Statistical learning via Bayesian nonparametrics

Tommaso Rigon

Università degli studi di Milano-Bicocca

Milan, 2020-10-21

Google trends

- There is vast interest in automated methods for complex data analysis such as deep learning. However, there is a lack of consideration of the following phenomena:
- Interpretability. Why things work? Models vs black-box algorithms.
- Uncertainty quantification. A.k.a. inferential statistics: interval estimation and testing.
- Applications with limited training data. Data are complex but the sample size might still be very low (i.e. in neuroscience).
- <u>Selection bias</u>. If data are badly selected, having tons of data points only reduces the uncertainty in estimating the wrong quantity.

Related paper

Dunson, D. B. (2018). Statistics in the big data era: failures of the machine. *Statistics* & *Probability Letters*, **136**, 4–9.

- The "model vs algorithm" dispute is certainly not novel.
- Usually the following "equations" are assumed to be true:

Machine learning = prediction, Statistics = inference.

- However, modern statistics (=data science?) is **both** inference and prediction.
- "Classical" statistical modeling can be helpful also in prediction tasks: they are not complementary e.g. to random forests.

(Well-known) related paper

Breiman, L. (2001). Statistical modeling: the two cultures. *Statistical Science*, **16**(3), 199–231.

- However, it is certainly true data are becoming increasingly complex.
- Data may have unusual structures (networks, functions, tensors), huge dimensionality (i.e. when p > n), be highly non-linear, etc.
- The statistical challenge is researching new flexible modeling tools that are nonetheless interpretable and possibly scalable to large dataset.
- **Example**. In the context of regression, this means moving away e.g. from the linear model, in favor of more flexible nonparametric specifications, i.e.

 $\begin{array}{ll} \mbox{Parametric model}: & y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \\ \mbox{Nonparametric model}: & y_i = f(x_i) + \epsilon_i, \end{array}$

with $f(\cdot)$ belonging to some flexible class of functions.

- There are two main inferential paradigms: the frequentist and the Bayesian.
- The "frequentist vs Bayesian" discussion has been a real ideological battlefield.
- Before the MCMC revolution, Bayesian statistics was mainly regarded as an (elegant?) mathematical framework for inference rather than a practical tool.
- The pragmatic Bayesian is the statistician who makes use of Bayesian statistics because it is naturally suited for the modeling of many complex data.
- Key idea: incorporate in the modeling context information if available. This can be done both by frequentists and Bayesians, the latter disposing of a wider framework.

Related paper

Gelman, A. and Robert, C. P. (2013). "Not only defended but also applied": the perceived absurdity of Bayesian inference. *The American Statistician*, **67**, 1–5.

- Bayesian nonparametrics (BNP) is obviously = Bayes + nonparametric statistics.
- Its theoretical development began much later that parametric Bayes, after the seminal 1973 Annals of Statistics paper by Ferguson on the Dirichlet process.
- The availability of algorithms for posterior inference opened new directions for BNP modeling in applications, especially in the '00s and '10s.
- BNP is nowadays a mature and lively research field.
- This talk is a "mixture" of 3 separate projects involving BNP approaches in presence of complex data, for testing hypotheses, summarizing the data, and making predictions.

Bayesian testing for network partitions

Joint work with:

Daniele Durante (Bocconi University)

Sirio Legramanti (Bocconi University) Sometimes relations are more informative than individual characteristics

Community detection

From network data

Infer the partition of the nodes

Network data as a binary matrix

- Networks (graphs) can be represented via their adjacency matrix Y.
- Rearranging rows/columns according to the partition, **Y** may exhibit a **block structure**.

0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	1	0	1	1	0	0	0	0	0
0	0	0	0	0	0	0	1	1	1	0	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0

• The entries of adjacency matrix $\mathbf{Y} = [y_{vu}]$ are defined as

$$y_{vu} = \mathbb{1}\{v \longleftrightarrow u\}, \quad v, u = 1, \dots, V.$$

• We consider undirected network ($\implies y_{vu} = y_{uv}$), with no no self-loops ($\implies y_{vv} = 0$).

