therefore one has equivalently that
(π1, . . . ,πH)

d
= (J̃1/

∑H
h=1 J̃h, . . . , J̃H/

∑H
h=1 J̃h).

The hierarchical representation of Proposition 2.2 is a useful practical tool for
simulating ratio-stable random vectors. However, a further and extremely useful
characterization of the random variables J1, . . . , JH is available. Specifically, we show that
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the law of J1, . . . , JH can be obtained via polynomial tilting of a collection of independent
and identically distributed positive-stable random variables. Such a construction is
reminiscent of the change of measure formula given in Pitman & Yor (1997), for the
infinite-dimensional case. The connection is of great theoretical importance for the
derivation of posterior quantities, as detailed in the Appendix.

Proposition 2.3. Let p̃(H) ∼ pym(σ, c;P) with σ ∈ (0, 1) and c > −σ. Then the vector of jumps
(J1, . . . , JH) identifying the weights of p̃(H) in Proposition 2.2 is such that

E

{
exp

(
−

H∑
h=1

λhJh

)}
=

Γ(c+ 1)

Γ(c/σ+ 1)
E


(

H∑
h=1

J
(σ)
h

)−c

exp

(
−

H∑
h=1

λhJ
(σ)
h

) ,

for any λ1, . . . , λH > 0, where J(σ)h
iid
∼ ts(1/H,σ, 0).

2.3 Distributional properties

The Pitman–Yor multinomial process is almost surely discrete. This implies that a sample

of n random elements (θ1, . . . , θn | p̃(H))
iid
∼ p̃(H), with p̃(H) ∼ pym(σ, c;P), will display

ties with positive probability. If Kn,H = k 6 min{n,H} is the number of distinct values,
say θ∗1, . . . , θ

∗
k in θ = (θ1, . . . , θn), we let n1, . . . ,nk denote their respective frequencies,

so that
∑k
j=1 nj = n. This induces a random partition Ψn,H of [n] = {1, . . . ,n} into k sets

C1, . . . ,Ck such that i and j are in the same set when θi = θj. The probability distribution
of such a random partition is the so-called exchangeable partition probability function, which
is defined by

ΠH(n1, . . . ,nk) = P(Ψn,H = {C1, . . . ,Ck}) =
∑

i1 6=···6=ik

E

 k∏
j=1

π
nj
ij

 ,

where the vector (n1, . . . ,nk) of positive integers is such that nj = ]Cj and
∑k
j=1 nj = n

and the sum runs over all the positive and distinct integers (i1, . . . , ik) in {1, . . . ,H}. As
discussed in Pitman (1996), when P is diffuse the exchangeable partition probability
function characterizes the underlying random probability measure and yields, as a
by-product, the system of predictive distributions. We briefly recall these in the infinite-

dimensional case, namely when (φ1, . . . ,φn | p̃(∞))
iid
∼ p̃(∞), with p̃(∞) ∼ py(σ, c;P) and P

is diffuse. The exchangeable partition probability function is

Π∞(n1, . . . ,nk) =
∏k−1
j=1 (c+ jσ)

(c+ 1)n−1

k∏
j=1

(1− σ)nj−1, (2.3)
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where (a)n = a(a+ 1) · · · (a+ n− 1) for any real a and integer n > 1 is the ascending
factorial, with (a)0 = 1. Moreover, if one conditions on φ = (φ1, . . . ,φn) featuring k
distinct values φ∗1, . . . ,φ

∗
k, the predictive distribution of φn+1 is

P(φn+1 ∈ A | φ) =
c+ kσ

c+n
P(A) +

1

c+n

k∑
j=1

(nj − σ)δφ∗j (A). (2.4)

The following result provides the finite-dimensional counterpart to (2.3) and is expressed
in terms of the generalized factorial coefficients (Charalambides, 2002), defined as

C (n,k;σ) :=
1

k!

k∑
j=0

(−1)j
(
k

j

)
(−jσ)n. (2.5)

Henceforth, we shall further assume that P is diffuse and σ ∈ (0, 1), so that the
well-known Dirichlet case might be obtained by taking the limit as σ→ 0.

Theorem 2.1. The exchangeable partition probability function induced by a Pitman–Yor
multinomial process p̃(H) ∼ pym(σ, c;P) is

ΠH(n1, . . . ,nk) =
H!

(H− k)!
1

(c+ 1)n−1

∑
`

Γ(c/σ+ |`|)

σΓ(c/σ+ 1)

k∏
j=1

C (nj, `j;σ)
H`j

,

where the sum runs over all the vectors ` = (`1, . . . , `k) such that `j ∈ {1, . . . ,nj} and |`| = `1 +

· · ·+ `k.

Based on this result, one may determine the system of predictive distributions
corresponding to the Pitman–Yor multinomial process and the related urn-scheme. This
admits a tractable form if one conditions on ` = (`1, . . . , `k) that will act as latent variables,
thus simplifying computations. Firstly, it can be easily noted that

P(`1 = l1, . . . , `k = lk | θ) ∝ Γ(c/σ+ |l|)

k∏
j=1

C (nj, lj;σ)
Hlj

, (2.6)

and this is concentrated on l = (l1, . . . , lk) such that lj ∈ {1, . . . ,nj}. These latent random
variables can be interpreted in terms of the multiroom Chinese restaurant metaphor—
as described in Chapter 3 of this thesis—but we do not pursue the discussion here. An
efficient algorithm for sampling independent values from (2.6) is available and presented
in Section 2.4. This is very useful since it enables the Monte Carlo approximation of its
expectation.
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Theorem 2.2. Let (θ1, . . . , θn | p̃(H))
iid
∼ p̃(H) and p̃(H) ∼ pym(σ, c;P). If θ = (θ1, . . . , θn)

displays k distinct values θ∗1, . . . , θ
∗
k with frequencies n1, . . . ,nk, then

P(θn+1 ∈ A | θ) =

(
1−

k

H

)(
c+ | ¯̀|σ
c+n

)
P(A) +

k∑
j=1

(
1

H

c+ | ¯̀|σ
c+n

+
nj − ¯̀

jσ

c+n

)
δθ∗j (A),

(2.7)
having set ¯̀ = (¯̀1, . . . , ¯̀

k) = E(` | θ), | ¯̀| = ¯̀
1 + · · ·+ ¯̀

k and ` = (`1, . . . , `k) is the vector of
integer-valued random variables whose distribution is described in (2.6).

The well-known predictive distribution of the Dirichlet multinomial process is
recovered as particular case of Theorem 2.2 after setting σ = 0. In this special case, the
predictive law (2.7) does not depend on the conditional expectations of the underlying
latent variables. Moreover, as H → ∞ one can easily see that ¯̀

j → 1 and | ¯̀| → k in
probability. This unsurprisingly implies that, as H increases, the predictive distributions
in (2.4) and (2.7) get closer.

The closed form expression of ΠH(n1, . . . ,nk) in Theorem 2.2 is essential for determin-
ing the probability distribution of Kn,H, the number of random sets. Beside its theoretical
relevance, the law of Kn,H is often of great importance in applications, e.g. for mixture
modeling or for Bayesian clustering. Compared to the Dirichlet multinomial special case,
the Pitman–Yor multinomial process induces a richer parametrization for Kn,H, hence
increasing the model flexibility. The Dirichlet multinomial case is recovered as σ→ 0 in
the following theorem.

Theorem 2.3. If (θ1, . . . , θn | p̃(H))
iid
∼ p̃(H) and p̃(H) ∼ pym(σ, c;P), the probability distribution

of the number of distinct values Kn,H in θ equals

P(Kn,H = k) =
H!

(H− k)!
1

(c+ 1)n−1

n∑
`=k

1

H`
Γ(c/σ+ `)

Γ(c/σ+ 1)
S (`,k)C (n, `;σ),

for any k 6 min{H,n}, where S (`,k) = 1/k!
∑k
r=0(−1)

k−rk!{`!(k − `)!}r` is the Stirling
number of the second kind.

The parameter c controls the location of Kn,H, while σ regulates both the location and
the variability. As suggested by Figure 2.1, the choice σ = 0 leads to very informative
prior distributions, implying that the choice of the location parameter c in the Dirichlet
multinomial process is tricky and heavily influences the inferential results. The additional
parameter σ of the Pitman–Yor multinomial process allows to circumvent this difficulty,
without the need of a hyperprior distribution on c. To illustrate this phenomenon,
we depict in Figure 2.2 the distribution of Kn,H for different choices of (σ, c), keeping
fixed its expectation. As the stable parameter σ increases, the law of Kn,H becomes less
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Figure 2.1: Distribution of the number of clusters P(Kn,H = k) in the Dirichlet case (σ = 0), when
n = 100, H = 50, and for various choices of the location parameter c.

informative. This is further reflected in a higher degree of flexibility and robustness of
the Pitman–Yor multinomial process compared to the Dirichlet. This will be empirically
confirmed in the convex mixture regression application of Section 2.6. See also De Blasi
et al. (2015) and Canale & Prünster (2017) for further discussions on the robustness issue.

2.4 Posterior distribution and latent variables sampling

The usage of the Pitman–Yor multinomial process in applications is greatly facilitated by
the availability of its posterior distribution. Indeed, the posterior law of a Pitman–Yor
multinomial, conditionally on the set of latent variables (2.6), is available in closed form
and it can be written as a linear combination of Dirichlet and ratio-stable distributions.
Such a representation parallels the quasi-conjugate posterior characterization of the
Pitman–Yor process (Lijoi et al., 2008). When the sample θ = (θ1, . . . , θn) displays k < H
distinct values θ∗1, . . . , θ

∗
k, we let θ̄k+1, . . . , θ̄H represent the point masses in p̃(H) that are

not included in θ, up to a permutation.

Theorem 2.4. Let (θ1, . . . , θn | p̃(H))
iid
∼ p̃(H) and p̃(H) ∼ pym(σ, c;P) with P diffuse. Moreover,

let ` = (`1, . . . , `k) be a collection of random variables having distribution (2.6). Then, the
posterior distribution of p̃(H) conditional on θ and ` is

(p̃(H) | θ, `) d
=

k∑
j=1

(Wj +Wk+1Rj)δθ∗j +Wk+1

H∑
j=k+1

Rjδθ̄j ,
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Figure 2.2: Distribution of the number of clusters P(Kn,H = k) in the Pitman–Yor multinomial
case when n = 100, H = 50, and for various choices of (σ, c) so that the expected value
E(Kn,H) = 25 is fixed.

where θ̄k+1, . . . , θ̄H are independent and identically distributed from P. Moreover,

(W1, . . . ,Wk | θ, `) ∼ dir(n1 − `1σ, . . . ,nk − `kσ, c+ |`|σ),

has Dirichlet distribution and it is independent on (R1, . . . ,RH | θ, `) which follows a ratio-stable
distribution with updated parameters

(R1, . . . ,RH−1 | θ, `) ∼ rs(σ, c+ |`|σ; 1/H, . . . , 1/H).

The ratio-stable distribution appearing in Theorem 2.4 is such that c+ |`|σ > 0 almost
surely for any σ and c, implying that the hierarchical representation of (R1, . . . ,RH | θ, `)
in terms of tempered-stable random variables, as for Proposition 2.1, can be always
exploited directly. It is easy to check that as σ → 0 the posterior distribution of the
Dirichlet multinomial is recovered, while also being independent on `.

Therefore, provided that we can simulate independent values from (2.6), we can
obtain independent posterior samples for p̃(H) without the need of Markov chain Monte
Carlo. To this end, note that the law of ` in equation (2.6) is discrete with finite
support, meaning that in principle one could directly sample from it. However, standard
strategies are computationally feasible only in very simple cases, because the number
of support points rapidly increases with n and (n1, . . . ,nk). We address this issue with
a data-augmentation step. Indeed, by expanding over the gamma integral in (2.6), we
recognize that, conditionally on a latent variable V , the discrete random variables `
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become independent and therefore much easier to simulate. Specifically, we have

P(`1 = l1, . . . , `k = lk | θ,V) ∝
k∏
j=1

(
V

H

)lj
C (nj, lj;σ),

where V is a positive random variable on (0,∞) having density, conditional on θ, given
by

p(v) ∝ e−vvc/σ−1
k∏
j=1

nj∑
`j=1

( v
H

)`j
C (nj, `j;σ).

A draw from the above density can be simulated using acceptance-rejection strategies.
We obtained good empirical performance with the classic ratio-of-uniform acceptance-
rejection algorithm applied on the logarithmic scale logV ; see e.g. Devroye (1986). We
remark that the generalized factorial coefficients appearing in the above distributions
should not be computed directly from their definition, but exploiting instead the recursive
relationship C (n+ 1,k;σ) = C (n,k;σ)(n− kσ) + σC (n,k− 1;σ), with initial conditions
C (0, 0;σ) = 1, C (n, 0;σ) = 0 for n > 0 and C (n,k;σ) = 0 for k > n.

Remark 2.2. For the sake of the exposition, we described the posterior distribution of
the random probability measure p̃(H). However, Theorem 2.4 leads, with the obvious
modifications, to the posterior distribution of the random probabilities (π1, . . . ,πH) under
multinomial sampling. In such a setting, the frequencies n1, . . . ,nk correspond to the k
occupied cells in a multinomial distribution having probability vector (π1, . . . ,πH) and
a ratio-stable prior. Then the posterior of (π1, . . . ,πH) will coincide with the weights of
p̃(H) in Theorem 2.4.

2.5 Weak limit representation of the Pitman–Yor process

In this section we draw a sharp connection between the Pitman–Yor multinomial process
and the infinite-dimensional Pitman–Yor, which is recovered as limiting case when
H → ∞. This formal relationship sheds some further light on the interpretation
of (σ, c), while motivating the usage of p̃(H) ∼ pym(σ, c;P) as an approximation of
the infinite-dimensional process p̃(∞) ∼ py(σ, c;P). Our next theorem relies on the
notion of weak convergence for random measures; see e.g. Daley & Vere-Jones (2008).
Weak convergence implies convergence in distribution also of continuous and bounded
functionals, hence including finite dimensional distributions.

Theorem 2.5. Let p̃(H) ∼ pym(σ, c;P) and p̃(∞) ∼ py(σ, c;P). Then the law of the process p̃(H)

weakly converges to the law of p̃(∞) as H→∞. We will write p̃(H) wd−→ p̃(∞).
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Figure 2.3: Distribution of the number of clusters P(Kn,H = k) in the Pitman–Yor multinomial
case (upper plot), and in the truncated stick-breaking case (lower plot), when n = 100, H = 50,
and c = 1, for various choices of σ. The distribution of the truncated stick-breaking is obtained
averaging over 104 Monte Carlo simulations.

On the light of the above theorem, one might want to compare the Pitman–Yor
multinomial process with the truncated stick-breaking representation p̃(H)tr in (1.8), whose
use in mixture modeling has become increasingly popular after the work of Ishwaran
& James (2001). We devote the remaining of this section to qualitative and formal
comparisons between these two weak limit representations.

In first place, it should be acknowledged that the truncated stick-breaking construction
lacks a deep theoretical understanding as one cannot rely on results analogous to the
ones that we have displayed in the previous sections on the Pitman–Yor multinomial
process. Specifically, the exchangeable partition probability function, the associated
predictive schemes and the distribution of the number of clusters are not available in
closed form. Hence, the usage of p̃(H)tr as prior law can be motivated only when H is large
enough, so that one can consider sampled trajectories of p̃(H)tr , conditional on the data,
as reasonable approximations of the realizations of the posterior infinite-dimensional
process. In contrast, the Pitman–Yor multinomial can be studied and used even for small
values of H, regardless its closeness to the limit case.

In terms of quality of the approximation, there is rather striking argument in favor
of the Pitman–Yor multinomial process. It is well-known that the truncation level H
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required to be reasonably close to p̃(∞) might be exceptionally large, especially when
the stable parameter σ approaches 1. In practice, one would typically choose the largest
truncation level H which maintains computations feasible. However, this might lead
to very poor approximations of the infinite process if the truncated stick-breaking p̃(H)tr

were employed. As an illustration, consider the following example: suppose we are
given a sample of n = 100 observations and a conservative truncation level H = 50 is
selected. Then, one might expect that a higher value of σ implies on average an increased
number of clusters, paralleling the behavior of the Pitman–Yor process. Unfortunately,
this is not the case when the truncated stick-breaking prior is employed, as shown in
Figure 2.3. Indeed, the distribution of Kn,H increases at first but then decreases as a
function of σ and a similar mechanism would hold also for the parameter c. Broadly
speaking, this occurs because of the stick-breaking truncation: large values of either σ
or c push, on average, the mass of p̃(H)tr towards the last atom, eventually making p̃(H)tr

collapse to a single random mass. This is a strongly undesirable behavior which has
no modeling justification, and furthermore it undermines one of the most appealing
property of the Pitman–Yor, namely the ability of controlling the variability of the cluster
distribution. On the other hand, the Pitman–Yor multinomial process preserves the
peculiar characteristics of the Pitman–Yor process, as shown in Figure 2.3, while still
being computationally tractable.

We now conduct a formal comparison between p̃(H) and p̃(H)tr within the context of

mixture modeling. If the data (Y1, . . . , Yn | p̃(∞))
iid
∼
∫
ΘK(y; θ)p̃(∞)(dθ) as in (1.7), then

the corresponding marginal density is

m(∞)(Y ) = E

{
n∏
i=1

∫
Θ
K(Yi; θ)p̃(∞)(dθ)

}
, (2.8)

where Y = (Y1, . . . , Yn) and the expected value is taken with respect to the prior law
of p̃(∞). Similarly, we define the marginal densities m(H) and m(H)

tr as in (2.8), having
replaced p̃(∞) with the approximations p̃(H) and p̃(H)tr , respectively. Upper-bounds of the
total variation distance between these marginal densities were obtained by Ishwaran &
James (2001) in the truncated Pitman–Yor case and Ishwaran & Zarepour (2000, 2002) in
the Dirichlet multinomial case. When σ = 0, the the total variation distance betweenm(∞)

and m(H)
tr vanishes exponentially fast. On the basis of this result Ishwaran & Zarepour

(2000) argued that the truncated stick-breaking representation p̃(H)tr might constitute
a better approximation than p̃(H) in the Dirichlet case. However, the aforementioned
exponential decay does not occur for general values of σ and furthermore the quality of
the truncated stick-breaking approximation deteriorates as σ increases. These aspects are
clarified in the following proposition.
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Proposition 2.4. Let m(∞), m(H) and m(H)
tr be the marginal densities defined in (2.8). If σ ∈

(0, 1) and P is diffuse then

dtv

{
m

(H)
tr ,m(∞)

}
6 2

[
1−

{
1−

(
c
σ + 1

)
H−1(

c
σ +

1
σ

)
H−1

}n]
= O(H− 1σ+1), H→∞.

If Ψn,H and Ψn,∞ are the random partitions associated to p̃(H) and p̃(∞) respectively, then

dtv

{
m(H),m(∞)

}
6 dtv(Ψn,H,Ψn,∞) = O

(
1

H

)
, H→∞.

The total variation distance dtv(Ψn,H,Ψn,∞) can be obtained explicitly, although the
actual computation could be cumbersome, since it requires the summation over the space
of the partitions of [n]. We remark that the proportionality constants relative to the above
convergence rates are known and they are reported in the Appendix; they are omitted
for the sake of the exposition.

The convergence rates of Proposition 2.4 provide some guidance about the advantages
of both the approximations. When σ > 1/2 the convergence rate of dtv(Ψn,H,Ψn,∞)
is linear regardless the value of σ. In contrast, the upper-bound in the truncated
stick-breaking case displays slower converge rates as σ increases, and it is not anymore
exponential when σ > 0. This fact, together with the qualitative findings illustrated in
Figure 2.3, suggests that the Pitman–Yor multinomial prior might be preferable especially
when σ is large. When σ < 1/2 the truncated stick-breaking approximation might
behave better than the Pitman–Yor multinomial in terms of convergence rates, but the
unappealing behavior of p̃(H)tr highlighted in Figure 2.3 might still occur.

2.6 Simulation study

The additional flexibility provided by the Pitman–Yor multinomial prior is empirically
illustrated on a simulated dataset. To ease our discussion, we focus on a simplified
version of the model in equations (1.9) and (1.10), which arises when the transition
function f(x) = 0 is set to zero almost surely for any x > 0. Therefore, in this Section
we shall assume that observations Y1, . . . , Yn are conditionally independent realizations
from a mixture model

(Y1, . . . , Yn | p̃(H))
iid
∼

H∑
h=1

πhK(y; θ̃h),

where the random weights and the random locations have Pitman–Yor multinomial
distribution. The simulated dataset consists on an independent sample of n = 300
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observations from a mixture of Gaussians. Specifically, the data generating process is

1

4
N(y;−2, 0.22) +

1

8
N(y;−1, 0.22) +

1

4
N(y; 0, 0.22) +

1

8
N(y; 1, 0.22) +

1

4
N(y; 2, 0.22),

where N(y;µ,σ2) denotes the density function of a Gaussian distribution with mean µ
and variance σ2. The true number of mixture components is 5 and we would like to infer
it from the data. This is a classical problem in Bayesian mixture modeling, which was
addressed for instance in Richardson & Green (1997) by placing a prior distribution on H.
In contrast, we rely on the approach advocated by Malsiner-Walli et al. (2016), which has
foundations on the asymptotic results of Rousseau & Mengersen (2011). In such a setting
H is assumed to be large enough, meaning that it should be interpreted as an upper
bound for the true number of components. The optimal number of clusters is inferred by
inspecting the posterior distribution of Kn,H, the random number of distinct values. While
such an approach is appealing because of its simplicity, in the Dirichlet multinomial case
the results may depend on the choice of the parameter c, as discussed for instance by
Ishwaran & Zarepour (2000). The Pitman–Yor multinomial prior addresses this difficulty
and allows for a more robust specification without the need of a hyperprior for c. This is
achieved by simply enlarging the prior variability of Kn,H, which is indeed quite low in
the Dirichlet case. The simulation study we conduct serves as an empirical confirmation
of this aspect, which was theoretically investigated a priori in Section 2.3.

We let the kernel function K(y; θ) to be a Gaussian density having mean µ and
variance σ2, with θ = (µ,σ2). We choose conditionally conjugate priors for the atoms
θ̃h = (θ̃1h, θ̃2h) for h = 1, . . . ,H, and in particular we assume independent gamma priors

for the precisions θ̃−12h
iid
∼ ga(aσ,bσ) and independent Gaussian priors for the locations

θ̃11, . . . , θ̃1H, with mean µµ and variance σ2µ. We set the hyperparameters consistently
with the data generating process to make the prior distributions centered on the true
values but still relatively vague. More precisely, we set µµ = 0 and σ2µ = 1000, whereas
we let aσ = 2.5 and bσ = 0.1.

We let H = 20, a fairly conservative upper bound for the true number of mixture
components, which is 5 in our simulation study. We consider four different prior
specifications for the ratio-stable parameters σ and c, as summarized in Table 2.1. In
two of these scenarios, the stable parameter σ is set to 0, corresponding to the Dirichlet
multinomial, which we aim at comparing with the Pitman–Yor prior. As evidenced in
Table 2.1, two hyperparameters settings are well calibrated, in the sense that the expected
values of the number of clusters Kn,H are both close to 5 a priori. Under these calibrated
choices, we expect that the model is able to correctly recover the correct number of
clusters a posteriori. However, in real applications one does not know the true number
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Figure 2.4: Prior and posterior distributions of the number of clusters P(Kn,H = k) corresponding
to the four scenarios described in Table 2.1. The a posteriori distributions are obtained averaging
over 5000 Markov chain Monte Carlo samples.

Calibrated dm Calibrated pym Miscalibrated dm Miscalibrated pym

c 1 -0.18 20 -0.02

σ 0 0.40 0 0.80

E(Kn,H) 5.42 5.42 18.81 18.81

Table 2.1: Hyperparameter settings for the simulation study. dm denotes the Dirichlet
multinomial.

of components and therefore she might inadvertently adopt a miscalibrated prior for the
data at hand. This scenario is mimicked by considering hyperparameters that lead to a
priori expectations for Kn,H close to the upper bound, leading to an “overfitted” mixture
model.

Posterior samples for Kn,H in each scenario can be obtained via Markov chain Monte
Carlo through classical Gibbs sampling schemes for finite mixture models, and leveraging
Theorem 2.4 for the step involving the full-conditional distribution of (π1, . . . ,πH). We
run the algorithm for 7000 iterations holding out the first 2000 as burn-in period. From
the results in Figure 2.4 it is evident that both the calibrated choices (Dirichlet and
Pitman–Yor) are able to recover the correct number of clusters, which is unsurprising
given that the prior law was already concentrated around the true value. Conversely,
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in the overfitted scenarios the differences are marked: under the Dirichlet multinomial
specification the distribution of Kn,H struggles to deviate from the prior, whereas in
the Pitman–Yor multinomial case the posterior law of Kn,H correctly recover the true
number of mixture components. This behavior motivates the usage of the Pitman–Yor
multinomial to robustify mixture modeling, with applications beyond the convex mixture
regression modeling presented in this chapter.

2.7 Convex mixture regression modeling

The Dichlorodiphenyldichloroethylene (DDE) is a persistent metabolite of the pesticide
DDT, and it is measured in the maternal serum during the third trimester of pregnancy.
Although the DDT has been widely used against malaria-transmitting mosquitoes, its
presence has been linked to preterm birth, a major contributor to infant mortality
(Longnecker et al., 2001). Hence, there is strong interest in relating the dose level of
the DDE to the corresponding risk of premature delivery. In Longnecker et al. (2001) the
gestational age at delivery is dichotomized using a 37-week cut-off, following standard
practice in reproductive epidemiology. Although this might simplify the modeling, it
arguably leads to a loss of information (Dunson & Park, 2008; Canale et al., 2018). The
convex mixture regression model outlined in Section 2.1 provides the basis for a flexible
and interpretable method for quantitative risk assessment.

Recall that the observations Y1, . . . , Yn for n = 2312 represent the gestational ages
at delivery (weeks) and they are independent draws from the mixture model of
equation (1.9) in Chapter 1. The covariate-dependent random probability measure
of equation (1.10) is employed as mixing measure. To improve flexibility and robustness,
we leverage on the Pitman–Yor multinomial specification for two different components
of the model. Specifically, the discrete random probability measure p̃ in the convex
mixture representation (1.10) will follow a Pitman–Yor multinomial and we assume a
ratio-stable distribution for the weights (β1, . . . ,βM) in equation (1.11). To summarize,
the gestational ages at delivery Y1, . . . , Yn are conditionally independent draws from the
mixture density

{1− f(x)}

H∑
h=1

πhK(y; θ̃h) + f(x)K(y; θ̃∞), x > 0, (2.9)

where θ̃1, . . . , θ̃H are independent and identically distributed random variables from P

and where the mixing weights (π1, . . . ,πH) are such that

(π1, . . . ,πH−1) ∼ rs(σ, c; 1/H, . . . , 1/H),
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Low Variance Dir. Low Variance rs High Variance Dir. High Variance rs

c 1 0 1 0

σ 0 0.3 0 0.3
cβ 20 1.1 2 -0.7
σβ 0 0.9 0 0.9
sd(βm) 0.07 0.07 0.17 0.17

Table 2.2: Hyperparameter settings for the convex mixture regression model.

for σ ∈ [0, 1) and c > −σ. Moreover, recall from equation (1.11) in Chapter 1 that f(x) =∑M
m=1Bm(x)βm, then we specify

(β1, . . . ,βM−1) ∼ rs(σβ, cβ; 1/M, . . . , 1/M),

with σβ ∈ [0, 1) and cβ > −σβ. Although several alternatives are available for the shape-
constrained basis functions B1(x), . . . ,BM(x), a tractable default choice is the I-splines
basis (Ramsay, 1988), with the knots placed on the empirical quantiles of the DDE. This is
slightly different from the approach of Canale et al. (2018), who consider I-splines with
equally spaced knots. Moreover, we set BM(x) = 0 to allow asymptotes in f(x).

Compared to more complex covariate-dependent approaches, the convex mixture
regression model is appealing for quantitative risk assessment because of its intuitive
interpretation. Specifically, when there is no exposure to DDE (x = 0), observations are
drawn from a mixture model directed by p̃(H) because f(0) = 0. Conversely, at high
exposure levels (x → ∞), observations smoothly shift towards a more adverse health
profile, represented by θ̃∞. Such a transition is regulated by the function f(x), which has
an explicit interpretation. Let F̃x(y) be the cumulative distribution function associated
to the density in equation (2.9). A common risk assessment measure is the additional
risk function F̃x(a) − F̃0(a), which is evaluated in some fixed clinical threshold a. Hence,
one can show that f(x) ∝ F̃x(a) − F̃0(a), implying that f(x) constitutes a standardized
measure of risk which does not depend on the chosen threshold a. Because of this
property, the transition function f(x) is of great inferential interest.

We estimate the convex mixture regression model under different hyperparameters
settings, which are reported in Table 2.2. Moreover, we let H =M = 10, to parallel the
choices of Canale et al. (2018). Since the true data generating mechanism is unknown,
there is no clear notion of calibrated model. Hence, to emphasize the differences between
Dirichlet and Pitman–Yor priors, we consider two different variability levels for the vector
(β1, . . . ,βM) appearing in the specification of f(x). The variance of each weight βm can
be obtained from the formula var(βm) = H−1(1−H)−1(1− σβ)/(cβ + 1); see Carlton
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Figure 2.5: Posterior summaries of the functions f(x) in the four scenarios described in Table 2.2.
The solid lines correspond to the posterior means, whereas the shaded areas denote 95% pointwise
credible intervals.

(2002). In the low variance scenarios, the prior is quite concentrated around its prior
expectation, and vice versa in the high variance ones.

Consistently with Canale et al. (2018), let the kernel function K(y; θ) in equation (1.9)
be a Gaussian density having mean µ and variance σ2, with θ = (µ, τ). Under this choice,
the prior distributions for each atom θ̃h = (θ̃1h, θ̃2h) for h = 1, . . . ,H, in equation (2.9)
and for the adverse health profile atom θ̃∞ = (θ̃1∞, θ̃2∞) can be chosen conditionally
conjugate. In first place, we assume independent gamma priors for the precisions

θ̃−12h
iid
∼ ga(aσ,bσ), independently also on θ̃2∞ ∼ ga(aσ,bσ). Moreover, we specify

independent truncated Gaussian distributions for the locations θ̃11, . . . , θ̃1H and θ̃1∞
with mean µµ and variance σ2µ. The truncations are imposed to met an adversity health
profile property, namely that

θ̃1∞ < θ̃1h, h = 1, . . . ,H,

almost surely. Broadly speaking, such a constraint enforces large values of the DDE

(x→∞) to be associated on average with a greater risk of premature birth. The extent
of such a risk will be inferred from the data. We set the hyperparameters consistently
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with previous works, so that aσ = bσ = 2 and σ2µ = 10, whereas we set µµ = 39.27, the
arithmetic mean of the observed gestational ages at delivery (weeks).

Markov chain Monte Carlo is required for approximating the posterior distribution
of a convex mixture regression model, and this can be accomplished via Gibbs sampling.
Our algorithm closely resembles the one of Canale et al. (2018), with straightforward
adjustments in the updates of the vectors (π1, . . . ,πH) and (β1, . . . ,βM), which are
modified according to Theorem 2.4. We run the Gibbs sampling algorithm for 60000
iterations, having discarded the first 10000 samples as burn in period. The estimated
curves f(x), under the four scenarios of Table 2.2, are depicted in Figure 2.5 together
with their credible intervals. In the low variance scenario the Dirichlet multinomial
prior slightly overestimate the function f(x) compared to the other estimates and to the
results in Canale et al. (2018), while also underestimating its variability. Conversely, the
Pitman–Yor multinomial prior, while having the same variability a priori of the Dirichlet,
it recovers a posteriori essentially the same variability level provided in the high variance
scenarios. This effect is due to the robustness property of the Pitman–Yor multinomial
prior, which was discussed in Section 2.3 and empirically demonstrated in the simulation
study of Section 2.6.

2.8 Appendix

Throughout the Appendix, we will make extensive use of an alternative construction
of the Pitman–Yor process based on completely random measures. Refer to Lijoi &
Prünster (2010) for a review on nonparametric priors using completely random measures
as a unifying concept. Any homogeneous and almost surely finite completely random
measures without fixed points of discontinuity is characterized by the Laplace functional

E
{
e−
∫
Θ f(θ)µ̃(dθ)

}
= exp

[
−

∫
R+×Θ

{
1− e−sf(θ)

}
ρ(s)dscP(dθ)

]
,

for any f : Θ → R+ and with ρ(s)dscP(dθ) the Lévy intensity function associated
to µ̃. The σ-stable process (Kingman, 1975) is identified by setting c = 1, ρ(s) =

σs−1−σ/Γ(1− σ), for some σ ∈ (0, 1), and letting Pσ denote its probability distribution.
Let Pσ,c be another probability measure which is absolutely continuous with respect to
Pσ and such that

dPσ,c

dPσ
(p) =

Γ(c+ 1)

Γ(c/σ+ 1)
p−c(Θ). (2.10)

The resulting random measure µ̃σ,c with distribution Pσ,c is almost surely discrete
while not completely random. Clearly when c = 0 then µ̃σ = µ̃σ,0 is a σ-stable
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completely random measure. Moreover, p̃(∞) = µ̃σ,c/µ̃σ,c(Θ) is a Pitman–Yor process
p̃(∞) ∼ py(σ, c;P).

Proofs of Propositions 2.1,2.2 and 2.3

Because of the almost sure discreteness of p̃(H)0 , one can equivalently write the Pitman–
Yor multinomial process as

p̃(H) =

∞∑
h=1

ξhδφ̃h =

H∑
h=1

πhδθ̃h , πh =
∑

j:φ̃j=θ̃h

ξj,

where θ̃h are independent and identically distributed draws from P, while φ̃h are,
conditionally on p̃(H)0 , independent and identically distributed draws from p̃

(H)
0 . The

distribution of (π1, . . . ,πH−1) is obtained after noting that

(π1, . . . ,πH−1 | p̃
(H)
0 ) = {p̃(H)({θ̃1}), . . . , p̃(H)({θ̃H−1}) | p̃

(H)
0 } ∼ rs(σ, c; 1/H, . . . , 1/H),

since p̃(H)0 ({θ̃h}) = 1/H for h = 1, . . . ,H. However, this implies that (π1, . . . ,πH−1) is
independent on (θ̃1, . . . , θ̃H), thus proving Proposition 2.1. Now assume σ ∈ (0, 1)
and c > 0. By exploiting the change of measure formula (2.10), we can represent the
Pitman–Yor multinomial process as (p̃(H) | p̃

(H)
0 ) = (µ̃σ,c/µ̃σ,c(Θ) | p̃

(H)
0 ), where the

Laplace functional of (µ̃σ,c | p̃
(H)
0 ) for any measurable function f : Θ→ R+ is

E
{
e−
∫
Θ f(θ)µ̃σ,c(dθ) | p̃

(H)
0

}
=

Γ(c+ 1)

Γ(c/σ+ 1)
E
{
µ̃σ(Θ)

−ce−
∫
Θ f(θ)µ̃σ(dθ) | p̃

(H)
0

}
=

c

Γ(c/σ+ 1)

∫∞
0
uc−1E

{
e−uµ̃σ(Θ)−

∫
Θ f(x)µ̃σ(dx) | p̃

(H)
0

}
du

=
c

Γ(c/σ+ 1)

∫∞
0
uc−1e−u

σ
E
{
e−
∫
Θ f(θ)µ̃

(u)
σ (dθ) | p̃

(H)
0

}
du,

(2.11)
where (µ̃

(u)
σ | p̃

(H)
0 ) is a completely random measure with tilted Lévy intensity ρ(u)(s) =

σ/Γ(1− σ)s−1−σe−us and baseline probability measure p̃(H)0 , which identifies a general-
ized gamma process, and whose finite-dimensional distribution are tempered-stables
random variables. Hence, we can write

(π1, . . . ,πH−1 | U, p̃(H)0 )
d
=

(
J1∑H
h=1 Jh

, . . . ,
JH∑H
h=1 Jh

| U, p̃(H)0

)
,

with Uσ ∼ ga(c/σ, 1) and (Jh | U, p̃(H)0 ) = (µ̃
(u)
σ ({θ̃h}) | U, p̃(H)0 ) ∼ ts(1/H,σ,U) inde-

pendently and identically distributed for h = 1, . . . ,H, which concludes the proof for
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c > 0. As before, the dependence on p̃(H)0 can be dropped because p̃(H)0 ({θ̃h}) = 1/H for
h = 1, . . . ,H, which implies the independence between J1, . . . , JH and θ̃1, . . . , θ̃H. Clearly
when c = 0 the Laplace functional of (µ̃σ | p̃

(H)
0 ) is already that of a σ-stable completely

random measure, and the result immediately follows. The proof of Proposition 2.3 is a
direct consequence of the first equality in equation (2.11).

Proof of Theorem 2.1

The exchangeable partition probability function by definition is

ΠH(n1, . . . ,nk) =
∑

i1 6=···6=ik

E

 k∏
j=1

π
nj
ij

 =
H!

(H− k)!
E

 k∏
j=1

π
nj
j

 ,

where the sum runs over all the vectors (i1, . . . , ik) of distinct positive integers such that
ij ∈ {1, . . . ,H}, whereas the second equality is a consequence of the symmetricity of the
law of the weights. Moreover, recalling the change of measure (2.10), the above expected
value con be expressed as

E

 k∏
j=1

π
nj
j

 = E


k∏
j=1

J
nj
j

(
∑H
h=1 Jh)

nj

 =
Γ(c+ 1)

Γ(c/σ+ 1)
E

µ̃σ(Θ)−c−n
k∏
j=1

µ̃σ({θ̃j})
nj


=

1

Γ(c/σ+ 1)

1

(c+ 1)n−1

∫∞
0
uc+n−1e−u

σ
k∏
j=1

Vnj,H(u)du,

where each Vm,H(u) is defined, for every m > 1 and u > 0, as follow

Vm,H(u) =

{
(−1)m

∂m

∂um
e−u

σ/H

}
eu
σ/H =

m∑
`=1

H−`C (m, `;σ)u−m+`σ. (2.12)

The last equality may be proved with some combinatorial manipulation; its derivation
entails similar steps as those in the supplementary material of Camerlenghi et al. (2019).
Hence, one has that

ΠH(n1, . . . ,nk) =
H!

