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Failures of the machines

m There is vast interest in for complex data analysis such as deep
learning. However, there is a lack of consideration of the following phenomena:

[ ] . Why things work? Models vs black-box algorithms.

[ . A.k.a. inferential statistics: interval estimation and
testing.

[ ] . Data are complex but the sample size might

still be very low (i.e. in neuroscience).

[ . If data are badly selected, having tons of data points only reduces the
uncertainty in estimating the wrong quantity.

Related paper

Dunson, D. B. (2018). Statistics in the big data era: failures of the machine. Statistics
& Probability Letters, 136, 4-9.
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Models and algorithms

m The "model vs algorithm" dispute is certainly not novel.

m Usually the following “equations” are assumed to be true:
Machine learning = prediction, Statistics = inference.
m However, modern statistics (=data science?) is inference and prediction.
m “Classical” can be helpful also in . they are not

complementary e.g. to random forests.

(Well-known) related paper

Breiman, L. (2001). Statistical modeling: the two cultures. Statistical Science, 16(3),
199-231.
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Parametric and nonparametric approaches

m However, it is certainly true are becoming increasingly

m Data may have unusual structures (networks, functions, tensors), huge dimensionality
(i.e. when p > n), be highly non-linear, etc.

L] is researching new modeling tools that are
nonetheless interpretable and possibly scalable to large dataset.

] . In the context of regression, this means moving away e.g. from the linear
model, in favor of more flexible , i.e.
Parametric model : vi = Bo + Bixi + €,
Nonparametric model : yi = f(x) + e,

with 7(-) belonging to some flexible class of functions.
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Bayesians & frequentists

m There are two main inferential paradigms: the and the

m The “frequentist vs Bayesian” discussion has been a real

Before the MCMC revolution, Bayesian statistics was mainly regarded as an (elegant?)
mathematical framework for inference rather than a practical tool.

[ is the statistician who makes use of Bayesian statistics
because it is naturally suited for the modeling of many complex data.

[ . incorporate in the modeling if available. This can be
done both by frequentists and Bayesians, the latter disposing of a wider framework.

Related paper

Gelman, A. and Robert, C. P. (2013). “Not only defended but also applied": the
perceived absurdity of Bayesian inference. The American Statistician, 67, 1-5.
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Bayesian nonparametrics

= (BNP) is obviously = Bayes + nonparametric statistics.

m Its development began much later that parametric Bayes, after the seminal
1973 Annals of Statistics paper by Ferguson on the Dirichlet process.

m The availability of algorithms for posterior inference opened new directions for BNP
modeling in applications, especially in the '00s and '10s.

® BNP is nowadays a mature and lively research field.

m This talk is a “mixture” of 3 separate projects involving BNP approaches in presence of
complex data, for testing hypotheses, summarizing the data, and making predictions.
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Bayesian testing for network partitions

Joint work with:

Daniele Durante Sirio Legramanti
(Bocconi University) (Bocconi University)
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Network data

m Sometimes are more informative than characteristics

TRANSPORTATION
CLUSTERS

200 airports ;
60.000 routes &
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Community detection
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m Rearranging rows/columns according to the partition, Y may exhibit a

m Networks (graphs) can be represented via their
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Stochastic block models (sBM)

m The entries of matrix Y = [y.] are defined as

yw=Uv+—u}, viu=1,...,V.

m We consider (= Yw = Yu), with no (= yw =0).