Stochastic block models

- Let $z_v \in \{1, \ldots, H\}$ be the cluster membership of node v
- let $\theta_{hk} \in (0,1)$ be the probability of an edge between clusters h and k.
- The likelihood of the adjacency matrix is

$$p(\mathbf{Y} \mid \mathbf{\Theta}, \mathbf{z}) = \prod_{1 \leq u < v \leq n} p(y_{uv} \mid z_u, z_v, \mathbf{\Theta}) = \prod_{1 \leq u < v \leq n} \operatorname{Bern}(y_{uv} \mid \theta_{z_u z_v}).$$

In other words, within clusters the edges are iid Bernoulli random variables.

Edge probabilities are given independent Beta(a, b) priors, which are conjugate.

The focus is on the clustering z, implying that Θ is a nuisance parameter and can be marginalized out:

$$p(\mathbf{Y} \mid \mathbf{z}) = \int p(\mathbf{Y} \mid \mathbf{z}, \Theta) p(\Theta) \, \mathrm{d}\Theta = \prod_{h=1}^{H} \prod_{k=1}^{h} \frac{\mathsf{B}(a + m_{hk}, b + \overline{m}_{hk})}{\mathsf{B}(a, b)}.$$

- The integers m_{hk} are # of edges between clusters h and k.
- The integers \overline{m}_{hk} are the # of non-edges between clusters h and k.
- What prior should we choose for *p*(**z**)?

A simple choice is

$$\operatorname{pr}(z_{v}=h\mid \pi)=\pi_{h}, \qquad \pi=(\pi_{1},\ldots,\pi_{H})\sim\operatorname{Dir}(\alpha),$$

resulting in a **Dirichlet–multinomial** prior with *H* components.

■ The number *H* is fixed and finite. How do we estimate it? Usual approaches (AIC, BIC, etc.) seem inappropriate here.

The BNP prior

Instead of choosing it, we let H → ∞. Hence, we are considering an infinite relational model. An alternative would be a sparse Dirichlet multinomial.

 \blacksquare The corresponding $_{\rm BNP}$ prior is $z\sim$ Chinese Restaurant Process, so that

$$\mathsf{pr}(z_{\nu} = h \mid \mathbf{z}_{-\nu}) \propto \begin{cases} n_{h,-\nu} & \text{if } h = 1, \dots, \bar{H}_{-\nu}, \\ \alpha & \text{if } h = \bar{H}_{-\nu} + 1. \end{cases}$$

Bayesian testing of exogenous partitions

Consider the competing models

$$\begin{split} \mathcal{M} &: \textbf{z} \sim \text{Infinite Relational Model}, \\ \mathcal{M}^* : \textbf{z} = \textbf{z}^* \quad (\text{exogenous assignment}). \end{split}$$

We assume that a priori

$$p(\mathcal{M}) = p(\mathcal{M}^*).$$

• Then, we test \mathcal{M} vs \mathcal{M}^* through the Bayes factor

$$\mathcal{B}_{\mathcal{M},\mathcal{M}^*} = \frac{p(\mathbf{Y} \mid \mathcal{M})}{p(\mathbf{Y} \mid \mathcal{M}^*)} = \frac{\sum_{z \in \mathcal{Z}} p(\mathbf{Y} \mid z) p(z)}{p(\mathbf{Y} \mid z^*)},$$

which coincides with the posterior odds

$$\frac{p(\mathcal{M} \mid \mathbf{Y})}{p(\mathcal{M}^* \mid \mathbf{Y})}.$$

Bayes factors are computed using suitable MCMC algorithms.

Alzheimer's brain network data

Presence of white matter fibers among 68 anatomical regions in a representative Alzheimer's brain network, split according to the estimated endogenous assignments

- Do hemispheres or lobes capture endogenous blocks? No, at least according to Bayes factors.
- Recall that $2 \log \hat{\mathcal{B}}_{\mathcal{M},\mathcal{M}^*} \gg 0$ supports the choice $\mathcal{M} =$ Infinite Relational Model.

	Hemisphere	Lobes
$2\log \hat{\mathcal{B}}_{\mathcal{M},\mathcal{M}^*}$	712.33	1290.50

 Explanation: there exist sub-blocks (groups) within hemispheres, comprising regions in different lobes. • Our network data is a representative brain with Alzheimer's disease.