(H− k)!
1

Γ(c/σ+ 1)

1

(c+ 1)n−1

×
∑
`

∫∞
0
uc+|`|σe−u

σ
du

k∏
j=1

H−`jC (nj, `j;σ),

where the sum runs over ` = (`1, . . . , `k) for `j ∈ {1, . . . ,nj}. The change of variable v =
uσ in the above integral yields the desired result.
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Proof of Theorem 2.2

The predictive distribution is easily obtained from the exchangeable partition probability
function, since

P(θn+1 ∈ A | θ) ∝ ΠH(n1, . . . ,nk, 1)P(A) +
k∑
j=1

ΠH(n1, . . . ,nj + 1, . . . ,nk)δθ∗j (A).

The above coefficients can be both expressed as a mixture over `. Let Vn,k =
∏k−1
j=1 (c+

jσ)/(c+ 1)n−1, then from Theorem 2.1

ΠH(n1, . . . ,nk, 1) =
H!

(H− k− 1)!

∑
`

Vn+1,|`|+1

H|`|+1

k∏
j=1

C (nj, `j;σ)
σ`j

.

Moreover, exploiting the recursive relationship C (nj + 1, `j;σ) = C (nj, `j;σ)(nj − `jσ) +
σC (nj, `j − 1;σ) (Charalambides, 2002), and after some algebraic manipulations can
express the term ΠH(n1, . . . ,nj + 1, . . . ,nk) as follows

H!
(H− k)!

∑
`

{
Vn+1,|`|+1

H|`|+1

k∏
i=1

C (ni, `i;σ)
σ`i

+
Vn+1,|`|

H|`|
(nj − `jσ)

k∏
i=1

C (ni, `i;σ)
σ`i

}
.

Then, by augmenting over the set of random variables (`1, . . . , `k) and after normalization,
one obtains

P(θn+1 ∈ A | θ, `) =
(
1−

k

H

)(
c+ |`|σ

c+n

)
P(A) +

k∑
j=1

(
1

H

c+ |`|σ

c+n
+
nj − `jσ

c+n

)
δθ∗j (A),

and the desired predictive distribution follows after taking the expectation with respect
to (2.6).

Proof of Theorem 2.3

For any k 6 min{H,n} the probability of the number of clusters can be expressed in
terms of the exchangeable partition probability function

P(Kn,H = k) =
1

k!

∑
n(k)∈∆n

(
n

n1, . . . ,nk

)
ΠH(n1, . . . ,nk)

=
H!

(H− k)!

n∑
s=k

Vn,s

σsHs

∑
n(k)∈∆n

∑
`∈∆s(n(k))

1

k!

(
n

n1, . . . ,nk

) k∏
j=1

C (nj, `j;σ),
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where the first sum n(k) ∈ ∆n runs over all the positive integers n(k) = (n1, . . . ,nk)
such that |n(k)| = n, and where ` ∈ ∆s(n(k)) denotes the sum over all the integers
` = (`1, . . . , `k) such that `j ∈ {1, . . . ,nj} and |`| = s. Then, by interchanging the order of
the summation and exploiting well-known combinatorial identities, we obtain

P(Kn,H = k) =
H!

(H− k)!

n∑
s=k

Vn,s

σsHs

∑
`∈∆s

1

k!

∑
n(k)∈∆n(`)

(
n

n1, . . . ,nk

) k∏
j=1

C (nj, `j;σ)

=
H!

(H− k)!

n∑
s=k

Vn,s

σsHs
S (s,k)C (n, s;σ),

where n(k) ∈ ∆n(`) denotes the summation over all the integers (n1, . . . ,nk) such that
nj ∈ {`j, . . . ,n} and |n(k)| = n, whereas ` ∈ ∆s denotes the summation over all the
integers ` such that |`| = s. Then the result follows after some algebra.

Proof of Theorem 2.4

We first state, without proof, the following technical lemma concerning the posterior
distribution of p̃(H)0 . The proof is based on basic properties of species sampling models
and it is given in the Appendix of Chapter 3.

Lemma 2.1. Let θ = (θ1, . . . , θn) be a draw from an exchangeable sequence directed by a
Pitman–Yor multinomial process and let P be diffuse. Then the posterior distribution of p̃(H)0 is

(p̃
(H)
0 | θ)

d
=
1

H

 k∑
j=1

δθ∗j +

H∑
j=k+1

δθ̃j

 ,

where θ̄k+1, . . . , θ̄h are independent and identically distributed draws from P.

Because of the symmetry of the weights, we can assume without loss of generality
that the distinct values θ∗1, . . . , θ

∗
k are associated to the first k random weights π1, . . . ,πk of

p̃(H). Recalling representation (2.10), for any function f : Θ→ R+, the Laplace functional
of (µ̃σ,c | p̃

(H)
0 ) given the observations is

E
{
e−µ̃σ,c(f) | θ, p̃(H)0

}
=

E
{
e−
∫
Θ f(θ)µ̃σ,c(dθ)

∏k
j=1 π

nj
j | p̃

(H)
0

}
E
(∏k

j=1 π
nj
j | p̃

(H)
0

) ,
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where µ̃σ,c(f) =
∫
Θ f(θ)µ̃σ,c(dθ). Hence, following the same steps as for Theorem 2.1, the

above Laplace functional may be written as

E
{
e−µ̃σ,c(f) | θ, p̃(H)0

}
=

=

∫∞
0 u

c+n−1e−
1
H

∑k
j=1{f(θ

∗
j )+u}

σ

e−
1
H

∑H
j=k+1{f(θ̃j)+u}

σ∏k
j=1 Vnj,H{f(θ

∗
j ) + u}du∫∞

0 u
c+n−1e−u

σ∏k
j=1 Vnj,H(u)du

.

where each Vm,H(u) is defined as in (2.12). Hence, by augmenting the above Laplace
functional over the set of latent variables ` with distribution function (2.6), we obtain that

E
{
e−µ̃σ,c(f) | θ, `, p̃(H)0

}
∝

∝
∫∞
0
uc+|`|σ−1e−

1
H

∑H
j=k+1{f(θ̃j)+u}

σ
e−

1
H

∑k
j=1{f(θ

∗
j )+u}

σ
k∏
j=1

{
1+

f(θ∗j )

u

}−nj+`jσ

du.

Hence, after normalization, the Laplace functional equals

E
{
e−µ̃σ,c(f) | θ, `, p̃(H)0

}
=

∫∞
0

H∏
j=k+1

E
{
e−f(θ̃j)J

∗
j

} k∏
j=1

E
{
e−f(θ

∗
j )(J
∗
j+Ij)
}
p(∞)(u)du,

where p(∞)(u) = σ/Γ(c/σ + |`|)uc+|`|σ−1e−u
σ
1(0,∞)(u) is a density function and the

corresponding random variable, say U, is such that Uσ ∼ ga(c/σ + |`|, 1). Hence,
conditionally on U and by marginalizing over p̃(H)0 as for Lemma 2.1, we get the following
posterior representation for the unormalized Pitman–Yor multinomial process

(µ̃σ,c | θ, `,U) d
=

k∑
j=1

(J∗j + Ij)δθ∗j +
H∑

j=k+1

J∗j δθ̄j , (2.13)

where θ̄j are independent and identically distributed random variables from P and in
addition

(J∗h | θ, `,U)
iid
∼ ts(1/H,σ,U), h = 1, . . . ,H,

whereas
(Ij | θ, `,U)

ind
∼ ga(nj − `jσ,U), j = 1, . . . ,k.

Equation (2.13) already leads to a posterior representation of p̃(H). The normalization
and the subsequent marginalization with respect to the random variable U leads to the
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final representation. In first place, set

Wj =
Ij∑k

j ′=1 Ij ′ +
∑H
h=1 J

∗
h

, j = 1, . . . ,k, Wk+1 =

∑k
j=1 J

∗
j∑k

j=1 Ij +
∑H
h=1 J

∗
h

,

whereas set Rh = J∗h/
∑H
h ′=1 J

∗
h ′ for h = 1, . . . ,H. Note that the distribution of the vector

od random variables (W1, . . . ,Wk,Wk+1) can be represented as follow

(W̃1(1−Wk+1), . . . , W̃k(1−Wk+1),Wk+1), W̃j =
Ij∑k
j ′=1 Ij ′

, j = 1, . . . ,k,

and therefore the vector (W̃1, . . . , W̃k), given θ and `, has Dirichlet distribution and
it is independent on (R1, . . . ,RH), on Wk+1 and on U . Indeed, the random variable
U cancels almost surely in the ratio Ij/

∑k
j ′=1 Ij ′ , whereas the independence on Wk+1

is a consequence of the independence of the Dirichlet distribution with its own total
mass

∑k
j ′=1 Ij ′ . Because of Proposition 2.1, we recognize that (R1, . . . ,RH | θ, `) follows

a ratio-stable distribution. We now prove that, given θ and `, the random vector
(R1, . . . ,RH) is independent on Wk+1, which in turns is shown to be beta distributed.

Let p(s1, . . . , sH, ι,u) be the density function associated to the random variables
(J∗1, . . . , J

∗
H),
∑k
j=1 Ij and U, respectively, given the observations θ and the latent variables

`. Representation (2.13) implies that such a density factorizes as

p(s1, . . . , sH, ι,u) = p(∞)(u)pu(ι)

H∏
h=1

p
(σ)
u (sh),

where p(∞)(u) is defined as before, where pu(ι) is the density of a gamma random
variable, and where each p(σ)u (sh) represents the density of a tempered stable distribution.
Now consider the change of variable rh = sh/(s1 + · · · + sH) for h = 1, . . . ,H − 1,
s = s1 + · · · + sH, w = (s1 + · · · + sH)/{ι + (s1 + · · · + sH)} and u = u. The resulting
density is given by

p(r1, . . . , rH−1, s,w,u) = sHw−2p(∞)(u)pu{s(1−w)w
−1}

H∏
h=1

p
(σ)
u (srh),

∝ un+c−1sn+H−|`|σ−1 (1−w)
n−|`|σ−1

wn−|`|σ+1
e−u{s(1−w)w

−1}−uσ
H∏
h=1

p
(σ)
u (srh),

∝ un+c−1e−us/wsn+H−|`|σ−1 (1−w)
n−|`|σ−1

wn−|`|σ+1

H∏
h=1

p(σ)(srh),
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where rH = 1 − (r1 + · · · + rH−1) and where it has been exploited the relationship
p
(σ)
u (srh) = eu

σ/He−usrhp(σ)(srh), with p(σ)(srh) denoting the density of a positive
stable distribution. Then, the integration over u and s leads to p(r1, . . . , rH−1,w) =∫∞
0

∫∞
0 p(r1, . . . , rH−1, s,w,u)duds and

p(r1, . . . , rH−1,w) ∝ wc+|`|σ−1(1−w)n−|`|σ−1

∫∞
0
sH−|`|σ−c−1

H∏
h=1

p(σ)(srh)ds.

This concludes the proof since (Wk+1 | θ, `) ∼ beta(c+ |`|σ,n− |`|σ) and it is independent
on (R1, . . . ,RH | θ, `).

Proof of Theorem 2.5

The proof relies on the convergence of the exchangeable partition probability function in
Theorem 2.1 to that of the Pitman–Yor process, which can be easily checked. Indeed, for
any collection of measurable subsets A1, . . . ,An of Θ it holds

P(θ1 ∈ A1, . . . , θn ∈ An) =
∑
Ψ

ΠH(n1, . . . ,nk)
k∏
j=1

P(∩i∈CjAi)

→
∑
Ψ

Π∞(n1, . . . ,nk)
k∏
j=1

P(∩i∈CjAi) = P(φ1 ∈ A1, . . . ,φn ∈ An), H→∞,

with (θn)n>1 and (φn)n>1 being two exchangeable sequences directed by p̃H and p̃∞,
respectively, and where the sum runs over the space of partitions with Ψ = {C1, . . . ,Ck}.
Using de Finetti representation theorem, the latter is equivalent to

E

{
n∏
i=1

p̃H(Ai)

}
→ E

{
n∏
i=1

p̃∞(Ai)
}

, H→∞.

Since the above convergence holds for any collection of sets A1, . . . ,An and any n > 1,
we can write equivalently

E


k∏
j=1

p̃H(Bj)
nj

→ E


k∏
j=1

p̃∞(Bj)nj
 , H→∞, (2.14)

for any measurable collection B1, . . . ,Bk. The random vector {p̃∞(B1), . . . , p̃∞(Bk)} is
positive and bounded, thus being fully determined by its cross-moments. Hence, the
vector version of Theorem 30.2 in Billingsley (1995) ensures that convergence of the
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cross-moments (2.14) implies the convergence in distribution, namely

{p̃(H)(B1), . . . , p̃(H)(Bk)}→ {p̃(∞)(B1), . . . , p̃(∞)(Bk)}, H→∞,

in the sense of weak convergence. The weak convergence of the whole process is then
guaranteed by Theorem 11.1.VII in Daley & Vere-Jones (2008).

Proof of Proposition 2.4

From Theorem 1 and Theorem 2 in Ishwaran & James (2001) it follows that

dtv

{
m

(H)
tr ,m(∞)

}
6 2

[
1−

{
1−

(
c
σ + 1

)
H−1(

c
σ +

1
σ

)
H−1

}n]
.

We will say that two sequences of real numbers (ah)h>1 and (bh)h>1 are asymptotically
equivalent, written ah ≈ bh, if limh→∞ ah/bh = 1. The order of convergence stated in
Proposition 2.4 is a direct consequence of the standard properties of the Gamma function.
Indeed, note that (

c
σ + 1

)
H−1(

c
σ +

1
σ

)
H−1

≈
Γ
(
c
σ +

1
σ

)
Γ
(
c
σ + 1

)H− 1σ+1, H→∞,

from which it follows that

2

[
1−

{
1−

(
c
σ + 1

)
H−1(

c
σ +

1
σ

)
H−1

}n]
≈ 2n

Γ
(
c
σ +

1
σ

)
Γ
(
c
σ + 1

)H− 1σ+1 = O(H− 1σ+1), H→∞.

Moreover, following the same steps as for Theorem 4 in Ishwaran & Zarepour (2002) we
get

dtv

{
m(H),m(∞)

}
6 dtv(Ψn,H,Ψn,∞)
6
1

2

∑
Ψ

|ΠH(n1, . . . ,nk) −Π∞(n1, . . . ,nk)|
6
1

2

∑
Ψ

Π∞(n1, . . . ,nk)
∣∣∣∣1− ΠH(n1, . . . ,nk)

Π∞(n1, . . . ,nk)
∣∣∣∣ ,

where the sum runs over all the partitions Ψ of [n] with cardinalities n1, . . . ,nk. From
the proof of Theorem 2.1 and Theorem 2.2 it follows that

ΠH(n1, . . . ,nk)
Π∞(n1, . . . ,nk) =

H!
Hk(H− k)!

∑
`

Vn,|`|

Vn,k

1

H|`|−k

k∏
j=1

C (nj, `j;σ)
σ`j

1

(1− σ)nj−1
,
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from which we obtain

lim
H→∞H

∣∣∣∣1− ΠH(n1, . . . ,nk)
Π∞(n1, . . . ,nk)

∣∣∣∣ = k∑
j=1

Vn,k+1

Vn,k

C (nj, 2;σ)
σ2

1

(1− σ)nj−1
,

since the term not vanishing in the summation over ` are those for which `1 + · · ·+ `k =
k+ 1, meaning that each `j = 1 but one equal to 2, and recalling also that C (nj, 1;σ) =
σ(1− σ)nj−1. Hence, one get

dtv(Ψn,H,Ψn,∞) ≈ 1

2H

∑
Ψ

Π∞(n1, . . . ,nk)
k∑
j=1

Vn,k+1

Vn,k

C (nj, 2;σ)
σ2

1

(1− σ)nj−1
= O

(
1

H

)
,

which concludes the proof.





Chapter 3

Finite-dimensional normalized random measures

3.1 Summary

The chapter is organized as follows. In Section 3.2 we review some background material
about completely random measures and homogeneous normalized random measures.
In Section 3.3 we define nidm processes and we discuss several a priori properties, such
as the law of the random partition they induce, and the weak convergence to nrmis. In
Section 3.4, we discuss generalized urn schemes and posterior characterizations, with a
particular emphasis on the normalized generalized gamma (ngg) multinomial process.
In Section 3.5 we employ the ngg multinomial prior for the analysis of a real dataset,
highlighting practical advantages over existing methods.

3.2 Homogeneous normalized random measures

As discussed in Chapter 1, nidm processes are closely related to homogeneous nrmis,
whose definition is therefore briefly recalled here. To this end, we also recall the definition
of a noteworthy class of random measures.

Let Θ be a separable and complete metric space and let B(Θ) be its Borel σ-field. We
will denote with MΘ the space of boundedly finite measures on {Θ, B(Θ)} and with MΘ

the corresponding σ-algebra. For technical details on the construction of (MΘ, MΘ) one
may refer to Daley & Vere-Jones (2008). A random element, say µ̃(∞) defined on some
probability space and taking values in (MΘ, MΘ) such that µ̃(∞)(B1), . . . , µ̃(∞)(Bd) are
mutually independent random variables for any choice of pairwise disjoint B1, . . . ,Bd in
B(Θ), and for any d > 2, is a completely random measure (crm). As exhaustively discussed
in Kingman (1967), a crm with no fixed points of discontinuity and no deterministic drift
can be represented as µ̃(∞) =

∑∞
h=1 Jhδφ̃h and is characterized by the Laplace functional

45
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transform

E
(
e−
∫
Θ f(θ)µ̃

(∞)(dθ)
)
= exp

{
−

∫
Θ×R+

(
1− e−sf(θ)

)
L(ds, dθ)

}
, (3.1)

where f : Θ→ R+ is a measurable function such that
∫
Θ f(θ)µ̃

(∞)(dθ) <∞ almost surely,
whereas the measure L on R+ ×Θ, termed Lévy measure, or intensity, characterizes the
crm and is such that

∫
R+×A min{1, s}L(ds, dθ) <∞ for any A ∈ B(Θ). In the following,

we consider only homogeneous crms, which amounts to having a Lévy intensity of the
form

L(ds, dθ) = ρ(s)ds cP(dθ),

where P is a probability measure over {Θ, B(Θ)} and c ∈ R+ is a positive constant. We
will use the notation µ̃(∞) ∼ crm(c, ρ;P). If one additionally has that

∫
R+
ρ(s)ds = ∞,

then 0 < µ̃(∞)(Θ) <∞ almost surely, and a homogeneous nrmi is defined as

p̃(∞) =

∞∑
h=1

(Jh/J̄)δφ̃h ,

where J̄ =
∑∞
h=1 Jh = µ̃(∞)(Θ), the φ̃h’s are iid draws from P, independently also

from the jumps (Jh)h>1. We will write p̃(∞) ∼ nrmi(c, ρ;P) to denote such a random
probability measure. Several relevant nonparametric priors are nrmis and a noteworthy
class, which is the object of investigation in the present chapter, arises when

ρ(s) =
1

Γ(1− σ)
s−1−σ e−κs, (3.2)

whose additional parameters 0 6 σ < 1 and κ > 0 are such that at least one of them
is positive (Brix, 1999). The resulting nrmi is often referred to as normalized generalized
gamma (ngg) process, and it includes some well–known nonparametric priors as special
cases. See Lijoi et al. (2007). For example, if we set σ = 0 and κ = 1 we recover the
Dirichlet process, whereas for σ = κ = 1

2 one obtains the normalized inverse–Gaussian
process introduced in Lijoi et al. (2005). Finally, with κ = 0 we get the normalized
σ-stable process (Kingman, 1975).

Both nrmis and the novel class of nidm processes are discrete random probability
measures. Thus, as discussed in Chapter 2, when their law identifies the de Finetti
measure of the exchangeable sequence of Θ–valued random elements (θn)n>1, there
will be ties with positive probability, namely P[θi = θi ′] > 0 for any i 6= i ′. Hence, an
n-sample θ = (θ1, . . . , θn) will display Kn = k 6 n distinct values, say θ∗1, . . . , θ

∗
k, with

respective frequencies n1, . . . ,nk, so that
∑k
j=1 nj = n. This amount to saying that θ

induces a random partition Ψn of [n] = {1, . . . ,n} into k sets C1, . . . ,Ck such that i ∈ Cj
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if and only if θi = θ∗j . As discussed in Pitman (1996) and previously in Chapter 2, this
clustering mechanism is regulated by a symmetric function called exchangeable partition
probability function (eppf), whose definition was given in Chapter 2 and it is recalled here

Π(n1, . . . ,nk) = P(Ψn = {C1, . . . ,Ck}) =
∑

i1 6=···6=ik

E

 k∏
j=1

π
nj
ij

 , (3.3)

where the vector nk = (n1, . . . ,nk) of positive integers is such that nj = ]Cj and∑k
j=1 nj = n and the sum runs over all the positive and distinct integers (i1, . . . , ik).

The eppf is an extremely useful tool and it has a simple interpretation: it is the
probability of recording a specific partition induced by θ into k distinct groups,
each represented by respective distinct values θ∗1, . . . , θ

∗
k, with vector of corresponding

frequencies n(k) = (n1, . . . ,nk). The availability of the eppf yields, as a by-product,
the system of predictive distributions. Indeed, the conditional probabilities that θn+1
displays a new value generated from the diffuse base measure P or coincides with the
previously observed θ∗j , given θ, are

w0(n
(k)) =

Π(n1, . . . ,nk, 1)
Π(n1, . . . ,nk)

, wj(n
(k)) =

Π(n1, . . . ,nj + 1, . . . ,nk)
Π(n1, . . . ,nk)

, j = 1, . . . ,k.

and, hence, for any A ∈ B(Θ)

P(θn+1 ∈ A | θ) = w0(n
(k))P(A) +

k∑
j=1

wj(n
(k))δθ∗j (A).

For homogeneous nrmis with diffuse baseline measure P the expression of the eppf

will be denoted with Π∞(n1, . . . ,nk), and it is known as it can be expressed in terms of
the underlying parameters (c, ρ). Indeed, if τm(u) :=

∫
R+
sme−usρ(s)ds, for any integer

m > 1, then

Π∞(n1, . . . ,nk) = ck

Γ(n)

∫
R+

un−1 e−cψ(u)
k∏
j=1

τnj(u)du, (3.4)

where the function ψ(u) =
∫

R+
(1− e−us)ρ(s)ds is termed Laplace exponent. See, e.g.,

James et al. (2009). In the ngg special case, one finds out that

Π∞(n1, . . . ,nk) = Vn,k

k∏
j=1

(1− σ)nj−1,

with (a)n = a(a+ 1) · · · (a+n− 1), for any real a and integer n > 1, being the ascending
factorial, and with (a)0 = 1. If we set c̄ = cκσ/σ, and with Γ(x;a) =

∫∞
x s

a−1e−sds for
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any a > 0 being the incomplete gamma function, one further knows that

Vn,k :=
ec̄σk−1

Γ(n)

n−1∑
i=0

(
n− 1

i

)
(−1)ic̄i/σΓ

(
k−

i

σ
; c̄
)

. (3.5)

Thus, a ngg random measure is a Gibbs type prior (Gnedin & Pitman, 2005; De Blasi
et al., 2015), and the only one also being a nrmi (Lijoi et al., 2008). As a final remark, note
that the parametrization (c, κ,σ) is redundant, since the above eppf only depends on the
parameter vector (c̄,σ), meaning that one can fix either c or κ without loss of generality.

3.3 Normalized infinitely divisible multinomial processes

In order to define a more flexible class of finite-dimensional priors that overcomes the
limitations of the standard Dirichlet multinomial model, we do rely on a normalization
procedure similar to the one that yields nrmis. In doing so, we make use of finitely
many jumps whose distribution has Laplace transform available in closed form. For this
reason we make use of random measures with finitely many support points and with
masses having an infinitely divisible distribution.

3.3.1 NIDM processes

The main building block of the new class of processes that we are proposing is a collection
of independent and infinitely divisible random variables. In particular, we will deal with
finite and strictly positive infinitely divisible random variables without drift, say J, whose
probability distribution has Laplace transform that can be expressed as

E
(
e−λJ

)
= exp{−cψ(λ)} = exp

(
−c

∫
R+

(1− e−λs)ρ(s) ds
)

, (3.6)

for any λ > 0 and some positive constant 0 < c < ∞. See Sato (1999) for details.
The function ψ(λ) is the Laplace exponent, whereas ρ is any non–negative measurable
function such that

∫
R+

min{1, s}ρ(s)ds < ∞ and
∫

R+
ρ(s)ds = ∞. Note that these

conditions coincide with those involved in the construction of homogeneous nrmis. A
random variable J having Laplace transform (3.6) will be denoted J ∼ id(c, ρ).

Definition 3.1. A measurable function µ̃(H) defined on some probability space and taking
values in (MΘ, MΘ) such that

µ̃(H) =

H∑
h=1

Jhδθ̃h , Jh
iid
∼ id

( c
H

, ρ
)

, θ̃h
iid
∼ P, (3.7)
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where 0 < c < ∞, with H < ∞, and where P is a probability measure defined over
{Θ, B(Θ)}, is a multinomial random measure with infinitely divisible jumps. We will use
the notation µ̃(H) ∼ idm(c, ρ;P).

It is important to stress that idm’s are not completely random, because the random
variables µ̃(H)(B1), . . . , µ̃(H)(Bd) are not mutually independent random variables for any
choice of pairwise disjoint sets B1, . . . ,Bd in B(Θ) and for any d > 2. Although this
fact might appear as counter-intuitive at a first glance, it can be understood with the
following example. Let A ∈ B(Θ) be such that 0 < P(A) < 1, and note that P(µ̃(H)(A) =

0) = {1− P(A)}H > 0. On the other hand, P(µ̃(H)(A) = 0 | µ̃(H)(Θ \A) = 0) = 0 since
P(µ̃(H)(Θ) > 0) = 1. Hence, independence between µ̃(H)(A) and µ̃(H)(Θ \A) does not
hold true. Nonetheless, the Laplace functional transform of a idm is available and equals

E
(

e−
∫
Θ f(θ)µ̃

(H)(dθ)
)
=

{∫
Θ

exp
(
−
c

H

∫
R+

(
1− e−sf(θ)

)
ρ(s)ds

)
P(dθ)

}H
, (3.8)

where f : Θ → R+ is any measurable function such that
∫
Θ f(θ)µ̃

(H)(dθ) < ∞ almost
surely. Now set f(θ) = λ1A(θ) with λ > 0, A ∈ B(Θ) and 1A denoting the indicator
function of A. Then the Laplace transform of µ̃(H)(A) is

E
(

e−λµ̃
(H)(A)

)
=
[
1− P(A) + P(A) exp

{
−
c

H
ψ(λ)

}]H
, (3.9)

where ψ is the Laplace exponent defined in (3.6). It is apparent that µ̃(H)(A) equals in
distribution a binomial compound random element, namely

(µ̃(H)(A) | m̃)
d
=

m̃∑
j=0

Jj, m̃ ∼ binomial{H,P(A)},

where, conditional on m̃, the random variables J1, . . . , Jm̃ are iid from id(c/H, ρ) and J0
is a point mass at zero: this provides an interesting and alternative representation of the
random variable µ̃(H)(A).

The random measure displayed in Definition 3.1 is the main tool for defining
normalized infinitely divisible multinomial processes. In this respect, the construction is
reminiscent of the normalized infinitely divisible family of distributions in Favaro et al.
(2011), which is based on the normalization of infinitely divisible random variables. If

Ji
ind
∼ id(ci, ρ), for i = 1, . . . ,d and with ci > 0, the random vector

π = (π1, . . . ,πd−1) =

(
J1∑d
i=1 Ji

, . . . ,
Jd−1∑d
i=1 Ji

)
,
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is a normalized infinitely divisible (nid) random vector and will be denoted as π ∼

nid(c1, . . . , cd; ρ). The case ci = 0 is not explicitly considered here, since it would
imply πi = 0 and the distribution of π would degenerate on a lower dimensional
simplex.

Definition 3.2. Let µ̃(H) ∼ idm(c, ρ;P) as in Definition 3.1. If

p̃(H) =
µ̃(H)

µ̃(H)(Θ)
=

H∑
h=1

πhδθ̃h ,

where (π1, . . . ,πH) = (J1/
∑H
h=1 Jh, . . . , JH/

∑H
h=1 Jh), then p̃(H) is a normalized infinitely

divisible multinomial process. We will use the notation p̃(H) ∼ nidm(c, ρ;P).

From such a definition, it is apparent that µ̃(Θ) ∼ id(c, ρ), thus ensuring that the
above normalization is well–defined. As for the probability weights assigned to the
points θ̃1, . . . , θ̃H, one has

(π1, . . . ,πH−1) ∼ nid

( c
H

, . . . ,
c

H
; ρ
)

.

Note that a nidm process is also a proper species sampling model (1.6) with H < ∞,
when P is diffuse. If we set ρ(s) = s−1e−s we recover the Dirichlet multinomial process,
whose weights (π1, . . . ,πH−1) ∼ dirichlet(c/H, . . . , c/H). Henceforth, we plan to use ρ
as in (3.2) and obtain a novel and tractable class of nidm processes, which we will term
ngg multinomial process.

It is useful to point out that nidm processes display a hierarchical structure. Indeed,
it holds

(µ̃(H) | p̃0,H) ∼ crm(c, ρ; p̃(H)0 ), p̃
(H)
0 =

1

H

H∑
h=1

δθ̃h ,

with θ̃h
iid
∼ P, then µ̃(H) ∼ idm(c, ρ;P). Hence, if we pick p̃(H) = µ̃(H)/µ̃(H)(Θ) one has that

p̃(H) ∼ nidm(c, ρ;P) and in view of the previous remark, it can be described through the
following hierarchical model

(p̃(H) | p̃
(H)
0 ) ∼ nrmi(c, ρ; p̃(H)0 ), p̃

(H)
0 =

1

H

H∑
h=1

δθ̃h , (3.10)

In words, any nidm can be represented as a hierarchical process with a nrmi having a
discrete baseline measure at the bottom of the hierarchy. Note that when P is diffuse, the
law of p̃(H)0 is that of a specific Gibbs type prior, arising when the discount parameter goes
to −∞; see Gnedin & Pitman (2005) for details. Furthermore, this representation relates
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any nidm process to hierarchical constructions like those presented in the contribution
of Camerlenghi et al. (2018).

In view of (3.10), it is instructive to compare the finite-dimensional distributions of a
nidm p̃(H) with those of a p̃(∞) ∼ nrmi(c, ρ;P). In particular, it follows that, for any finite
partition {B1, . . . ,Bd} of Θ into B(Θ)–sets, the distribution of {p̃(H)(B1), . . . , p̃(H)(Bd−1)}
can be expressed as a mixture of a nid distribution with multinomial weights, motivating
the nidm denomination. More precisely,

{p̃(H)(B1), . . . , p̃(H)(Bd−1)} | (m̃1, . . . , m̃d) ∼ nid

(
c
m̃1

H
, . . . , c

m̃d

H
; ρ
)

,

(m̃1, . . . , m̃d) ∼ multinomial [H, {P(B1), . . . ,P(Bd)}] .

On the other hand, since p̃(∞)(Bi) = Ji/
∑d
j=1 Jj, where Ji = µ̃(∞)(Bi) ∼ id(cP(Bi); ρ), one

has
{p̃(∞)(B1), . . . , p̃(∞)(Bd−1)) ∼ nid (cP(B1), . . . , cP(Bd); ρ) .

An application of the strong law of large numbers yields (cm̃1/H, . . . , cm̃d/H)
a.s.−→

{cP(B1), . . . , cP(Bd)} as H → ∞. This provides a heuristic argument for arguing that
nidm processes and homogeneous nrmis are closely related when H is large. As it will
be more formally and rigorously discussed in the next section, nidm processes weakly
converge to the corresponding homogeneous nrmi as H→∞.

Finally, note that the moments of a nidm process can be obtained in closed form.
Here we confine the attention to the first two moments, which have simple analytical
forms. Define I(c, ρ) = c

∫
R+
ue−cψ(u)τ2(u)du.

Proposition 3.1. Let p̃(H) ∼ nidm(c, ρ;P) be a nidm process. Moreover, let A,A1,A2 ∈ B(Θ)

and set C := A1 ∩A2. Then

E{p̃(H)(A)} = P(A),

Var{p̃(H)(A)} = P(A){1− P(A)}
{
I(c, ρ) +

1− I(c, ρ)
H

}
,

Cov{p̃(H)(A1), p̃(H)(A2)} = {P(C) − P(A1)P(A2)}

{
I(c, ρ) +

1− I(c, ρ)
H

}
.

Unsurprisingly, when H→∞ the moments of a nidm process converge to those of a
nrmi, as one would expect from the previous discussion.

3.3.2 Weak convergence of NIDM processes

The previous discussion suggests that, when H is large enough, a nidm approaches
a nonparametric prior that corresponds to a homogeneous nrmi. To make this more
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precise, endow MΘ with the topology of vague convergence (see e.g. Chap. 4, Kallenberg,
2017) and use the notation µn

vd−→ µ to identify a sequence (µ̃n)n>1 of boundedly finite
measures on Θ that vaguely converges to µ. We will also make use of the concise notation
µ̃(f) =

∫
Θ f(θ)µ̃(dθ). The main result of this Section concerns the convergence of idm

random measures to homogeneous crms, and it is summarized in the following theorem.

Theorem 3.1. Let µ̃(H) ∼ idm(c, ρ;P) and µ̃(∞) ∼ crm(c, ρ;P). Then as H→∞
(1) µ̃(H) vd−→ µ̃(∞),

(2) E
(

e−µ̃
(H)(f)

)
→ E

(
e−µ̃

(∞)(f)
)

for any positive and measurable function f : Θ → R+

such that
∫
Θψ{f(θ)}P(dθ) <∞.

Note that the two statement are not equivalent, because the former can be deduced
from the latter, but not viceversa. Note that if f in the above theorem is integrable with
respect to P then the condition

∫
Θψ{f(θ)}P(dθ) <∞ is satisfied.

Now recall that p̃(H) ∼ nidm(c, ρ;P) and that p̃(∞) ∼ nrmi(c, ρ;P). An important
implication of Theorem 3.1 is the convergence of the finite-dimensional distributions
of p̃(H) to those of p̃(∞). Indeed, substituting in Theorem 3.1 the simple function
f(θ) =

∑d
i=1 λi1Ai(θ), for any collection of sets A1, . . . ,Ad ∈ B(Θ) and positive constants

λ1, . . . , λd > 0, as a consequence of the continuous mapping theorem one has that

{p̃(H)(A1), . . . , p̃(H)(Ad)}
d−→ {p̃(∞)(A1), . . . , p̃(∞)(Ad)}, as H→∞.

When working with random probability measures, the convergence of the finite-
dimensional distributions suffices to guarantee the weak convergence of the whole
process, which will be indicated with the wd−→ notation; see Kallenberg (Theorem 4.11,
2017).

Corollary 3.1. Let p̃(H) ∼ nidm(c, ρ;P) and let p̃(∞) ∼ nrmi(c, ρ;P). Then p̃(H) wd−→ p̃(∞) as
H→∞.

The above statement implies the convergence in distribution of general functionals
p̃(H)(f)

d−→ p̃(∞)(f) as H → ∞ when f is a continuous and bounded function. In the
Dirichlet multinomial process case, related results were previously obtained in Kingman
(1975), Muliere & Secchi (1996) and Green & Richardson (2001).

Remark 3.1. Although our focus here is on random probability measures, we note that
Theorem 3.1 could be useful also when one needs to approximate any homogeneous crm

by means of a finite-dimensional idm process. This might be the case, for instance, in
Bayesian nonparametric survival analysis where crms are used to define mixture hazard
rate functions or cumulative hazards; see e.g. Lijoi & Prünster (2010) for a review.
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3.3.3 Random partitions and number of clusters

In this section we study the clustering mechanism underlying a nidm process that
amounts to determining the eppf, namely the probability distribution of the induced
exchangeable partition: this will be denoted by ΠH and it is defined through (3.3), with
p̃ being replaced by p̃(H). To be more specific, it will be shown that the eppf of any nidm

process is a finite mixture of the partition functions arising in the infinite-dimensional
setting. Before stating the theorem, let us introduce some further quantity of interest.
Define for any m > 1

Vm,H(u) :=

(
(−1)m

∂m

∂um
e−

c
Hψ(u)

)
e
c
Hψ(u) =

c

H
∆m,H(u),

and set V0,H := 1, where ψ(u) is the Laplace exponent defined as in (3.6). Moreover, for
any vector x ∈ Rp, we let |x| =

∑p
i=1 xi.

Theorem 3.2. Let (θn)n>1 be an exchangeable sequence directed by a nidm process prior with
diffuse baseline P. Then, the associated eppf when k 6 min{n,H} is

ΠH(n1, . . . ,nk) =
H!

Hk(H− k)!
ck

Γ(n)

∫
R+

un−1e−cψ(u)
k∏
j=1

∆nj,H(u)du,

Moreover, if Π∞ is the eppf of the corresponding homogeneous nrmi in (3.3), one has

ΠH(n1, . . . ,nk) =
H!

Hk(H− k)!

∑
`

1

H|`|−k

k∏
j=1

1

`j!

∑
ej

(
nj

ej1, . . . , ej`j

)
×Π∞(e11, . . . , e1`1 , . . . , ek1, . . . , ek`k),

(3.11)

where the first sum runs over all vectors ` = (`1, . . . , `k) such that `j ∈ {1, . . . ,nj}, and the jth of
the k sums runs over ej = (ej1, . . . , ej`j) such that ejr > 1 and with |ej| = nj.

This mixture representation in (3.11) is reminiscent of the one in Camerlenghi et al.
(2018) for hierarchical nrmis, and indeed nidm processes can be represented in a hierar-
chical fashion, as for equation (3.10). Hence, peculiar properties of infinite-dimensional
nrmis will be inherited by nidm processes for any choice of H. Furthermore, Corollary 3.1
suggests that one might get limH→∞ΠH(n1, . . . ,nk) = Π∞(n1, . . . ,nk), that is, that the
eppf associated to a nidm process converges to the one associated to a homogeneous
nrmi. This is indeed the case, and it can shown directly through the representation of
Π∞ in (3.4) and by noting that limH→∞∆m,H(u) = τm(u) for any u > 0. Working along
these lines, one can identify bounds for the ratio between ΠH and Π∞ and these may be
used to assess their closeness.
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Theorem 3.3. For any k 6 min{n,H} one has

H!
Hk(H− k)!

6
ΠH(n1, . . . ,nk)
Π∞(n1, . . . ,nk) 6

∫
R+

k∏
j=1

∆nj,H(u)

τnj(u)
p(∞)(u)du,

where p(∞)(u) ∝ un−1e−cψ(u)
∏k
j=1 τnj(u)1(0,∞)(u) is a density function.