Stochastic block models
m Let z, € {1,..., H} be the of node v

m let O € (0,1) be the between clusters h and k.

m The of the adjacency matrix is

P(Y | @,Z) = H p(}/uv ‘ Zuy Zv, 8) = H Bern(yu‘/ | gzuzv)'

1<u<v<n 1<u<v<n

m In other words, the edges are iid Bernoulli random variables.
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Bayesian stochastic block models

] are given independent Beta(a, b) priors, which are

The focus is on the clustering z, implying that © is a nuisance parameter and can be
marginalized out:

H h
Ba+m ,b+m
p(Y\z):/(le(a ©)de = HH ng ) |

=1 k=1
m The integers mpy are between clusters h and k.
m The integers my are the between clusters h and k.
m What prior should we choose for p(z)?
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Bayesian SBMs

m A simple choice is

pr(z, = h | w) = s, = (m,...,mn) ~ Dir(a),
resulting in a prior with H components.
m The number H is . How do we estimate it? Usual approaches (AIC,

BIC, etc.) seem inappropriate here.

The BNP prior

m Instead of choosing it, we let H — co. Hence, we are considering an
. An alternative would be a Dirichlet multinomial.

m The corresponding BNP prior is z ~ Chinese Restaurant Process, so that

if h=1,...,H_,,
if h=H_, +1.

pr(zv = h|z-,) x {nh’v
o
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Bayesian testing of exogenous partitions

m Consider the competing models
M :z ~ Infinite Relational Model,

M*:z=2" (exogenous assignment).

m We assume that a priori

m Then, we test M vs M”* through the

p(Y | M) > ,czp(Y|2)p(z)

BM,M*: = s

p(Y | M) p(Y | z*)
which coincides with the posterior odds
p(MY)
p(M*[Y)

m Bayes factors are computed using suitable MCMC algorithms.
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Alzheimer's brain network data

Lobe
frontal
insular

. limbic
occipital
parietal
temporal

s Hemisphere

m Presence of among in a representative Alzheimer's
brain network, split according to the estimated endogenous assignments
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Testing exogenous partitions

m Do hemispheres or lobes capture endogenous blocks? , at least according to Bayes
factors.

m Recall that 2log BM,M* > 0 supports the choice M = Infinite Relational Model.

Hemisphere Lobes

2log Bt 712.33 1290.50

L] there exist sub—blocks (groups) within hemispheres, comprising regions
in different lobes.
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Testing exogenous partitions

m Our network data is a representative brain with Alzheimer's disease.

m We let z* be the estimated partition from a representative brains of individuals
characterized by normal aging, early and late cognitive decline

M :  z ~ Infinite Relational Model
M z=2"

Normal Aging  Early Decline Late Decline
2 log Bt 155.01 100.21 39.88

m M™ is always rejected, evidence against M™ decreases moving towards the
disease state = inferred partitions as diagnostics for the disease progress?
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Extended stochastic block models

m The Chinese restaurant process prior for z is a simple yet (sometimes) insufficiently
flexible prior.

m In more recent works (Legramanti et al., 2020), we make use of for
p(z) rather than implicitly relying on the Dirichlet process.

m We called this class (ESBM).

m The so-called prior seems to have better empirical performance in
sumulations and applications while remaining computationally tractable.

m Interestingly, in ESBM we can choose whether H is finite, random or infinite within the
same unified framework.
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Enriched processes & flight-route segmentation

Joint work with:

Sonia Petrone Bruno Scarpa
(Bocconi University) (University of Padova)
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Outline of the project

m We aim at clustering via nonparametric Bayes.
m In this motivating application, each statistical unit is a

m In particular, we consider the number of times that a specific route has been searched
on the website of an company.

Statistical challenges

= . Infinite-dimensional BNP priors often lead to overly
complex cluster solutions.

[ . Prior knowledge about the functional shapes is available, but
it is not easy to incorporate.
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E-commerce dataset
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m The total number of flight routes is n = 214.
m Each trajectory is observed over a ti=(1,...,55). Hence, the

dataset can be represented as a 214 x 55 matrix with 11770 entries.
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General considerations

m Could we consider different ?