We let z* be the estimated partition from a representative brains of individuals characterized by normal aging, early and late cognitive decline

 $\begin{aligned} \mathcal{M}: \quad \textbf{z} \sim \text{Infinite Relational Model} \\ \mathcal{M}^*: \quad \textbf{z} = \textbf{z}^* \end{aligned}$

	Normal Aging	Early Decline	Late Decline
$2\log \hat{\mathcal{B}}_{\mathcal{M},\mathcal{M}^*}$	155.01	100.21	39.88

■ M^{*} is always rejected, BUT evidence against M^{*} decreases moving towards the disease state ⇒ inferred partitions as diagnostics for the disease progress?

- The Chinese restaurant process prior for z is a simple yet (sometimes) insufficiently flexible prior.
- In more recent works (Legramanti et al., 2020), we make use of Gibbs-type prior for p(z) rather than implicitly relying on the Dirichlet process.
- We called this class extended stochastic block models (ESBM).
- The so-called Gnedin process prior seems to have better empirical performance in sumulations and applications while remaining computationally tractable.
- Interestingly, in ESBM we can choose whether *H* is finite, random or infinite within the same unified framework.

Enriched processes & flight-route segmentation

Joint work with:

Sonia Petrone (Bocconi University)

Bruno Scarpa (University of Padova)

- We aim at clustering **functional observations** via nonparametric Bayes.
- In this motivating application, each statistical unit is a flight route.
- In particular, we consider the number of times that a specific route has been searched on the website of an e-commerce company.

Statistical challenges

- Bounding the complexity. Infinite-dimensional BNP priors often lead to overly complex cluster solutions.
- Functional constraints. Prior knowledge about the functional shapes is available, but it is not easy to incorporate.

E-commerce dataset

• The total number of flight routes is n = 214.

Each trajectory is observed over a weekly time grid $t_i = (1, ..., 55)$. Hence, the dataset can be represented as a 214×55 matrix with 11770 entries.

- Could we consider different metrics?
- Yes, but private companies are (rightly!) worried about disclosing their data to the public. In principle, other metrics might include:
 - Route prices;
 - Route marginal earnings;
 - Route-specific customer satisfaction;
 - Conversion rates;
 - • •
- A very crude but operative summary of each time series is its average.
- Missing part of the story: clustering shapes and not average levels.

 Functional observations are standardized, i.e. they have zero mean and unit variance. Moreover, let

$$y_i(t) = f_i(t) + \epsilon_i(t), \qquad (f_i \mid \tilde{p}) \stackrel{\text{\tiny ind}}{\sim} \tilde{p}, \qquad i = 1, \dots, n,$$

where $\epsilon_i(t)$ is a Gaussian error and $t \in \mathbb{R}^+$.

- Clustering is induced through a discrete prior \tilde{p} , whose choice is critical.
- The functional DP (Bigelow and Dunson, 2009; Dunson, Herring and Siega-Riz, 2008) would fail in bounding the complexity and incorporating functional constraints.

The proposed process is a mixture of random probability measures:

$$ilde{p} = \sum_{\ell=1}^L {\sf \Pi}_\ell ilde{p}_\ell = \sum_{\ell=1}^L {\sf \Pi}_\ell \sum_{h=1}^{H_\ell} \pi_{\ell h} \delta_{ heta_{\ell h}(t)}, \quad heta_{\ell h}(t) \stackrel{\mathsf{ind}}{\sim} {\sf P}_\ell,$$

for $h = 1, \ldots, H_{\ell}$ and $\ell = 1, \ldots, L$.

- Each P_{ℓ} is a diffuse probability measure taking values on a given functional class (monotone, cyclical, linear, S-shaped functions, etc).
- Closely related to the enriched processes of Wade et al. (2011) and Scarpa and Dunson (2014), but the number of clusters is bounded.