Note that p(∞)(u) is the density function of a latent random variable that is used in
James et al. (2009) to provide posterior characterizations of nrmis. Both bounds converge
to 1 as H→∞. As a simple application of Theorem 3.3, one might obtain bounds also
for the predictive distributions, by exploiting their relationship with the eppf. For ngg

multinomial processes and, a fortiori, in the Dirichlet multinomial case, the eppf and the
related bounds can be computed explicitly. This is illustrated in the following examples.

Example 3.1 (Dirichlet multinomial process). Let the nidm process be characterized by
the intensity function ρ(s) = s−1e−s. On the basis of Theorem 3.2, one has for any k 6

min{n,H}

ΠH(n1, . . . ,nk) =
H!

(H− k)!
1

(c)n

k∏
j=1

( c
H

)
nj

.

This eppf can be found, e.g., in Green & Richardson (2001). Note that ΠH identifies the
building block of a Gibbs–type prior with σ < 0: indeed any such prior would arise from
a mixture of Dirichlet multinomial distributions, with respect to H. See, e.g., De Blasi
et al. (2015). Straight application of Theorem 3.3 yields

H!
Hk(H− k)!

6
ΠH(n1, . . . ,nk)
Π∞(n1, . . . ,nk) 6

k∏
j=1

(1+ c/H)nj−1

(nj − 1)!
.

This makes clear that ΠH and Π∞ are close when either H is large, as it is natural to
expect on the basis of Corollary 3.1, or the total mass parameter c is small. Note that this
is the same bound obtained in the Appendix of Ishwaran & Zarepour (2002) by means of
different techniques, and thus Theorem 3.3 can be seen as a generalization of their result
to nidm processes. Details on these derivations are given in the Appendix.

Example 3.2 (ngg multinomial process). Let the nidm process be characterized by the
generalized gamma intensity function ρ(s) given in (3.2). On the basis of Theorem 3.2,
one has for any k 6 H

ΠH(n1, . . . ,nk) =
H!

(H− k)!

∑
`

Vn,|`|

H|`|

k∏
j=1

C (nj, `j;σ)
σ`j

,
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where C (n,k;σ) are the generalized factorial coefficients, defined as in equation (2.5) of
Chapter 2, and where Vn,k are the coefficients defined in (3.5). Hence, the eppf of a ngg

multinomial process has a simpler form compared to the general equation (3.11), because
it only depends on the integers `1, . . . , `k. This also enables the practical evaluation of
Theorem (3.3), yielding to

H!
Hk(H− k)!

6
ΠH(n1, . . . ,nk)
Π∞(n1, . . . ,nk) 6

∑
`

Vn,|`|
Vn,k

( c

σH

)|`|−k k∏
j=1

C (nj, `j;σ)
C (nj, 1;σ)

,

where C (nj, 1;σ) = σ(1− σ)nj−1. Details on these derivations are given in the Appendix.

The availability of ΠH naturally leads one to address the problem of determining
the distribution of the number of partition sets Kn,H, that is, the law of the number of
distinct values observed in a sample θ under a nidm process prior. As one might expect,
Kn,H converges to the number of partition sets Kn,∞, namely the number of distinct
values generated by an exchangeable n-sample from homogeneous nrmi, when H→∞.
Another interesting connection between Kn,H and Kn,∞ is formalized in the following
theorem.

Theorem 3.4. For any k 6 min{H,n}

P(Kn,H = k) =
H!

Hk(H− k)!

n−k∑
`=0

1

H`
S (`+ k,k)P(Kn,∞ = `+ k),

where S (`,k) = 1
k!
∑k
r=0(−1)

k−r
(
k
r

)
r` is the Stirling number of the second kind for `,k > 0.

Moreover, the expected value of Kn,H is given by

E(Kn,H) = H−HE

{(H−1∑
h=1

πh

)n}
= H−HE

{(
1−

1

H

)Kn,∞}
.

From Theorem 3.4 it can be easily seen that P(Kn,H = k)→ P(Kn,∞ = k) for all k as
H→∞, since S (k,k) = 1. Hence, Kn,H

d−→ Kn,∞. Additionally, we have that E(Kn,H)→
E(Kn,∞) as H→∞, and the following asymptotic expansion holds

E(Kn,H)

E(Kn,∞) = 1−
1

2H

(
E(K2n,∞)
E(Kn,∞) − 1

)
+O

(
1

H2

)
, as H→∞.

Thus, the convergence of the expected value to the infinite case occurs at the linear
rate O(1/H). We expanded the above ratio up the the second order, to gain further
understanding about the speed at which E(Kn,H) approaches its limit: broadly speaking,
quick convergence occurs whenever E(K2n,∞) ≈ E(Kn,∞), which is the case when E(Kn,∞)
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is relatively small. On the other hand, one needs a large value of H when trying to
approximate an infinite-dimensional process having a high number of expected clusters
in a sample of size n. This is in line with the discussion of Example 3.1.

The actual evaluation of the probability distribution of Kn,H in Theorem 3.4 might
be cumbersome due to the presence of the Stirling numbers. Thus, in cases where it is
more convenient to rely on the probability distribution of Kn∞ it may be interesting to
provide simple bounds for the ratio P(Kn,H = k)/P(Kn,∞ = k). This is achieved in the
next Theorem.

Theorem 3.5. For any k 6 min{H,n− 1}

H!
Hk(H− k)!

6
P(Kn,H = k)

P(Kn,∞ = k)
6

H!
Hk(H− k)!

{
1+

1

2

n−k∑
`=1

(
k

H

)`(
`+ k

k

)
P(Kn,∞ = `+ k)

P(Kn,∞ = k)

}
,

whereas when k = n = H, it holds P(Kn,H = n)/P(Kn,∞ = n) = H−nH!/(H−n)!.

Interestingly, the lower bound in the above theorem does not depend on the specific
nidm process, and actually coincide with the one obtained by Ishwaran & Zarepour
(2002) in the special case of the Dirichlet multinomial nidm. Instead, the upper bound
can be lower than 1, and therefore it is usually tighter than the one already known for the
Dirichlet prior. Hence, besides being a generalization to all nidm processes, Theorem 3.5
also yields an improvement over existing bounds.

Example 3.3 (Dirichlet multinomial process, cont’d). A straightforward application of
Theorem 3.4 yields

P(Kn,H = k) =
H!

(H− k)!
(−1)k

(c)n
C (n,k;−c/H), k = 1, . . . , min{H,n}.

This simple form is due to the Gibbs-type structure of the Dirichlet multinomial process,
and indeed the above formula might be deduced from Gnedin & Pitman (2005). In
the relevant particular case c = H, that is, when the weights of the nidm process are
uniformly distributed, the following simplification occurs

P(Kn,H = k) =
n!

(H)n

(
H

k

)(
n− 1

k− 1

)
,

for k = 1, . . . , min{H,n}, a particular instance of hypergeometric distribution. As for the
expected value of Kn,H, for any value of c we have the following simple formula

E(Kn,H) = H− (H− 1)
(c+ 1− c/H)n−1

(c+ 1)n−1
.
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Figure 3.1: Distribution of K100,H with n = 100, under a Dirichlet multinomial process (c = 5.87),
and a ngg multinomial process (c = 1/2,κ = 1,σ = 1/2), for different levels of H ∈ {20, 50, 250,∞}.
The distribution is depicted only for the values in the interval [1, 40] for graphical reasons.

Example 3.4 (ngg multinomial process, cont’d). Direct application of Theorem 3.4 yields

P(Kn,H = k) =
H!

(σH)k(H− k)!

n−k∑
`=0

Vn,`+k

H`
S (`+ k,k)

C (n, `+ k;σ)
σ`

,

for any k = 1, . . . , min{H,n}, since P(Kn,∞ = k) = Vn,kσ
−kC (n,k;σ). Furthermore, the

expected value of Kn,H is given by

E(Kn,H) = H−H

n∑
`=1

(
1−

1

H

)`
Vn,`

C (n, `;σ)
σ`

.

To illustrate the clustering mechanism, in Figure 3.1 we depicted the distribution
of the random variable K100,H under both a Dirichlet multinomial process and a ngg

multinomial process, for different values of H. To make these prior choices comparable,
we have set the hyperparameters c and (c̄,σ) such that the exepcted number of clusters
for the corresponding infinite-dimensional nrmis E(K100,∞) is the same. As highlighted
in Figure 3.1, the distribution of K100,H under the ngg multinomial prior is “flatter”,
i.e. less informative, compared to the one induced by Dirichlet multinomial prior, for
any of the values of H being considered. We note that the variance of Kn,H in the ngg

prior can be tuned through the parameter σ. When σ → 0 the Dirichlet multinomial



58 Chapter 3. Finite-dimensional normalized random measures
D

irichlet m
ultinom

ial
N

G
G

 m
ultinom

ial

0 10 20 30 40

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Kn

Figure 3.2: Exact value (solid lines) and bounds (shaded areas) for the ratio P(K100,250 =
k)/P(K100,∞ = k) under a Dirichlet multinomial process (c = 5.87), and a ngg multinomial
process (c = 1/2, κ = 1,σ = 1/2), for different values of k. The ratio is depicted only for the
values in the interval [1, 40] for graphical reasons.

case is recovered and, as such, it identifies a limiting scenario. If H→∞, this effect of σ
was extensively discussed in Lijoi et al. (2007) and it comes to no surprise it is reflected
also in the finite H case, in view of Theorem 3.4. More generally, Theorems 3.2-3.4
confirm, altogether, that nidm processes inherit several structural properties of their
infinite-dimensional counterpart even when H is finite. Nonetheless, we remark that if
one is interested in approximating the infinite-dimensional nrmi prior, a relatively large
value of H is typically required. For instance, Figure 3.1 suggests that we should set at
least H = 250 to suitably approximate both the Dirichlet and the ngg processes with
their nidm counterparts, in this specific setting. Finally, using the same hyperparameter
settings as before, we depict in Figure 3.2 the bounds as for Theorem 3.5, together
with the exact value, when H = 250. Note that the bounds become less informative
essentially in those values K100,250 = k having negligible probabilities, i.e. in the tails of
the distribution.

3.4 Posterior characterizations

We complete here the picture of the distributional properties of nidm processes by
determining their posterior distribution. While for prediction the eppf of Theorem 3.2
might suffice, inference on non-linear functionals of p̃(H), such as quantiles or credible
intervals, relies on the posterior distribution of p̃(H) given a sample θ. To be more precise
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we will refer to a framework where

(θ1, . . . , θn | p̃(H))
iid
∼ p̃(H), p̃(H) ∼ nidm(c, ρ;P). (3.12)

We will display the predictive distribution for θn+1, given θ = (θ1, . . . , θn) and will, then,
provide two representations of the posterior distribution of p̃(H) one of which is effectively
described in terms of the the multiroom Chinese restaurant metaphor introduced in
Camerlenghi et al. (2019). While our results are general, particular emphasis is given to
the ngg multinomial process and, despite the lack of conjugacy, we are able to devise
efficient algorithms for exact (iid) sampling of the posterior. In contrast with most
widely known samplers for homogeneous nrmis, which require truncating certain series
representations, the posterior laws of nidm processes can be sampled exactly.

3.4.1 Predictive distributions and posterior laws

Since the eppf ΠH can be evaluated through Theorem 3.2, it is straightforward to compute
the predictive distributions. To this end, for any n > 1 we define a positive random
variable U whose density function on R+, conditional on the sample θ, equals

p(H)(u) ∝ un−1e−cψ(u)
k∏
j=1

∆nj,H(u). (3.13)

The normalizing constant of the above density is finite and it essentially identifies the
eppf of a nidm process. The density function p(H)(u) parallels the one, say p(∞)(u),
of the latent variable appearing in the posterior representation for nrmis. See James
et al. (2009). Note actually that p(H)(u) converges pointwise to p(∞)(u) as H→∞ since
∆m,H(u)→ τm(u) for any m > 1 and u > 0.

Corollary 3.2. Let θ1, . . . , θn be as in (3.12), and such that they admit k distinct values
θ∗1, . . . , θ

∗
k with θ∗j having frequency nj, then for any A ∈ B(Θ)

P(θn+1 ∈ A | θ) = w0(n
(k))P(A) +

k∑
j=1

wj(n
(k))δθ∗j (A),

where n(k) = (n1, . . . ,nk), w0(n(k)) =
(
1− k

H

)
c
n

∫
R+
u∆1,H(u)p

(H)(u)du and

wj(n
(k)) =

1

n

∫
R+

u
∆nj+1,H(u)

∆nj,H(u)
p(H)(u)du, j = 1, . . . ,k.
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This result is reminiscent of the predictive distributions obtained for homogeneous
nrmis, and indeed similar sampling strategies can be borrowed from that context. For
example, note that conditionally on the latent variable U one has

P(θn+1 ∈ A | θ,U) ∝
(
1−

k

H

)
c∆1,H(U)P(A) +

k∑
j=1

∆nj+1,H(U)

∆nj,H(U)
δθ∗j (A).

Hence, one can devise a generalized Pólya-urn scheme by first drawing U from its density
p(H)(u) and then sampling from the predictive distribution using the above formula.
The terms ∆m,H might be expensive to compute in practice, mainly because of their
combinatorial nature. However, this issue can be attenuated by relying on the recursive
definition of ∆m,H provided in James et al. (2006). Furthermore, in the fairly general
ngg multinomial case, the weights ∆m,H have an explicit formula, and this allow the
implementation of an exact sampling algorithm for U; see Appendix 3.6.

Remark 3.2. If one is only interested in obtaining an exchangeable draw for θ, a
direct strategy consists in simulating p̃(H) and then, conditionally on it, sampling iid
observations from p̃(H), according to (3.12). Indeed, any id random variable whose
Laplace exponent is available in closed form can be sampled, for example through the
general algorithm of Ridout (2009), and this enables the simulation of nidm processes.

We now provide a posterior characterization for the law of the random measure
µ̃(H) given θ: the posterior distribution of p̃(H) can, then, be recovered by normalization.
To ease notation, the posterior law is expressed conditionally on the latent variable U,
whose density is p(H)(u). Moreover, when the sample θ = (θ1, . . . , θn) displays k < H
distinct values θ∗1, . . . , θ

∗
k, we let θ̄k+1, . . . , θ̄H represent the point masses in p̃(H) that are

not included in θ, up to a permutation.

Theorem 3.6. Let θ1, . . . , θn be as in (3.12) and, conditionally on θ, let U be a random variable
with density p(H)(u) as in (3.13). Then

(µ̃(H) | θ,U) d
=

H∑
j=k+1

J∗j δθ̄j +
k∑
j=1

(J∗j + Ij)δθ∗j , (3.14)

where θ̄k+1, . . . , θ̄H are iid draws from P and

(J∗h | U)
iid
∼ id

( c
H

, ρ∗
)

, ρ∗(s) = e−Usρ(s), h = 1, . . . ,H.

Finally, the jumps I1, . . . , Ik are independent and nonnegative random variables characterized by

E
(

e−λIj
∣∣∣θ,U

)
=
∆nj,H(λ+U)

∆nj,H(U)
, j = 1, . . . ,k.
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This representation is closely related to the posterior representation for homogeneous
nrmis, which can be recovered as H→∞. Indeed, the first term in (3.14) converges to a
crm with the exponentially tilted Lévy intensity ρ∗, as a consequence of Theorem 3.1.
On the other hand, J∗j

d−→ 0 and E
(
e−λIj | θ,U

)
→ τnj(λ+U)/τnj(U) for any j = 1, . . . ,k:

hence, the second term on the right–hand–side of (3.14) converges to the fixed jumps
component of the posterior representation of nrmis. See James et al. (2009). Interestingly,
a structural property is shared by nrmis and nidms: conditionally on a latent variable
U the posterior law is a mixture of: (i) a component with a tilted intensity and (ii) a
collection of independent jumps corresponding to the distinct values θ∗1, . . . , θ

∗
k in the

sample θ. However, it must be stressed that for nidms the tilted component vanishes as
soon as k = H distinct values are recorded in the sample, and the posterior distribution
will coincide with the law of a measure with jumps at fixed locations identified by the
distinct values θ∗1, . . . , θ

∗
H.

Example 3.5 (Dirichlet multinomial process, cont’d). Note that ∆m,H(λ+ u)/∆m,H(u) =

τm(λ + u)/τm(u) for any m > 1 and H, implying that the random variables in
Theorem 3.6 have a simple form

(J∗j | θ,U)
iid
∼ gamma

( c
H

, 1+U
)

, (Ij | θ,U)
ind
∼ gamma(nj, 1+U),

for j = 1, . . . ,H, where we agree that Ij = 0 a.s. for any j > k. Then, after normalization
we get

(p̃(H) | θ,U) d
=

H∑
j=k+1

J∗j∑H
h=1(J

∗
h + Ih)

δθ̄j +

k∑
j=1

J∗j + Ij∑H
h=1(J

∗
h + Ih)

δθ∗j ,

which can be shown not to depend on the latent variable U. Also, the above weights have
Dirichlet distribution with parameters (n1 + c/H, . . . ,nk + c/H, c/H, . . . , c/H). Finally, it
is easy to check that Corollary 3.2 can be specialized to obtain the well-known predictive
distributions

P(θn+1 ∈ A | θ) =

(
1−

k

H

)
c

c+n
P(A) +

k∑
j=1

nj + c/H

c+n
δθ∗j (A).

Example 3.6 (ngg multinomial process, cont’d). Note that for any m > 1 one has

∆m,H(u) =

m∑
`=1

ςm,`,H(u) =

m∑
`=1

( c
H

)`−1 C (m, `;σ)
σ`

(κ+ u)−m+`σ.

Moreover, the random variables J∗1, . . . , J
∗
H of Theorem 3.6 are conditionally conjugate,

because ρ∗(s) = e−Usρ(s) = 1
Γ(1−σ)s

−1−σe−(κ+U)s identifies an updated generalized
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gamma process. The distribution of each J∗1, . . . , J
∗
H is known as tempered stable and there

exists several methods for drawing samples from it; see e.g. Ridout (2009) and references
therein. Furthermore, the random variables I1, . . . , Ik given U have the following mixture
densities

pIj(w | u) =

nj∑
`=1

ςnj,`,H(u)

∆nj,H(u)
gamma(w;nj − `σ, κ+ u), (3.15)

for j = 1, . . . ,k, where gamma(w;a,b) denotes the density function of a gamma random
variable. Finally, some algebra yields

P(θn+1 ∈ A | θ,U) ∝
(
1−

k

H

)
c(κ+U)σP(A)

+

k∑
j=1

 1
H
c(κ+U)σ +

nj∑
`j=1

ςnj,`j,H(U)

∆nj,H(U)
(nj − `jσ)

 δθ∗j (A). (3.16)

for any A ∈ B(Θ).

Remark 3.3. To enable posterior inference through random sampling it suffices to simulate
iid U values from p(H)(u) and, then, make use of the above posterior representation.
Although p(H)(u) is known up to a normalizing constant, we can nonetheless draw
samples by acceptance–rejection algorithms. The simulation of the limiting density
p(∞)(u) was typically addressed via Markov Chain Monte Carlo (Lijoi et al., 2007).
However, this further complication can be avoided in the ngg setting, given the availability
of efficient algorithms for exact sampling, which are discussed in Appendix 3.6 both for
p(H)(u) and p(∞)(u). As such, these algorithms might be useful beyond their application
to nidms.

3.4.2 Multiroom Chinese restaurant metaphor

To gain further insights about structural properties of nidm processes, we now describe
a data-augmentation based on the hierarchical representations (3.10)-(3.11). To this
purpose, it is worth recalling the so-called multiroom Chinese restaurant metaphor coined
by Camerlenghi et al. (2019), which can be adapted to nidm processes. Suppose that
there exists a restaurant which serves a finite number of dishes H, corresponding to iid
draws from the diffuse P. Each restaurant has infinitely many rooms, and each room
contains infinitely many tables and is associated to a single dish out of the H available
from the menu. The first customer seats in one of the tables of the first room and selects
a dish. The nth customer can either select a dish previously chosen by the other n− 1

customers or she can choose a new dish. In the former case, she will be seated in the
room serving the dish of choice and she may be seated either at a new table or at an
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e11 = 3 e12 = 1 e13 = 2 Room 1, associated to the 1st dish.

e21 = 5 e22 = 2 Room 2, associated to the 2nd dish.

Figure 3.3: The multiroom chinese restaurant metaphor: circles represent tables and bullets
represent customers. The number of tables for these two rooms are (`1, `2) = (3, 2) so that
|`| = `1 + `2 = 5. The number of customers eating the first dish (i. e. first room) is
n1 =

∑`1
r=1 e1r = 6, while the number of customers eating the second dish (i.e. second room) are

n2 =
∑`2
r=1 e2r = 7.

existing one. If a new dish is chosen, she will sit in a new room and at a new table. An
illustration of this generative scheme is depicted in Figure 3.3.

Recalling the notation used so far, the entries of θ = (θ1, . . . , θn) represent the
dishes eaten by the n customers of the restaurant, whereas the labels identifying the
single tables and their respective frequencies tables are unobservable and, hence, latent
quantities. Specifically, we consider the latent random variables T = (T1, . . . ,Tn), which
can be thought of as the label of the table where each customer is seated. Recall that k
distinct dishes are served at the restaurant, that is, there are θ∗1, . . . , θ

∗
k distinct values

having frequencies n1, . . . ,nk, meaning that the total number of customers seating in
room j or, equivalently, eating dish j, corresponds to the frequency nj. Finally, each
`j ∈ {1, . . . ,nj} represents the number of tables in room j where customers are seated,
while each ejr denotes the number of customers seating at table r in room j, so that∑k
j=1

∑`j
r=1 ejr =

∑k
j=1 nj = n. When H → ∞, the probability of observing a new table

where the same dish is being served tends to zero, implying that each room will have only
one table: in formula, one has the following convergences `j

d−→ 1 for any j = 1, . . . ,k
implying that |`| d−→ k. We denote the |`| distinct labels of the tables with T∗j1, . . . ,T

∗
j`j

having frequencies ejr for r = 1, . . . , `j and j = 1, . . . ,k. Thus, the joint augmented model
for θ = (θ1, . . . , θn) and T = (T1, . . . ,Tn) follows immediately from equation (3.11).
Indeed, one has the following

Corollary 3.3. The joint probability distribution of (θ,T,Ψn,H), where Ψn,H is the partition of
[n] induced by θ through (3.12), is

k∏
j=1

P(dθ∗j )
`j∏
r=1

P(dT∗jr)×
[

H!
(H− k)!

1

H|`|
Π∞(e11, . . . , e1`1 , . . . , ek1, . . . , ek`k)

]
. (3.17)
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The baseline distribution of T is set equal to P for simplicity, but any other diffuse
probability measure would obviously work. Indeed, only the clustering mechanism
implied by the table configuration is relevant to our purposes, and not the actual labels.
Equation (3.17) is hence clear: conditionally on the table configuration induced by T, the
predictive distribution for θn+1 can be easily obtained. In turns, given the previously
observed values θ, the table configuration can be drawn efficiently through a Gibbs
sampler. For the sake of the exposition, we do not attempt the full derivation of these
conditional distributions, but the interest reader may refer to Camerlenghi et al. (2019)
for a detailed discussion, though in a different setting.

Example 3.7 (ngg multinomial process, cont’d). Conditionally on the latent random
variables T, the predictive probabilities can be readily obtained from equation (3.17), so
that

P(θn+1 ∈ A | θ,T) =

=

(
1−

k

H

)
Vn+1,|`|+1

Vn,|`|
P(A) +

k∑
j=1

[
1

H

Vn+1,|`|+1
Vn,|`|

+
Vn+1,|`|
Vn,|`|

(nj − `jσ)

]
δθ∗j (A).

Hence, a relevant simplification occurs when considering ngg multinomial processes.
In particular, the above conditional distribution depends on the table configuration
only through the number of distinct tables `1, . . . , `k rather than the table-specific
frequencies ejr. This is a major computational advantage, since we only need to sample
k latent variables rather than n, as in general nidm processes. Moreover, note that the
above conditional law is intimately related to (3.16), having expanded over the table
configuration and marginalizing over the latent variable U.

In the following, we expand the posterior characterization of Theorem 3.6 by
conditioning also on the table configuration. The random variable U, conditionally
on (θ,T), is a nonnegative latent variable whose density function is given by

p(∞)(u) ∝ un−1e−cψ(u)
k∏
j=1

`j∏
r=1

τejr(u). (3.18)

Thus, conditionally also on T, the latent variable U has the same structure of that involved
in the posterior derivation of nrmis. Similar simplifications occurs also for the fixed
jump component, as summarized in the next corollary.

Corollary 3.4. Let θ1, . . . , θn be a draw from an exchangeable sequence directed by p̃(H) ∼

nidm(c, ρ;P), with P diffuse, as in (3.12). Moreover, let the conditional distribution of U, given
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(θ,T), have density function p(∞)(u) defined as in (3.18). Then,

(µ̃(H) | θ,T,U) d
=

H∑
j=k+1

J∗j δθ̄j +
k∑
j=1

(J∗j +

`j∑
r=1

Ijr)δθ∗j (A),

where θ̄k+1, . . . , θ̄H are iid draws from P, and

(J∗h | U)
iid
∼ id

( c
H

, ρ∗
)

, ρ∗(s) = e−Usρ(s), h = 1, . . . ,H.

Moreover, the jumps Ijr are independent and nonnegative random variables having density

pjr(s | θ,T,U) ∝ e−sUsejrρ(s), r = 1, . . . , `j, j = 1, . . . ,k.

Hence, conditionally on the table configuration, the posterior structure of p̃(H) closely
resemble the one of homogeneous nrmis, for any finite value of H. Specifically, the
distribution of the random variables Ijr have the same kernel of those involved in nrmis.

Example 3.8 (ngg multinomial process, cont’d). Specializing Corollary 3.4 we obtain that

(

`j∑
r=1

Ijr | θ,T,U) ∼ gamma(nj − `jσ, κ+U), j = 1, . . . ,k,

which depends on T only through the number of tables `1, . . . , `k. Note that this
representation is essentially the augmentation of equation (3.15) with respect to the
number of tables. Note that when σ = 0, the posterior law p̃(H) becomes independent on
the table configuration.

3.5 The INVALSI dataset

We consider a publicly available dataset gathered by invalsi, which is an institute for the
assessment of the Italian education system. In particular, the 2016-2017 dataset we are
going to analyze is part of a national examination program conducted in Italy with the
aim of “carrying out periodic and systematic checks on knowledge and skills of students”,
as declared in the official documentation of the invalsi statistical service1. A great effort
was put by the invalsi in order to quantify the added-value of a school, based on these data.
The Bayesian framework constitutes a natural choice when trying to combine multiple
sources of information, i.e. the schools. This can be accomplished through hierarchical
nonparametric models, which enable flexible borrowing of information between different

1Such documentation is available, only in Italian, at: https://invalsi-serviziostatistico.cineca.
it

https://invalsi-serviziostatistico.cineca.it
https://invalsi-serviziostatistico.cineca.it
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institutions (see e.g. Dunson, 2010). A broad and systematic socio-demographical analysis
is beyond the aims of this chapter, and we hence limit ourselves in the presentation of
novel modeling strategies based on nidm priors.

In view of our discussion, we confine the analysis to data related to 8th grade students
from schools in the cities of Padova and Bolzano: more specifically we focus on those
questions related to the comprehension of the Italian language. Having omitted few
observations for which covariates were not available, the resulting dataset comprises a
total of N = 9808 observations (students), belonging to 100 educational institutions. The
invalsi test is composed by 45 questions and the performance of each student might be
well summarized by the proportions of correct answers. To ease the modeling process
we take a logistic transformation of the original proportions, and we define the score Sij
for the ith student in the jth school as

Sij := logit
(

# of correct answers, ith student jth school + 1/2
# of questions + 1

)
, i = 1, . . . ,Nj,

and j = 1, . . . , 100, where Nj denotes the number of students in the jth school. In the
above ratio, we added a small correction to the original proportions to avoid boundary
issues. Such a transformation maps the original scores into R, and therefore it is more
amenable for classical linear modeling with Gaussian errors. Consistent with this, we
model the scores as follows

Sij = µj +x
ᵀ
ijβ + εij, εij

iid
∼ N(0,σ2),

for i = 1, . . . ,Nj and j = 1, . . . , 100, where xij = (1, xij1, . . . , xijp)ᵀ is a vector of student-
specific covariates which are associated to a p + 1 dimensional vector of regression
coefficients β = (β0,β1, . . . ,βp)ᵀ. Each vector xij encodes student-specific categorical
variables, namely: the gender of the student, the education level of her/his father
and mother (primary school, secondary school, etc.), the employment typology of
her/his father and mother, the regularity of the student (i.e. regular, in late, etc.), and
the citizenship (italian, first generation immigrant, etc.). Moreover, the coefficients
µ1, . . . ,µ100 represents the school effects or, in the terminology used so far, the added-value
of the school given a set of covariates, thus being the main quantity of interest in our
analysis. Note that since the intercept term is included in xij, then the coefficients
µ1, . . . ,µ100 are not identified. In practice, this is not a concern if inference is based on the
“centred” set of parameters β0 + µj, for j = 1, . . . , 100, rather than the original random
effects.

We aim at introducing a flexible “nonparametric” prior, for the school effects
µ1, . . . ,µ100, that allows for: i) borrowing information across schools; ii) arbitrary
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deviations from Gaussianity, and iii) robustness under model misspecifications. Gaussian
mixture models are able to capture all these three aspects and we specifically let

(µ1, . . . ,µ100 | P)
iid
∼ P, P =

H∑
h=1

πhN(µ̄h, σ̄2h), (3.19)

for j = 1, . . . , 100. Selecting the appropriate number of mixture components H is typically
a difficult task, and the bic index – customarily employed in this framework – is not
theoretically well justified here. Hence, overfitted mixture models can be exploited to
circumvent this issue. In particular, the Dirichlet multinomial process has found great
applicability as mixing measure, see e.g. Durante et al. (2017) and Rigon et al. (2019) for
some recent contributions. Here we propose the usage of general nidm processes, which
amounts to have the following prior specification for the parameters in (3.19)

(π1, . . . ,πH−1) ∼ nid

( c
H

, . . . ,
c

H
; ρ
)

, (µ̄h, σ̄2h)
iid
∼ P h = 1, . . . ,H,

where P is a diffuse probability measure on R×R+. By enlarging the class of priors from
the Dirichlet multinomial to general nidm multinomial processes we are essentially acting
on the robustness requirement, that is, we are ensuring that the clustering mechanism is
less affected by specific choices of the total mass parameter c, whose specification is often
critical (Malsiner-Walli et al., 2016). Although one might alternative mitigate this issue
by placing a prior distribution on c, this is arguably a more convoluted solution. Indeed,
the resulting prior would be much harder to study analytically: for instance the posterior
law would not be available in closed form. Hence, albeit simple, such a specification has
been missing a solid theoretical background and has mostly turned out to be a sort of
“black-box” prior. Additionally, from a more practical perspective the employment of
ngg priors enables exact sampling of the posterior distribution. In contrast, a Dirichlet
multinomial process with a prior on c usually requires a Metropolis step in the posterior
computation (Ishwaran & Zarepour, 2000).

For this specific application, we employed in (3.19) a ngg multinomial process having
jump measure (3.2). We set the hyperparameters equal to c = 0.1, κ = 0.1 and σ = 0.7,
and we selected a very conservative upper bound for the number of mixture components
H = 50. The a priori effect of these values on the number of cluster Kn,H is depicted in
Figure 3.4, where it is compared with the distribution induced by a Dirichlet multinomial
process (c = 11) having roughly the same expected value E(Kn,H) ≈ 20. As evidenced
by Figure 3.4, the parameter σ plays a crucial role in controlling the variability of Kn,H.
Hence, one can obtain flat specifications for Kn,H, which leads to more robust inference
on the cluster configurations. Such an effect persists a posteriori, as we shall discuss later
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Figure 3.4: A priori and a posteriori distribution of the number of cluster Kn,H in the invalsi

application, under a Dirichlet multinomial prior (c = 11) and a ngg multinomial process prior
(c = 0.1, κ = 0.1,σ = 0.7), with H = 50. The comparison is limited to the interval [1, 40] for
graphical reasons.

on. As for the choice of P, we assume the conditionally conjugate prior

µ̄h
iid
∼ N(0,σ2µ̄), σ̄−2h

iid
∼ ga(aσ̄,bσ̄), h = 1, . . . ,H.

where we set σ2µ̄ = 4 and aσ̄ = 1.5, bσ̄ = 0.05. To conclude our Bayesian formulation we
consider a multivariate Gaussian prior for the regression coefficients β, and an inverse
gamma prior for the residual variance σ2, and we let

β ∼ N(µβ,Σβ), σ−2 ∼ gamma(aσ,bσ),

where we set µβ =  and Σβ = diag(100, . . . , 100), to incorporate the neutral hypothesis
of no relevant effects and aσ = bσ = 1, which induces a fairly non-informative prior.

Posterior inference was conducted through a Gibbs sampling, whose details can be
found in Appendix 3.6. For comparison, we also estimated the same model under a
Dirichlet multinomial prior as for Figure 3.4. We run the algorithm for 10 ′000 iterations
after a burn-in period of 1 ′000 simulations; the traceplots show no evidence against
convergence and an excellent mixing. Computations were performed on a standard
laptop (MacBook Air with 1,3 GHz Intel Core i5 processor), and they took approximately
5 minutes for both models.
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Figure 3.5: Posterior distribution of the random effects β0 + µj for 40 randomly selected schools,
ordered according to the posterior median.

From Figure 3.4, it is apparent that the a posteriori distribution of Kn,H is heavily
influenced by the prior choice. In the Dirichlet multinomial case the number of mixture
components peaks at around 7 and 8, as a consequence of the strongly informative prior
distribution. Conversely, when a more robust ngg prior is used, the data adaptively
select a much smaller number of components, peaking at around 2 mixture components.
Importantly, this implies that if a simple Gaussian random effect model were employed,
the random effects β0 + µj would be overshrunk towards the global mean, potentially
affecting the quality of the analysis. We summarize our findings in Figure 3.5, where we
show the posterior distribution of the β0 + µj random effects for 40 randomly selected
schools. It is evident that a certain degree of variability among schools is present and a
posterior summary of each β0 + µj might be employed to identify virtuous schools.

3.6 Appendix

Laplace functional of a IDM random measure

In first place, recall that the Laplace functional of a crm is available in closed form and
it is given in equation (3.1). The Laplace functional of a idm random measure is then
readily obtained after noting that (µ̃(H) | θ̃1, . . . , θ̃H) is a completely random measure
with a purely atomic baseline distribution, placing mass on θ̃1, . . . , θ̃H. Thus given the
atoms θ̃1, . . . , θ̃H the functional

∫
Θ f(θ)µ̃

(H)(dθ) =
∑H
h=1 Jhf(θ̃h) < ∞ almost surely, so
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that the following chains of equations hold

E
(

e−
∫
Θ f(θ)µ̃

(H)(dθ)
)
= E
{

E
(

e−
∫
Θ f(θ)µ̃

(H)(dθ) | θ̃1, . . . , θ̃H
)}

= E

{
exp

(
−
c

H

H∑
h=1

∫
R+

(1− e−sf(θ̃h))ρ(s)ds

)}

= E

(
exp

[
−
c

H

H∑
h=1

ψ{f(θ̃h)}

])

=

H∏
h=1

E
(

exp
[ c
H
ψ{f(θ̃h)}

])
=

{∫
Θ

exp
[
−
c

H
ψ{f(θ)}

]
P(dθ)

}H
.

The last two equalities follows because the locations θ̃1, . . . , θ̃H are iid from P. The
Laplace transform of µ̃(H)(A) readily follows having set f = λ1A(x), for λ > 0 and A ∈ Θ.
Indeed, simple calculus lead to∫

Θ
exp

[
−
c

H
ψ{λ1A(θ)}

]
P(dθ) =

∫
A

exp
[
−
c

H
ψ{λ1A(θ)}

]
P(dθ)

+

∫
Θ\A

exp
[
−
c

H
ψ{λ1A(θ)}

]
P(dθ)

= P(A) exp
{
−
c

H
ψ(λ)

}
+ 1− P(A),

from which follows the Laplace transform in (3.9).

Proof of Proposition 3.1

First, notice that the expected value, as in any species sampling model, is simply equal
to E{p̃(H)(A)} =

∑H
h=1 E(πh)E{δθ̃h(A)} = P(A)

∑H
h=1 E(πh) = P(A). As an application of

the well-known variance decomposition

Var{p̃(H)(A)} = E{Var(p̃(H)(A) | p̃(H)0 )}+ Var{E(p̃(H)(A) | p̃
(H)
0 )}.

Let us focus on the second summand on the right-hand side of the above equation, which
is equal to

Var{E(p̃(H)(A) | p̃
(H)
0 )} = Var{p̃(H)0 (A)} =

P(A){1− P(A)}

H
.

As for E{Var(p̃(H)(A) | p̃(H)0 )}, because of Proposition 1 in James et al. (2006) we obtain

E{Var(p̃(H)(A) | p̃(H)0 )} = E(p̃
(H)
0 (A){1− p̃

(H)
0 (A)}I(c, ρ)

= P(A){1− P(A)}

(
I(c, ρ) −

I(c, ρ)
H

)
,
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from which the result follows. As for the covariance, note that Var{p̃(H)(A1), p̃(H)(A2)} =
P(A){1− P(A)}E

(∑H
h=1 π

2
h

)
whereas

Cov{p̃(H)(A1), p̃(H)(A2))} = {P(C) − P(A1)P(A2)}E

(
H∑
h=1

π2h

)
,

meaning that

E

(
H∑
h=1

π2h

)
= I(c, ρ) +

1− I(c, ρ)
H

,

from which the result follows.

Proof of Theorem 3.1

Recall that the Laplace functional can be written as in Appendix 3.6, so that

E
(

e−
∫
Θ f(θ)µ̃

(H)(dθ)
)
= E

(
exp

[
−
c

H

H∑
h=1

ψ{f(θ̃h)}

])
.

Now note that the expectations of each ψ(θ̃h) equals

E{ψ(f(θ̃h))} =

∫
Θ
ψ{f(θ)}P(dθ) <∞,

which is finite by assumption. Hence, as an application of the strong law of large
numbers, we get

1

H

H∑
h=1

ψ{f(θ̃h)}
a.s.−→
∫
Θ
ψ{f(θ)}P(dθ), H→∞,

which implies that E
(
e−
∫
Θ f(θ)µ̃

(H)(dθ)
)
→ E

(
e−
∫
Θ f(θ)µ̃

(∞)(dθ)
)

because of bounded
convergence theorem. Given the convergence of the functionals, vague convergence is
implied by Kallenberg (Theorem 4.11, 2017) since the condition

∫
Θψ{f(θ)}P(dθ) <∞ is

satisfied if f is a positive, continuous and bounded function.