[ ] private companies are (rightly!) worried about disclosing their data to the
public. In principle, other metrics might include:

m Route prices;

m Route marginal earnings;

m Route-specific customer satisfaction;
m Conversion rates;

u

A very crude but operative summary of each time series is its

Missing part of the story: and not average levels.
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Model formulation

m Functional observations are , i.e. they have zero mean and unit variance.
Moreover, let

iid

yi(t) = fi(t) + ei(t), (fi | B) ~ P, i=1,...,n,

where ¢;(t) is a Gaussian error and t € R,

m Clustering is induced through a P, whose choice is critical.
m The DP (Bigelow and Dunson, 2009; Dunson, Herring and Siega-Riz, 2008)
would in bounding the complexity and incorporating functional constraints.
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An enriched discrete prior

m The proposed process is a

L L Hy
. ~ ind
p= Mepe = M Tendoy,y,  Oen(t) = Py,
=1 (=1 h=1
forh=1,...,Hpand ¢/ =1,... L.
m Each P, is a probability measure taking values on a given
(monotone, cyclical, linear, S-shaped functions, etc).

m Closely related to the of Wade et al. (2011) and Scarpa and
Dunson (2014), but the number of clusters is .
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Clustering allocation process

m G; € (¢, h) is a latent indicator, so that fi(t) and fj(t) belong to the same
group if G; = G;.
m Fe{l,...,L}is a latent indicator.

m Functional class allocation: P(F; = ¢) =y,

m Within-class allocation: P(G; = (¢4, h) | Fi = £) = 7,

m Cluster allocation: P(G; = (¢, h)) = Nemen.

[ can be induced as in Rousseau and Mengersen (2011).

m Functional class prior: (My,...,M;—1) ~ DIRICHLET(v, . .., Q).

m Shrinkage prior: (71, ..., TeH,—1) " DIRICHLET (ce/He, ..., ce/He).
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Baseline measure specification

m Each P, can be interpreted as a functional prior guess, since

L

E{p(-)} = Z (Me)Pe() ZMP‘ o= Zag.

=1

m We assume that 04(t) is

Oen(t ZBml(t Bmen,

where each Bi(t),...,Bume(t) for £ =1,...,Lis a set of

m Moreover, we assume (Bi¢h, - - -, Bm,en)T have Gaussian priors.
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seline measure specification

m The first functional class (¢ = 1) captures yearly and characterizes
the routes having e.g. a peak of web-searches during either the summer or the winter.

4
01h(t) = Zlﬂmlhs ( ) + ﬁ51h cos (27‘('%{‘) + ﬂ@lh sin (27T365 )
where Si(t),...,S4(t) are deterministic cubic spline basis functions.

m The second functional class (¢ = 2) characterizes functions having
, which amounts to let

Oan(t Z Bm2nSm(t) + Bson cos (2 365 ) + Be2n sin (27r% t).
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Baseline measure specification

First baseline measure

Sample
—1
.2

3
-- 4
5
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On the selection of the upper bounds

The number of clusters is bounded by H = 22:1 H.. We consider a large H and
employ a , following Rousseau and Mengersen (2011).

In practice, we let H ="} | Hy be
in practice.

m Such a value is evidently quite subjective and it depends on the specific statistical
problem.

® In our e-commerce application we let the upper bounds H; = 20 and H, = 5.
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Clustering solution

@ the document

Standardized weekly web-searches
°
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Macro clusters A and B

Arrival
North  Center South & Islands
North 0 2 49
Departure  Center 0 0 24
South & Islands 6 3 12
Arrival
North  Center South & Islands
North 0 7 6
Departure Center 10 0 0

South & Islands a7 21 7
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Appendix: theoretical developments

m Define independently among themselves

oo~ GAP(OPY),  Byal- | %) X PY{o(x), BOOP( | )}, x € X

A (GA-PY) random measure fi is defined as
fi(Ax B) = /ﬁy|X(B | x)fix(dx), ACX, BCY.
A

m Then p is called process (EPY) if

i

P A xY)
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Appendix: theoretical characterizations