- $G_i \in (\ell, h)$ is a latent cluster indicator, so that $f_i(t)$ and $f_j(t)$ belong to the same group if $G_i = G_j$.
- $F_i \in \{1, \ldots, L\}$ is a latent functional class indicator.
- Functional class allocation: $\mathbb{P}(F_i = \ell) = \Pi_{\ell}$,
- Within-class allocation:

$$\mathbb{P}(G_i = (\ell, h) \mid F_i = \ell) = \pi_{\ell h},$$

- Cluster allocation: $\mathbb{P}(G_i = (\ell, h)) = \prod_{\ell} \pi_{\ell h}$.
- **Sparsity** can be induced as in Rousseau and Mengersen (2011).
- Functional class prior: $(\Pi_1, \ldots, \Pi_{L-1}) \sim \text{DIRICHLET}(\alpha_1, \ldots, \alpha_L)$.
- Shrinkage prior: $(\pi_{\ell 1}, \ldots, \pi_{\ell H_{\ell}-1}) \stackrel{\text{ind}}{\sim} \text{DIRICHLET}(c_{\ell}/H_{\ell}, \ldots, c_{\ell}/H_{\ell}).$

Each P_{ℓ} can be interpreted as a functional prior guess, since

$$\mathbb{E}\{\tilde{p}(\cdot)\} = \sum_{\ell=1}^{L} \mathbb{E}(\mathsf{\Pi}_{\ell}) P_{\ell}(\cdot) = \frac{1}{\alpha} \sum_{\ell=1}^{L} \alpha_{\ell} P_{\ell}(\cdot), \qquad \alpha = \sum_{\ell=1}^{L} \alpha_{\ell}.$$

• We assume that $\theta_{\ell h}(t)$ is linear in the parameters:

$$heta_{\ell h}(t) = \sum_{m=1}^{M_\ell} \mathcal{B}_{m\ell}(t) eta_{m\ell h},$$

where each $\mathcal{B}_{1\ell}(t), \ldots, \mathcal{B}_{M_{\ell}\ell}(t)$ for $\ell = 1, \ldots, L$ is a set of pre-specified basis functions.

• Moreover, we assume $(\beta_{1\ell h}, \ldots, \beta_{M_{\ell}\ell h})^{\mathsf{T}}$ have Gaussian priors.

1

• The first functional class ($\ell = 1$) captures yearly cyclical patterns and characterizes the routes having e.g. a peak of web-searches during either the summer or the winter.

$$heta_{1h}(t) = \sum_{m=1}^{4} eta_{m1h} \mathcal{S}_m(t) + eta_{51h} \cos\left(2\pi rac{7}{365}t
ight) + eta_{61h} \sin\left(2\pi rac{7}{365}t
ight),$$

where $S_1(t), \ldots, S_4(t)$ are deterministic cubic spline basis functions.

The second functional class ($\ell = 2$) characterizes functions having two peaks per year, which amounts to let

$$heta_{2h}(t) = \sum_{m=1}^{4} eta_{m2h} \mathcal{S}_m(t) + eta_{52h} \cos\left(2\pi rac{14}{365}t
ight) + eta_{62h} \sin\left(2\pi rac{14}{365}t
ight).$$

Baseline measure specification

First baseline measure

- The number of clusters is bounded by $H = \sum_{\ell=1}^{L} H_{\ell}$. We consider a large H and employ a sparse prior, following Rousseau and Mengersen (2011).
- In practice, we let $H = \sum_{\ell=1}^{L} H_{\ell}$ be the largest value for which the resulting clustering solution is still useful in practice.
- Such a value is evidently quite subjective and it depends on the specific statistical problem.
- In our e-commerce application we let the upper bounds $H_1 = 20$ and $H_2 = 5$.