Proof of Theorem 3.2

The symmetry among the weights implies that

ΠH(n1, . . . ,nk) =
H!

(H− k)!
E

 k∏
j=1

π
nj
j

 .
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Recalling that µ̃(Θ) =
∑H
h=1 Jh, then we have

E

 k∏
j=1

π
nj
j

 =
1

Γ(n)

∫
R+

un−1E

e−uµ̃(Θ)
k∏
j=1

J
nj
j

du

=
1

Γ(n)

∫
R+

un−1
H∏

j ′=k+1

E
(

e−uJj ′
) k∏
j=1

E
(

e−uJjJnjj
)

du

=
1

Γ(n)

∫
R+

un−1e−c
H−k
H ψ(u)

k∏
j=1

(−1)nj
∂nj

∂unj
e−

c
Hψ(u)du

=
1

Γ(n)

∫
R+

un−1e−cψ(u)
k∏
j=1

Vnj,H(u)du,

which concludes the proof, since Vnj,H(u) = c
H∆nj,H(u). The predictive distributions

of Corollary 3.2 can be obtained exploiting their relationship with the eppf and after
some algebraic manipulation. To obtain the alternative representation (3.10), recall the
following equality, whose proof can be found in Camerlenghi et al. (2019), which holds
for m > 1

Vm,H(u) =
c

H

m∑
`=1

ςm,`,H(u), ςm,`,H(u) =
( c
H

)`−1 1
`!

∑
e

(
m

e1, . . . , e`

)∏̀
r=1

τer(u), (3.20)

for ` = 1, . . . ,m, where the sum runs over all the vectors of positive integers e =

(e1, . . . , e`) such that |e| = m. Thus, on the light of (3.20) we can write the eppf as

ΠH(n1, . . . ,nk) =
H!

(H− k)!
1

Γ(n)

∫
R+

un−1e−cψ(u)
k∏
j=1

Vnj,H(u)du

=
H!

(H− k)!

∑
`

1

H|`|

k∏
j=1

1

`j!

∑
ej

(
nj

ej1, . . . , ej`j

)
Π∞(e11, . . . , e1`1 , . . . , ek1, . . . , ek`k),

where the first sum runs over all the vectors ` = (`1, . . . , `k) such that `j ∈ {1, . . . ,nj}, and
the jth of the k sums runs over all the vectors ej = (ej1, . . . , ej`j) such that ejr > 1 and
|ej| = nj.

Proof of Theorem 3.3

Let us consider the ratio among the two eppfs, which is equal for any k 6 H to

ΠH(n1, . . . ,nk)
Π∞(n1, . . . ,nk) =

H!
Hk(H− k)!

∫
R+
un−1e−cψ(u)

∏k
j=1∆nj,H(u)du∫

R+
un−1e−cψ(u)

∏k
j=1 τnj(u)du

.
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The result follows after noting that the ratio H!
Hk(H−k)! 6 1, and also

∫
R+
un−1e−cψ(u)

∏k
j=1∆nj,H(u)du∫

R+
un−1e−cψ(u)

∏k
j=1 τnj(u)du

> 1.

The latter inequality can be easily obtained from (3.20), from which is clear that ∆m,H(u) =

τm(u) + fm(u), where fm(u) is a positive function, implying that ∆m,H(u) > τm(u) for
any m > 1 and u > 0.

Proof of Theorem 3.4

The starting point of this proof is based on Corollary 2 in Camerlenghi et al. (2018), from
which one can show that

P(Kn,H = k) =

n∑
s=k

P(Kn,∞ = s)P(Ks,0 = k), (3.21)

where Kn,∞ and Kn,H are defined as before, while Kn,0 for any n > 1 is the number of
distinct values from a sample of n exchangeable observations having prior p̃(H)0 . The
distribution P(Kn,0 = k) can be deduced from the associated eppf, which is

Π0(n1, . . . ,nk) =
H!

(H− k)!
H−n, k 6 H,

implying that the distribution of Kn,0 is given for any k 6 min{H,n}

P(Kn,0 = k) =
1

k!

∑
(n1,...,nk)

(
n

n1, . . . ,nk

)
Π0(n1, . . . ,nk) =

H!
(H− k)!

H−nS (n,k),

where the sum runs over all the k-dimensional vectors of positive integers n =

(n1, . . . ,nk) such that |n| = n. The first part of the theorem then follows after the
change of variable ` = s− k in (3.21). As for the second part, note that the expected value
of Kn,H can be written as

E(Kn,H) = E{E(Kn,H | θ̃1, . . . , θ̃H)} = E

{
E
( H∑
h=1

1(θ̃h ∈ {θ1, . . . , θn} | θ̃1, . . . , θ̃H
)}

=

H∑
h=1

E{1− P(θ1 6= θ̃h, . . . , θn 6= θ̃h | θ̃1, . . . , θ̃H)}

=

H∑
h=1

[1− E{(1− πh)
n}] = H−HE{(1− π1)

n}.
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The randomness in these equations is given both by θ̃1, . . . , θ̃n and θ̃1, . . . , θ̃H, whereas in
the last step we have used the symmetricity of the weights of a nidm process. Moreover,
with the same steps as for the proof of Theorem 3.2, one can easily show that

E{(1− π1)
n} =

n∑
`=1

(
1−

1

H

)`
1

`!

∑
e

(
n

e1, . . . , e`

)
Π∞(e1, . . . , e`),

where the sums runs over e = (e1, . . . , e`) such that ej > 1 and |e| = n, from which the
second part of the Theorem follows.

Proof of Theorem 3.5

Recall that the ratio of interest is given by

P(Kn,H = k)

P(Kn,∞ = k)
=

H!
Hk(H− k)!

n−k∑
`=0

1

H`
S (`+ k,k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)
,

and therefore the lower bound follows naturally. We will write

H!
Hk(H− k)!

6
P(Kn,H = k)

P(Kn,∞ = k)
=

H!
Hk(H− k)!

(
1+

n−k∑
`=1

1

H`
S (`+ k,k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)

)
.

Now recall the well-known inequality due to Rennie & Dobson (1969), for which for any
n > 2 and 1 6 k 6 n− 1 a Stirling number of the second kind can be bounded above by

S (n,k) 6
1

2

(
n

k

)
kn−k,

implying that we can further bound the summation of the above equation for 1 6 k 6

min{H,n− 1} in the following way

n−k∑
`=1

1

H`
S (`+ k,k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)
6
1

2

n−k∑
`=1

(
k

H

)`(
`+ k

k

)
P(Kn,∞ = `+ k)

P(Kn,∞ = k)
.

Hence, the result follows.

Proof of Theorem 3.6

We first derive the posterior distribution of p̃(H)0 = 1
H

∑H
h=1 δθ̃h given the θ, when P is

assumed to be diffuse. This fact is summarized in the following proposition.

Lemma 3.1. Let θ1, . . . , θn be a draw from an exchangeable sequence directed by a nidm process
and let P be diffuse. Then, the posterior distribution of p̃(H)0 , defined as in (3.10), for any A ∈
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B(Θ) is

(p̃
(H)
0 | θ)

d
=
1

H

 H∑
j=k+1

δθ̄j +

k∑
j=1

δθ∗j

 ,

where the atoms θ̄k+1, . . . , θ̄H are iid draws from P.

Proof. Since the weights of p̃(H)0 are fixed and equal, we only need to determine
the posterior law of the atoms (θ̃1, . . . , θ̃H | θ). Recall that a nidm process, when P is
diffuse, is a species sampling model, meaning that k out of H atoms are necessarily equal
almost surely to one of the previously observed values θ∗1, . . . , θ

∗
k, while the remaining

H− k are iid draws from the baseline measure P. Notice that the actual order of the
weights is irrelevant, because of the symmetry of the weights of p̃(H)0 . Hence, the result
in Proposition 3.1 follows.

Because of symmetry of the weights, we can assume without loss of generality that
the distinct values θ∗1, . . . , θ

∗
k are associated to the first k random weights π1, . . . ,πk of

the process p̃(H). The Laplace functional of µ̃(H), given θ and p̃(H)0 is given by

E
(

e−µ̃
(H)(f) | θ, p̃(H)0

)
=

E
(

e−µ̃
(H)(f)

∏k
j=1 π

nj
j | p̃

(H)
0

)
E
(∏k

j=1 π
nj
j | p̃

(H)
0

) ,

and hence, with similar steps as for Theorem 3.2, both at the numerator and the
denominator, we obtain

E
(

e−µ̃
(H)(f) | θ, p̃(H)0

)
=

=

∫
R+
un−1e−

c
H

∑k
j=1ψ(f(θ

∗
j )+u) e−

c
H

∑H
h=k+1ψ(f(θ̃h)+u)

∏k
j=1∆nj,H(f(θ

∗
j ) + u)du∫

R+
un−1e−cψ(u)

∏k
j=1∆nj,H(u)du

=

∫
R+

e−
c
H

∑k
j=1ψ

(u)(f(θ∗j )) e−
c
H

∑H
h=k+1ψ

(u)(f(θ̃h))
k∏
j=1

∆nj,H(f(θ
∗
j ) + u)

∆nj,H(u)
p(H)(u)du

=

∫
R+

H∏
h=k+1

E
(

e−f(θ̃h)J
∗
h

) k∏
j=1

E
(

e−f(θ
∗
j )(J
∗
j+Ij)

)
p(H)(u)du

where we used the fact that ψ(f(θ) + u) = ψ(u)(f(θ)) +ψ(u), with ψ(u)(λ) denoting the
Laplace exponent associated to the tilted jump measure ρ∗(s) = e−usρ(s). It remains to
show that any ratio ∆m,H(λ+ u)/∆m,H(u) is indeed the Laplace transform associated to
some nonnegative random variable, for anym > 1 and λ > 0. This is immediately evident
from equation (3.20), because each ∆m,H(u) can be expressed as a linear combination
of Laplace exponents of the form τm(λ+ u)/τm(u), meaning that each random variable
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Ij can be interpreted as a mixture of convolutions of random variables. By combining
Proposition 3.1 with the above Laplace functional the result follows.

Proof of Corollary 3.4

By exploiting equation (3.20), one can easily notice that E
(
e−µ̃

(H)(f) | θ, p̃(H)0

)
obtained

in the proof of Theorem 3.6 can be interpreted as a mixture over the table configurations.
Thus, by augmenting and subsequently conditioning on the table frequencies, one can
easily obtain

E
(

e−µ̃
(H)(f) | θ,T, p̃(H)0

)
=

=

∫
R+

e−
c
H

∑H
h=k+1ψ

(u)(f(θ̃h)) e−
c
H

∑k
j=1ψ

(u)(f(θ∗j )) ×
k∏
j=1

`j∏
r=1

τejr(f(θ
∗
j ) + u)

τejr(u)
p(∞)(u)du

=

∫
R+

H∏
h=k+1

E
(

e−f(θ̃h)J
∗
h

) k∏
j=1

`j∏
r=1

E
(

e−f(θ
∗
j )(J
∗
j+Ijr)

)
p(∞)(u)du,

from which the result follows, by combining the above equation with Proposition 3.1.

Dirichlet multinomial process

In order to derive the eppf od the Dirichlet multinomial from Theorem 3.2 one just need
to notice that when ρ(s)ds = s−1e−sds, then for any m > 1 and u > 0 it holds

Vm,H(u) =
c

H
∆m,H(u) =

Γ(m+ c/H)

Γ(m)Γ(c/H)
τm(u),

which can be verified directly from the definition of Vm,H(u) and τm(u). Substituting the
above quantity in general formula of Theorem 3.2, one has simply that for k 6 H

ΠH(n1, . . . ,nk) =
H!

(H− k)!
1

ckΓ(c/H)k

k∏
j=1

(
Γ(nj + c/H)

Γ(nj)

)
×Π∞(n1, . . . ,nk),

where Π∞(n1, . . . ,nk) = ck/(c)n∏k
j=1 Γ(nj) is the eppf of a Dirichlet process. Hence the

desired eppf can be obtained with some simple algebra. Notice that one could also obtain
this result specializing the general eppf of the ngg multinomial process, by letting σ→ 0.
Indeed, recall that in the Dirichlet process case Vn,k = c

k/(c)n, and that as σ→ 0 one has
σ−kC (n,k;σ)→ |s(n,k)|, the sign-less Stirling number of the first kind. The distribution
of Kn,H is also obtained by exploiting properties of Stirling numbers. Indeed, specializing



Chapter 3. Finite-dimensional normalized random measures 77

Theorem 3.4 and after a change of variable

P(Kn,H = k) =
H!

(H− k)!
1

(c)n

n∑
t=k

( c
H

)t
S (t,k)|s(n, t)|

=
H!

(H− k)!
(−1)n

(c)n

n∑
t=k

(
−
c

H

)t
S (t,k)s(n, t)

=
H!

(H− k)!
(−1)k

(c)n
C (n,k;−c/H).

NGG multinomial process

Substituting the eppf of a generalized gamma nrmi in (3.11), and focusing on the
summation one has

1

`j!

∑
ej

(
nj

ej1, . . . , ej`j

)
Π∞(e11, . . . , e1`1 , . . . , ek1, . . . , ek`k) =

= Vn,|`|
1

`j!

∑
ej

(
nj

ej1, . . . , ej`j

) `j∏
r=1

(1− σ)ejr−1 = Vn,|`|
C (nj, `j;σ)

σ`j
,

from which the eppf of a ngg multinomial process follows. With the same reasoning,
one also obtain the explicit relation for ∆m,H(u) after recalling (3.20).

Simulation of U in the NGG multinomial case

We devise here a simple acceptance-rejection method for sampling the latent variable U
in the ngg multinomial case, whose density was denoted with p(H)(u). Let us focus on
the limiting case H→∞, and suppose we want to simulate a random variable having
density proportional to

p(∞)(u) ∝ un−1(κ+ u)−n+kσ exp
{
−
c

σ
[(κ+ u)σ − κσ]

}
.

As also discussed in Favaro & Teh (2013), rather than handling U directly it is convenient
to draw samples from Z := logU, whose density function is readily available after a
change of variable:

p(∞)(z) ∝ evn(κ+ ez)−n+kσ exp
{
−
c

σ
[(κ+ ez)σ − κσ]

}
.

The distribution of Z is log-concave, that is, the logarithm of its density is concave, as
one can readily verify through direct calculation of the second derivative. This is a
major computational advantage and it implies, for instance, that the distribution of Z
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is unimodal. Moreover, we note that everal black-box techniques were developed for
sampling log-concave distributions.

We propose a simple sampling algorithm which has the advantage of being straight-
forward to implement, and it can be easily extended to the finite-dimensional setting.
As a matter of fact, it is just an application of the well-known ratio-of-uniform method,
which we recall here for convenience. Set

b =
√

sup{p(∞)(z) : z ∈ R},

and
b− = −

√
sup{z2p(∞)(z) : z 6 0}, b+ =

√
sup{z2p(∞)(z) : z > 0}.

Log-concavity of Z ensures that the above constants are finite. Unfortunately, there
are no closed form expressions for b,b− and b+, but they can be readily computed
via univariate numerical maximization, which is a particularly simple problem in this
log-concave setting. Then, a draw from U can be obtained as follows:

Step 1. Sample independently Z1,Z2 uniformly on (0,b) and (b−,b+), respectively.
Step 2. Set the candidate value Z∗ = Z2/Z1.
Step 3. If Z21 6 p(∞)(Z∗) then accept Z∗ and set Z = Z∗, otherwise repeat the whole
procedure.
Step 4. Set U = expZ.
The simulation from p(H)(u) proceeds in a similar manner, with the obvious modifications.
A good degree of tractability is preserved because p(H)(u), and equivalently p(H)(z), is a
finite mixture of densities having the kernel of p(∞)(u), namely

p(H)(u) ∝
∑
`

 k∏
j=1

( c
H

)`j−1 C (nj, `j;σ)
σ`j

un−1(κ+ u)−n+|`|σ exp
{
−
c

σ
[(κ+ u)σ − κσ]

}
,

∝ un−1 exp
{
−
c

σ
[(κ+ u)σ − κσ]

} k∏
j=1

nj∑
`j=1

ςnj,`j,H(u),

which implies that the constants b,b− and b+ involved in the simulation of p(H)(z) are
finite also in this case. Moreover, as H → ∞ the density p(H)(z) converges to p(∞)(z),
implying that log-concavity is recovered at the limit.

Gibbs sampling algorithm for the INVALSI application

We describe here a Gibbs sampling algorithm for posterior computation of the model
described in Section 3.5. Let Gj ∈ {1, . . . ,H} be an indicator function denoting to which
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mixture component each school is allocated, for j = 1, . . . , 100. The Gibbs sampling
algorithm alternates between the following full conditional steps:

Step 1. Exploiting standard results of Gaussian linear models, the full conditional for the
coefficients β is multivariate Gaussian with

(β | −) ∼ N
{
(XᵀX/σ2 +Σ−1

β )−1(Xᵀηβ/σ
2 +Σ−1

β µβ), (X
ᵀX/σ2 +Σ−1

β )−1
}

,

where ηβ is a vector with entries ηijβ = Sij − µj, for i = 1, . . . ,Nj and j = 1, . . . , 100,
whereas X is the corresponding design matrix having row entries xᵀ

ij.
Step 2. The full conditional for the residual variance is

(σ−2 | −) ∼ ga

aσ +N/2,bσ + 1
2

100∑
j=1

Nj∑
i=1

(Sij − µj −x
ᵀ
ijβ)

2

 ,

which can be obtained through standard calculations involved in Gaussian linear models.
Step 3. We update the cluster indicators Gj ∈ {1, . . . ,H} from their full conditional
categorical random variables

P(Gj = h | −) =
πhN(µj; µ̄h, σ̄2h)∑H

h ′=1 πh ′N(µj; µ̄h ′ , σ̄2h ′)
, h = 1, . . . ,H,

for any j = 1, . . . , 100.
Step 4. The full conditional for the school-specific parameters, given the above cluster
assignments, is easily available as

(µj | −)
ind
∼ N

∑Nj
i=1(Sij −x

ᵀ
ijβ)/σ

2 + µ̄Gj/σ̄
2
Gj

1/σ̄2Gj +Nj/σ
2

,
1

1/σ̄2Gj +Nj/σ
2

 ,

independently for every j = 1, . . . , 100.
Step 5. The full conditional for µ̄h and σ̄2h are given by

(µ̄h | −)
ind
∼ N

( ∑
j:Gj=h

µj/σ̄
2
h

1/σ2µ̄ + 1/σ̄
2
h

∑100
j=1 1(Gj = h)

,
1

1/σ2µ̄ + 1/σ̄
2
h

∑100
j=1 1(Gj = h)

)
,

independently for h = 1, . . . ,H and

(σ̄−2h | −)
ind
∼ ga

aσ̄ + 1
2

100∑
j=1

I(Gj = h),bσ̄ +
1

2

∑
j:Gj=h

(µj − µ̄Gj)
2

 ,
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again independently for h = 1, . . . ,H.
Step 6. Update the weights (π1, . . . ,πH) from their full conditional distribution by
exploiting the posterior characterization of Theorem 3.6, with the necessary modifications.
More precisely, the frequencies of the distinct values are given by the vector 100∑

j=1

1(Gj = 1), . . . ,
100∑
j=1

1(Gj = H)

 .



Chapter 4

Functional clustering via finite-dimensional en-
riched priors

4.1 Summary

The chapter is organized as follows. In Section 4.2 we introduced the enriched Dirichlet
multinomial mixture model for functional data, while in Section 4.3 we discuss some
theoretical properties. Specifically, we investigate the underlying clustering mechanism,
we present a novel enriched Pólya-urn scheme and we prove the convergence of our
proposal to some well-defined infinite-dimensional process. In Section 4.4 a variational
Bayes algorithm for posterior inference is developed and it is tested on a simulation
study in Section 4.5. In Section 4.6 we apply the proposed method to a real dataset from
e-commerce, as outlined in Section 1.3.3, and we discuss the empirical findings.

4.2 A Bayesian functional mixture model

In the additive representation (1.12) we consider standardized functional observations.
That is, the empirical mean of Yi(t) evaluated on the time grid ti = (ti1, . . . , tiTi)

ᵀ for
i = 1, . . . ,n, equals zero, whereas the empirical variance equals one. In fact, in this
specific application we are interested in grouping functions with similar shapes and
not in capturing their average levels. Then, for each standardized route and time value
t ∈ R+, we let

Yi(t) = fi(t) + εi(t), i = 1, . . . ,n,

where each fi : R+ → R is an unknown function to be estimated, and where εi(t) is
a Gaussian local error measurement with zero mean and variance σ2, in turn having
a conditionally conjugate gamma prior distribution σ−2 ∼ ga(aσ,bσ). Consistent with
the discussion of Section 1.3.3, we employ a discrete prior law p̃ to borrow information

81
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across the latent trajectories fi and to induce functional clustering, namely we assume

(fi | p̃
(H))

iid
∼ p̃(H), p̃(H) =

H∑
h=1

ξhδφ̃h , (4.1)

independently for i = 1, . . . ,n, with δx denoting the point mass function at x. The
collections of weights ξ1, . . . , ξH are random probabilities such that

∑H
h=1 ξh = 1 almost

surely, whereas each atom φ̃h is the realization of a random function. Hence, each fi
can be formally regarded as a random function defined on a suitable complete and
separable metric space F endowed with its Borel σ-algebra F . From representation (4.1)
it is apparent that a discrete prior induces ties among the functions fi. We will say that
two different functional observations Yi(t) and Yj(t) belong to same group whenever
they possess the same functional atom φ̃h, i.e. when they share the same latent trajectory
fi = fj. Clearly, the choice of the prior law for p̃(H) has a strong impact on the clustering
procedure. A popular class of models, arising in the infinite case H → ∞, is given by
stick-breaking priors (Ishwaran & James, 2001), of which the functional Dirichlet process
(fdp) is a special case. However, as discussed in the Introduction, such a choice might be
unsuitable for our goals, and we rather want to upper-bound the model complexity by
selecting a finite value for H. Furthermore, we aim at adapting (4.1) to incorporate prior
information about functional shapes.

Suppose it is known that each fi possesses specific shapes or features. For example,
we may know in advance that a subset of the functional observations fi is monotone,
cyclical or it is bounded by some constant. In our application, for instance, we know
that a subset of routes presents a strong cyclical pattern. More formally, we assume that
each function fi belongs to a functional class among a finite collection {F1, . . . , FL} of L
specifications, with each Fl ∈ F being a measurable subset of F. These functional classes
have to be specified in consultation with subject matter experts or as a consequence of
exploratory analyses. Splines are particularly convenient in accommodating a variety
of constraints such as monotonicity (Ramsay, 1988), but there are endless modeling
possibilities. For example, Gaussian processes are a flexible and widely used prior
for functional modeling (e.g. Petrone et al., 2009), and one may select for each class a
different covariance function. A computationally convenient class of functions which
includes the aforementioned examples is discussed in Section 4.2.1.

Let Pl for l = 1, . . . ,L be a collection of diffuse and fixed probability measures defined
over the space (F, F ) and placing mass only on the corresponding class space Fl, so that
Pl(Fl) = 1. The diffuseness assumption amount to have Pl({f}) = 0 for any f ∈ F. Then,
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our enriched formulation specializes the general model (4.1) as follow

p̃(H) =

L∑
l=1

Υl

Hl∑
h=1

πlhδθ̃lh ,

θ̃lh
ind
∼ Pl, h = 1, . . . ,Hl, l = 1, . . . ,L.

(4.2)

Such a construction can be readily interpreted as a mixture of mixtures. Differently from
common mixture models, the atoms θ̃lh are independent and identically distributed
(iid) within the feature class, but only independent across them. Exploiting standard
hierarchical representation for mixture models, let us introduce a set of latent cluster
indicators G = (G1, . . . ,Gn) whose values are the pairs (l,h) for any h = 1, . . . ,Hl
and l = 1, . . . ,L, so that each function fi is associated to the corresponding atom θ̃Gi .
Therefore, two functional observations fi and fj belong to the same cluster if and only
if Gi = Gj. Moreover, let us define an additional set of latent indicators Fi ∈ {1, . . . ,L},
for i = 1, . . . ,n, representing the membership of each fi to the corresponding functional
class. Then, the mixing probabilities in (4.2) have a simple and useful interpretation,
which is outlined in the following scheme:

Functional class allocation: P(Fi = l) = Υl,

Within-class allocation: P(Gi = (l,h) | Fi = l) = πlh, h = 1, . . . ,Hl,

Cluster allocation: P(Gi = (l,h)) = Υlπlh, h = 1, . . . ,Hl,

for any l = 1, . . . ,L and unit i = 1, . . . ,n. To summarize, each membership indicator Gi
might be obtained as the result of a two-step procedure. In the first step, the functional
class indicator Fi associated to the ith unit is sampled according to the probabilities
Υ = (Υ1, . . . ,ΥL). Then, conditionally on Fi = l, each cluster membership Gi is drawn
according to the within-class probabilities πl = (πl1, . . . ,πlHl). To allow uncertainty in
such probabilities, we let

(Υ1, . . . ,ΥL−1) ∼ dirichlet(α1, . . . ,αL), (4.3)

whereas for the within-class step, independently on (4.3), we let

(πl1, . . . ,πlHl−1)
ind
∼ dirichlet

(
cl
Hl

, . . . ,
cl
Hl

)
, l = 1, . . . ,L. (4.4)

The Dirichlet distribution in equation (4.4) is symmetric because the atoms θ̃`h are iid
within the functional class. Altogether, equations (4.2)-(4.4) describe what we will term
an enriched functional Dirichlet multinomial process (e-fdmp).
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Such a nested clustering mechanism characterizes general enriched priors, like the
e-fdp and other enriched stick-breaking priors (Scarpa & Dunson, 2014). As we will
show in Section 4.3, there is a sharp connection between the e-fdp and our e-fdmp, since
the former can be recovered as limiting case of the latter. Beside constituting a more
flexible class compared to classical mixtures, enriched processes allow the estimation of
“groups of clusters”, which are identified by the functional class indicators Fi. Indeed, we
might want to group the routes characterized by cyclical patterns or increasing trends,
irrespectively of their within-class allocation. Moreover, even when the Gi indicators are
of interests, it might be useful to split the clustering solution into homogeneous classes,
e.g. to facilitate their presentation to the stakeholders. These are major interpretative
advantages of enriched priors which do not have a direct equivalent in classical mixture
models.

4.2.1 Baseline measures specification

The specification of the baseline measures Pl has clearly a crucial impact on inference.
A priori, each Pl can be interpreted as a “functional prior guess”, because the expected
value of p̃(H) is a mixture of the baseline measures P1, . . . ,PL. Indeed, for any A ∈ F

E{p̃(H)(A)} =

L∑
l=1

E(Υl)Pl(A) =
1

α

L∑
l=1

αlPl(A), α =

L∑
l=1

αl.

The role of the hyperparameters α1/α, . . . ,αL/α is hence clear, being the prior proportions
of each mixture component. For the remaining of the chapter, we will focus on a broad
subclass of baseline probability measures which are characterized by a significantly
improved computational and analytical tractability. More precisely, we assume that
θ̃lh(t) is linear in the parameters, with a Gaussian prior on the regression coefficients,
namely

θ̃lh(t) =

Ml∑
m=1

Bml(t)β̃mlh, β̃lh = (β̃1lh, . . . , β̃Mllh)
ᵀ ind

∼ NMl(µβl ,Σβl), (4.5)

where each B1l(t), . . . ,BMll(t) for l = 1, . . . ,L is a set of pre-specified basis functions and
where β̃lh ∈ RMl is an unknown vector of regression coefficients having multivariate
Gaussian prior with mean µβl = (µ1l, . . . ,µMll)

ᵀ and covariance matrix Σβl . Under such
a choice, the a priori expected value of each function fi(t) for i = 1, . . . ,n and t ∈ R+

simplifies

E{fi(t)} =

L∑
l=1

αl
α

Ml∑
m=1

Bml(t)µml,
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thus being a weighted average of the expected values of the regression coefficients. Note
that Bayesian penalized splines (Lang & Brezger, 2004) fall within specification (4.5).

We shall remark that if inference on the functional classes F1, . . . , Fn is of interest,
the measures P1, . . . ,PL must be distinguishable a priori, in the sense that they should
characterize to quite different functional shapes. Otherwise, it might be difficult to infer
the functional classes from the data. Indeed, while very flexible specifications might be
employed for each Pl, these choices would lead to identifiability issues across functional
classes. However, this is not a concern if one is interested in the cluster memberships.

4.3 Random partitions and clustering

In this section we investigate the a priori random partition mechanism of the e-fdmp

model. Our proposal can be viewed as a middle ground between finite and infinite
mixture models. Indeed, it is closely related to proper nonparametric priors while being
finite dimensional. These features have several important implications for clustering.

A key property of the e-fdmp model is that the number of clusters is bounded by
H =

∑L
l=1Hl. However, this does not imply that the actual number of clusters is equal to

H, because some partitions might be empty. Indeed, to circumvent the issue of selecting
the number of mixture components, one might consider a mixture model with a large
H and employ a sparse prior, thus effectively deleting the redundant mixture weights.
Such an approach has been advocated by Malsiner-Walli et al. (2016), on the ground
of the asymptotic results of Rousseau & Mengersen (2011). The amount of shrinkage
towards the upper bound H or towards the single cluster solution is regulated by the
sparse prior (4.4). Hence, the e-fdmp should not be regarded as a classical finite mixture
model, because the number of clusters is inferred from the data and it should not be
specified in advance.

We begin our discussion by first pointing out relevant connections of our proposal
with both the e-fdp and the fdp processes, and by providing some first intuitions about
the role of each Hl. Consider the probability that two functions are assigned to the same
cluster. More precisely, let fi and fj be two draws from a e-fdmp with i 6= j, then it is
easy to check that a priori

P(fi = fj) =

L∑
l=1

αl(αl + 1)

α(α+ 1)

cl +Hl
clHl +Hl

. (4.6)

The a priori probability of co-clustering of equation (4.6) is decreasing over Hl, i.e. the
within-class upper bounds, and increasing over cl, the within-class total mass parameter.
Importantly, as each Hl →∞ for l = 1, . . . ,L, the probability of co-clustering converges
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to a strictly positive constant

lim
Hl→∞P(fi = fj) =

L∑
l=1

αl(αl + 1)

α(α+ 1)

1

1+ cl
,

which unsurprisingly coincides with the co-clustering probability of the e-fdp, given in
Scarpa & Dunson (2014). Indeed, one can show that a e-fdmp (weakly) converges to a
e-fdp as each Hl → ∞. This convergence result has relevant practical implications:
broadly speaking, it means that if we augment the model complexity indefinitely
by increasing Hl, we nonetheless obtain a well-defined model, whose probability of
co-clustering does not goes to zero. However, this is not to say that we should choose
Hl as large as possible, because this might lead to uninterpretable clustering solutions.
Rather, the bounds Hl should be selected as the largest value maintaining the model
sufficiently tractable.

We now provide a formal statement of the aforementioned convergence result, which
rely on the notion of weak convergence for random measures; we refer to Kallenberg
(Chap. 4, 2017) for a rigorous treatment. Let q̃(∞) ∼ dp(cP) denote a Dirichlet process
having total mass parameter c and baseline probability distribution P (Ferguson, 1973).

Theorem 4.1. Let p̃(H) be a e-fdmp defined by equations (4.2)-(4.4) and let p̃(∞) be a e-fdp

(Scarpa & Dunson, 2014), which is defined as

p̃(∞) =

L∑
l=1

Υlq̃
(∞)
l , q̃

(∞)
l

ind
∼ dp(clPl),

where the probabilities (Υ1, . . . ,ΥL) are distributed as in (4.3). Then,

p̃(H)
wd−→ p̃(∞), as Hl →∞, l = 1, . . . ,L,

where wd−→ denotes weak convergence.

Proof. Note that we can write p̃(H) =
∑L
l=1Υlp̃

(Hl)
l , where each p̃(Hl)l follows a Dirichlet

multinomial process. It is well known that p̃(Hl)l weakly converges to a Dirichlet process
q
(∞)
l (e.g. Ishwaran & Zarepour, 2000) as Hl →∞, implying that for any finite collection

of sets A1, . . . ,Ad ∈ F

{p̃(H)(A1), . . . , p̃(H)(Ad)}
d−→ {p̃(∞)(A1), . . . , p̃(∞)(Ad)}.

Weak convergence of the process follows from Theorem 4.11 in Kallenberg (2017).
Theorem 4.1 is important also on the light of the following connection between the

e-fdp and the fdp which, to the best of our knowledge, was not made explicit elsewhere.
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If L = 1, then the e-fdp trivially reduces to a fdp. However, this occurs also under specific
hyperparameter settings. Indeed, the next corollary implies that if αl = cl for l = 1, . . . ,L,
then the limiting process p̃(∞) will be distributed according to a Dirichlet process whose
baseline probability measure is a mixture of the class-specific measures P1, . . . ,PL. Such
a result is stated as a corollary of Theorem 4.1 for the sake of the exposition, but it is
actually a property of the e-fdp; see the proof for details.

Corollary 4.1. Suppose additionally to Theorem 4.1 that αl = cl for any l = 1, . . . ,L. Then
p̃(H)

wd−→ p̃(∞) as each Hl →∞ and moreover

p̃(∞) ∼ dp

(
L∑
l=1

αlPl

)
.

Proof. The proof rely on the finite-dimensional characterization of the Dirichlet process
(Ferguson, 1973). Specifically, for any finite partition B1, . . . ,Bd ∈ F we have

{q̃
(∞)
l (B1), . . . , q̃

(∞)
l (Bd)}

ind
∼ dirichlet{αlPl(B1), . . . ,αlPl(Bd)}, l = 1, . . . ,L.

Note in particular that {p̃(∞)(B1), . . . , p̃(∞)(Bd)} =
∑L
l=1Υl{q̃

(∞)
l (B1), . . . , q̃

(∞)
l (Bd)}, and

{p̃(∞)(B1), . . . , p̃(∞)(Bd)} ∼ dirichlet

{
L∑
l=1

αlPl(B1), . . . ,
L∑
l=1

αlPl(Bd)

}
,

thanks to well-know properties of the Dirichlet distribution.

4.3.1 Enriched Pólya urn scheme

Similar to Blackwell & MacQueen (1973) in the Dirichlet process case, our e-fdmp

is characterized by a Pólya urn scheme, whose description greatly facilitates the
understanding of the underlying clustering mechanism. Conditionally on the latent
class indicators F1, . . . , Fn, our enriched formulation reduces to a collection of Dirichlet
multinomial processes. Recalling equation (4.2), we can rewrite the e-fdmp as follows

p̃(H) =

L∑
l=1

Υlp̃
(Hl)
l , p̃

(Hl)
l =

Hl∑
h=1

πlhδθ̃lh .

Then, we can augment the above specification by including the set of latent class
indicators F = (F1, . . . , Fn). In this hierarchical representation, the functions belonging
the same class fi : i ∈ Il with Il = {i = 1, . . . ,n : Fi = l} are iid draws from p̃

(Hl)
l , a

Dirichlet multinomial process. More precisely, we can equivalently represent our e-fdmp
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hierarchically as

(Fi | Υ )
iid
∼ multinom(Υ1, . . . ,ΥL), i = 1, . . . ,n,

(fi | Fi = l, p̃
(Hl)
l )

iid
∼ p̃

(Hl)
l , i ∈ Il

with prior distributions as in equations (4.3)-(4.4). Such a hierarchical representation
naturally leads to the definition of a sequential mechanism for generating both f1, . . . , fn
and F1, . . . , Fn. Let nl =

∑n
i=1 1(Fi = l) be the number of elements belonging to the

lth functional class and let kl 6 nl be the number of distinct values observed among
the functions of the lth class. Moreover, let f∗11, . . . , f

∗
1n1

, . . . , f∗L1, . . . , f
∗
LnL

represent the
distinct values observed in the whole sample f = (f1, . . . , fn), having frequencies njl for
j = 1, . . . ,kl and l = 1, . . . ,L, so that nl =

∑kl
j=1 njl and n =

∑L
l=1 nl. Then, the enriched

Pólya urn scheme is characterized by the following two steps, so that for any n > 1 and
any A ∈ F we have

P(Fn+1 = l | F ) =
αl +nl
α+n

, l = 1, . . . ,L,

P(fn+1 ∈ A | f ,F , Fn+1 = l) =
(
1−

kl
Hl

)
cl

cl +nl
Pl(A) +

kl∑
j=1

njl + cl/Hl
cl +nl

δf∗jl(A).

At the first step, one draws the Fn+1 functional class indicator with a probability
depending on the observed frequencies n1, . . . ,nL and the α1, . . . ,αL coefficients, which
can be naturally interpreted as a priori frequencies. Then, at the second step and given
Fn+1 = l, one either draw a novel functional observation from Pl or she samples one of
the previously observed functions with probability proportional to njl + cl/Hl.

On the light of Theorem 4.1, it is not surprising that the second step converges to the
classical scheme of Blackwell & MacQueen (1973) as Hl →∞, conditionally on the lth
functional class. Moreover, if αl = cl the classical Pólya urn scheme is recovered also
marginally, a consequence of Corollary 4.1. Furthermore, such an enriched Pólya urn
scheme is reminiscent of the one presented in Wade et al. (2011), and indeed it can be
essentially regarded as its finite-dimensional counterpart.

Let us focus on the conditional probability of obtaining a new cluster, given the
functions f and the class indicators F . From the enriched Pólya urn scheme one can
easily get

P(fn+1 = “new" | f ,F ) =

L∑
l=1

αl +nl
α+n

(
1−

kl
Hl

)
cl

cl +nl
. (4.7)

The above predictive probability provides a clear guidance about the role of the
hyperparameters. In first place, note that the probability of drawing a new function
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decreases the more clusters kl we observe, and it equals zero whenever kl = Hl. Hence,
the e-fdmp penalizes partitions with a large number of clusters, effectively bounding the
model complexity, one of the overarching goals of our analysis. Note that as Hl → ∞
the aforementioned penalization disappears. Moreover, the parameters cl control the
creation of a new cluster—the larger each cl the more cluster we should expect.