Theorem

Let ji ~ GA-PY(aPy, 0(x), B(x)Py|x) and let aPy() = >_,_, cu 6x,(-) be a discrete
measure. Then,

B{ee} =]Te {1+ Bele 1)} ™)

where B, (f | x) = fv g(x,¥)Byix(dy | x) for any x € X and for any measurable
function g : X x Y — R* such that fi(g) < oo almost surely.

m The expectation appearing in the right hand side of the above Laplace functional is a
generalized

m Further simplifications occurs in the EDP case thanks to the
identity.
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A unified class of enriched priors

m Our model, the enriched process of Wade et al. (2011), Dunson and Scarpa (2014)
belong to this general class of enriched priors.

] models by Malsiner-Walli et al. (2017) can be also viewed as EPY
processes.

] Dirichlet priors (Dunson, Herring and Hengel, 2008; Guindani, Miiller
and Zhang, 2009) can be also regarded as EPYs.

m Further connections with the of Miiller, Quintana and
Rosner (2004), Lijoi, Nipoti and Priinster (2014).

These aspects are explored in Rigon, Scarpa and Petrone (2020+).
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BNP modeling of sequential discoveries

Joint work with:

David Dunson Otso Ovaskainen Alessandro Zito
(Duke University) (University of Finland) (Duke University)
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The sequential modelling of the appearance of distinct species is a widely studied
problem. Famous example:

How many more exists in a community | did not observed yet?

Suppose that for a given location we observe a sequence of species.

X1 = “squirrel”, Xp = “dog”, X3 = “cat”, X4 = “squirrel”, etc.

A is the of the total number of new species K,
as a function of n, where

n
K, = Z 1(X; = “new”), n>1.
i=1

In modern experiments however, species may be detected from their DNA.
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DNA sequencing
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Species sampling modeling

[ : DNA process is costly, and no guarantee that it captures all the species!

m We need a method to assess whether we have detected all the species trapped (

).

m Given an accumulation curve

our method should be able to:

m Smooth the trajectory Ki, ..., Kn.
m Predict the trajectory of Kpy1,..., Knym for any m > 1.
m Study the behavior of Koo = limp— oo Kn (i.e. saturation level).
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BNP species sampling models

m These requirements can be answered by

m A common model for (X,),>1 is the Pitman—Yor, in which:

Kn
pr(Xp41 = “new” | Xi,..., X)) = %

m The o parameters controls the asymptotic behavior of K.

milifo=0anda>0=

m K, ~ alognand Ko = oo a.s.
mlfoe(0,1)and a> —0 =

m K, ~ O(n?) and Koo = o0 a.s.
m If 0 <0 and a = H|o|, with He N =

B Koo = m < o0 a.s, but very hard to estimate

m All three models have closed-form estimators for the predictions.
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Bayesian nonparametric species sampling models

Species sampling model = Dirichlet = = Dirichlet-Multinomial Pitman-Yor
: 3000 :
3000+ : :
: : E st
20001 5
2000 :
c s
X X
10001
1000+
04 ¢ 04 ¢
0 50 100 150 200 250 0 50 100 150
nx107 nx107°
m Failures of common species sampling models. Dots are the for K.
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m We assume (D,)n>1 are with probabilities (7p)n>1.
m For any n > 1, the is equal to
mn=pr(Dh=1)=pr(T,>n—-1)=S(n—1,0), 0€0O© CR”

where (T,)n>1 are iid continuous latent variables defined in (0, co) with strictly
decreasing 5(t; 0).

m The resulting distribution for K, follows a Poisson-Binomial distribution:

Ko=Y  Di~pPB{1,5(1;0),...,5(n—1;0)}.
i=1
m The is readily available as

g(@ ‘ Dl,...,D,,) o HS(,’_ 1;9)D'5(f— 1;0)1—D,-.

i=2
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Basic properties

m A of the trajectory is the expectation of K,, namely
E(K:) =Y S(i—1;0).
i=1
A of the trajectory is a posterior expectation:

E(Kmin | Kn=k)=k+>_ S(i+n—10).
j=1
m The latent variable T controls the
Proposition
Under the latent structure setting, E(Ko) = >~ S(i — 1;0) is such that
E(T) < E(Ks) < E(T) + 1.