Clustering solution

		Arrival					
		North	Center	South & Islands			
	North	0	2	49			
Departure	Center	0	0	24			
	South & Islands	6	3	12			

		Arrival					
		North	Center	South & Islands			
	North	0	7	6			
Departure	Center	10	0	0			
	South & Islands	47	21	7			

Define independently among themselves

$$ilde{\mu}_x \sim \operatorname{GAP}(\alpha P_x), \qquad ilde{p}_{y|x}(\cdot \mid x) \stackrel{\mathrm{ind}}{\sim} \operatorname{PY}\{\sigma(x), \beta(x) P_{y|x}(\cdot \mid x)\}, \qquad x \in \mathbb{X}.$$

A gamma and Pitman–Yor (GA-PY) random measure $\tilde{\mu}$ is defined as

$$ilde{\mu}(A imes B) = \int_A ilde{p}_{y|x}(B \mid x) ilde{\mu}_x(dx), \qquad A \subseteq \mathbb{X}, \quad B \subseteq \mathbb{Y}.$$

■ Then p̃ is called enriched Pitman-Yor process (EPY) if

$$ilde{
ho} = rac{ ilde{\mu}}{ ilde{\mu}(\mathbb{X} imes\mathbb{Y})}.$$

Theorem

Let $\tilde{\mu} \sim \text{GA-PY}(\alpha P_x, \sigma(x), \beta(x)P_{y|x})$ and let $\alpha P_x(\cdot) = \sum_{\ell=1}^L \alpha_\ell \, \delta_{x_\ell}(\cdot)$ be a discrete measure. Then,

$$\mathbb{E}\left\{e^{-\tilde{\mu}(g)}\right\} = \prod_{\ell=1}^{L} \mathbb{E}\left[\left\{1 + \tilde{p}_{y|x}(g \mid x_{\ell})\right\}^{-\alpha_{\ell}}\right],$$

where $\tilde{p}_{y|x}(f \mid x) = \int_{\mathbb{Y}} g(x, y) \tilde{p}_{y|x}(dy \mid x)$ for any $x \in \mathbb{X}$ and for any measurable function $g : \mathbb{X} \times \mathbb{Y} \to \mathbb{R}^+$ such that $\tilde{\mu}(g) < \infty$ almost surely.

- The expectation appearing in the right hand side of the above Laplace functional is a generalized Cauchy-Stieltjes transform.
- Further simplifications occurs in the EDP case thanks to the Cifarelli-Regazzini identity.

- Our model, the enriched process of Wade et al. (2011), Dunson and Scarpa (2014) belong to this general class of enriched priors.
- Mixture of mixture models by Malsiner-Walli et al. (2017) can be also viewed as EPY processes.
- Spike-and-slab Dirichlet priors (Dunson, Herring and Hengel, 2008; Guindani, Müller and Zhang, 2009) can be also regarded as EPYs.
- Further connections with the dependent Dirichlet processes of Müller, Quintana and Rosner (2004), Lijoi, Nipoti and Prünster (2014).
- These aspects are explored in Rigon, Scarpa and Petrone (2020+).

David Dunson (Duke University)

Otso Ovaskainen (University of Finland)

Alessandro Zito (Duke University)

Outline of the project

- The sequential modelling of the appearance of distinct species is a widely studied problem. Famous example: Fisher et al. (1943)
- How many more new species exists in a community I did not observed yet?
- Suppose that for a given location we observe a sequence of species.

$$X_1 =$$
 "squirrel", $X_2 =$ "dog", $X_3 =$ "cat", $X_4 =$ "squirrel", etc.

A species accumulation curve is the trajectory of the total number of new species K_n as a function of n, where

$$K_n = \sum_{i=1}^n \mathbb{1}(X_i = \text{``new''}), \quad n \ge 1.$$

In modern experiments however, species may be detected from their DNA.

- Issue: DNA process is costly, and no guarantee that it captures all the species!
- We need a method to assess whether we have detected all the species trapped (sample saturation).
- Given an accumulation curve

$$K_n = \sum_{i=1}^n D_i, \qquad D_i = \mathbb{1}(X_i = \text{``new''}),$$

our method should be able to:

- Smooth the in-sample trajectory K_1, \ldots, K_n .
- Predict the out-of-sample trajectory of K_{n+1}, \ldots, K_{n+m} for any $m \ge 1$. Study the behavior of $K_{\infty} = \lim_{n \to \infty} K_n$ (i.e. saturation level).

BNP species sampling models

- These requirements can be answered by Bayesian nonparametric species sampling models.
- A common exchangeable model for $(X_n)_{n\geq 1}$ is the Pitman–Yor, in which:

$$\operatorname{pr}(X_{n+1} = \operatorname{"new"} \mid X_1, \ldots, X_n) = \frac{\alpha + \sigma K_n}{\alpha + n}$$

• The σ parameters controls the asymptotic behavior of K_n .