4.4 Posterior computations

Bayesian mixture models are routinely estimated using Markov chain Monte Carlo
(mcmc). While this approach is supported by strong theoretical guarantees, it has some
drawbacks when performing clustering. The first concern is scalability: mcmc sampling
might face computational bottlenecks when the sample size grows. This is a severe
limitation because in practice one would like to conduct the clustering algorithm on a
weekly basis, and perhaps on several different datasets. In addition, a further difficulty
arises when performing clustering with mcmc. As discussed in Lau & Green (2007), at
each step of the chain one samples a different partition of the observations; however, it is
hard to provide a point estimate, essentially because of the label switching phenomenon.
Existing solutions rely either on ad-hoc procedures (Medvedovic & Sivaganesan, 2002),
or on post-process optimizations problems (Lau & Green, 2007; Fritsch & Ickstadt, 2009;
Wade & Ghahramani, 2018). In both cases, this implies an additional layer of difficulty
that one might want to avoid.

To address these issues we employ a mean-field variational approximation of the
posterior distribution, which is nowadays a well-established inferential tool (Blei et al.,
2017). The involved computations are much faster than mcmc, and the variational Bayes
(vb) approach is particularly well suited for clustering purposes, since it is not affected
by label switching, thus ruling out the aforementioned additional steps. In addition,
variational inference for the e-fdmp is straightforward to implement because such a
model belongs to the conditionally conjugate exponential family, for which efficient
optimization algorithms are available (Blei et al., 2017).

Unfortunately, these advantages do not come without some drawbacks: indeed,
the variational posterior is only an approximation of the proper posterior law, and it
is well known that vb generally leads to accurate point estimates but also it typically
underestimate the variability. If uncertainty quantification were of interest, a Gibbs
sampling algorithm for the e-fdmp could be easily devised, since the full conditional
distributions are be available in closed form. However, in our motivating application we
are only interested in a single cluster solution and therefore vb represents an appealing
choice.
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Let π = (π1, . . . ,πL) be the collection of the within-class probabilities of equation (4.4)
and let β̃ = (β̃11, . . . , β̃1H1 , . . . , β̃L1, . . . , β̃LHL) be the set of regression coefficients appear-
ing in equation (4.5). We seek an optimal variational distribution q(∗)(G,Υ ,π, β̃,σ2)
that best approximates the joint posterior, while maintaining simple computations. This
can be obtained by minimizing the Kullback-Leibler divergence between the variational
distribution and the full posterior, or equivalently by maximizing the so-called evidence
lower bound (elbo), so that q(∗)(G,Υ ,π, β̃,σ2) = arg maxq∈Q elbo{q(G,Υ ,π, β̃,σ2)}; see
Blei et al. (2017) and the discussion in Chapter 7.

Without further restrictions, the Kullback-Leibler divergence is minimized when the
variational distribution is equal to the true posterior distribution, which is analytically
intractable. Hence, a common strategy is to assume that the variational distribution
belongs to a mean-field family Q. Such a class of distributions incorporate a posteriori
independence among distinct groups of parameters, meaning that the variational
distribution factorizes as

q(∗)(G,Υ ,π, β̃,σ2) = q(∗)(σ2)
n∏
i=1

q(∗)(Gi)q
(∗)(Υ )

L∏
l=1

q(∗)(πl)
L∏
l=1

Hl∏
h=1

q(∗)(β̃lh).

Under such an assumption, the optimal variational distributions can be found exploiting
an iterative algorithm called coordinate ascent variational inference (cavi). Its full
derivation entails standard calculations which are omitted for the sake of the exposition;
we report in Algorithm 1 only the resulting cavi algorithm. One may refer to Bishop
(Chap. 10, 2006) for detailed illustrations on similar models.

We define here some additional notation necessary for the description of the cavi Al-
gorithm 1. As mentioned in Section 4.2, recall that each functional observation Yi(t)
is only available on a finite grid of points ti = (ti1, . . . , tiTi)

ᵀ. The observed values
associated to these time grids are stacked into a single

∑n
i=1 Ti-dimensional vector

Y = (Y1(t11), . . . , Y1(t1T1), . . . , Yn(tn1), . . . , Yn(tnTn))
ᵀ.

Similarly, we define the
∑n
i=1 Ti×Ml matrices Bl for l = 1, . . . ,L, which are paired to the

data Y and whose entries are the values of the basis functions Bm(tis) of equation (4.5),
for m = 1, . . . ,Ml over the columns and for s = 1, . . . , Ti and i = 1, . . . ,n over the rows.
Moreover, note that in Algorithm 1 the density functions are identified by the same
symbols that are used to characterize distributions. Finally, the expected values appearing
in Algorithm 1 are taken with respect to the variational distributions q(r)(·) at the rth
step of the cycle, motivating the notation Eq(r) . The cavi algorithm, at convergence,
returns the optimal variational distribution q(∗)(·).
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From the output of the cavi algorithm, it is straightforward to derive a posteriori
variational estimates for the cluster memberships G1, . . . ,Gn, for the class-specific
membership F1, . . . , Fn, and for the cluster-specific trajectories θ̃lh. If %

(∗)
i`h denote the

variational probabilities computed at Step 1 of Algorithm 1, at convergence, then a
natural variational Bayes estimate G(∗)

1 , . . . ,G(∗)
n for the cluster memberships is given by

G
(∗)
i = arg max

l,h
%
(∗)
ilh = arg max

l,h
q(∗){Gi = (l,h)}, i = 1, . . . ,n,

and similarly a variational estimate F(∗)1 , . . . , F(∗)n for the functional classes is

F
(∗)
i = arg max

l

Hl∑
h=1

%
(∗)
ilh = arg max

l
q(∗)(Fi = l), i = 1, . . . ,n.

These natural estimators can not be easily computed when performing mcmc because
of the label-switching phenomenon. Finally, an estimate θ̃(∗)lh (t) for the cluster-specific
functions is given by its variational expectation, which equals

θ̃
(∗)
lh (t) = Eq(∗){θ̃lh(t)} =

Ml∑
m=1

Bml(t)Eq(∗)(β̃mlh).

The estimate θ̃(∗)lh (t) will be useful for the interpretation of the clusters.

4.5 Simulated illustration

In this section we assess the empirical performance of the e-fdmp—and the associated
cavi algorithm—by conducting a simple simulation study. Such a simulation is far
from being extensive and it serves mainly as an illustration of the concepts presented in
Section 4.3. Specifically, we aim at showing the ability of our model to effectively recover
the true number of groups, as well as the cluster memberships, thereby empirically
validating the role of each parameter Hl as the upper bound for the total number of
clusters.

For this illustrative example, we consider identical and equally spaced time grids
ti = (1/Ti, . . . , Ti/Ti)ᵀ for i = 1, . . . ,n, ranging over the unit interval [0, 1], and we let the
number of observations n = 100 and each grid length T1 = · · · = Tn = 50. Among the
functions f1, . . . , fn there are only four distinct values f∗1, . . . , f

∗
4, defined as

f∗1(t) = 1− 2t, f∗2(t) =
1

2
{cos(2πt) + sin(2πt)},

f∗3(t) = 2t
4 − 1, f∗4(t) =

1

2
{cos(4πt) + sin(4πt)}.
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Algorithm 1: cavi algorithm for the e-fdmp with baseline measures (4.5)
begin

Let q(r)(·) denote the generic variational distribution at iteration r and let Eq(r)

denote the expected value taken with respect to it. At every step of the algorithm,
update each block of q(r)(·) according to the following steps:

Step 1. Update q(r)(Gi) for each i = 1, . . . ,n;
for i from 1 to n do

Update the variational probabilities q(r){Gi = (l,h)} = %
(r)
ilh according to

%
(r)
ilh ∝ exp

[
Eq(r−1){log (Υlπlh)}+

Ti∑
s=1

Eq(r−1){logN(Yi(tis); θ̃lh(tis),σ2)}

]
,

∝ exp

(
Eq(r−1){log (Υlπlh)}−

1

2
Eq(r−1)(σ−2)

Ti∑
s=1

Eq(r−1)

[{
Yi(tis) − θ̃lh(tis)

}2]),

for any h = 1, . . . ,Hl and l = 1, . . . ,L.

Step 2. Update the variational distribution q(Υ ) according to

q(r)(Υ ) = dirichlet

(
Υ ;α1 +

n∑
i=1

H1∑
h=1

%
(r)
i1h, . . . ,αL +

n∑
i=1

HL∑
h=1

%
(r)
iLh

)
.

Step 3. Update q(r)(πl) for each l = 1, . . . ,L;
for l from 1 to L do

Update the variational distribution of each q(r)(πl) according to

q(r)(πl) = dirichlet

(
πl;

cl
Hl

+

n∑
i=1

%
(r)
il1, . . . ,

cl
Hl

+

n∑
i=1

%
(r)
ilHl

)
.

Step 4. Update q(r)(β̃lh) for each h = 1, . . . ,Hl and l = 1, . . . ,L;
for l from 1 to L do

for h from 1 to Hl do

Update the variational distribution of each q(r)(β̃lh) according to

q(r)(β̃lh) = NMl

(
β̃lh;µ(r)

lh ,Σ(r)
lh

)
,

where Σ(r)
lh = (Bᵀ

l Γ
(r)
lh Bl +Σ

−1
βl

)−1 and µ(r)
lh = Σ

(r)
lh (BlΓ

(r)
lh Y +Σβlµβl),

and with Γ (r)
lh = Eq(r−1)(σ−2)diag(%(r)1lh, . . . , %(r)1lh, . . . , %(r)nlh, . . . , %(r)nlh).

Step 5. Let T̄ = 1/n
∑n
i=1 Ti. Update the variational distribution q(r)(σ−2) according

to

q(r)(σ−2) = ga

(
σ−2;aσ +

nT̄

2
,bσ +

1

2

n∑
i=1

Ti∑
s=1

L∑
l=1

Hl∑
h=1

%
(r)
ilhEq(r) [{Yi(tis) − θ̃lh(tis)}

2]

)
.
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The first f1, . . . , f25 functions are set equal to f∗1, while each element of the second
block f26, . . . , f50 is set equal f∗2, and similarly for the third and fourth blocks of
functions f51, . . . , f75 and f76, . . . , f100, whose elements are equal to f∗3 and f∗4, respectively.
Summarizing, we let the number of cluster be equal to 4 and we assume that each
partition has 25 elements, for a total of n = 100 functional observations. Recall that
we observe error prone realizations Yi(t) of these functions, for i = 1, . . . ,n, as for
equation (1.12). Clearly, the clustering performance is affected by the amount of noise in
the observed data. To emphasize this aspect we consider two different scenarios. In the
first simulated setting, the variance of the error is relatively small (σ2 = 0.12), while in
the second scenario the functions are perturbed by a much higher amount (σ = 1.52). The
simulated trajectories are depicted in Figure 4.1: in the first scenario the four functions
f∗1, . . . , f

∗
4 are clearly distinguishable, whereas in the latter the underlying signal is less

evident. Consequently, the clustering algorithm is expected to perform better in the small
variance setting than in the high variance one.

Although the true number of clusters is 4, we set the total number of mixture
components H = 20, to empirically demonstrate the ability of the e-fdmp to recover the
correct number of distinct functions. Moreover, we let the number of class functions
L = 4 and each within-class upper bound Hl = 5 for l = 1, . . . , 4. The functional atom
specifications, as for equation (4.5), are the following

θ̃1h(t) = β̃11h + β̃21ht, θ̃2h(t) = β̃12h + β̃22h cos(2πt) + β̃32h sin(2πt),

θ̃3h(t) = β̃13h + β̃23ht
4, θ̃4h(t) = β̃14h + β̃24h cos(4πt) + β̃34h sin(4πt),

with iid prior distributions β̃mlh
iid
∼ N(0, 10). The prior specification is concluded by

setting α1 = · · · = αL = 1, c1 = · · · = cL = 1 and aσ = bσ = 1.

The optimization of the elbo might be troublesome due to the presence of local
maxima. To mitigate this issue, the cavi algorithm was initialized at several different
starting points; the solution achieving the highest value of the elbo was retained (Blei
et al., 2017). Remarkably, each run of the cavi required only few seconds for the
computations on a standard laptop and with a naïve implementation in the R statistical
software. The results are depicted in Figure 4.1 for both the scenarios.

In the small variance setting (top graph of Figure 4.1), the cavi algorithm applied to
the e-fdmp model performs remarkably well. Indeed, it correctly identifies 4 clusters—
meaning that among the estimated memberships G(∗)

1 , . . . ,G(∗)
n there are only 4 distinct

values—even though a conservative upper bound H = 20 was selected. Moreover, the
observed curves are always allocated to the correct cluster, as summarized in Table 4.1a,
up to a label permutation. Finally, the estimated curves θ̂lh depicted in Figure 4.1 closely
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Figure 4.1: Simulated trajectories Y1(t), . . . , Yn(t) in the small variance scenario (top graph,
σ2 = 0.12), and high variance scenario (bottom graph, σ2 = 1.52). Different colors refer to
the estimated cluster memberships G(∗)

1 , . . . ,G(∗)
n whereas the corresponding solid lines are the

estimated cluster-specific functions θ̃(∗)lh (t).
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Class label 1 2 3 4

Within-class label 1 2 3 3

f∗1 25 0 0 0

f∗2 0 25 0 0

f∗3 0 0 25 0

f∗4 0 0 0 25

(a) Small variance scenario.

Class label 1 2 3 4

Within-class label 4 2 2 4

f∗1 22 1 0 2

f∗2 3 19 1 2

f∗3 0 2 23 0

f∗4 1 0 0 24

(b) High variance scenario.

Table 4.1: Contingency tables showing the true cluster memberships G1, . . . ,Gn against the
estimated memberships G(∗)

1 , . . . ,G(∗)
n in the small variance (a) and in the high variance (b)

scenarios. The functional class and the within-class labels are reported. The cluster labels having
zero frequencies are omitted.

resemble the true functions f∗1, . . . , f
∗
4. Similar remarks can be made also in the high

variance scenario (bottom graph of Figure 4.1), although the performance are less striking,
as one would expect. In particular, according to Table 4.1b the estimated memberships
G

(∗)
1 , . . . ,G(∗)

n are correct in the 88% of the cases. However, it should be emphasized that
in both cases the correct number of cluster is automatically identified, without the need
of a post-processing step. This corroborates the usage of each Hl as an upper bound,
implying that one should not be worried to overfit the data when selecting large H, as
long as the c1, . . . , cL parameters are well calibrated.

4.6 E-commerce application

4.6.1 Prior specifications

Recall that in our motivating application we aim at grouping flight routes according
to the searches on the website of the company. From the original dataset at our
disposal—concerning only Italian airports—we retained the flight routes having the
highest number of searches within the period under consideration. As a result, the final
dataset comprises n = 214 different flight routes accounting for the 94% of the total
counts. Each Yi(t) is observed over a weekly time grid ranging from the 1st March 2017

(t = 1) to the 14th March 2018 (t = 55), so that each time grid equals ti = (1, . . . , 55)ᵀ,
for i = 1, . . . ,n. Hence, the dataset can be represented as a 214× 55 matrix having 11770
entries.

We set the number of functional classes L = 2 and we select P1 and P2 so that they
have interpretable but yet sufficiently flexible forms. The number of basis functions for
both the functional classes is M1 = M2 = 6. The first functional class (l = 1) captures
yearly cyclical patterns and characterizes the routes having e.g. a peak of web-searches
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Figure 4.2: Prior samples for the L = 2 baseline probability measures P1 (top graph) and P2
(bottom graph) according to equations (4.8)-(4.9).

during either the summer or the winter. This is the case for example of the MIL-AHO

route—from Milan to Alghero, a small city in Sardinia—as apparent from Figure 1.1.
We increase the flexibility of this functional class by including also a semi-parametric
component, thus allowing moderate deviations from this cyclical behavior. Specifically,
we let

θ̃1h(t) =

4∑
m=1

β̃m1hSm(t) + β̃51h cos
(
2π

7

365
t

)
+ β̃61h sin

(
2π

7

365
t

)
, (4.8)

where S1(t), . . . , S4(t) are deterministic cubic spline basis functions. The second func-
tional class (l = 2) has a mathematical formulation similar to (4.8), but with an important
practical distinction. In particular, it characterizes functions having two peaks per year,
which amounts to let

θ̃2h(t) =

4∑
m=1

β̃m2hSm(t) + β̃52h cos
(
2π
14

365
t

)
+ β̃62h sin

(
2π
14

365
t

)
, (4.9)

The MIL-NAP route—from Milan to Naples, depicted in Figure 1.1—is presumably a
member of this functional class. As for the prior distributions β̃lh ∼ NMl(µβl ,Σβl), we
set the prior means µβ1 = µβ2 =  and the covariance matrices Σβ1 = Σβ2 to be equal
and diagonal, having entries diag(Σβ1) = diag(Σβ2) = (1, . . . , 1), which were chosen to
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induce a fairly uninformative prior, considered that the data were standardized. Few
simulated draws from the prior baselines P1 and P2 are shown in Figure 4.2, which
confirms that these two functional classes are both sufficiently flexible but distinct.

To induce a priori a moderate amount of clusters we select c1 = c2 = 1, whereas
we specify a uniform prior for functional class probabilities Υ = (Υ1,Υ2) by letting
α1 = α2 = 1. The latter choice corresponds to the a priori indifference between the two
functional classes. Moreover, by virtue of Corollary 4.1, it also implies that for Hl large
enough the e-fdmp is approximately a fdp with baseline measure 1

2(P1 + P2). Finally, we
let aσ = bσ = 1 for the residual precision σ−2, a fairly uninformative setting.

4.6.2 Selection of the upper bounds

The theoretical findings of Section 4.3 as well as the simulation study of Section 4.5
seem to suggest that each Hl should be taken as large possible, being limited only
by computational constraints. Indeed, the redundant clusters would be automatically
deleted by the shrinkage prior in equation (4.4). Taken to the extreme (i.e. as each
Hl → ∞), this argument would lead to a proper Bayesian nonparametric prior; see
Section 4.3. Although such an approach is theoretically sounding, its direct application
might be troublesome on certain statistical problems. Indeed, real data are far more
heterogeneous than those typically considered in simulations, meaning that the “true”
number of clusters could be large with respect to the sample size. This effect is
particularly marked within the context of functional clustering, because even small
local oscillations lead to mathematically distinct functions. Hence, flexible priors with
very large upper bounds—as well as infinite dimensional nonparametric priors—might
constitute a better fit for the data, at the price of more complex cluster solutions.
The strength of the e-fdmp formulation—especially in comparison with nonparametric
priors—is in that one can balance the flexibility and the complexity of the model by
tuning the bounds Hl.

On the basis of the above discussion, we let H =
∑L
l=1Hl be the largest value for

which the resulting clustering solution is still useful in practice. Such a value is evidently
quite subjective and it depends on the specific statistical problem. In our e-commerce
application—in consultation with the stakeholders of the company—we let the upper
bounds H1 = 20 and H2 = 5. Indeed, the second baseline measure is more prone to
capture specificities of the functional observations compared to the first one, and this
might lead to highly similar clusters. As discussed in the next section, such an effect is
present even under the tight choice H2 = 5. Note that the values Hl still preserve their
interpretation of upper bounds for the within-class number of clusters: if less than Hl
clusters are needed, then the redundant mixture components will be neglected.
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Within-class label 2 3 5 6 10 14 16 17 20

Frequency 8 7 1 2 40 1 4 13 41

Volume (×105) 4.49 2.54 0.51 0.78 51.45 0.44 26.61 15.46 33.43

(a) First functional class (l = 1).

Within-class label 1 2 3 4 5

Frequency 27 9 28 21 12

Volume (×105) 35.24 8.27 23.93 26.96 16.16

(b) Second functional class (l = 2).

Table 4.2: For both the functional classes l = 1 and l = 2 the frequencies of the estimated
clusters, as well as the traffic volumes associated to these groups, are reported. The traffic
volumes represent the summation of the within-cluster number of web-searches over the period
of consideration. The cluster labels having zero frequencies are omitted.

4.6.3 Flight routes segmentation

We run the cavi Algorithm 1 multiple times, starting from different initialization points
to mitigate the issue of local maxima. Such a procedure required only few minutes of
computations on a standard laptop. From the ouput of the cavi algorithm, we estimate
the group memberships G(∗)

1 , . . . ,G(∗)
n as discussed in Section 4.4. In Table 4.2 the

frequencies of the resulting clusters are reported. Note that only 14 clusters are obtained
out of H = 25 and furthermore some of them are composed only by few functional
observations. Moreover, all the H2 = 5 groups of the second functional class are occupied,
which suggests that by selecting a larger upper bound one would probably get more
clusters. However, this would be of little practical interest because—as evidenced in
Figure 4.3—these 5 groups are already highly similar. This is an important practical
advantage of the e-fdmp with respect to nonparametric priors, namely the ability of
bounding the model complexity by avoiding the exploration of complex and less relevant
partition structures.

Together with the cluster frequencies, we report in Table 4.2 also the traffic volumes
associated to these groups, namely the within-cluster summation of the number of web-
searches. Such a metric is far more important than the cluster frequencies: for example,
cluster 16 of class 1—which has only 4 observations and a sensible traffic volume—is
much more relevant from a business perspective than cluster 3 of class 1. Unsurprisingly,
cluster 16 of class 1 identifies flights from the cities Milan and Bologna to Palermo and
Catania, whose airports are among the biggest in Italy.

In Figure 4.3 we depict the raw standardized observations Yi(t) of the 10 most
relevant clusters—i.e. those having the highest traffic volumes—overlaid with the
corresponding estimated curves θ̃(∗)lh (t). A direct graphical inspection confirms that the
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Figure 4.3: The standardized functional observations Yi(t) of the 10 most relevant clusters
(according to the volumes of Table 4.2) are depicted. The solid dark lines represent the associated
cluster-specific estimated trajectories θ̃(∗)lh (t).
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Arrival
North Center South & Islands

North 0 2 49

Departure Center 0 0 24

South & Islands 6 3 12

(a) Macro cluster A. Labels {10, 20} of the first functional class (l = 1).

Arrival
North Center South & Islands

North 0 7 6

Departure Center 10 0 0

South & Islands 47 21 7

(b) Macro cluster B. Labels {1, . . . , 5} of the second functional class (l = 2).

Table 4.3: Contingency tables for the regions associated to the departure and arrival airports, for
the flight routes belonging to macro clusters A and B.

baseline specifications of equations (4.8)-(4.9) are indeed flexible enough to capture the
main tendencies of the data. Moreover, the differences between the two functional classes
are evident also a posteriori: indeed, the clusters of the first column in Figure 4.3 are
characterized by single peaked functions, while the other groups display two-peaked
functions.

As previously mentioned, the clusters of the second functional class are mathemati-
cally different but quite similar, since all the corresponding functions have a first peak
around April and a second one between September and October. Between functional
classes, and within the first functional class, however, there is much more heterogeneity.
For instance, the functions belonging to cluster 2 of class 1 have a single peak in August,
while those belonging to clusters 10 and 20 of class 1 have a single peak between June
and July. Moreover, functions of cluster 17, class 1, are quite stationary at the beginning
and then they drop around August.

We now investigate in more detail the features of clusters 10 and 20 of the first
functional class, termed henceforth macro cluster A, as well as those of the second
functional class, which we will call macro cluster B. Indeed, these macro clusters are
fairly homogeneous and they are also characterized by the highest traffic volumes. Recall
that the airports of our dataset are located in Italy, which can be conveniently divided
in three areas (North, Center and South & Islands), following standard administrative
divisions. Arrival and departure airports of the flight routes belong to one of these areas.
Remarkably, both the macro clusters A and B can be well described in terms of these
administrative borders, as it is apparent from Table 4.3. In particular, the vast majority
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of flight routes belonging to macro cluster A arrive to an airport located in the South &
Island region. Conversely, in the macro cluster B most of the flight routes depart from
the South & Islands area and are directed to the North and to the Center regions. These
findings further corroborate the quality of the obtained cluster solution and they provide
useful intuitions about the role of each cluster. Indeed, these qualitative descriptions
might help marketing specialists in designing effective cluster-specific policies.





Chapter 5

Computational advances for hierarchical pro-
cesses

5.1 Summary

The chapter is organized as follows. In Section 5.2 we review some background material
on the Pitman-Yor process and on homogeneous normalized random measures with
independent increments (nrmis) that has not been covered in Chapters 2 and 3. In
Section 5.3, we propose a particular instance of hierarchical process and we discuss a
finite dimensional approximation based on a deterministic truncation of p̃0. In Section 5.4
the truncated process is employed to define an infinite mixture model for partially
exchangeable data. The novel conditional Gibbs sampler to conduct posterior inference
is derived and described in detail. To assess the practical performance of both the novel
algorithm and the aforementioned infinite mixture model, we conduct a simulation
study in Section 5.5. Finally, as an illustration, we apply our algorithm on real data in
Section 5.6.

5.2 Preliminaries and background

Throughout the chapter we will make extensive use of the notion of homogeneous
normalized completely random measures (nrmis), and of the Pitman-Yor process (py).
The definition of the Pitman–Yor process was given in Chapter 2 whereas a preliminary
and concise background on completely random measures can be found in Chapter 3.

As discussed in Chapter 2, if p̃(∞) ∼ py(c,σ;P) with p̃(∞) =
∑∞
h=1 ξhδφ̃h , then

collection of the weights ξ = (ξ1, ξ2, . . . ) follows a stick-breaking construction. In
the sequel we will only consider a subset of the collection of parameters (σ, c) for which
σ ∈ [0, 1) and c > 0, excluding the degenerate case (σ, c) = (0, 0). Clearly, setting σ = 0

one obtain the stick-breaking construction of Sethuraman (1994) for the Dirichlet process,

103
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whereas for c = 0 one is able to recover the stick-breaking construction of the σ-stable
process given in Perman (1990). See also Perman et al. (1992). The distribution of the
weights ξ = (ξ1, ξ2, . . . ) will be denoted with ξ ∼ gem(σ, c) after Griffiths, Engen, and
McCloskey, and is also referred to as the two-parameter Poisson–Dirichlet process.

5.2.1 NRMI with finitely supported base measure

The hierarchical specification of discrete random probability measures given in (1.4)
entails that each p̃l has, conditionally on p̃0, an atomic base measure. In our case the p̃l’s
are homogeneous nrmis and this motivates our interest in discussing specific features
of nrmis whose base measure is purely atomic. Accordingly, in this Section we will
suppose that p̃(H) ∼ nrmi(c, ρ;P) and that for some H > 1, there exists {θ̃1, . . . , θ̃H} ⊂ Θ
such that P({θ̃h}) > 0 for any h ∈ {1, . . . ,H} and

∑H
h=1 P({θ̃h}) = 1. This corresponds to

normalizing a crm with fixed points of discontinuity. Because of this fact, the following
discussion will partially overlap with some notions already discussed in Chapter 3, which
are recalled here, with the appropriate modifications, for the ease of the exposition.

Let us first consider a finite collection {J1, . . . , Jd} of independent and infinitely
divisible positive random variables such that for any λ > 0, one has E{exp(−λJi)} =
exp{−ciψ(λ)}, where ψ is the Laplace exponent corresponding to the jump measure
ρ—as for equation (3.6) in Chapter 3—and ci > 0 for any i = 1, . . . ,d.

Definition 5.1. If J̄ =
∑d
i=1 Ji and we let πi = Ji/J̄, then we say that (π1, . . . ,πd−1)

identifies a normalized infinitely divisible distribution and will use the notation

(π1, . . . ,πd−1) ∼ nid(c1, . . . , cd; ρ).

These distributions have been discussed at length in Favaro et al. (2011) and they are
the building block of nidm processes introduced in Chapter 3. If p̃(H) ∼ nrmi(c, ρ;P)
and P is purely atomic with H atoms, for any finite and measurable partition {B1, . . . ,Bd}
of Θ the vector {p̃(H)(B1), . . . , p̃(H)(Bd−1)} clearly identifies a probability distribution on
the simplex Sd−1 = {(w1, . . . ,wd−1) : wi > 0;

∑d−1
i=1 wi 6 1}. Moreover, by virtue of

Definition 5.1 one has

{p̃(H)(B1), . . . , p̃(H)(Bd−1)} ∼ nid(cP(B1), . . . , cP(Bd); ρ),

with the proviso that p̃(Bi) = 0, almost surely, if P(Bi) = 0. If we set ch = cP({θ̃h}) for
each h = 1, . . . ,H, and note that P(Θ \ {θ̃1, . . . , θ̃H}) = 0, the random probability measure
p̃(H) ∼ nrmi(c, ρ;P) is fully characterized by the random vector{

p̃(H)({θ̃1}), . . . , p̃(H)({θ̃H−1})
}
∼ nid(c1, . . . , cH; ρ),
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and the support of p̃(H) is the finite set of points {θ̃1, . . . , θ̃H}, almost surely. This
motivates the shorter notation p̃(H) ∼ nrmi(c1, . . . , cH; ρ) we use in this setting. We move
on presenting some examples of homogeneous nrmis, the associated nid distributions
and their densities, that will play a relevant role in the sequel.

Example 5.1 (Dirichlet process). If ρ(s) = s−1e−s then p̃(H) ∼ nrmi(c, ρ;P) is a Dirichlet
process and for any measurable partition {B1 . . . ,Bd} of Θ

{p̃(H)(B1), . . . , p̃(H)(Bd−1)} ∼ dirichlet (c1, . . . , cd) , ci = cP(Bi), i = 1, . . . ,d.

If ci > 0 for each i = 1, . . . ,d, its density function is

p(w) =
Γ (c1 + · · ·+ cd)
Γ(c1)× · · · × Γ(cd)

w
c1−1
1 · · · wcd−1−1d−1 (1− |w|)cd−1ISd−1(w), |w| =

d−1∑
i=1

wi.

Example 5.2 (Normalized inverse Gaussian process). If ρ(s) = (
√
2π)−1 s−3/2 e−s/2 then

for any measurable partition {B1 . . . ,Bd} of Θ

{p̃(H)(B1), . . . , p̃(H)(Bd−1)} ∼ n-ig (c1, . . . , cd) , ci = cP(Bi), i = 1, . . . ,d,

and if ci > 0 for any i = 1, . . . ,d, its density function can be obtained in closed form
(Lijoi et al., 2005) and coincides with

p(w) =
e
∑d
i=1 ci

∏d
i=1 ci

2d/2−1Γ(1/2)d

K−d/2

(√
Ad(w)

)
Ad(w)d/4

{
w1 · · · wd−1(1− |w|)

}−3/2
ISd−1(w),

where Ad(w) =
∑d−1
i=1 (c

2
i/wi) + c

2
d/(1 − |w|) and Kd(·) denotes the modified Bessel

function of the third type.

Example 5.3 (1/2 stable process). If ρ(s) = (
√
2π)−1 s−3/2 then for any measurable for any

measurable partition {B1 . . . ,Bd} of Θ

{p̃(H)(B1), . . . , p̃(H)(Bd−1)} ∼ n-stable (c1, . . . , cd) , ci = cP(Bi), i = 1, . . . ,d,

and if ci > 0 for any i = 1, . . . ,d, its density function is

p(w) =
Γ(d/2)

∏d
i=1 ci

Γ(1/2)d Ad(w)d/2

{
w1 · · · wd−1(1− |w|)

}−3/2
ISd−1(w),

where, as before Ad(w) =
∑d−1
i=1 (c

2
i/wi) + c

2
d/(1− |w|). See Carlton (2002). A well-known

property of the normalized stable process is that it does not depend on the total mass c
and this is clearly reflected by the expression of the density function above.
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5.2.2 NID processes

While nids have been defined on a finite-dimensional simplex, they can be easily extended
to an infinite dimensional setting. This is illustrated in the following.

Definition 5.2. Let c = (c1, c2, . . . ) be an infinite collection of non-negative numbers such
that

∑∞
h=1 ch < ∞. An infinite random vector π = (π1,π2, . . . ) such that

∑∞
h=1 πh = 1,

almost surely, is a normalized infinitely divisible process (nidp) with parameters ρ and c if,
for any d > 2 and finite partition H1, . . . ,Hd of N, one has(∑

j∈H1

πj, . . . ,
∑

j∈Hd−1

πj

)
∼ nid

(∑
j∈H1

cj, . . . ,
∑
j∈Hd

cj; ρ
)

,

and it will be denoted π ∼ nidp(c, ρ).

If we take p̃(∞) ∼ nrmi(c, ρ;P) with cP =
∑∞
h=1 chδθ̃h , p̃(∞) =

∑∞
h=1(Jh/J̄)δφ̃h and let,

for any h > 1

πh = p̃({θ̃h}) =
∑

{j: φ̃j=θ̃h}

Jj/J̄,

then π ∼ nidp(c, ρ) with ch = cP({θ̃h}) for each h > 1. Because of their connection with
nrmis with countable baseline measure, nidp processes will play a central role also in
the description of general hierarchical processes.

5.3 Hierarchical processes

5.3.1 The hierarchical NRMI-PY process

In order to define the prior QL that governs a L-dimensional partially exchangeable array
{(θli)i>1 : l = 1, . . . ,L}, according to (1.3), we rely on (1.4) and resort to a special instance
of hierarchical discrete random probabilities. More specifically, we will deal with the
following setting

(θli | p̃
(∞)
l )

iid
∼ p̃

(∞)
l , i = 1, . . . ,n(l), l = 1, . . . ,L,

(p̃
(∞)
l | p̃

(∞)
0 )

iid
∼ nrmi(c, ρ, p̃(∞)

0 ), l = 1, . . . ,L,

p̃
(∞)
0 ∼ py(σ0, c0,P),

(5.1)

where P is a diffuse probability measure defined on Θ. We will identify this model
as a hierarchical nrmi-py process. Notice that both the hdp (Teh et al., 2006) and the
hierarchical stable process (Camerlenghi et al., 2019) can be recovered as particular cases.

A key feature of hierarchical species sampling models (1.4), and consequently also
of the nrmi-py process (5.1), is that with positive probability they induce ties among
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the θli’s, because of the almost sure discreteness of both (p̃
(∞)
l | p̃

(∞)
0 ) and p̃0. Ties

might occur both within and across groups, because the (p̃
(∞)
l | p̃

(∞)
0 ) share the same

discrete baseline measure, for l = 1, . . . ,L. Thus, investigating the a priori clustering
mechanism is of greater importance to highlight possible limitations induced by specific
choices of (p̃

(∞)
l | p̃

(∞)
0 ) and p̃

(∞)
0 . Indeed, compared to the hdp, specification (5.1)

allows for a more flexible modeling of the clustering mechanism while still preserving
analytical tractability: one can resort to the general theory set forth in Camerlenghi et al.
(2019) in order to derive the partially exchangeable partition function, the full posterior
characterization, and a closed form expression for the distribution of the number of
clusters. See also Bassetti et al. (2018) for further developments in this direction. In
addition, formulation (5.1) is also a suitable choice for computational reasons, as we
will discuss in Section 5.4. Indeed, the stick-breaking construction of the py process p̃0
leads to a simple simulation strategy, both a priori and a posteriori, whereas nrmis are
a good candidate for each (p̃

(∞)
l | p̃

(∞)
0 ) whenever it is relatively simple to study their

finite-dimensional distribution, as discussed in Section 5.2.

An alternative representation of the model in (5.1) highlights a direct connection
with a hierarchical collection of random weights following nidp and gem distributions,
respectively. This approach provides a deeper understanding of the model and, in
addition, has relevant computational advantages. Let us first recall that, in view of the
definition of homogeneous nrmi given in Chapter 3, one has

p̃
(∞)
l =

∞∑
h=1

(Jlh/J̄l)δφ̃lh , l = 1, . . . ,L, (5.2)

where (φ̃lh | p̃
(∞)
0 )

iid
∼ p̃

(∞)
0 , for h > 1 and l = 1, . . . ,L. Moreover, the sequences of random

jumps {(Jlh)h>1 : l = 1, . . . ,L} are independent from the locations {(φ̃lh)h>1 : l = 1, . . . ,L}
and conditionally independent across groups, given p̃(∞)

0 . As for the random baseline
distribution, we let p̃(∞)

0 ∼ py(σ0, c0;P) implying that

p̃
(∞)
0 =

∞∑
h=1

ξ0hδφ̃0h , φ̃0h
iid
∼ P,

with ξ0 = (ξ1, ξ2, . . . ) following the stick-breaking construction. From the above construc-
tion, each random probability measures p̃(∞)

l charges locations that are sampled from
p̃
(∞)
0 . Because of the almost sure discreteness of p̃(∞)

0 , one can equivalently rewrite (5.2)
as follows

p̃
(∞)
l =

∞∑
h=1

πlhδφ̃0h , l = 1, . . . ,L, (5.3)
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in which, conditionally on p̃
(∞)
0 , the locations φ̃0h are fixed whereas the “modified

weights” πl = (πl1,πl2, . . . ) are

πlh =
∑

{j: φ̃lj=φ̃0h}

Jlj/J̄l, h > 1,

for any l = 1, . . . ,L. Remarkably, the conditional law of the perturbed weights πl, given
p̃
(∞)
0 , can be derived and it follows a nidp process. This can be easily seen from additivity

of nrmis, since for any finite and measurable partition {B1, . . . ,Bd} of Θ,(
p̃
(∞)
l (B1), . . . , p̃

(∞)
l (Bd−1) | p̃

(∞)
0

)
=
(∑
j∈H1

πlj, . . . ,
∑

j∈Hd−1

πlj | p̃
(∞)
0

)
,

where Hi = {h > 1 : φ̃0h ∈ Bi}, for i = 1, . . . ,d, form a partition of N. Then, we have
that (∑

j∈H1

πlj, . . . ,
∑

j∈Hd−1

πlj | p̃
(∞)
0

)
∼ nid

(
c
∑
j∈H1

ξ0j, . . . , c
∑
j∈Hd

ξ0j; ρ
)

,

since p̃(∞)
0 (Bi) =

∑
j∈Hi ξ0j, for any i = 1, . . . ,d. This implies, by definition of a

nidp, that (πl | ξ0)
iid
∼ nidp(c ξ0, ρ), for any l = 1, . . . ,L. Now let us introduce a

collection of assignment variables Gli ∈ {1, 2, . . . }, denoting the cluster membership of
each observation, namely θli = φ̃0Gli . Then, we express model (5.1) in the following
equivalent form

ξ0 ∼ gem(σ0, c0), φ̃0h
iid
∼ P, h > 1,

(πl | ξ0)
iid
∼ nidp(c ξ0, ρ), (Gli | πl)

iid
∼ multinomial(πl),

(5.4)

for i = 1, . . . ,n(l) and l = 1, . . . ,L. Specification (5.4) in the particular case of the hdp is
already available from Teh et al. (2006) and it is extended here to the nrmi-py process.
Moreover, such a construction does not use peculiar properties of the py process, and
it would hold for any other discrete random probability measure p̃(∞)

0 . The major
advantage of the py process relies on the fact that the gem distribution appearing in (5.4)
is analytically and computationally tractable.