Moreover, Ko = oo almost surely if and only if E(T) = oo.
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The Dirichlet process

m Our starting point is the

(%

Tny1 = S(m @) = g

, a>0.

m : S(t; @) is the survival function of a

Theorem

If (Xn)n>1 is directed by a Dirichlet process, then for a sample of X1, ..., X, with K, = k
it holds that

k
La| X, ..., Xn) x L(a| Da,y...,Dp) x (Z—),

where (a)n = a(a+1)---(a+n—1).

[ : Same likelihood = same inference.

[ . K, diverges to oo at the rate alogn = too strict!
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A three parameters log-logistic

m A possibile choice for the distribution of T is a

m Hence, when T ~ LL(, 0, ) we obtain

a n
Tntl = S(n;a,a, ¢) = aqb”-l—%’

with @ >0, 0 <1 and ¢ € (0,1].

m This embeds several behaviors:
mForg=1lando=0=
m K, ~ alognand Ko = oo a.s.
m For ¢ =1 and ¢ < 0 = similar to
B Ko < oo as., E(T)isin closed form
m For ¢ =1 and o € [0,1) = similar to
B K, ~ O(n?) and Koo = o0 a.s.
mForo<l=
B Ko < oo as., E(T) needs approximation.
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Logistic regression representation

m Under T ~ LL(, 0, ¢), the pdf of K, is available.

m The estimation of the parameters can be easily carried due to link with

Th+1

log =loga— (1 —o0)logn+ (log¢)n = Bo+ Bilogn+ Ban,

1—mp
with o = loga, f1 =0 —1< 0 and 52 = log¢p <0 for every n > 1.

m If are employed for 51 and B, = posterior can be obtained via
Pdlya-Gamma data augmentation (Polson et al. 2013).

[ . We trade exchangeability in favor of

m A model easier to fit;
m A wider and more flexible class of trajectories;
m A model in which K is always finite.
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The LIFEPLAN data

Train—-Test Full dataset
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m Performance of the three-parameter log-logistic performance.
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The LIFEPLAN data
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Summary

m The Poisson—Binomial offers an alternative general framework to model the sequential
discovery of new species.

® The three-parameter log-logistic is simple generalization of the Dirichlet process which
increases the flexibility and allowing for different asymptotic regimes.

m The model is easy and fast to estimate both in terms of empirical Bayes and with fully
Bayesian approach.

m The resulting model drops the exchangeability assumption. This means that the results
will be always sequence-dependent.
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Thanks!




Appendix for BNP species sampling model

Theorem
Let K, ~ PB{1,5(1;0),...,5(n—1,6)} and suppose that Koc = co almost surely. Then

%—)1, b,,z/ S(t —1;0)dt, n— oo,
n 1

almost surely. In addition, it holds that

K, — E(K»)

W — N(O7 1), n — oo,

in distribution.
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Appendix for BNP species sampling model

Theorem

Let K, ~ PB{1,5(1;,0,9),...,S(n—1;a,0,¢)} for every n > 1. Then,

ak

[T (@ +it=o¢7)

where for any 1 < k < n and n > 2 one has

G0, 0) = Y H e,

(G in_x) Jj=1

pr(Kn = k) =

Cg’hk(gv (yb) .

where the sum runs over the (n — k)-combinations of integers (i1, ..., in—k) in

{1,...,n—1}.

n t Gni1,k(0, @) = Gnk—1(0, @)+ nl=o¢p" 'n.k(0, @), for any n > 0 and
1<k<n+1

u D 60,0(0,0) =1, €no(o,¢) =0 for n > 1, €, (o, ¢) =0 for k > n.
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