If σ = 0 and α > 0 ⇒ Dirichlet process
K_n ~ α log n and K_∞ = ∞ a.s.
If σ ∈ (0,1) and α > -σ ⇒ Pitman-Yor process
K_n ~ O(n^σ) and K_∞ = ∞ a.s.
If σ < 0 and α = H|σ|, with H ∈ N ⇒ Dirichlet-Multinomial
K_∞ = m < ∞ a.s. but very hard to estimate

All three models have closed-form estimators for the predictions. However...

Bayesian nonparametric species sampling models

Failures of common species sampling models. Dots are the observed values for K_n .

The model

• We assume $(D_n)_{n\geq 1}$ are independent Bernoullies with probabilities $(\pi_n)_{n\geq 1}$.

For any $n \ge 1$, the discovery probability is equal to

$$\pi_n = \operatorname{pr}(D_n = 1) = \operatorname{pr}(T_n > n - 1) = S(n - 1; \theta), \quad \theta \in \Theta \subseteq \mathbb{R}^p,$$

where $(T_n)_{n\geq 1}$ are iid continuous latent variables defined in $(0, \infty)$ with strictly decreasing survival function $S(t; \theta)$.

• The resulting distribution for K_n follows a Poisson-Binomial distribution:

$$K_n = \sum_{i=1}^n D_i \sim \operatorname{PB}\{1, S(1; \theta), \dots, S(n-1; \theta)\}.$$

The likelihood is readily available as

$$\mathscr{L}(heta \mid D_1,\ldots,D_n) \propto \prod_{i=2}^n \mathcal{S}(i-1; heta)^{D_i} \mathcal{S}(i-1; heta)^{1-D_i}.$$

• A in-sample prediction of the trajectory is the expectation of K_n , namely

$$E(K_n) = \sum_{i=1}^n S(i-1;\theta).$$

A out-of-sample prediction of the trajectory is a posterior expectation:

$$E(K_{m+n} \mid K_n = k) = k + \sum_{j=1}^m S(j+n-1;\theta).$$

• The latent variable *T* controls the asymptotic behavior.

Proposition

Under the latent structure setting, $E(\mathcal{K}_{\infty}) = \sum_{i=1}^{\infty} S(i-1;\theta)$ is such that

$$E(T) \leq E(K_{\infty}) \leq E(T) + 1.$$

Moreover, $K_{\infty} = \infty$ almost surely if and only if $E(T) = \infty$.

The Dirichlet process

Our starting point is the Dirichlet process

$$\pi_{n+1} = S(n; \alpha) = \frac{\alpha}{\alpha + n}, \quad \alpha > 0.$$

Interesting fact: $S(t; \alpha)$ is the survival function of a log-logistic distribution.

Theorem

If $(X_n)_{n\geq 1}$ is directed by a Dirichlet process, then for a sample of X_1, \ldots, X_n with $K_n = k$ it holds that

$$\mathscr{L}(\alpha \mid X_1, \ldots, X_n) \propto \mathscr{L}(\alpha \mid D_1, \ldots, D_n) \propto \frac{\alpha^{\wedge}}{(\alpha)_n}$$

where $(\alpha)_n = \alpha(\alpha + 1) \cdots (\alpha + n - 1)$.

■ Advantage: Same likelihood ⇒ same inference.

Disadvantage: K_n diverges to ∞ at the rate $\alpha \log n \implies$ too strict!

• A possibile choice for the distribution of *T* is a three parameter log-logistic.

• Hence, when $T \sim LL(\alpha, \sigma, \phi)$ we obtain

$$\pi_{n+1} = S(n; \alpha, \sigma, \phi) = \frac{\alpha \phi^n}{\alpha \phi^n + n^{1-\sigma}},$$

with $\alpha > 0$, $\sigma < 1$ and $\phi \in (0, 1]$.

- This embeds several behaviors:
 - For $\phi = 1$ and $\sigma = 0 \Rightarrow$ Dirichlet process

• $K_n \sim \alpha \log n$ and $K_\infty = \infty$ a.s.