5.3.2 Deterministic truncation of the infinite process

Posterior inference for the nrmi-py hierarchical processes of equation (5.1) is complicated
by the infinite amount of parameters involved in the prior specification. A possible
strategy for circumventing the problem is the marginalization with respect to the random
probability measures p̃(∞)

1 , . . . , p̃(∞)
d , p̃(∞)

0 to obtain generalized Pólya urn schemes that
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are building blocks of Gibbs samplers of the type proposed in Camerlenghi et al. (2019).
This approach is very effective when one wants to approximate Bayesian point estimators
under squared error loss or, more generally, evaluate linear functionals of the underlying
posterior distribution. On the contrary, it is not ideal if one is interested in non-linear
functionals such as those needed for determining credible intervals that are relevant for
uncertainty quantification.

In order to address the issue, we first introduce a deterministic truncation of the
stick-breaking construction of the py process. This obviously has a cascade effect
also on the conditional distributions of the p̃(∞)

l ’s, given such a truncated version of
p̃
(∞)
0 , since they boil down to finite-dimensional random elements, without the need of

further approximations. More precisely, we approximate model (5.1) with the following
truncated specification

(θli | p̃
(H)
l )

ind
∼ p̃

(H)
l , i = 1, . . . ,n(l), l = 1, . . . ,L,

(p̃
(H)
l | p̃

(H)
0,tr)

iid
∼ nrmi

(
cp̃

(H)
0,tr ; ρ

)
, l = 1, . . . ,L,

p̃
(H)
0,tr ∼ pyH(σ0, c0,P),

(5.5)

where p̃(H)0,tr ∼ pyH(σ0, c0,P) denotes a truncated py process with H components, as in
Chapter 1 and Chapter 2. Clearly, the truncated measure pyH(σ0, c0,P) converges weakly,
almost surely, to a proper Pitman-Yor process as H→∞, and hence implying also the
weak convergence, almost surely, of the bottom level nrmis.

An assessment of the effect of such a deterministic truncation can be obtained
by determining an upper bound of the total variation distance between p̃(∞)

l of the
hierarchical process (5.1) and its finite-dimensional approximation p̃

(H)
l in (5.5), for

each l = 1, . . . ,L. This can provide some guidance on the value at which H can be
fixed. It is apparent that such an upper bound turns out to be random and we will
rely on its expected value in order to gain some intuitive insight on the accuracy of
the proposed truncation. To this end, we need to recall τ2(u) =

∫
R+
s2e−usρ(s)ds

and recall that (a)n = a(a+ 1) · · · (a+ n− 1) denotes the Pochammer symbol. More-
over, we recall that ψ is the Laplace exponent associated to the jump intensity ρ, i.e.
ψ(u) =

∫
R+

(1− e−us) ρ(s)ds for any u > 0.

Theorem 5.1. Let (p̃
(∞)
1 , . . . , p̃(∞)

d ) be a hierarchical nrmi-py process as in (5.1) and let
(p̃

(H)
1 , . . . , p̃(H)d ) be the truncated version defined in (5.5). Then, for any l = 1, . . . ,L,

dtv

(
p̃
(∞)
l , p̃(H)l

)
= sup
A∈B(Θ)

∣∣∣p̃l(A) − p̃(H)l (A)
∣∣∣ 6 RlH =

∑
h>H

πlh a.s.,
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implying that

E
{
dtv

(
p̃
(∞)
l , p̃(H)l

)}
6 E(RlH) =

H∏
h=1

c0 + σ0h

c0 + σ0(h− 1) + 1
.

In addition, set R1(H) =
∏H
h=1

c0+σ0h
c0+σ0(h−1)+1

and R2(H) =
∏H
h=1

(c0+σ0h)2
(c0+σ0(h−1)+1)2

, then

Var (RlH) = I (c, ρ)R1(H) + (1−I (c, ρ))R2(H) −R1(H)
2,

where I (c, ρ) = c
∫

R+
ue−cψ(u)τ2(u)du.

The upper bound RlH has a simple interpretation: broadly speaking, it consists on the
part of πl neglected by the truncation, and hence it is sometimes called truncation error in
the exchangeable setting (Arbel et al., 2018). As a natural and intuitive consequence of
Theorem 5.1, we get that dtv

(
p̃
(∞)
l , p̃(H)l

)
a.s.−→ 0 as H → ∞. More importantly, the first

two moments of RlH can be used to determine a suitable truncation level H; for example,
one might select the value of H such that the expected value of RlH is below a certain
threshold. Some further insight on RlH may be gained by using the fact that

(RlH | ξ0) ∼ nid

(
c
(
1−

H∑
h=1

ξ0h

)
, c

H∑
h=1

ξ0h; ρ
)

,

so that one can simulate its realizations, conditionally on ξ0. When p̃(∞)
0 is a Dirichlet

process the expected value of the random variable RlH goes to zero exponentially fast,
meaning that H has not to be very large in practice. This is illustrated in the following
example.

Example 5.4 (Truncated hdp). If ρ(s) = s−1e−s and σ0 = 0, then p̃(H)0,tr in (5.5) is a truncated

Dirichlet process and the p̃(H)l are, conditionally on p̃(H)0,tr , iid draws from a Dirichlet
distribution. Specializing Theorem 5.1 we get

E
{
dtv

(
p̃
(∞)
l , p̃(H)l

)}
6

(
c0

c0 + 1

)H
.

Therefore, on average, the total variation distance dtv

(
p̃
(∞)
l , p̃(H)l

)
goes to zero exponen-

tially fast as a function of H. Moreover,

Var (RlH) =
1

c+ 1

{
c

(
c0

c0 + 2

)H
− (c+ 1)

(
c0

c0 + 1

)2H
+

(
c0

c0 + 1

)H}
,



Chapter 5. Computational advances for hierarchical processes 111

which is, again, exponentially decreasing as a function of H, implying that the upper
bound RlH is quite concentrated on its expected value for reasonably large values of H.

As apparent from Theorem 5.1, the parameters (c0,σ0) of the (truncated) py process
p̃
(H)
0 directly impact the quality of the approximation. Indeed, the expectation E(RlH)

increases as a function of both c0 and σ0. However, if σ0 > 0 the decay is not anymore
exponential, implying that to achieve reasonable approximations we need a larger H,
especially for values of σ0 close to one. This is consistent with the discussions in Ishwaran
& James (2001) and Arbel et al. (2018) in the exchangeable case.

Another natural aspect that is worth pointing out is the dependence between p̃(H)l

and p̃(H)l ′ , for any l 6= l ′, and how this differ from the one associated to the original
hierarchical process specification in (1.4). To this end one can, for instance, evaluate the
correlation between p̃(H)l (A) and p̃Hl ′(A) for any A ∈X and truncation level H.

Theorem 5.2. Let (p̃(H)1 , . . . , p̃(H)d ) be a hierarchical approximate nrmi-py process as in (5.5).
Then, for any A ∈ B(Θ) such that 0 < P(A) < 1 and any l 6= l ′

Corr
{
p̃
(H)
l (A), p̃(H)l ′ (A)

}
=

I0(σ0, c0,H)
I (c, ρ) +I0(σ0, c0,H)(1−I (c, ρ))

, (5.6)

where I (c, ρ) is as in Theorem 5.1 and

I0(σ0, c0,H) =
H−1∑
h=1

(1− σ0)2
(1+ c0 + (h− 1)σ0)2

h−1∏
l=1

(c0 + lσ0)2
(1+ c0 + (l− 1)σ0)2

+

H−1∏
h=1

(c0 + hσ0)2
(1+ c0 + (h− 1)σ0)2

.

Moreover, taking the limit we get limH→∞I0(σ0, c0,H) = (1− σ0)/(1+ c0), which en-
tails that Corr(p̃(H)l (A), p̃(H)l ′ (A)) converges to the actual Corr(p̃(∞)

l (A), p̃(∞)
l ′ (A)), implied

by the model (5.1), as H → ∞. It is apparent that the correlation coefficient is always
positive and, unsurprisingly, does not depend on the specific set A as a consequence of
homogeneity of the underlying random probability measures at the different levels of
the hierarchy. As such, it is generally interpreted as an overall measure of dependence
between the random probability measures.

Remark 5.1. Note that the parameters c0 and σ0 do not play the same role as in
the infinite-dimensional case. Indeed, one can show that limc0→∞I0(σ0, c0,H) = 1,
which clearly entails that limc0→∞Corr(p̃(H)l (A), p̃(H)l ′ (A)) = 1. On the other hand,
it is clear that when H = ∞ one has the opposite limiting behavior, namely
limc0→∞Corr(p̃(∞)

l (A), p̃(∞)
l ′ (A)) = 0, for any l 6= l ′. Similar can be determined when

considering σ0 → 1. The truncation effect that explains this different limiting dependence
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structure is quite intuitive: when either σ0 or c0 increase more mass is placed on the
Hth atom of the stick-breaking construction, so that p̃(H)0,tr eventually converges to a point
mass at φ̃0H. To sum up, if we let σ0 (or c0) be fixed and consider the correlation as a
function of c0 (or of σ0) it first decreases until it reaches a minimum and, then, increases.

Example 5.5 (Truncated hdp, cont’d.). In the hdp case, the above correlation can be
significantly simplified. Indeed, a straightforward application of Theorem 5.2 yields

Corr{p̃(H)l (A), p̃(H)l ′ (A)} =

(1+ c)

(
1+ c0

(
c0
c0+2

)H−1)
1+ c0 + c

(
1+ c0

(
c0
c0+2

)H−1) .

In the infinite case H → ∞ the correlation reduces to (1+ c)/(1+ c0 + c), as already
obtained in Camerlenghi et al. (2019). Thus, the truncation of p̃0 induces a perturbation
of the correlation of the hdp through a factor which is exponentially decreasing in H.

5.4 Hierarchical NRMI-PY mixture model

5.4.1 Infinite mixture model

In several applied contexts the discreteness of the hierarchical nrmi-py prior is not
a realistic assumption. Nonetheless, we can adapt formulation (5.1) by adding a
further level in the hierarchy, giving rise to a mixture model for partially exchangeable
observations. Within the exchangeable framework, this idea was firstly suggested by Lo
(1984), and discussed in practice for instance in Escobar & West (1995) in the Dirichlet
process case, and by Barrios et al. (2013) for general homogeneous nrmis.

Let Yli for i = 1, . . . ,n(l) and l = 1, . . . ,L be a sample of observations taking values
in a complete and separable metric space Y and let K : Y×Θ→ R+ a transition kernel
such that y 7→ K(y; θ) is a density function on Y, for any θ ∈ Θ, with respect to some
dominating σ-finite measure. Exploiting representation (5.4), for any truncation level H
the approximate hierarchical nrmi-py mixture model is

ξ
(H)
0 ∼ gemH(σ0, c0), φ̃0h

iid
∼ P, h = 1, . . . ,H,

(πl | ξ
(H)
0 )

iid
∼ nid(cξ01, . . . , cξ0H; ρ), (Gli | πl)

iid
∼ multinomial(πl1, . . . ,πlH),

(Yli | Gli, φ̃0)
ind
∼ K(y; φ̃0Gli),

(5.7)
for i = 1, . . . ,n(l) and l = 1, . . . ,L, with φ̃0 = (φ̃01, . . . , φ̃0H) and πl = (πl1, . . . ,πlH−1),
and where gemH(σ0, c0) denotes the truncated sequence ξ(H)0 = (ξ01, . . . , ξ0H−1), asso-
ciated to the aforementioned truncated py process. Also, we set πlH = 1 − |πl| for
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l = 1, . . . ,L. Marginalizing over the cluster indicators Gli, we obtain a finite mixture
representation

(Yli | πl, φ̃0)
ind
∼

H∑
h=1

πlhK(y; φ̃0h), (5.8)

for i = 1, . . . ,n(l) and l = 1, . . . ,L. As apparent from equations (5.7)-(5.8), under this
hierarchical constructions the distributions

∑H
h=1 πlhK(y; φ̃0h) for l = 1, . . . ,L share the

same mixture components K(y; φ̃0h). However, they have different mixing weights πl,
accounting for heterogeneity across groups. We remark that the conditional density∑H
h=1 πlhK(y; φ̃0h) is often of direct inferential interest and one may want to obtain its

posterior distribution rather than just confining herself to a point estimate. In this case,
one cannot rely on marginal algorithms that integrate out the random weights πlh and a
different (conditional) sampler must be adopted.

5.4.2 Blocked Gibbs sampler

In this Section we propose a simple Markov Chain Monte Carlo (mcmc) scheme that
makes use of the approximate specification in equation (5.7) and enables posterior
inference. The algorithms originally proposed for the hdp in Teh et al. (2006) are
of marginal type, thus being characterized by their pros and cons: very effective for
point estimation, but unreliable when it comes to uncertainty quantification. In the
supplementary material of Fox et al. (2011) a conditional algorithm for the hdp is
discussed, and it is based on a finite-dimensional approximation of p̃(∞)

0 ; however, its
applicability is limited to the hdp case. A general marginal algorithm for hierarchical
nrmi processes and hierarchical py processes was proposed by Camerlenghi et al. (2019).
In this very same paper, the authors discuss also a conditional algorithm based on a
representation of crms that can be traced back to Ferguson & Klass (1972). Its actual
implementation must still rely on some truncation of the underlying infinite-dimensional
process that can be achieved through a specific approach as the one suggested, e.g., in
Arbel & Prünster (2017). Since the representation in Ferguson & Klass (1972) displays
jumps arranged in decreasing order, any truncation rule will retain the most relevant
jumps. On the other hand, any computational procedure based on this construction will
require the inversion of an underlying Lévy measure attainable and this may cause some
computational issues.

The blocked Gibbs sampler we propose does not rely on the augmented scheme
proposed in Camerlenghi et al. (2019) nor it makes use of the (suitably truncated)
Ferguson & Klass representation, while still being a conditional algorithm. Furthermore,
the effect of the approximations can be explicitly assessed a priori thanks to Theorem 5.1.
The main relevant constraint implied by our proposal is the availability of the density
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function p(πl | ξ
(H)
0 ) in closed form since it needs to be evaluated. Nonetheless there

are some noteworthy examples of nrmis that comply with this requirement, namely the
Dirichlet process, the normalized inverse-Gaussian process, and the 1/2-stable process.
See Section 5.2.

We now review the steps of the blocked Gibbs sampler, outlined in Algorithm 2,
highlighting practical difficulties and suggesting possible solutions. Each step represents
a full conditional distribution for a block of random variables, and we will denote with a
“−” the conditioning to all the other variables.

Step 1. Observations are randomly and independently allocated to different clusters.
Since we have truncated the sequence of weights ξ(H)0 up to the Hth term, the number of
mixture component is finite. In turns, this implies that the normalizing constant can be
obtained as a simple summation of the involved quantities.

Step 2. The mixing probabilities πl are sampled independently for l = 1, . . . ,L.
Unfortunately, the full conditional p(πl | −) is typically not available in closed form.
The only exception occurs when the prior p(πl | ξ

(H)
0 ) is the conditionally conjugate

Dirichlet distribution, that is, when we assume that (p̃(∞)
l | p̃

(∞)
0 ) is distributed according

to a Dirichlet process. Beside the latter particular case, in general we must resort to
a Metropolis-Hastings step. Having tried several different proposal distributions, we
obtained very good performance by working in the unconstrained space log (πlh/πlH),
for any h = 1, . . . ,H− 1—and then by applying a componentwise Gaussian random walk.
The variances on the Gaussian proposal were adaptively and automatically selected as in
Roberts & Rosenthal (2009).

Step 3. The baseline mixing weights ξ(H)0 are sampled. Notice that the vector ξ(H)0 is a
particular instance of a generalized Dirichlet distribution (Connor & Mosimman, 1969),
and its density is

p(w) =
(1− |w|)c0+σ0(H−1)−1∏H−1
h=1 B(1− σ0, c0 + hσ0)

H−1∏
h=1

w−σ0
h

 H∑
j=h

wj

−1
 ISH−1

(w).

where B(p,q) is the beta function evaluated at p,q > 0. While the full conditional p(πl |
−) has no closed form—even in the Dirichlet case—we can follow the same sampling
strategy of the previous step, which has been proven to be effective even in this case.

Step 4. The atoms φ̃0h are sampled independently for h = 1, . . . ,H, proceeding as in the
exchangeable setting and considering only within-cluster observations. The complexity
of this sampling step depends both on the chosen kernel K and on the prior distribution P.
However, if the kernel belongs to an exponential family, then one might adopt a conjugate
prior distribution (Diaconis & Ylvisaker, 1979), and hence simplify the computations.
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Algorithm 2: Steps of the Gibbs sampler
begin

Step 1. Assign each unit i = 1, . . . ,n(l) and l = 1, . . . ,L, to a mixture
component;

for l from 1 to d do
for i from 1 to n(l) do

Sample Gi ∈ (1, . . . ,H) independently from the categorical variable
with probabilities

P(Gli = h | −) =
πlhK(Yli; φ̃0h)∑H

h ′=1 πlh ′K(Yli; φ̃0h ′)
,

for every h = 1, . . . ,H.

Step 2. Update the mixing parameters πl, for any l = 1, . . . ,d;
for l from 1 to d do

Sample πl independently from the full conditional having density
proportional to

p(πl | −) ∝ p(πl | ξ
(H)
0 )

H∏
h=1

π
nlh
lh ,

where nlh =
∑n(l)

i=1 1(Gli = h), and where 1(·) denotes the indicator
function.

Step 3. Sample the baseline mixing parameter ξ(H)0 from the full conditional
having density proportional to

p(ξ
(H)
0 | −) ∝ p(ξ(H)0 )

d∏
l=1

p(πl | ξ
(H)
0 ).

Step 4. Update the kernel parameters φ̃0h, for any h = 1, . . . ,H;
for h from 1 to H do

Sample the kernel parameters φ̃0h independently from the full conditional
having density proportional to

p(φ̃0h | −) ∝ p(φ̃0h)
∏

(l,i)∈Gh

K(Yli; φ̃0h),

where Gh = {i = 1, . . . ,n(l), l = 1, . . . ,L : Gli = h}.
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As a final remark, we notice that the deterministic truncation allows for the implemen-
tation of other well-established mcmc techniques, essentially because it shifts the original
nonparametric formulation to a finite-dimensional problem, whose likelihood and prior
distribution can be readily evaluated. As such, automatic tools like stan (Carpenter
et al., 2017) might be used for posterior inference.

5.5 Simulation study

To assess the empirical performance of model (5.7) and the associated Gibbs sampling
algorithm, we conduct a simple simulation study. The target of this analysis is the
comparison between the hdp and more general hierarchical processes in terms of
inference on the clustering structure of the data.

We consider a total of n = 2500 observations divided in L = 5 different groups,
each having a different sample size, precisely (n(1), . . . ,n(5)) = (750, 50, 750, 200, 750).
Within group, the simulated data are iid draws from a group-specific finite mixture
of Gaussian distributions, whereas across groups they are independently sampled.
The Gaussian mixtures densities were chosen so that different groups share some
mixture components. In particular, there are a total of 7 latent Gaussian mixture com-
ponents having mean parameters (−2.5,−1.5,−1, 0, 1, 1.5, 2.5) and standard deviations
(1.2, 0.7, 0.25, 0.25, 0.25, 0.7, 1.2), which are split over the L = 5 groups, as reported in
Table 5.1. For instance, the mixture component with 0 mean and standard deviation 0.25
is shared by all the groups. The mixing proportions are not uniform within groups nor
equal across groups: this means, for example, that some mixture components are specific
of two groups but they are not shared by the other three.

Mixture component
1 2 3 4 5 6 7

1 0.0 0.1 0.0 0.6 0.3 0.0 0.0
2 0.1 0.0 0.0 0.5 0.4 0.0 0.0

Group 3 0.1 0.0 0.3 0.3 0.0 0.3 0.0
4 0.0 0.2 0.2 0.5 0.0 0.1 0.0
5 0.0 0.0 0.0 0.4 0.4 0.0 0.2

Table 5.1: True mixing proportions of the simulated data for each group l = 1, . . . , 5, and for each
of the 7 mixture components.

In the hierarchical mixture model (5.7), we employ a Gaussian kernel K(y; θ) =

N
(
y;µ, τ−1

)
, and we choose a conditionally conjugate prior distribution for the parame-
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ters (µ, τ), so that their baseline measure is

P (dµ, dτ) = P1(dµ)P2 (dτ) ,

where P1 is a Gaussian distribution with mean 0 and standard deviation 10, whereas P2
is a Gamma distribution with parameters (1, 1). To simplify our treatment, we decided
not to place any hyperprior distribution on the parameters in P, although this further
hierarchical layer could be easily handled with a straightforward modification of the
blocked Gibbs sampler in Algorithm 2.

We fitted four different hierarchical mixture models to the same simulated dataset,
for different choices of the jump intensity ρ(s) and of the hyperparameters c, c0 and
σ0, whose value are presented in Table 5.2. These models include: i) a hierarchical
Dirichlet Process (hdp); ii) a hierarchical Dirichlet and Pitman-Yor process (hdp-py); iii) a
hierarchical 1/2-stable and Pitman-Yor process (hst-py); iv) a hierarchical normalized
inverse Gaussian and Pitman-Yor process (hig-py). Notice that in the 1/2-stable case
the total mass parameter is irrelevant and therefore it was omitted. We fixed a common
truncation level H = 250, which we found to be sufficiently large to guarantee a good
approximation of the infinite hierarchical mixture model. Indeed, in Table 5.2 we also
report the expected value of upper bound RlH, defined as in Theorem 5.1, which in the
worst case scenario is approximately equal to 0.06.

Model c c0 σ0 Correlation Expected # of clusters E(RlH) H

hdp 18 13 0 0.59 ≈ 41 < 10−6 250

hdp-py 7 5 0.5 0.43 ≈ 40 0.042 250

hst-py - 7 0.5 0.12 ≈ 39 0.057 250

hig-py 2.5 2 0.5 0.50 ≈ 40 0.020 250

Table 5.2: Hyperparameter settings for each hierarchical mixture model. The correlation
coefficient is evaluated using Theorem 5.2. The expected number of cluster is obtained via
Monte Carlo simulations, averaging over 100 ′000 values from the truncated prior. The expected
value of the upper bound RlH, defined as in Theorem 5.1, is also reported.

The hyperparameters c, c0 and σ0 were selected so that peculiar characteristics of
each model can be appreciated—especially compared to the hdp. In particular, the
a priori expected number of cluster—obtained via Monte Carlo after averaging over
100 ′000 draws from the truncated prior in (5.5)—is centered approximately around 40,
as reported in Table 5.2 and depicted in Figure 5.1. That is, we set on purpose the a
priori expected number of cluster to be much higher than the true number of mixture
components. An extensive description of the underlying clustering behaviors is beyond
the aim of this thesis, and one can refer e.g. to Lijoi et al. (2007); De Blasi et al. (2015)
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Figure 5.1: Top figures: a priori distribution of the number of cluster, based on 100 ′000 simulations
from the truncated prior. Bottom figures: a posteriori distribution of the number of clusters,
based on 20 ′000 mcmc draws. Both top and bottom figures refers to the models in Table 5.2.

in the exchangeable case and to Camerlenghi et al. (2019) in the partially exchangeable
setting with hierarchical processes. To our purposes, it suffices to notice that the a priori
distribution of the number of cluster is much “flatter”—i.e. less informative—in general
hierarchical mixture models compared to the one of the hdp, as empirically evidenced in
Figure 5.1. This is due to the stable parameter σ0 in the Pitman-Yor specification, but
also to the specific choice of jump measure ρ. For example, as mentioned in Section 5.2,
the normalized inverse Gaussian distribution might be regarded as less informative
compared to the Dirichlet, essentially leading to a flatter cluster configuration. Thus,
we aim at showing that hierarchical models beyond the hdp might be more robust in
identifying a suitable number of cluster components, especially in severely misspecified
prior settings. This behavior was already noticed in Lijoi et al. (2007) for exchangeable
data, and extend to the case of truncated hierarchical processes.

We run the chain for 200 ′000 iterations—after a burn-in period of 100 ′000 draws—
and we thin the chain every 10 iterations, thus comprising a total of 20 ′000 posterior
samples. The traceplots show good mixing and no evidence against convergence. As
expected, the posterior distribution of the number of clusters—depicted in the bottom row
of Figure 5.1—differs across models: in the hdp the values having highest probabilities
are located between 10 and 12, whereas in all the other cases the posterior distribution
is shifted towards 7, the correct number of mixture components. This is particularly
evident in the hig-py case, whose a priori distribution was indeed the less informative.
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5.6 Illustration

To further corroborate the practical relevancy of the proposed conditional algorithm, in
this section we discuss an application of the nrmi-py process to latent class analysis, in
presence of qualitative covariates (Lazarsfeld & Henry, 1968; Goodman, 1974; Hagenaars
& McCutcheon, 2002). As an illustration, we analyze the dataset presented in Stouffer
& Toby (1951) and reported in Appendix 5.7. This has been the object of several
investigations (e.g. Goodman, 1974, 1975; Clogg & Goodman, 1986; Hagenaars &
McCutcheon, 2002) through latent class analysis, and from a frequentist perspective. The
data are based on a short questionnaire completed by n = 648 undergraduate students
at Harvard and Radcliffe, in 1950. Four ethical dilemmas, denoted as A,B,C and D,
were posed to these students: a response coded as 1 represents a preference towards
particularistic values, and viceversa 0 indicates a preference towards universalistic values.
The questions were presented in slightly different forms to L = 3 independent and
equally sized groups of students, meaning n(1) = n(2) = n(3) = 216. The first group
received each dilemma so that it refers to themselves (EGO), the second group so that it
refers to a stranger (SMITH), and the third group so that it refers to a friend (FRIEND).

Clearly, some degree of agreement of the responses among different groups is
expected, since the ethical dilemmas are the same. Nonetheless, the three groups should
not be treated as identical, because the way in which each dilemma is posed might
influence the response. Hence, within a Bayesian framework, the partial exchangeability
assumption seem fairly natural in this setting, and it provides practical advantages. In
particular, it allows to borrow information across groups and therefore to take stronger
inferential conclusion compared to single-group analyses. Relying on the notation of
Section 5.4, we assume that our observations are drawn from a collection of partially
exchangeable binary random vectors Yli = (Yli1, . . . , Yli4) ∈ {0, 1}4, for i = 1, . . . , 216 and
l = 1, 2, 3, where the components of each Yli refer to items A,B,C and D, respectively.

Latent class models are essentially mixture models in which, given a latent class
(cluster) indicator Gli, the qualitative random variables (Yli1, . . . , Yli4) are mutually
independent. However, as noted in Dunson & Xing (2009), in this setting it is not
straightforward to obtain a well-justified estimate for the number of mixture components.
In addition, they proved that any probability mass function P(Yli = yli) can be
represented in terms of a latent class mixture model, when the number of mixture
components is large enough. This leads us to assuming a mixture model with infinitely
many components that we truncate up to the Hth term, thus obtaining a flexible and
theoretically justified model for contingency tables. Hence, we can extend the approach
of Dunson & Xing (2009) to the partially exchangeable setting, whereby d groups of
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contingency tables are observed and a product of multinomial kernel in the nrmi-py

mixture model of equations (5.7)-(5.8) is specified. More precisely

Yli
ind
∼ P(Yl1 = yl1, . . . , Yl4 = yl4 | πl, φ̃0) =

H∑
h=1

πlh

 4∏
j=1

φ̃
ylj
0hj(1− φ̃0hj)

1−ylj

 , (5.9)

independently for i = 1, . . . , 216, and l = 1, 2, 3, where πl = (πl1, . . . ,πlH) has the same
hierarchical prior distribution as in equation (5.7) and where φ̃0 = (φ̃01, . . . , φ̃0H) is such
that φ̃0h = (φ̃0h1, . . . , φ̃0h4) for any h = 1, . . . ,H. As for the baseline measure P, we
selected a uniform prior over the space (0, 1)4, which is conditionally conjugate and
hence facilitates posterior computations. A possible alternative specification for P consists
of independent beta distributions, for j = 1, . . . , 4, which would still preserve conjugacy
while allowing for the inclusion of more specific prior information in the model.

As for the prior setting of πl, we specified a hierarchical normalized inverse-Gaussian
and stable process (nig-st), with hyperparameter settings c = 1/2, c0 = 0 and σ0 = 3/10
and with a truncation level H = 150. We achieve a good approximation of the infinite
dimensional process, since E(RlH) < 10

−4. Moreover, this specification induces high
correlation a priori (to be meant in terms of the statement of Theorem 5.2) among the
random probability measures p̃(H)l (≈ 0.86): this is consistent with our prior belief that
the same ethical dilemma should lead to very similar responses, regardless the way it
was presented. The a priori expected number of cluster, evaluated via Monte Carlo, is
approximately 3.9; however, the a priori distribution of the number of cluster is quite
dispersed, consistently with the findings of previous analyses, which indeed do not
provide a univocal recommendation about the number of latent components (Stouffer &
Toby, 1951; Goodman, 1974, 1975; Clogg & Goodman, 1986).

Posterior inference was conducted via mcmc, using the blocked Gibbs sampler
described in Section 5.4. We run the chain for 200 ′000 iterations—after a burn-in period
of 50 ′000 draws— and we thin the chain every 10 iterations, thus comprising a total of
20 ′000 posterior samples. The traceplots show good mixing and no evidence against
convergence.

In Clogg & Goodman (1986) it is suggested that these dilemmas can be ordered
(D → C → B → A), according to a Guttman scale. This means, for instance, that a
negative answer to C should imply, on average, also a negative response to dilemmas
B and A. While such an assumption greatly simplifies the analysis, it seem clear from
the subsequent results that it can only provide a reasonable approximation of the
phenomenon. Indeed, we aim at studying for instance the conditional probability of
B = 1 given that C = 0, D = 1 for each group of respondents, which should be close to
zero under the Guttman scale assumption. As it will turn out, these probabilities not
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Figure 5.2: Posterior distribution of k1, group: EGO. Top: posterior distribution of k1 under
the alternative multinomial formulation. Bottom: posterior distribution of k1 under the hig-st

mixture model of equation (5.9).

only are away from zero, but they are also significantly greater than 1/2. More formally,
we are interested in the posterior distribution of

kl = P(Yl2 = 1 | Yl3 = 0, Yl4 = 1,πl, φ̃0),

for any group l = 1, 2, 3, and given the data. Once more, we remark that the posterior dis-
tribution of each kl can be obtained only through conditional algorithms, which therefore
represent the only possible choice to conduct inference in this specific application.

In Figure 5.2 we compare the posterior distribution of k1 (EGO group) obtained using
the aforementioned hig-st model in equation (5.9), with the posterior distribution of k1
obtained under a much simpler multinomial model. More precisely, under the alternative
model we treat the 24 = 16 possible combination of responses as mutually exclusive
categories. Among groups, we assume full heterogeneity—i.e. independence—whereas
within group observations are conditionally iid draws from a multinomial distribution
having 16 possible outcomes, and with a uniform prior. In both cases, the posterior
distribution of k1 is far from zero, suggesting that the Guttman scaling adopted in
Clogg & Goodman (1986) should be interpreted with care. However, as apparent from
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Figure 5.2, our hig-st model is able to substantially reduce the posterior uncertainty
compared to the benchmark multinomial model. Essentially, this is due to two reasons: i)
the latent class representation of equation (5.9), albeit flexible, allows for a parsimonious
characterization of the distribution function P(Yl = yl) compared to the alternative
multinomial formulation (Dunson & Xing, 2009); ii) in our hierarchical formulation
we flexibly borrow information across the three groups, and this translates in a lower
variability of the the posterior distribution. The posterior distributions of k2,k3 for other
groups (SMITH, FRIEND), lead to similar conclusions.

5.7 Appendix

Proof of Theorem 5.1

Recall that (p̃
(∞)
1 , . . . , p̃(∞)

d ) comes from a hierarchical nrmi-py process as in (5.1).
Moreover, let (p̃(H)1 , . . . , p̃(H)d ) be the hierarchical approximate process nrmi-py defined
in (5.5), with truncation level H. Then for any A ∈X , and exploiting representation (5.3),
we have that almost surely

∣∣∣p̃(∞)
l (A) − p̃

(H)
l (A)

∣∣∣ = ∣∣∣∣∣
∞∑
h=1

πlhδφ̃0h(A) −

(
H−1∑
h=1

πlhδφ̃0h(A) +

(
1−

H−1∑
h=1

πlh

)
δφ̃0H(A)

)∣∣∣∣∣
=

∣∣∣∣∣πlHδφ̃0H(A) +∑
h>H

πlhδφ̃0h(A) −

(
1−

H−1∑
h=1

πlh

)
δφ̃0H(A)

∣∣∣∣∣
=

∣∣∣∣∣δφ̃0H(A)∑
h>H

πlh −
∑
h>H

πlhδφ̃0h(A)

∣∣∣∣∣
6
∑
h>H

πlh = RlH.

Note that
∑
h>H πlh >

∑
h>H πlhδφ̃0h(A) almost surely. Hence, if δφ̃0H(A) = 0 a.s., then

the last inequality easily follows, and the same holds true if δφ̃0H(A) = 1 almost surely.
Hence,

dtv

(
p̃
(∞)
l , p̃(H)l

)
= sup
A∈X

∣∣∣p̃(∞)
l (A) − p̃

(H)
l (A)

∣∣∣ 6 RlH =
∑
h>H

πlh,

almost surely. Moreover, notice that(∑
h>H

πlh | ξ0

)
∼ nid

(
c

(
1−

H∑
h=1

ξ0h

)
, c

H∑
h=1

ξ0h; ρ

)
,
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from which it follows that the expected value is equal to

E

(∑
h>H

πlh

)
= E

{
E

(∑
h>H

πlh | ξ0

)}
= E

(∑
h>H

ξ0h

)
=

H∏
h=1

c0 + σ0h

c0 + σ0(h− 1) + 1
.

Now recall that I (c, ρ) = c
∫

R+
ue−cψ(u)τ2(u)du with τ2(u) =

∫
R+
s2e−usρ(s)ds and let

R0H =
∑
h>H ξ0h, then

Var (RlH) = E

{
Var

(∑
h>H

πlh | ξ0

)}
+ Var

{
E

(∑
h>H

πlh | ξ0

)}
= I (c, ρ)E(R0H) + {1−I (c, ρ)}E

(
R2
0H

)
− E(R0H)

2,

where E(R0H) can be computed as before and

E
(
R2
0H

)
=

H∏
h=1

E
{
(1− ν0h)

2
}
=

H∏
h=1

(c0 + σ0h)2
(c0 + σ0(h− 1) + 1)2

.

Proof of Theorem 5.2

First of all, notice that the expected value of the truncated Pitman-Yor process
p̃
(H)
0,tr ∼ pyH(σ0, c0,P), for any A ∈ B(Θ) and any H > 1, is equal to the baseline measure

E(p̃
(H)
0,tr(A)) =

H∑
h=1

E(ξ0h)E{δφ̃0h(A)} = P(A)

H∑
h=1

E(ξ0h) = P(A).

Moreover, one can show that

Var(p̃(H)0,tr(A)) = P(A){1− P(A)}

H∑
h=1

E(ξ20h),

for any H = 1, 2, . . . , and A ∈ X . Define I0(σ0, c0,H) =
∑H
h=1 E(ξ20h) and recall that

I (c, ρ) = c
∫

R+
ue−cψ(u)τ2(u)du with τ2(u) =

∫
R+
s2e−usρ(s)ds. From Proposition 1

of James et al. (2006), one has that Var(p̃(H)l (A) | p̃
(H)
0,tr) = P(A){1− P(A)}I (c, ρ) for any

A ∈ B(Θ). Hence, for any l = 1, . . . ,L,

Var(p̃(H)l (A)) = E(Var(p̃(H)l (A) | p̃
(H)
0,tr)) + Var(p̃(H)0,tr(A))

= I (c, ρ)E[p̃
(H)
0,tr(A){1− p̃

(H)
0,tr(A)}] + P(A){1− P(A)}I0(σ0, c0,H)

= P(A){1− P(A)}{I (c, ρ) −I (c, ρ)I0(σ0, c0,H) +I0(σ0, c0,H)}.
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Moreover, following Camerlenghi et al. (2019, Appendix A.1), for any l 6= l ′

Cov{p̃(H)l (A), p̃Hl ′(A)} = Var{p̃(H)0,tr(A)} = P(A){1− P(A)}I0(σ0, c0,H),

from which it follows that

Corr{p̃(H)l (A), p̃Hl ′(A)} =
I0(σ0, c0,H)

I (c, ρ) +I0(σ0, c0,H)(1−I (c, ρ))
.

It remains to find the explicit formulation of I0(σ0, c0,H), being equal to

I0(σ0, c0,H) =
H∑
h=1

E(ξ20h) =

H∑
h=1

E

{
ν20h

h−1∏
l=1

(1− ν0l)
2

}

=

H∑
h=1

E(ν20h)

h−1∏
l=1

E
{
(1− ν0l)

2
}

=

H−1∑
h=1

{
(1− σ0)2

(1+ c0 + (h− 1)σ0)2

(
h−1∏
l=1

(c0 + lσ0)2
(1+ c0 + (l− 1)σ0)2

)}

+

(
H−1∏
l=1

(c0 + lσ0)2
(1+ c0 + (l− 1)σ0)2

)
.

Notice that all the above results hold also for the infinite case, having replaced
I0(σ0, c0,H) with its limit I0(σ0, c0), so that

lim
H→+∞I0(σ0, c0,H) = I0(σ0, c0) = E

( ∞∑
h=1

ξ20h

)
=

∞∑
h=1

E
(
ξ20h

)
=
1− σ0
1+ c0

,

where the last equality follows for instance from Ishwaran & James (2001, Appendix
A.2).

Dataset

We report in Table 5.3 the dataset used in the illustrative analysis of Section 5.6 and
originally presented in Stouffer & Toby (1951).



Chapter 5. Computational advances for hierarchical processes 125

A B C D EGO SMITH FRIEND

0 0 0 0 42 37 35

0 0 0 1 23 31 17

0 0 1 0 6 6 9

0 0 1 1 25 15 26

0 1 0 0 6 5 3

0 1 0 1 24 29 27

0 1 1 0 7 6 3

0 1 1 1 38 25 32

1 0 0 0 1 2 3

1 0 0 1 4 4 5

1 0 1 0 1 3 2

1 0 1 1 6 4 5

1 1 0 0 2 3 0

1 1 0 1 9 23 20

1 1 1 0 2 3 3

1 1 1 1 20 20 26

Total 216 216 216

Table 5.3: The Stouffer & Toby (1951) dataset. We report the frequencies for each possible
combination of the 24 = 16 responses, divided over the the three groups EGO, SMITH and FRIEND.





Chapter 6

Computational advances for logit stick-breaking
priors

6.1 Summary

The chapter is organized as follows. In Section 6.2 we introduce the logit stick-breaking
prior process (lsbp) and we formalize its sequential characterization. In Section 6.3
three computational routines for the lsbp are derived, namely a Gibbs sampling, an
em algorithm and a variational Bayes algorithm . All these methods are based on the
sequential representation and on the Pólya-gamma data-augmentation. Theoretical
developments about the Pólya-gamma data-augmentation will be presented in Chapter 7.
In Section 6.4 these methodologies are illustrated in a toxicological application.

6.2 Logit stick-breaking prior

This section presents a formal construction of the lsbp via continuation-ratio logistic
regressions. As a natural extension of model (1.7), we consider the general class of
predictor-dependent infinite mixture models∫

Θ
Kx(y; θ)p̃x(dθ) =

∞∑
h=1

ξh(x)Kx(y; φ̃h), (6.1)

where ξh(x) = νh(x)
∏h−1
l=1 {1 − νl(x)} are predictor-dependent mixing probabilities

having a stick-breaking representation, whereas Kx(y; θ) denotes a predictor-dependent
kernel, indexed by the parameters θ and the covariates.

Let us first consider an equivalent formulation of the predictor-dependent mixture
model in (6.1). In particular, following standard hierarchical representations of mixture
models, independent samples Y1, . . . , Yn of the variable with density function displayed

127
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ASSIGNMENT

P(Gi > 1 | xi) = 1− ν1(xi)

Gi > 1

P(Gi = 1 | xi) = ν1(xi)

Gi = 1

P(Gi > 2 | Gi > 1,xi) = 1− ν2(xi)

Gi > 2

P(Gi = 2 | Gi > 1,xi) = ν2(xi)

Gi = 2

P(Gi > 3 | Gi > 2,xi) = 1− ν3(xi)

Gi > 3

P(Gi = 3 | Gi > 2,xi) = ν3(xi)

Gi = 3

. . .

. . .
. . .
. . .

Figure 6.1: Representation of the sequential mechanism to sample Gi.

in (6.1), can be obtained from

(Yi | Gi = h,xi)
ind
∼ Kxi(y; φ̃h), P(Gi = h | xi) = νh(xi)

h−1∏
l=1

{1− νl(xi)}, (6.2)

for each unit i = 1, . . . ,n, where φ̃h
iid
∼ P, whereas Gi ∈ N is the categorical variable

denoting the mixture component associated with the ith unit. According to (6.2), every
Gi has probability mass function p(Gi | xi) =

∏∞
h=1 πh(xi)

1(Gi=h), where 1(·) denotes the
indicator function. Hence, re-writing {νh(xi)}h>1 as a function of the mixing probabilities
{ξh(xi)}h>1 via

νh(xi) =
ξh(xi)

1−
∑h−1
l=1 πl(xi)

=
P(Gi = h | xi)

P(Gi > h− 1 | xi)
, h > 1, (6.3)

allows to interpret each νh(xi) as the probability of being allocated to component h,
conditionally on the event of surviving to the previous 1, . . . ,h− 1 components, namely
νh(xi) = P(Gi = h | Gi > h− 1,xi). This result provides a formal characterization of
the stick-breaking construction in (6.2) as the continuation-ratio parameterization (Tutz,
1991) of the probability mass function for each component membership variable Gi. This
connection with the literature on sequential inference for categorical data is common to
all the stick-breaking priors—as mentioned also by Rodriguez & Dunson (2011) in the
probit case.

As we will describe in Section 6.3, the above result facilitates the implementation of
different routine-use algorithms in Bayesian inference, and provides a simple generative
process for each Gi. In particular, as illustrated in Figure 6.1, in the first step of this
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continuation-ratio generative mechanism, unit i is either assigned to the first component
with probability ν1(xi) or to one of the others with complement probability. If Gi = 1
the process stops, otherwise it continues considering the reduced set {h : h > 1}. A
generic step h is reached if i has not been assigned to 1, . . . ,h− 1, and the decision at
this step will be to either allocate i to component h with probability νh(xi), or to one
of the subsequent components with probability 1− νh(xi), conditioned on Gi > h− 1.
Based on this representation, the assignment indicator ζih = 1(Gi = h) can be expressed,
for every unit i = 1, . . . ,n, as

ζih = zih

h−1∏
l=1

(1− zil), h > 1, (6.4)

where the generic zih, h > 1, is a Bernoulli variable (zih | xi) ∼ Bern{νh(xi)} denoting the
decision at the hth step to either allocate i to component h or to one of the subsequents.
Hence, according to (6.4), the sampling of each Gi, under the predictor-dependent
stick-breaking representation for each ξh(xi) in (6.2), can be reformulated as a set
of sequential Bernoulli choices with natural parameters ηh(xi) = logit{νh(xi)} =

log[νh(xi)/{1 − νh(xi)}] under an exponential family representation. Hence, we can
write

ξh(xi) =
exp{ηh(xi)}

1+ exp{ηh(xi)}

h−1∏
l=1

[
1

1+ exp{ηl(xi)}

]
, h > 1, (6.5)

allowing each ηh(xi) to be explicitly interpreted as the log-odds of the probability of
being allocated to component h, conditionally on the event of surviving to the first
1, . . . ,h− 1 components. This result might be helpful in driving prior specification for
the stick-breaking weights, while allowing recent computational advances in Bayesian
logistic regression (Polson et al., 2013) to be inherited in our density regression problem.

To conclude our Bayesian representation, we require priors for the log-odds ηh(xi),
h > 1 in the continuation-ratio logistic regressions. A natural choice, which is con-
sistent with classical generalized linear models (e.g. Nelder & Wedderburn, 1972),
is to define ηh(xi) as a linear combination of selected functions of the covariates
B2(xi) = {B21(xi), . . . ,B2M2(xi)}

ᵀ and consider Gaussian priors for the coefficients,
thus obtaining

ηh(xi) = B2(xi)
ᵀγh, with γh ∼ NM2(µγ,Σγ), h > 1. (6.6)

Although the linearity assumption in (6.6) may seem restrictive, note that flexible
formulations for ηh(xi), including regression via splines and Gaussian processes, induce
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linear relations in the coefficients. Moreover, as we will outline in Section 6.3, the linearity
assumption simplifies computations, while inducing a logistic-normal prior for each
νh(xi). Although such a prior can closely approximate Dirichlet distributions (Aitchison
& Shen, 1980), the logit stick-breaking does not induce beta distributed stick-breaking
weights, and therefore it cannot be included in the class discussed by Ishwaran & James
(2001). However, one can easily adapt the theoretical results in Rodriguez & Dunson
(2011) to our logit link. For example, the infinite summation of the mixing weights is
such that

∑∞
h=1 ξh(xi) = 1 almost surely for any x ∈ X; see the Appendix for details.

Moreover, the lsbp is highly similar in its probabilistic nature and properties to other
popular predictor-dependent stick-breaking constructions. In particular, psbp can be
approximated by lsbp, and viceversa, up to a simple transformation of the prior for each
γh. This is a natural consequence of the well known relationship between the probit and
the logit function (Amemiya, 1981), since the mapping {1+ exp(−B2(x)

ᵀγh)}
−1 can be

roughly approximated by Φ{B2(x)
ᵀγh
√
π/8}. This is summarized in Remark 6.1.

Remark 6.1. The logit stick-breaking prior in (6.6), can be approximated by a probit stick-
breaking process νh(x) ≈ Φ{B2(x)

ᵀγ̄h}, with γ̄h = γh
√
π/8 ∼ NM2{

√
π/8µγ, (π/8)Σγ},

for every x ∈ X and h > 1.

Hence, a researcher considering a psbp could perform approximate inference leveraging
our algorithms, after rescaling the prior for each γh by

√
8/π. Moreover, this link suggests

that the O(logn) growth of the number of clusters found in empirical studies on the
psbp, should hold also for lsbp.

6.3 Bayesian computational methods

Although the lsbp and the associated computational procedures apply to a wider set of
dependent mixture models and kernels, we focus, for the sake of clarity, on the general
class of predictor-dependent infinite mixtures of Gaussians∫

N(y;B1(x)
ᵀβ, τ)p̃x(dβ, dτ) =

∞∑
h=1

ξh(x)N(y;B1(x)
ᵀβ̃h, τ̃−1h ), (6.7)

where τ̃h = σ̃2h is the precision parameter, whereas β̃h = (β̃1h, . . . , β̃Mh)ᵀ denotes a
vector of coefficients linearly related to selected functions of the observed predictors
B1(x) = {B11(x), . . . ,B1M1(x)}

ᵀ. Formulation (6.7) provides a flexible construction
(Barrientos et al., 2012; Pati et al., 2013), and is arguably the most widely used in Bayesian
density regression. As mentioned in Section 6.1, we provide here a detailed derivation
of three computational methods for Bayesian density regression under model (6.7),
with logit stick-breaking prior (6.6) for the mixing weights. In particular, we consider
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a Gibbs sampler converging to the exact posterior, an expectation-maximization (em)
algorithm for point estimation, and a mean-field variational Bayes (vb) approximation
for scalable posterior inference. The algorithms associated with these methods are
available at https://github.com/tommasorigon/LSBP, along with the code to reproduce
the application in Section 6.4.

In the classical predictor-independent mixture of Gaussians framework, these compu-
tational methods are closely related, and relevant connections can be drawn also with
k-means and Bayesian k-means algorithms (Bishop, 2006; Kurihara & Welling, 2009).
A summary of these relations is depicted in Figure 1 of Kurihara & Welling (2009).
Broadly speaking, these strategies differ in how they handle unknown parameters and
the involved latent quantities, either through maximization or by taking expectations.
These connections are paralleled in the lsbp model, although our focus is mainly on
Gibbs sampling, em and vb.

Before providing a detailed derivation of these different algorithms, we first study
a truncated version of the random probability measure p̃x, which will be employed as
an approximation of the infinite process. Indeed, although Gibbs samplers for infinite
representations are available (Kalli et al., 2011), developing em and vb algorithms is not
straightforward. In line with Rodriguez & Dunson (2011) and Ren et al. (2011), we develop
detailed routines based on a finite representation. In particular, we model the first H− 1

weights ν1(x), . . . ,νH−1(x) and let νH(x) = 1 for any x ∈ X, so that
∑H
h=1 ξh(x) = 1.

Based on Theorem 6.1 below, this choice provides an accurate approximation of the
infinite representation for sufficiently large truncations H.

Theorem 6.1. For a sample Y = (Y1, . . . , Yn)ᵀ with covariates X = (x1, . . . ,xn)ᵀ, let

m
(H)
X (Y ) = E

{
n∏
i=1

H∑
h=1

ξh(x)N(Yi;B1(x)
ᵀβ̃h, τ̃−1h )

}
,

be the marginal joint density arising from a truncated lsbp prior with H components, and
define with m(∞)

X (Y ) the same quantity in the infinite case. Note that in the above formula the
expectation is taken with respect to the lsbp prior law. Then

||m
(H)
X (Y ) −m

(∞)
X (Y )||1 6 4

n∑
i=1

[1− E{ν1(xi)}]
H−1,

where || · ||1 denotes the L1–norm.

According to Theorem 6.1, for fixed sample size n and covariates X , the L1 distance
between m(H)

X (Y ) and m(∞)
X (Y ) vanishes as H→∞, implying that the marginal density

m
(H)
X (Y ) converges to m(∞)

X (Y ). This rate of decay is exponential in H, and therefore

https://github.com/tommasorigon/LSBP
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the number of components does not have to be very large in practice to accurately
approximate the infinite representation, thus motivating computational methods based
on truncated versions.

6.3.1 MCMC via Gibbs sampling

In deriving a Gibbs sampler for model (6.7) we focus on a dependent mixture of
Gaussians with fixed H, and exploit the hierarchical representation (6.2) along with
the continuation-ratio characterization of the logit stick-breaking prior, given in Section
6.2. Under these constructions, the joint law for the augmented model (6.2) and its
parameters becomes

p(γ)p(β̃)p(τ̃ )

n∏
i=1

H∏
h=1

N(Yi;B1(xi)
ᵀβ̃h, τ̃−1h )1(Gi=h)

H−1∏
h=1

νh(xi)
1(Gi=h){1− νh(xi)}

1(Gi>h),

(6.8)
with p(γ)p(β̃)p(τ̃ ) =

∏H−1
h=1 p(γh)

∏H
h=1 p(β̃h)p(τ̃h) denote the prior laws of the parame-

ters comprising γ, β and τ̃ . As is clear from (6.8), givenG = (G1, . . . ,Gn), sampling of β̃h
and τ̃h, for h = 1, . . . ,H, requires standard methods for Gaussian linear regression within
each mixture component, as long as conditionally conjugate priors β̃h ∼ NM1(µβ,Σβ)
and τ̃h ∼ ga(aσ,bσ), or normal-gammas for the pair (β̃h, τ̃h), are employed. Here we
focus on the first choice to keep notation more compact.

The updating of the γh parameters, for h = 1, . . . ,H− 1, relies instead on a set of
separate Bayesian logistic regressions with responses zih = 1 when Gi = h and zih = 0

if Gi > h, for those units i having Gi > h− 1, thus allowing parallel sampling from the
full-conditional of each γh. Adapting results from the recent Pólya-gamma data augmen-
tation scheme (Polson et al., 2013) to our statistical model, these updatings can be easily
accomplished by noticing that νh(xi)zih{1− νh(xi)}1−zih =

∫
R+
pxi(zih)pxi(ωih)dωih,

with laws pxi(zih) and pxi(ωih) defined as

pxi(zih) =
0.5 exp{(zih − 0.5)B2(xi)

ᵀγh}

cosh{0.5B2(xi)ᵀγh}
, pxi(ωih) =

exp[−0.5{B2(xi)
ᵀγh}

2ωih]p(ωih)

[cosh{0.5B2(xi)ᵀγh}]−1
,

(6.9)
for every i : Gi > h − 1 and h = 1, . . . ,H − 1. In (6.9), pxi(ωih) and p(ωih) are the
density functions of the Pólya-gamma random variables pg{1,B2(xi)

ᵀγh}, and pg(1, 0),
respectively. Hence, based on (6.9), the contribution to the augmented likelihood for each
pair (zih,ωih) is proportional to a Gaussian kernel for transformed data (zih − 0.5)/ωih,
provided that pxi(zih)pxi(ωih) ∝ exp[(zih − 0.5)B2(xi)

ᵀγh − 0.5{B2(xi)
ᵀγh}

2ωih]. This
allows conditionally conjugate updating steps for each γh under a classical Bayesian
linear regression framework. Refer to Choi & Hobert (2013); Wang & Roy (2018a,b) for
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further theoretical properties of the Pólya-gamma scheme. Finally, note that in (6.9),
the latent indicators zih and the Pólya-gamma random variables ωih are conditionally
independent given the coefficients γh for i : Gi > h− 1. This is in contrast with the
data augmentation underlying the psbp, which would lead to more complex calculations,
especially in the em and vb algorithms discussed in Sections 6.3.2 and 6.3.3.

The detailed steps of the Gibbs sampler for the truncated representation of model (6.7)
are outlined in Algorithm 3. In this routine, B1h and B2h denote the nh ×M1 and the
n̄h×M2 predictor matrices in (6.7) and (6.6) having row entries B1(xi)

ᵀ and B2(xi)
ᵀ, for

only those statistical units i such that Gi = h and Gi > h− 1, respectively. We shall also
emphasize that Step 1 can be run in parallel across units i = 1, . . . ,n, whereas parallel
computing for the different mixture components can be easily implemented in Step 2,
Step 3 and Step 4.

6.3.2 EM algorithm

In high-dimensional studies, the Gibbs sampler described in Section 6.3.1 could face
computational bottlenecks. If a point estimate of model (6.7) is the main quantity of
interest, for example for prediction purposes, one possibility is to rely on a more efficient
procedure specifically designed for this goal, such as the em (Dempster et al., 1977). The
implementation of a simple em for a finite representation of model (6.7) under the lsbp

prior benefits from the Pólya-gamma data augmentation, which has analytical expectation
and allows direct maximization within a Gaussian linear regression framework. Note
that, although the em algorithm is commonly implemented for maximum likelihood
estimation, it can be modified to estimate posterior modes (e.g. Dempster et al., 1977).

The proposed em in Algorithm 4 alternates between a maximization step for the
parameters (γ,β, τ̃ ) and an expectation step for the augmented data (ζi, ω̄i), i = 1, . . . ,n,
with ζi = {ζi1 = 1(Gi = 1), . . . , ζiH = 1(Gi = H)}ᵀ the vector of binary indicators
denoting the membership to a mixture component, and ω̄i = (ω̄i1, . . . , ω̄iH−1)ᵀ the
corresponding Pólya-gamma augmented data. Although this data augmentation parallels
the one described for the Gibbs sampler, we adopt a slightly different notation for the
Pólya-gamma random variables ω̄ih, to emphasize that we are considering n units, and
not only those for which the cluster indicators Gi > h− 1. Indeed, in line with the em

rationale, we do not condition on the membership indicators and on the Pólya-gamma
latent random variables, but we rather take expectations with respect to their conditional
distributions. For the same reason, in this case we work directly with the component
indicator variables ζi instead of the binary vectors zi = (zi1, . . . , ziH−1)ᵀ in (6.4).
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Algorithm 3: Steps of the Gibbs sampler for the lsbp

begin
Step 1. Assign each unit i = 1, . . . ,n to a mixture component h = 1, . . . ,H;
for i from 1 to n do

Sample Gi ∈ {1, . . . ,H} from the categorical variable with probabilities

P(Gi = h | −) ∝

[
νh(xi)

h−1∏
l=1

{1− νl(xi)}

]
N(Yi;B1(xi)ᵀβ̃h, τ̃−1h }],

for every h = 1, . . . ,H.

Step 2. Update the parameters γh for h = 1, . . . ,H− 1 exploiting the
continuation-ratio representation and the results from the Pólya-gamma data
augmentation in (6.9);

for h from 1 to H− 1 do
for every i such that Gi > h− 1 do

Sample the Pólya-gamma data ωih from (ωih | −) ∼ pg{1,B2(xi)ᵀγh}.

Given the Pólya-gamma data, update γh from the full conditional

(γh | −) ∼ NM2
(µγh ,Σγh),

µγh = Σγh{B
ᵀ
2hℵh +Σ−1

γ µγ}, Σγh = {Bᵀ
2hdiag(ωi1, . . . ,ωin̄h)B2h +Σ−1

γ }−1,
where ℵh = (zi1 − 0.5, . . . , zin̄h − 0.5)

ᵀ, with zih = 1 if Gi = h and zih = 0 if
Gi > h.

Step 3. Update the kernel parameters βh, h = 1, . . . ,H, in (6.7), leveraging standard
Bayesian linear regression;

for h from 1 to H do
Sample the coefficients comprising βh from the full conditional

(βh | −) ∼ NM1
(µβ̃h ,Σβ̃h),

with µβ̃h = Σβ̃h{τ̃hB
ᵀ
1hYh +Σ−1

β µβ}, Σβ̃h = {τ̃hB
ᵀ
1hB1h +Σ−1

β }−1, and Yh
the nh × 1 vector containing the responses for all the units with Gi = h.

Step 4. Update the precision parameters τ̃h, h = 1, . . . ,H of each kernel in (6.7);
for h from 1 to H do

Sample τ̃h from

(τ̃h | −) ∼ ga[aσ + 0.5
n∑
i=1

1(Gi = h),bσ + 0.5
∑
i:Gi=h

{Yi −B1(xi)
ᵀβ̃h}

2].
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Algorithm 4: Steps of the em algorithm for the lsbp

begin

Let (γ(r), β̃(r), τ̃ (r)) denote the values of the parameters at iteration r.
Step 1: Expectation. Exploiting results in (6.11), the expectation of (6.10) with respect

to the augmented data (ζi, ω̄i), for each i = 1, . . . ,n, can be obtained by plugging in
ζ
(r)
i = E(ζi | yi,xi, β̃(r−1), τ̃ (r−1)) and ω̄(r)

i = E(ω̄i | xi, ζ
(r)
i ,γ(r−1)) in (6.11).

for i from 1 to n do
for h from 1 to H do

Compute ζ(r)ih by applying the following expression

ζ
(r)
ih ∝

[
ν
(r−1)
h (xi)

h−1∏
l=1

{1− ν
(r−1)
l (xi)}

]
N(Yi;B1(xi)ᵀβ̃

(r−1)
h , 1/τ̃(r−1)h ),

and compute
ω̄

(r)
ih = {2B2(xi)

ᵀγ
(r−1)
h }−1 tanh {0.5B2(xi)ᵀγ

(r−1)
h }

∑H
l=h ζ

(r)
il .

Step 2: Maximization. According to (6.10)–(6.11), modes γ(r) and (β(r), τ̃ (r)) can be
obtained separately as follow:

for h from 1 to H− 1 do

To compute γ(r)
h , note that since γh has Gaussian prior, and provided that the

second term in (6.11) is based on Gaussian kernels, the estimated γh at step t+ 1
coincides with the mean of a full conditional Gaussian, similar to the one in Step
2 of Algorithm 3.

γ
(r)
h = {Bᵀ

2diag(ω̄(r)
1h , . . . , ω̄(r)

nh)B2 +Σ
−1
γ }−1{Bᵀ

2(ℵ̄
(r)
1h , . . . , ℵ̄(r)

nh)
ᵀ +Σ−1

γ µγ},

where each ℵ̄
(r)
ih = ζ

(r)
ih − 0.5

∑H
l=h ζ

(r)
ih and B2 is the design matrix of the

logistic regression based on all units.

for h from 1 to H do

A similar approach can be considered to compute β̃(r)
h and τ̃(r)h under the

Gaussian and inverse-gamma priors for these parameters and the Gaussian
kernel characterizing the first term in (6.11). Hence, adapting Step 3 and Step 4
in Algorithm 3 to the em setting, provides:

β̃
(r)
h = {τ̃

(r−1)
h Bᵀ

1diag(ζ(r)1h , . . . , ζ(r)nh)B1 +Σ
−1
β }−1

× {τ̃
(r−1)
h Bᵀ

1diag(ζ(r)1h , . . . , ζ(r)nh)Y +Σ−1
β µβ},

τ̃
(r)
h = max{0, [aσ + 0.5

n∑
i=1

ζ
(r)
ih − 1][bσ + 0.5

n∑
i=1

ζ
(r)
ih {Yi −B1(xi)

ᵀβ̃
(r)
h }2]−1},

where B1 is the design matrix of the Gaussian regression within each kernel
based on all units.
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Based on the data augmentations outlined in (6.2) and (6.9), the complete log-posterior
logpx(γ,β, τ̃ | Y , ζ, ω̄) underlying the proposed em routine, can be written as

n∑
i=1

`xi(γ,β, τ̃ ;yi, ζi, ω̄i) +
H−1∑
h=1

logp(γh) +
H∑
h=1

logp(β̃h) +
H∑
h=1

logp(τh) + const, (6.10)

where `xi(γ,β, τ̃ ;yi, ζi, ω̄i) is the contribution of unit i to the complete log-likelihood.
Working on the complete log-likelihood has relevant benefits. Indeed, exploiting
equations (6.2) and (6.4), and the results in Polson et al. (2013) summarized in (6.9),
the term `xi(γ,β, τ̃ ;yi, ζi, ω̄i) = `xi(β, τ̃ ;yi, ζi) + `xi(γ; ζi, ω̄i), can be factorized as

H∑
h=1

ζih

[
−
τ̃h{Yi −B1(xi)

ᵀβ̃h}
2

2
+
1

2
log(τ̃h)

]

+

H−1∑
h=1

[
ℵ̄ihB2(xi)

ᵀγh − ω̄ih
{B2(xi)

ᵀγh}
2

2

]
+ const,

(6.11)

where ℵ̄ih = ζih − 0.5
∑H
l=h ζih. Hence, both terms in equation (6.11) are linear in the

augmented data (ζi, ω̄i), and represent the sum of Gaussian kernels. This linearity
property simplifies computations in the expectation step for the complete log-posterior
in equation (6.10), whereas the Gaussian structure allows simple maximizations. Since
the joint maximization of the expected complete log-posterior with respect to (β, τ̃ ) is
intractable, we rely on a conditional maximization procedure (Meng & Rubin, 1993) in
the last step of Algorithm 4, which provides analytical solutions.

6.3.3 Mean-field variational Bayes

Section 6.3.2 provides a scalable procedure for estimation of posterior modes in large-scale
problems. However, an appealing aspect of the Bayesian approach is in allowing
uncertainty quantification via inference on the entire posterior. The Gibbs sampler
in Section 6.3.1 represents an appealing procedure which converges to the exact posterior,
but faces computational bottlenecks. This motivates scalable variational methods
for approximate Bayesian inference (Bishop, 2006; Blei et al., 2017). Clearly, these
computational gains do not come without some drawbacks. For example, variational
approximations typically underestimate posterior variability. This issue might be
mitigated via a post-processing operation as in Giordano et al. (2015), at the cost of an
additional computational step.

Due to the Pólya-gamma data augmentation, our variational strategy is framed within
the well-established exponential family setting, for which there exists a closed-form
coordinate ascent variational inference algorithm (cavi). Compared to more accurate
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black-box variational strategies (e.g. Ranganath et al., 2014), the cavi algorithm is
appealing because it requires no tuning. Moreover, recent theoretical properties for
this class of computational methods (Blei et al., 2017) are inherited by our variational
algorithm. This seems in contrast with the variational strategy discussed by Ren
et al. (2011), which considers a local approximation based on the lower bound of
Jaakkola & Jordan (2000). However, the recent contribution of Durante & Rigon (2019),
illustrated in Chapter 7, allows to draw a sharp connection between the Pólya-gamma
data augmentation and the Jaakkola & Jordan (2000) lower bound. As a consequence,
the vb approach we propose relies on the same optimization problem considered by Ren
et al. (2011).

Compared to the Gibbs sampler in Section 6.3.1, here we augment the entire
model (6.7) with respect to the binary vectors zi = (zi1, . . . , ziH−1)ᵀ, i = 1, . . . ,n
comprising z, rather than using the membership indicators G. Hence, the joint law
px(Y ,γ,β, τ̃ , z,ω) = px(Y | z,β, τ̃ )px(z | γ)px(ω | γ)p(γ)p(β̃)p(τ̃ ) is equal to

p(γ)p(β̃)p(τ̃ )

n∏
i=1

H∏
h=1

N(Yi;B1(xi)
ᵀβ̃h, τ̃−1h )zih

∏h−1
l=1 (1−zil)

×
n∏
i=1

H−1∏
h=1

p(ωih)

2

exp{(zih − 0.5)B2(xi)
ᵀγh}

exp {0.5ωih(B2(xi)ᵀγh)2}
,

(6.12)

where ziH = 1. Our goal is to find an optimal variational distribution q(∗)x (γ, β̃, τ̃ , z,ω)
that best approximates the joint posterior px(γ, β̃, τ̃ , z,ω | y), while maintaining simple
computations. This can be obtained by minimizing the Kullback-Leibler divergence
between the variational distribution and the full posterior, or, alternatively, by maximizing
the evidence lower bound (elbo) of the log-marginal density logm(H)

X (Y ), provided that
logm(H)

X (Y ) can be analytically expressed as the sum of the elbo and the positive kl

divergence. Refer to Chapter 7 for details about this decomposition and the formal
definition of the elbo. The optimal variational distribution will be obtained so that

q
(∗)
x (γ, β̃, τ̃ , z,ω) = arg max

q∈Q
elbo{qx(γ, β̃, τ̃ , z,ω)}.

Without further restrictions, the Kullback-Leibler divergence is minimized when the
variational distribution is equal to the true posterior, which is intractable. To address this
issue, a common strategy is to assume that the variational distribution qx(γ, β̃, τ̃ , z,ω)
belongs to a mean-field family Q (see e.g. Blei et al., 2017). This incorporates a posteriori
independence among distinct groups of parameters, implying that the variational
distribution can be expressed as the product of marginal laws. Specifically, we consider
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Algorithm 5: Steps of the cavi algorithm for the lsbp

begin

Let q(r)(·) denote the generic variational distribution at iteration r and let Eq(r) denote the
expected value taken with respect to it.

Step 1. Update the variational probabilities q(r)xi (zih);
for i from 1 to n do

for h from 1 to H− 1 do

Update the variational probabilities q(r)xi (zih = 1) = %
(r)
ih , for each i = 1, . . . ,n and

h = 1, . . . ,H− 1. First set each %
(r)
ih = %

(r−1)
ih , then update

logit(%(r)ih ) = B2(xi)
ᵀEq(r−1)(γh)+

+

H∑
l=h

ζ
(r,h)
il

[
0.5 ·Eq(r−1)(log τ̃l) − 0.5 ·Eq(r−1)(τ̃l)Eq(r−1) {(Yi −B1(xi)

ᵀβ̃l)
2}
]

,

where ζ(r,h)
il =

∏l−1
r=1(1− %

(r)
ir ) if l = h, and ζ(r,h)

il = −%
(r)
il

∏l−1
r=1,r6=h(1− %

(r)
ir )

otherwise. Note also that %(r)iH = 1.

Step 2. Update the variational distributions q(r)x (γh), for each h = 1, . . . ,H− 1;
for h from 1 to H− 1 do

Update the variational distribution of each γh, being the density of the Gaussian random
variable

q
(r)
x (γh) = NM2

{γh; (Bᵀ
2Ω

(r−1)
h B2 +Σ

−1
γ )−1(Bᵀ

2%
(r)
h +Σ−1

γ µγ), (B
ᵀ
2Ω

(r−1)
h B2 +Σ

−1
γ )−1}

Ω
(r−1)
h = diag{Eq(r−1)(ω1h), . . . , Eq(r−1)(ωnh)}, %

(r)
h = (%

(r)
1h − 0.5, . . . , %(r)nh − 0.5)ᵀ.

Step 3. Update the variational distribution q(r)xi (ωih);
for i from 1 to n do

for h from 1 to H− 1 do

Update the variational distribution q(r)xi (ωih) for each i = 1, . . . ,n and
h = 1, . . . ,H− 1 according to

q
(r)
xi (ωih) = pg

(
ωih; 1,ϕ(r)

ih

)
, ϕ

(r)
ih = {B2(xi)

ᵀEq(r)(γhγ
ᵀ
h)B2(xi)}

1/2.

Recall that Eq(r)(ωih) = 0.5/ϕ
(r)
ih tanh(0.5ϕ(r)

ih ).

Step 4. Update the variational distributions q(r)x (β̃h) and q(r)x (τ̃h), for each h = 1, . . . ,H;
for h from 1 to H do

Update the variational distributions q(r)x (β̃h) and q(r)x (τ̃h), for each h = 1, . . . ,H
according to

q
(r)
x (β̃h) = NM1

{β̃h; (Bᵀ
1Γ

(r)
h B1 +Σ

−1
β )−1(Bᵀ

1Γ
(r)
h Y +Σ−1

β µβ), (B
ᵀ
1Γ

(r)
h B1 +Σ

−1
β )−1}

q
(r)
x (τ̃h) = ga{τ̃h;aσ + 0.5

n∑
i=1

Eq(r)(ζih),bσ + 0.5
n∑
i=1

Eq(r)(ζih)E(Yi −B1(xi)
ᵀβ̃h)

2}

with Γ (r)
h = Eq(r)(τ̃h)diag{Eq(r)(ζ1h), . . . , Eq(r)(ζnh)} and ζih = zih

∏h−1
l=1 (1− zil),

i = 1, . . . ,n.
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the following factorization for the variational distribution

qx(γ, β̃, τ̃ , z,ω) =
H−1∏
h=1

qx(γh)

H∏
h=1

qx(β̃h)

H∏
h=1

qx(τ̃h)

H−1∏
h=1

n∏
i=1

qxi(zih)

H−1∏
h=1

n∏
i=1

qxi(ωih).

(6.13)
Note that we are not making specific assumptions about the functional form of the
variational distributions. Combining (6.12) with (6.13), we obtain a tractable expression
for the elbo, which can be easily maximized as in Bishop (2006, Ch. 10). In particular,
the optimal solutions are provided by the following system of equations

logq(∗)x (β̃h) = Eq(∗)(τ̃ ,z)[log{px(Y | z, β̃, τ̃ )p(β̃h)}] + const, h = 1, . . . ,H,

logq(∗)x (τh) = Eq(∗)(β̃,z)[log{px(Y | z, β̃, τ̃ )p(τ̃h)}] + const, h = 1, . . . ,H,

logq(∗)x (γh) = Eq(∗)(z,ω)[log{px(z,ω | γ)p(γh)}] + const, h = 1, . . . ,H− 1,

logq(∗)xi (zih) = Eq(∗)(γ,β̃,τ̃ ,zi,−h)
[logpx(Y , z | β̃, τ̃ ,γ)] + const, h = 1, . . . ,H− 1,

logq(∗)xi (ωih) = Eq(∗)(γ)[logpx(ωih | γ)] + const, h = 1, . . . ,H− 1,

for i = 1, . . . ,n, where zi,−h denotes the vector of binary indicators zi without considering
the hth one, whereas the const terms are additive constants with respect to the argument
in the corresponding variational distribution. Each expectation in the above equations
is evaluated with respect to the variational distribution of the other parameters, and
therefore we need to rely on iterative methods to find the optimal solution. We consider
the coordinate ascent variational inference (cavi) iterative procedure—described in
Algorithm 5—which maximizes the variational distribution of each parameter based on
the current estimate for the remaining ones (e.g. Bishop, 2006, Ch. 10). This procedure
generates a monotone sequence for the elbo, which ensures convergence to a local joint
maximum. As shown in Algorithm 5, the normalizing constants in the above equations
have not to be computed numerically, since kernels of well known distributions can be
recognized.

6.4 Epidemiology application

We compare the performance of the three computational methods developed in Section
6.3, in a toxicology study. Consistent with recent interests in Bayesian density regression
(e.g. Dunson & Park, 2008; Hwang & Pennell, 2014; Canale et al., 2018), we focus on a
dataset aimed at studying the relationship between the DDE concentration in maternal
serum, and the gestational days at delivery (Longnecker et al., 2001). Such a dataset was
considered also in Chapter 2.
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The DDE is a metabolite of ddt, which is still used against malaria-transmitting
mosquitoes in certain developing countries—according to the Malaria Report 2015 from
the World Health Organization—thus raising concerns about its adverse effects on
premature delivery. Popular studies in reproductive epidemiology address this goal by
dichotomizing the gestational age at delivery (GAD) with a clinical threshold, so that births
occurred before the 37th week are considered preterm. Although this approach allows
for a simpler modeling strategy, it leads to a clear loss of information. In particular, a
greater risk of mortality and morbidity is associated with preterm birth, which increases
rapidly as the GAD decreases. This has motivated an increasing interest in modeling
how the entire distribution of GAD changes with DDE exposure (e.g. Dunson & Park, 2008;
Hwang & Pennell, 2014; Canale et al., 2018).

Data are composed by n = 2312 measurements (xi, Yi), i = 1, . . . ,n, where xi denotes
the DDE concentration, and Yi is the gestational age at delivery for woman i. Our goal
is to reproduce the analyses in Dunson & Park (2008) on this dataset, and compare
the inference and computational performance of the mcmc via Gibbs sampling, the em

algorithm, and the vb routine proposed in Section 6.3. Note that, consistent with the
main novelty of this contribution, we do not attempt to improve the flexibility and the
efficiency of the available statistical models for Bayesian density regression—such as the
kernel stick-breaking (Dunson & Park, 2008), and the psbp (Rodriguez & Dunson, 2011).
Indeed, as discussed in Sections 6.1 and 6.2, these representations are expected to provide
a comparable performance to our lsbp in terms of inference. However, unlike current
models for Bayesian density regression, inference under the lsbp is available under a
broader variety of simple computational methods, thus facilitating implementation of
the same model in a wider range of applications—including large M1, M2 and n settings.
Due to this, the main focus is on providing an empirical comparison of the algorithms
in Section 6.3, while using results in Dunson & Park (2008) as a benchmark to provide
reassurance that inference under the lsbp is comparable to alternative representations.

We apply the predictor-dependent mixture of Gaussians (6.7) with lsbp (6.5)–(6.6),
to a normalized version of the DDE and GAD (x̄i, ȳi), i = 1, . . . ,n, and then show results
for px(y) on the original scale of the data. Consistent with previous works (Dunson &
Park, 2008; Canale et al., 2018), we let M1 = 2, with B11(x̄i) = 1 and B12(x̄i) = x̄i, for
every i = 1, . . . ,n, and rely instead on a flexible representation for ηh(x̄i) to characterize
changes in the stick-breaking weights with DDE. In particular, each ηh(x̄i) is defined via a
natural cubic spline basis B2(x̄i) = {1,B21(x̄i), . . . ,B25(x̄i)}ᵀ, for every h = 1, . . . ,H− 1.
Bayesian posterior inference—under the three computational methods developed in
Section 6.3—is instead performed with default hyperparameters µβ = (0, 0)ᵀ, Σβ = I2×2,
µγ = (0, . . . , 0)ᵀ, Σγ = I6×6 and aσ = bσ = 1. For the total number of mixture
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Figure 6.2: For selected quantiles of DDE ∈ (12.57, 28.44, 53.72, 105.47), graphical representation of
the posterior mean of the conditional density for GAD given DDE, obtained from the Gibbs sampler
and the vb, together with 0.95 pointwise credibility intervals (shaded area). Since the em provides
only a mode for the conditional density, we consider a graphical representation of the plug-in
estimate for the density in (6.7). The histograms represent the observations of GAD, having DDE in
the intervals (−∞, 20.505), [20.505, 41.08), [41.08, 79.6), [79.6,∞), respectively.

components we consider H = 20, and allow the shrinkage induced by the stick-breaking
prior to adaptively delete redundant components not required to characterize the data.
As shown in Figure 6.2, these choices allows accurate inference on the density (6.7).