For $\phi = 1$ and $\sigma < 0 \Rightarrow$ similar to Dirichlet-Multinomial

• $K_{\infty} < \infty$ a.s., E(T) is in closed form

For $\phi = 1$ and $\sigma \in [0, 1) \Rightarrow$ similar to Pitman-Yor

• $K_n \sim \mathcal{O}(n^{\sigma})$ and $K_{\infty} = \infty$ a.s.

- For $\phi < 1 \Rightarrow$ convergence always ensured
 - $K_{\infty} < \infty$ a.s., E(T) needs approximation.

- Under $T \sim LL(\alpha, \sigma, \phi)$, the pdf of K_n is available.
- The estimation of the parameters can be easily carried due to link with logistic regression:

$$\log \frac{\pi_{n+1}}{1-\pi_{n+1}} = \log \alpha - (1-\sigma) \log n + (\log \phi)n = \beta_0 + \beta_1 \log n + \beta_2 n,$$

with $\beta_0 = \log \alpha$, $\beta_1 = \sigma - 1 < 0$ and $\beta_2 = \log \phi \le 0$ for every $n \ge 1$.

- If truncated normals are employed for β_1 and $\beta_2 \implies$ posterior can be obtained via Pólya-Gamma data augmentation (Polson et al. 2013).
- Summary. We trade exchangeability in favor of
 - A model easier to fit;
 - A wider and more flexible class of trajectories;
 - A model in which K_{∞} is always finite.

The LIFEPLAN data

Performance of the three-parameter log-logistic performance.

The LIFEPLAN data

Pros

- The Poisson–Binomial offers an alternative general framework to model the sequential discovery of new species.
- The three-parameter log-logistic is simple generalization of the Dirichlet process which increases the flexibility and allowing for different asymptotic regimes.
- The model is easy and fast to estimate both in terms of empirical Bayes and with fully Bayesian approach.

Side effect

• The resulting model drops the exchangeability assumption. This means that the results will be always sequence-dependent.

Thanks!

Theorem

Let $K_n \sim PB\{1, S(1; \theta), \dots, S(n-1; \theta)\}$ and suppose that $K_\infty = \infty$ almost surely. Then

$$rac{K_n}{b_n}
ightarrow 1, \qquad b_n = \int_1^n S(t-1; heta) \mathrm{d}t, \qquad n
ightarrow \infty,$$

almost surely. In addition, it holds that

$$\frac{K_n - E(K_n)}{\operatorname{var}(K_n)^{1/2}} \to N(0, 1), \qquad n \to \infty,$$

in distribution.

Theorem

Let $K_n \sim PB\{1, S(1; \alpha, \sigma, \phi), \dots, S(n-1; \alpha, \sigma, \phi)\}$ for every $n \geq 1$. Then,

$$\operatorname{pr}(K_n = k) = \frac{\alpha^k}{\prod_{i=0}^{n-1} (\alpha + i^{1-\sigma} \phi^{-i})} \mathscr{C}_{n,k}(\sigma, \phi).$$

where for any $1 \le k \le n$ and $n \ge 2$ one has

$$\mathscr{C}_{n,k}(\sigma,\phi) = \sum_{(i_1,\ldots,i_{n-k})} \prod_{j=1}^{n-k} i_j^{1-\sigma} \phi^{-i_j},$$

where the sum runs over the (n - k)-combinations of integers (i_1, \ldots, i_{n-k}) in $\{1, \ldots, n-1\}$.

- Recursion: $\mathscr{C}_{n+1,k}(\sigma,\phi) = \mathscr{C}_{n,k-1}(\sigma,\phi) + n^{1-\sigma}\phi^{-n}\mathscr{C}_{n,k}(\sigma,\phi)$, for any $n \ge 0$ and $1 \le k \le n+1$.
- Initial conditions: $\mathscr{C}_{0,0}(\sigma,\phi) = 1$, $\mathscr{C}_{n,0}(\sigma,\phi) = 0$ for $n \ge 1$, $\mathscr{C}_{n,k}(\sigma,\phi) = 0$ for k > n.