In providing posterior inference under the Gibbs sampling algorithm described in
Section 6.3.1, we rely on 30,000 iterations, after discarding the first 5,000 as a burn-in, and
initialize the routine from random starting values sampled from the prior. Analysis of
the traceplots for the quantities discussed in Figures 6.2 and 6.3 showed that this choice
is sufficient for good convergence. The em algorithm and the vb procedures discussed
in Sections 6.3.2 and 6.3.3, respectively, are instead run until convergence to a modal
solution. Since such modes could be local, we run both algorithms for different initial
values, and consider the solutions having the highest log-posterior and elbo, respectively.
We also controlled the monotonicity of the sequences for these quantities, in order to
further validate the correctness of our derivations. In this study, the em and the vb reach
convergence in about 2 and 6 seconds, respectively, whereas the Gibbs sampler requires
5 minutes, using a MacBook Air with a Intel Core i5.

Similarly to Figure 3 in Dunson & Park (2008), Figure 6.2 provides posterior inference
for the conditional density (6.7) evaluated at the 0.1, 0.6, 0.9, 0.99 quantiles of DDE, for the
three algorithms. Histograms for the GAD, are instead obtained by grouping the response
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Figure 6.3: For the Gibbs sampler and the vb, posterior means of four different conditional
probabilities P(y < y∗ | x)—based on thresholds y∗ ∈ (7× 33, 7× 35, 7× 37, 7× 40)—along with
0.95 pointwise credibility intervals (shaded area). These quantities are not available from the em

algorithm, for which a plug-in estimate of P(y < y∗ | x) is displayed.

data according to a binning of the DDE with cut-offs at the central values of subsequent
quantiles, so that the conditional density can be plotted alongside the corresponding
histogram. Results in Figure 6.2 confirm accurate fit to the data and suggest that the left
tail of the GAD distribution—associated with preterm deliveries—increasingly inflates as
DDE grows. Moreover, as seen in Figure 6.2, the three algorithms have similar results,
thus providing empirical reassurance for the goodness of the proposed routines. As
expected, the point estimate from the em matches the posterior mean of the Gibbs sampler,
whereas the vb tends to over-smooth some modes of the conditional distribution. This
is likely due to the fact that the vb outputs a mean-field approximation of the posterior
distribution, instead of the exact one. However, differently from the em, this routine
allows uncertainty quantification, and provides a much scalable methodology compared
to the Gibbs sampler, thus representing a valid candidate in high-dimensional inference
when the focus is on specific functionals of the density (6.7). Indeed, as shown in Figure
6.3, when the aim is infer conditional preterm probabilities F̃x(y∗) = P(y < y∗ | x) with
y∗ ∈ (7× 33, 7× 35, 7× 37, 7× 40) denoting a clinical threshold, the vb provides very
similar conclusions.

Prior to conclude our analysis, note that the results in Figures 6.2 and 6.3 are
similar to those obtained under the kernel stick-breaking prior in Dunson & Park
(2008). This provides empirical guarantee that the flexibility characterizing popular
Bayesian nonparametric models for density regression is maintained also under lsbp,
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which has the additional relevant benefit of facilitating computational implementation of
these methodologies. Minor differences are found at extreme DDE exposures, but this is
mainly due to the sparsity of the data in this subset of the predictor space.

6.5 Appendix

Proposition 6.1. For any fixed x ∈ X,
∑∞
h=1 ξh(x) = 1 almost surely, with ξh(x) factorized

as in (6.5) and γh ∼ NM2(µγ,Σγ) independently for every h > 1. Hence, the lsbp provides a
well defined predictor-dependent random probability measure p̃x at every x ∈ X.

Proof. Recalling results in Ishwaran & James (2001), we have that
∑∞
h=1 ξh(x) = 1

almost surely if and only if the equality
∑∞
h=1 E[log{1− νh(x)}] = −∞ holds. Since

log{1− νh(x)} is concave in νh(x) for every x ∈ X and h > 1, by the Jensen inequality
E[log{1 − νh(x)}] 6 log[1 − E{νh(x)}]. Therefore, since νh(x) ∈ (0, 1), we have that
0 < E{νh(x)} = µν(x) < 1, thereby providing log{1 − µν(x)} < 0. Leveraging these
results, the proof of Proposition 6.1 follows after noticing that

∑∞
h=1 E[log{1− νh(x)}] 6∑∞

h=1 log[1− E{νh(x)}] = −∞.

Proof of Theorem 6.1

Adapting the proof of Theorem 1 in Ishwaran & James (2002) to our representation we
have

||m
(H)
X (Y ) −m

(∞)
X (Y )||1 6 4

[
1− E

{
n∏
i=1

H−1∑
h=1

ξh(xi)

}]
= 4E

[
1−

n∏
i=1

H−1∑
h=1

ξh(xi)

]
.

Since
∑H−1
h=1 ξh(xi) 6 1, and 1 =

∏n
i=1 1, we can write 1 −

∏n
i=1

∑H−1
h=1 ξh(xi) =∏n

i=1 1 −
∏n
i=1

∑H−1
h=1 ξh(xi) 6

∑n
i=1{1 −

∑H−1
h=1 ξh(xi)} (Billingsley, 1995, pp. 358).

Hence ||m
(H)
X (Y ) −m

(∞)
X (Y )||1 6 4[n−

∑n
i=1

∑H−1
h=1 E{ξh(xi)}], with

∑H−1
h=1 E{ξh(xi)} =∑H−1

h=1 E{ν1(x){1 − E{ν1(x)}
h−1 = 1 − {1 − E{ν1(x)}

H−1. Substituting this quantity in
4[n−

∑n
i=1

∑H−1
h=1 E{ξh(xi)}], we obtain the final bound 4

∑n
i=1[1− E{νh(x)}]

H−1.





Chapter 7

Conditionally conjugate variational Bayes for lo-
gistic models

7.1 Summary

The chapter is organized as follows. In Section 7.2 we introduce some basic concepts
about mean-field variational inference, with particular emphasis on variational methods
for Bayesian logistic regression. In Section 7.3 we provide a strong theoretical connection
between the Jaakkola & Jordan (2000) approach and the Pólya-gamma data-augmentation.
In Section 7.4 we discuss a conditionally conjugate cavi algorithm based on our
theoretical findings. Concluding remarks are given in Section 7.5. Codes and additional
empirical assessments are available at https://github.com/tommasorigon/logisticVB.

7.2 Variational inference for logistic models

The increasing availability of massive and high-dimensional datasets has motivated
a wide interest in strategies for Bayesian learning of posterior distributions, beyond
classical mcmc methods (e.g. Gelfand & Smith, 1990). Indeed, sampling algorithms can
face severe computational bottlenecks in complex statistical models, thus motivating
alternative solutions based on scalable and efficient optimization of approximate posterior
distributions. Notable methods within this class are the Laplace approximation (e.g.
Bishop, 2006, Ch. 4.4), variational Bayes (e.g. Bishop, 2006, Ch. 10.1) and expectation
propagation (e.g. Bishop, 2006, Ch. 10.7), with variational inference providing a standard
choice in several fields, as discussed in recent reviews by Blei et al. (2017) and Ormerod
& Wand (2010). Refer also to Jordan et al. (1999) for a seminal introduction of variational
inference from a statistical perspective.

Variational Bayes aims at obtaining a tractable approximation q(∗)(θ) for the posterior
distribution p(θ | Y ) of the random coefficients θ = (θ1, . . . , θm)ᵀ, in the model having
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joint density p(Y ,θ) = p(Y | θ)p(θ) for θ and the observed data Y = (Y1, . . . , Yn)ᵀ,
with p(θ) denoting the prior distribution for θ. This optimization problem is formally
addressed by minimizing the Kullback–Leibler (kl) divergence

kl{q(θ) || p(θ | Y )} =

∫
Θ
q(θ) log

q(θ)

p(θ | Y )
dθ =

∫
Θ
q(θ) log

q(θ)m(Y )

p(Y ,θ)
dθ, (7.1)

with respect to q(θ) ∈ Q, where Q denotes a tractable, yet sufficiently flexible, class of
approximating distributions. As is clear from (7.1), the calculation of the kl divergence
between q(θ) and the posterior p(θ | Y ) requires the evaluation of the marginal density
m(Y ), whose intractability is actually the main reason motivating approximate Bayesian
methods. Due to this, the above minimization problem is commonly translated into the
maximization of the evidence lower bound (elbo) function

elbo{q(θ)} =

∫
Θ
q(θ) log

p(Y ,θ)
q(θ)

dθ = −kl{q(θ) || p(θ | Y )}+ logm(Y ), (7.2)

which does not require the evaluation of m(Y ). In fact, since logm(Y ) does not depend
on θ, maximizing (7.2) is equivalent to minimizing (7.1). Re-writing (7.2) as logm(Y ) =

elbo{q(θ)}+ kl{q(θ) || p(θ | Y )} it can be additionally noticed that the elbo provides a
lower bound of logm(Y ) for any q(θ), since the Kullback–Leibler divergence is always
non-negative.

The above set-up defines the general rationale underlying vb but, as is clear from
(7.2), the practical feasibility of the variational optimization requires a tractable form for
the joint density p(Y ,θ) along with a simple, yet flexible, variational family Q. This is
the case of mean-field vb for conditionally conjugate exponential family models with
global and local variables (Wang & Titterington, 2004; Bishop, 2006; Hoffman et al., 2013;
Blei et al., 2017). Recalling Hoffman et al. (2013), these methods focus on obtaining a
mean-field approximation

q(∗)(θ) = q(∗)(β,ω) = q(∗)(β)
n∏
i=1

q(∗)(ωi) = arg min
q∈Q

kl{q(β)

n∏
i=1

q(ωi) || p(β,ω | Y )},

= arg max
q∈Q

elbo{q(β)

n∏
i=1

q(ωi)}

(7.3)
for the posterior distribution p(β,ω | Y ) of the global coefficients β = (β1, . . . ,βp)ᵀ and
the local variables ω = (ω1, . . . ,ωn)ᵀ in the statistical model having joint density

p(Y ,β,ω) = p(β)
n∏
i=1

p(ωi | β)p(Yi | ωi,β) = p(β)
n∏
i=1

p(Yi,ωi | β), (7.4)



Chapter 7. Conditionally conjugate variational Bayes for logistic models 147

with p(Yi,ωi | β) from an exponential family and p(β) being a conjugate prior for
this density. The latent quantities ω, when present, typically denote random effects or
unit-specific augmented data within some hierarchical formulation, such as in mixture
models.

Although the above assumptions appear restrictive, the factorization of q(β,ω),
characterizing the mean-field variational family, provides a flexible class in several
applications and allows direct implementation of simple coordinate ascent variational
inference (cavi) routines (Bishop, 2006, Ch. 10.1.1) which sequentially maximize the elbo

in (7.3) with respect to each factor in q(β,ω) = q(β)
∏n
i=1 q(ωi)—fixing the others at

their most recent update. Instead, the exponential family and conjugacy assumptions
further simplify calculations by providing approximating densities q(∗)(β) and q(∗)(ωi),
i = 1, . . . ,n from tractable classes of random variables. These advantages have also
motivated recent computational improvements (Hoffman et al., 2013) and theoretical
studies (Wang & Titterington, 2004). We refer to Hoffman et al. (2013) and Blei et al.
(2017) for details on the methods related to the general formulation in (7.3)-(7.4), and
focus here on models having logistic likelihoods as building-blocks. Indeed, although
the conjugacy and exponential family assumptions are common to a variety of machine
learning representations (e.g. Blei et al., 2003; Airoldi et al., 2008; Hoffman et al., 2013),
classical Bayesian logistic regression models of the form

p(Yi | β) =
{exp(xᵀ

iβ)}
Yi

1+ exp(xᵀ
iβ)

, Yi ∈ {0, 1}, i = 1, . . . ,n, with β ∼ Np(µβ,Σβ), (7.5)

do not enjoy direct conjugacy between the likelihood for the binary response data and the
Gaussian prior for the coefficients in the linear predictor (e.g. Wang & Blei, 2013). This
apparently notable exception to conditionally conjugate exponential family models also
holds, as a direct consequence, for a wide set of formulations which incorporate Bayesian
logistic regressions at some layer of the hierarchical specification. Some relevant examples
are classification via Gaussian processes (Rasmussen & Williams, 2006), supervised
nonparametric clustering (Ren et al., 2011) and hierarchical mixture of experts (Bishop &
Svensén, 2003).

To allow tractable vb for non-conjugate models, several alternatives beyond conjugate
mean-field vb have been proposed (see e.g. Jaakkola & Jordan, 2000; Braun & McAuliffe,
2010; Wand et al., 2011; Wang & Blei, 2013). Within the context of logistic regression,
Jaakkola & Jordan (2000) developed a seminal vb algorithm which relies on the quadratic
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Algorithm 6: em algorithm for approximate Bayesian inference by Jaakkola &
Jordan (2000).

Initialize ϕ(0)
1 , . . . ,ϕ(0)

n .
for r = 1 until convergence of (7.7) do

Step 1. Expectation. Update q(r)(β) = p̄(r−1)(β | Y ) ∝ p(β)
∏n
i=1 p̄

(r−1)(Yi | β) to
obtain a Gaussian distribution Np(µ

(r),Σ(r)) with

Σ(r) = (Σ−1
β +XᵀΩ(r−1)X)−1, µ(r) = Σ(r){Xᵀ(Y − 0.5·1n) +Σ−1

β µβ},

where 1n = (1, . . . , 1)ᵀ and Ω(r−1) is a diagonal matrix with entries
{0.5/ϕ(r−1)

i tanh(0.5ϕ(r−1)
i ) for i = 1, . . . ,n. Note that the quadratic form of (7.6),

restores conjugacy between the Gaussian prior for β and the approximated
likelihood. To clarify this result, note that, for every ϕi, p̄(Yi | β) is proportional to
the kernel of a Gaussian variable having mean xᵀ

iβ and variance 2ϕitanh(0.5ϕi)−1

for the “data” 2ϕitanh(0.5ϕi)−1(Yi − 0.5).
Step 2. Maximization. Compute ϕ(r) = argmaxϕ

∫
Rp
q(r)(β) log p̄(Y ,β)dβ to obtain

the solutions

ϕ
(r)
i = {Eq(r)(β)[(x

ᵀ
iβ)

2]}
1
2 = {xᵀ

iΣ
(r)xi+(xᵀ

iµ
(r))2}

1
2 , for every i = 1, . . . ,n.

Note that
∫

Rp
q(r)(β) log p̄(Y ,β)dβ = const +

∑n
i=1

∫
Rp
q(r)(β) log p̄(Yi | β)dβ.

Hence, it is possible to maximize the expected log-likelihood associated with every
Yi separately, as a function of each ϕi, for i = 1, . . . ,n. This result leads to the above
solution.

Output at the end of the algorithm: ϕ(∗) and, as a byproduct, the approximate posterior
q(∗)(β) = p̄(∗)(β | Y ).



Chapter 7. Conditionally conjugate variational Bayes for logistic models 149

lower bound

log p̄(Yi | β) =(Yi − 0.5)x
ᵀ
iβ+

− 0.5ϕi − 0.25ϕ−1
i tanh(0.5ϕi){(x

ᵀ
iβ)

2 −ϕ2i }− log{1+ exp(−ϕi)},
(7.6)

for the log-likelihood logp(Yi | β) = Yi(x
ᵀ
iβ) − log[1 + exp(xᵀ

iβ)] > log p̄(Yi | β) of
every Yi from a logistic regression. In (7.6), the vector xi = (xi1, . . . , xip)ᵀ comprises
the covariates measured for unit i, whereas β = (β1, . . . ,βp)ᵀ are the associated
coefficients. The vector ϕ = (ϕ1, . . . ,ϕn)ᵀ denotes instead unit-specific variational
parameters defining the location where log p̄(Yi | β) is tangent to logp(Yi | β). In fact,
log p̄(Yi | β) = logp(Yi | β) when ϕ2i = (xᵀ

iβ)
2. Leveraging equation (7.6), Jaakkola &

Jordan (2000) proposed an expectation-maximization (em) algorithm (Dempster et al.,
1977) to approximate p(β | Y ). At the generic iteration r, this routine alternates between
an e-step in which the conditional distribution of the random coefficients β given the
current ϕ(r−1) is updated to obtain q(r)(β), and an m-step which calculates the expectation
of the augmented approximate log-likelihood log p̄(Y ,β) = logp(β) +

∑n
i=1 log p̄(Yi | β)

with respect to q(r)(β) and maximizes it as a function of ϕ. Recalling the general
presentation of em by Bishop (2006, Ch. 9.4) and Appendices A-B in Jaakkola & Jordan
(2000), this strategy ultimately maximizes log m̄(Y ) = log

∫
Rp p(β)

∏n
i=1 p̄(Yi | β)dβ

with respect to ϕ, by sequentially optimizing the lower bound∫
Rp
q(β) log

p(β)
∏n
i=1 p̄(Yi | β)

q(β)
dβ, (7.7)

as a function of the unknown distribution q(β) and the fixed parameters ϕ, where p(β)
is the density of the Gaussian prior for β. Hence, as is clear from Algorithm 6, this em

produces an optimal estimate ϕ(∗) of ϕ and, as a byproduct, also a distribution q(∗)(β),
which is regarded as an approximate posterior in Jaakkola & Jordan (2000). Indeed,
recalling the em structure, q(∗)(β) coincides with the conditional distribution p̄(∗)(β | Y )

obtained by updating the prior p(β) with the approximate likelihood
∏n
i=1 p̄

(∗)(Yi | β)

induced by (7.6) and evaluated at the optimal variational parameters ϕ(∗)
1 , . . . ,ϕ(∗)

n .
However, although being successfully implemented in the machine learning and statistical
literature (e.g. Bishop & Svensén, 2003; Rasmussen & Williams, 2006; Lee et al., 2010; Ren
et al., 2011; Carbonetto & Stephens, 2012; Tang et al., 2015; Wand, 2017), it is not clear
how the solution q(∗)(β) relates to the formal vb set-up in (7.1)-(7.2). Indeed, p̄(∗)(β | Y )

is not the posterior induced by a Bayesian logistic regression. This is due to the fact
that each p(Yi | β) in the kernel of p(β | Y ) is replaced with the approximate likelihood
p̄(∗)(Yi | β) evaluated at the optimal variational parameters maximizing log m̄(Y ). This
last result, which is inherent to the em (Dempster et al., 1977), suggests a heuristic
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intuition for why q(∗)(β) may still provide a reasonable approximation. Indeed, since
log p̄(Yi | β) 6 logp(Yi | β) for every ϕi and i = 1, . . . ,n, the same holds for log m̄(Y )

and logm(Y ). Thus, since logm(Y ) does not vary with ϕ, maximizing log m̄(Y ) with
respect to ϕ is expected to provide the tightest approximation of each logp(Yi | β)

via the lower bound in (7.6) evaluated at the optimum ϕ
(∗)
i , for i = 1, . . . ,n, thereby

guaranteeing similar predictive densities m(Y ) and m̄(∗)(Y ). Hence, in correspondence
to the optimum ϕ(∗), the minimization of kl{q̄(β) || p̄(∗)(β | Y )} in the e-step, would
hopefully provide a solution q(∗)(β) = p̄(∗)(β | Y ) close to the true posterior p(β | y).

Although the above discussion provides an intuition for the excellent performance of
the methods proposed by Jaakkola & Jordan (2000), it shall be noticed that finding the
tightest bound within a class of functions might not be sufficient if this class is not flexible
enough. Indeed, the quadratic form of (7.6) might be restrictive for logistic log-likelihoods,
and hence even the optimal approximation may fail to mimic logp(Yi | β). Moreover,
according to (7.1), a formal vb set-up requires the minimization of a well-defined kl

divergence between an exact posterior and an approximating density from a given
variational family. Instead, Jaakkola & Jordan (2000) seem to minimize the divergence
between an approximate posterior and a pre-specified density. If this were the case,
then their methods could be only regarded as approximate solutions to formal vb.
Indeed, although (7.6) has been recently studied (De Leeuw & Lange, 2009; Browne &
McNicholas, 2015), this is currently the main view of the em in Algorithm 6 (e.g. Blei
et al., 2017; Wang & Blei, 2013; Bishop, 2006).

In Section 7.3 we prove that this is not true and that (7.6), although apparently
supported by purely mathematical arguments, has indeed a clear probabilistic inter-
pretation related to a recent Pólya-gamma data augmentation for logistic regression
(Polson et al., 2013). In particular, let q(ωi) be the density of a Pólya-gamma pg(1,ϕi),
then (7.6) is a proper evidence lower bound associated with a vb approximation of the
posterior for ωi in the conditional model p(Yi,ωi | β) for data Yi from (7.5) and the
Pólya-gamma variable (ωi | β) ∼ pg(1,xᵀ

iβ), with β kept fixed. Combining this result
with the objective function in equation (7.7), allows us to formalize Algorithm 6 as a
pure cavi which approximates the joint posterior of β and the augmented Pólya-gamma
data ω1, . . . ,ωn, under a mean-field variational approximation within a conditionally
conjugate exponential family framework.

7.3 Conditionally conjugate variational representation

This section discusses the theoretical connection between equation (7.6) and a recent
Pólya-gamma data augmentation for conditionally conjugate inference in Bayesian logistic
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regression (Polson et al., 2013), thus allowing us to recast the methods proposed by
Jaakkola & Jordan (2000) within the wider framework of mean-field variational inference
for conditionally conjugate exponential family models. We shall emphasize that, in
a recent manuscript, Scott & Sun (2013) proposed an em for maximum a posteriori
estimation of β in (7.5), discussing connections with the variational methods in Jaakkola
& Jordan (2000). Their findings are however limited to computational differences and
similarities among the two methods and the associated algorithms. We instead provide a
fully probabilistic connection between the contribution by Jaakkola & Jordan (2000) and
the one of Polson et al. (2013), thus opening new avenues for advances in vb for logistic
models.

To anticipate Lemma 7.1, note that the core contribution of Polson et al. (2013) is in
showing that p(Yi | β) in model (7.5) can be expressed as a scale-mixture of Gaussians
with respect to a Pólya-gamma density. This result facilitates the implementation of mcmc

methods which update β and the Pólya-gamma augmented data ω = (ω1, . . . ,ωn)ᵀ from
conjugate full conditionals. In fact, the joint density p(Y ,ω | β) has a Gaussian kernel in
β, thus restoring Gaussian-Gaussian conjugacy in the full conditional. As discussed in
Lemma 7.1, this data augmentation, although developed a decade later, was implicitly
hidden in the bound of Jaakkola & Jordan (2000).

Lemma 7.1. Let log p̄(Yi | β) be the quadratic lower bound in (7.6) proposed by Jaakkola
& Jordan (2000) for the logistic log-likelihood logp(Yi | β) in (7.5). Then, for every unit
i = 1, . . . ,n, we have

log p̄(Yi | β) =
∫

R+

q(ωi) log
p(Yi,ωi | β)
q(ωi)

dωi

= Eq(ωi){logp(Yi,ωi | β)}− Eq(ωi){logq(ωi)},
(7.8)

with p(Yi,ωi | β) = p(Yi | β)p(ωi | β) and p(Yi | β) = exp(Yix
ᵀ
iβ){1 + exp(xᵀ

iβ)}
−1,

whereas q(ωi) and p(ωi | β) are the densities of the Pólya-gamma variables pg(1,ϕi) and
pg(1,xᵀ

iβ), respectively.

Proof. To prove Lemma 7.1, first notice that 0.5ϕi+ log{1+ exp(−ϕi)} = log{2cosh(0.5ϕi)}
and 0.5(xᵀ

iβ) = log{1+ exp(xᵀ
iβ)}− log[2cosh{0.5(xᵀ

iβ)}]. Replacing such quantities in
(7.6), we obtain

Yix
ᵀ
iβ − log{1+ exp(xᵀ

iβ)}−0.25ϕ
−1
i tanh(0.5ϕi){(x

ᵀ
iβ)

2 −ϕ2i }

+ log[cosh(0.5ϕi)−1cosh{0.5(xᵀ
iβ)}].

To highlight equation (7.8) in the above function, note that, recalling Polson et al.
(2013), the quantity −0.25ϕ−1

i tanh(0.5ϕi){(x
ᵀ
iβ)

2 −ϕ2i } is equal to E{−0.5ωi(x
ᵀ
iβ)

2}−



152 Chapter 7. Conditionally conjugate variational Bayes for logistic models

E(−0.5ωiϕ2i ), where the expectation is taken with respect to ωi ∼ pg(1,ϕi). Hence,
log p̄(Yi | β) can be expressed as∫

R+

exp(−0.5ωiϕ2i )p(ωi)
cosh(0.5ϕi)−1

× log
exp(Yix

ᵀ
iβ){1+ exp(xᵀ

iβ)}
−1 exp{−0.5ωi(x

ᵀ
iβ)

2}cosh{0.5(xᵀ
iβ)}p(ωi)

exp(−0.5ωiϕ2i )cosh(0.5ϕi)p(ωi)
dωi.

Based on the above expression, the proof is concluded after noticing that exp(Yix
ᵀ
iβ){1+

exp(xᵀ
iβ)}

−1 = p(Yi | β), whereas the term exp{−0.5ωi(x
ᵀ
iβ)

2}cosh{0.5(xᵀ
iβ)}p(ωi) and

exp(−0.5ωiϕ2i )cosh(0.5ϕi)p(ωi) are the densities p(ωi | β) and q(ωi) of the Pólya-
gamma random variables pg(1,xᵀ

iβ) and pg(1,ϕi), respectively, with p(ωi) the density
of a pg(1, 0).

According to Lemma 7.1, the expansion in equation (7.6) is a proper elbo related
to a vb approximation of the posterior for ωi in the conditional model p(Yi,ωi | β)
for response data Yi from (7.5) and the local variable (ωi | β) ∼ pg(1,xᵀ

iβ), with β
kept fixed. Note that, although some intuition on the relation between log p̄(Yi | β)
and Eq(ωi){logp(Yi,ωi | β)} can be deduced from Scott & Sun (2013), the authors
leave out additive constants not depending on β in log p̄(Yi | β) when discussing this
connection. Indeed, according to Lemma 7.1, these quantities are crucial to formally
interpret log p̄(Yi | β) as a genuine elbo, since they coincide with −Eq(ωi){logq(ωi)}.
Besides this result, Lemma 7.1 provides a formal characterization for the approximation
error logp(Yi | β) − log p̄(Yi | β). Indeed, adapting (7.2) to this setting, such a quantity
is the kl divergence between a generic Pólya-gamma variable and the one obtained by
conditioning on β. This allows to complete logp(Yi | β) > log p̄(Yi | β), as

logp(Yi | β) = log p̄(Yi | β) + kl{q(ωi) || p(ωi | Yi,β)}

= log p̄(Yi | β) + kl{q(ωi) || p(ωi | β)},
(7.9)

where the last equality follows from the fact that p(Yi,ωi | β) = p(Yi | β)p(ωi | β), and
hence p(ωi | Yi,β) = p(ωi | β). This result sheds light on the heuristic interpretation of
q(∗)(β) in Section 7.2. Indeed, as is clear from (7.9), if q(ωi) evaluated at the optimal
ϕ

(∗)
i is globally close to p(ωi | β) for every β and i = 1, . . . ,n, then (7.6) ensures accurate

approximation of logp(Yi | β), thus providing approximate posteriors q(∗)(β) close to
the target p(β | Y ). Exploiting Lemma 7.1, Theorem 7.1 formalizes this discussion by
proving that the em in Algorithm 6 maximizes the elbo of a well-defined model under a
mean-field vb.



Chapter 7. Conditionally conjugate variational Bayes for logistic models 153

Theorem 7.1. The lower bound in (7.7) maximized by Jaakkola & Jordan (2000) in their em for
approximate Bayesian inference in model (7.5) coincides with a genuine evidence lower bound

elbo{q(β,ω)} =
∫

Rp

∫
Rn+

q(β,ω) log
p(Y ,β,ω)
q(β,ω)

dωdβ,

=Eq(β,ω){logp(Y ,β,ω)}− Eq(β,ω){logq(β,ω)},
(7.10)

where p(Y ,β,ω) = p(β)
∏n
i=1 p(Yi | β)p(ωi | β) and q(β,ω) = q(β)

∏n
i=1 q(ωi), with

q(ωi) and p(ωi | β) denoting the densities of the Pólya-gamma variables pg(1,ϕi) and
pg(1,xᵀ

iβ), respectively.

Proof. The proof is a direct consequence of Lemma 7.1. In particular, let∫
Rp
q(β) log{p(β)q(β)−1}dβ +

∫
Rp
q(β)

n∑
i=1

log p̄(Yi | β)dβ

denote an expanded representation of (7.7). Then, replacing log p̄(Yi | β) with its
probabilistic definition in (7.8) and performing simple mathematical calculations, we
obtain∫

Rp
q(β) log

p(β)

q(β)
dβ +

n∑
i=1

∫
Rp

∫
R+

q(β)q(ωi) log
p(Yi | β)p(ωi | β)

q(ωi)
dωidβ.

Note now that the first summand does not depend on ω, thus allowing us to replace this
integral with

∫
Rp

∫
Rn+

log{p(β)q(β)−1}q(β)
∏n
i=1 q(ωi)dωdβ. Similar arguments can be

made to include
∏n
i=1 q(ωi) in the second integral. Making these substitutions in the

above equation we obtain∫
Rp

∫
Rn+

[
log

p(β)

q(β)
+ log

∏n
i=1 p(Yi | β)p(ωi | β)∏n

i=1 q(ωi)

]
q(β)

n∏
i=1

q(ωi)dωdβ

=

∫
Rp

∫
Rn+

q(β,ω) log
p(β)

∏n
i=1 p(Yi | β)p(ωi | β)

q(β,ω)
dωdβ

=

∫
Rp

∫
Rn+

q(β,ω) log
p(Y ,β,ω)
q(β,ω)

dωdβ,

thus proving Theorem 7.1. Note that q(β,ω) = q(β)
∏n
i=1 q(ωi) and

∫
R+
q(ωi)dωi = 1.

As is clear from Theorem 7.1, the variational strategy proposed by Jaakkola &
Jordan (2000) is a pure vb minimizing kl{q(β,ω) || p(β,ω | Y )} under a mean-field
variational family Q = {q(β,ω) : q(β,ω) = q(β)

∏n
i=1 q(ωi)} in the conditionally
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conjugate exponential family model with

Global variables β ∼ Np(µβ,Σβ),

Local variables (ωi | β) ∼ pg(1,xᵀ
iβ), i = 1, . . . ,n,

Data (Yi | β) ∼ bern[exp(xᵀ
iβ){1+ exp(xᵀ

iβ)]
−1], i = 1, . . . ,n.

(7.11)

We refer to Choi & Hobert (2013, Sect. 2) for this specific formulation of the Pólya-gamma
data augmentation scheme which highlights how, unlike the general specification
in (7.4), the conditional distribution of Yi does not depend on ωi. As discussed
in Section 7.2, this is not a necessary requirement. Indeed, what is important is
that the joint likelihood p(Yi,ωi | β) is within an exponential family and the prior
p(β) is conjugate to it. Recalling Choi & Hobert (2013, Sect. 2) and noticing that
cosh{0.5(xᵀ

iβ)} = 0.5[1+ exp(xᵀ
iβ)] exp{−0.5(xᵀ

iβ)}, this is the case of (7.11). In fact

p(Yi,ωi | β) = p(Yi | β)p(ωi | β)

= exp(xᵀ
iβ)

Yi{1+ exp(xᵀ
iβ)}

−1 exp{−0.5ωi(x
ᵀ
iβ)

2}cosh{0.5(xᵀ
iβ)}p(ωi),

= 0.5 exp{(Yi − 0.5)x
ᵀ
iβ − 0.5ωi(x

ᵀ
iβ)

2}p(ωi),
(7.12)

is proportional to the Gaussian kernel exp[(Yi − 0.5)x
ᵀ
iβ − 0.5ωi(x

ᵀ
iβ)

2], which is
conjugate to p(β).

7.4 Coordinate ascent variational inference (CAVI)

As discussed in Section 7.2, the mean-field assumption allows the implementation of a
simple cavi (Blei et al., 2017; Bishop, 2006, Ch. 10.1.1) which sequentially maximizes the
evidence lower bound in (7.10) with respect to each factor in q(β)

∏n
i=1 q(ωi), via the

following updates

q(r)(β) = exp
[
Eq(r−1)(ω) log{p(β | Y ,ω)}

]
cβ(Y )−1,

q(r)(ωi) = exp
[
Eq(r)(β) log{p(ωi | Y ,ω−i,β)}

]
cωi(Y )−1, i = 1, . . . ,n,

(7.13)

at iteration r, until convergence of the elbo. In the above expressions, cβ(Y ) and
cωi(Y ), i = 1, . . . ,n, denote constants leading to proper densities. Note that in our case
p(ωi | Y ,ω−i,β) = p(ωi | Y ,β).

To clarify why (7.13) provides a routine which iteratively improves the elbo, and
ultimately maximizes it, note that, keeping fixed q(r−1)(ω1), . . . ,q(r−1)(ωn), equation
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(7.10) can be re-written as

Eq(β)

{
Eq(r−1)(ω) log

p(β)
∏n
i=1 p(Yi | β)p(ωi | β)p(Y ,ω)

q(β)p(Y ,ω)

}
+ const

= Eq(β)

{
Eq(r−1)(ω) log

p(β | Y ,ω)
q(β)

}
+ Eq(r−1)(ω) logp(Y ,ω) + const,

= Eq(β)

log
exp

[
Eq(r−1)(ω) log{p(β | Y ,ω)}

]
q(β)cβ(Y )

+ Eq(r−1)(ω) log cβ(Y )p(Y ,ω) + const,

(7.14)
where the first term in the last equation is the only quantity which depends on
β and is equal to the negative kl divergence between q(β) and the distribution
exp

[
Eq(r−1)(ω) log{p(β | Y ,ω)}

]
cβ(Y )−1, thus motivating the cavi update for q(β).

Similar derivations can be done to obtain the solutions for q(ω1), . . . ,q(ωn) in (7.13).
As is clear from (7.13), the cavi solution identifies both the form of the approximating
densities—without pre-specifying them as part of the mean-field assumption—and the
optimal parameters of such densities. As discussed in Section 7.2, these solutions are
particularly straightforward in conditionally conjugate exponential family representations
(Hoffman et al., 2013), including model (7.11). In fact, recalling Polson et al. (2013), the
full conditionals for the local and global variables in model (7.11) can be obtained via
conditional conjugacy properties, which lead to

(β | Y ,ω) ∼ Np{(Σ
−1
β +XᵀΩX)−1(Xᵀ(Y − 0.5·1n) +Σ−1

β µβ), (Σ
−1
β +XᵀΩX)−1},

(ωi | Y ,ω−i,β) ∼ pg(1,xᵀ
iβ), i = 1, . . . ,n,

(7.15)
with Ω = diag(ω1, . . . ,ωn) and X the n× p design matrix with rows xᵀ

i , i = 1, . . . ,n.
Substituting these expressions in (7.13), it can be immediately noticed that the cavi

solutions have the same density of the corresponding full-conditionals.

As shown in Algorithm 7, the above expectations can be computed in closed-form
since q(β) and q(ω1), . . . ,q(ωn) are already known to be Gaussian and Pólya-gammas,
thus requiring only sequential optimizations of natural parameters. This form of cavi,
which is discussed in Hoffman et al. (2013) and is known in the literature as variational
Bayesian em (Beal & Ghahramani, 2003), clarifies the link between cavi and the em in
Jaakkola & Jordan (2000). Indeed, recalling Section 7.3, both methods optimize the same
objective function and rely, implicitly, on the same steps. In particular, due to Lemma 7.1,
the e-step in Algorithm 6 is in fact maximizing the conditional elbo[q(β)

∏n
i=1 q

(r−1)(ωi)]

with respect to q(β) as in the first maximization of Algorithm 7. Similarly, the
m-step solution for ϕ in Algorithm 6 is actually the one maximizing the conditional
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Algorithm 7: cavi for logistic regression.

Initialize ϕ(0)
1 , . . . ,ϕ(0)

n .
for r = 1 until convergence of the evidence lower bound elbo{q(β,ω)} do

Step 1. Maximize elbo{q(β)
∏n
i=1 q

(r−1)(ωi)} with respect to q(β). As discussed in
Section 7.4, this maximization provides q(r)(β) = Np(β;µ(r),Σ(r)) with

Σ(r) = (Σ−1
β +XᵀΩ(r−1)X)−1, µ(r) = Σ(r){Xᵀ(Y − 0.5·1n) +Σ−1

β µβ},

with Ω(r−1) = diag{Eq(r−1)(ω1)
(ω1), . . . ,Eq(r−1)(ωn)

(ωn)}.

Step 2. Maximize elbo{q(r)(β)
∏n
i=1 q(ωi)} with respect to

∏n
i=1 q(ωi). As

discussed in Section 7.4, this maximization provides q(r)(ωi) = pg(ωi;ϕ
(r)
i ) for

i = 1, . . . ,n, with

ϕ
(r)
i = {xᵀ

iΣ
(r)xi+(xᵀ

iµ
(r))2}1/2, i = 1, . . . ,n.

Note that ϕi and −ϕi induce the same Pólya-gamma density. Hence, there is no
ambiguity in the above square root. A similar remark, from a different perspective,
is found in footnote 3 of Jaakkola & Jordan (2000).

Output at the end of the algorithm: q(∗)(β,ω) = q(∗)(β)
∏n
i=1 q

(∗)(ωi).

elbo[q(r)(β)
∏n
i=1 q(ωi)] with respect to

∏n
i=1 q(ωi) in the second optimization of the

cavi in Algorithm 7.

7.5 Discussion

Motivated by the success of the lower bound developed by Jaakkola & Jordan (2000)
for logistic log-likelihoods, and by the lack of formal justifications for its excellent
performance, we introduced a novel connection between their construction and a
Pólya-gamma data augmentation developed in recent years for logistic regression (Polson
et al., 2013). Besides providing a probabilistic interpretation of the bound derived
by Jaakkola & Jordan (2000), this connection crucially places the variational methods
associated with the proposed lower bound in a more general framework having desirable
properties. More specifically, the em for variational inference proposed by Jaakkola &
Jordan (2000) maximizes a well-defined elbo associated with a conditionally conjugate
exponential family model and, hence, provides the same approximation of the cavi for
vb in this model.

The above result motivates further generalizations to novel computational methods,
including the stochastic variational inference algorithm in Hoffman et al. (2013). On a
similar line of research, an interesting direction is to incorporate the method of Giordano
et al. (2015) to correct the variance-covariance matrix in q(∗)(β) from Algorithm 6, which
is known to underestimate variability. Finally, we shall also emphasize that although
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our focus is on classical Bayesian logistic regression, the results in Section 7.3 can be
easily generalized to more complex learning procedures incorporating logistic models as
a building-block, as for the lsbp prior in Chapter 6, as long as such formulations admit
conditionally conjugate exponential family representations.
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