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Failures of the machines

There is vast interest in automated methods for complex data analysis such as deep
learning. However, there is a lack of consideration of the following phenomena:

Interpretability. Why things work? Models vs black-box algorithms.

Uncertainty quantification. A.k.a. inferential statistics: interval estimation and
testing.

Applications with limited training data. Data are complex but the sample size might
still be very low (i.e. in neuroscience).

Selection bias. If data are badly selected, having tons of data points only reduces the
uncertainty in estimating the wrong quantity.

Related paper
Dunson, D. B. (2018). Statistics in the big data era: failures of the machine. Statistics
& Probability Letters, 136, 4–9.
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Models and algorithms

The “model vs algorithm" dispute is certainly not novel.

Usually the following “equations” are assumed to be true:

Machine learning = prediction, Statistics = inference.

However, modern statistics (=data science?) is both inference and prediction.

“Classical” statistical modeling can be helpful also in prediction tasks: they are not
complementary e.g. to random forests.

(Well-known) related paper
Breiman, L. (2001). Statistical modeling: the two cultures. Statistical Science, 16(3),
199–231.
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Parametric and nonparametric approaches

However, it is certainly true data are becoming increasingly complex.

Data may have unusual structures (networks, functions, tensors), huge dimensionality
(i.e. when p > n), be highly non-linear, etc.

The statistical challenge is researching new flexible modeling tools that are
nonetheless interpretable and possibly scalable to large dataset.

Example. In the context of regression, this means moving away e.g. from the linear
model, in favor of more flexible nonparametric specifications, i.e.

Parametric model : yi = β0 + β1xi + εi ,

Nonparametric model : yi = f (xi ) + εi ,

with f (·) belonging to some flexible class of functions.
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Bayesians & frequentists

There are two main inferential paradigms: the frequentist and the Bayesian.

The “frequentist vs Bayesian” discussion has been a real ideological battlefield.

Before the mcmc revolution, Bayesian statistics was mainly regarded as an (elegant?)
mathematical framework for inference rather than a practical tool.

The pragmatic Bayesian is the statistician who makes use of Bayesian statistics
because it is naturally suited for the modeling of many complex data.

Key idea: incorporate in the modeling context information if available. This can be
done both by frequentists and Bayesians, the latter disposing of a wider framework.

Related paper
Gelman, A. and Robert, C. P. (2013). “Not only defended but also applied": the
perceived absurdity of Bayesian inference. The American Statistician, 67, 1–5.
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Bayesian nonparametrics

Bayesian nonparametrics (bnp) is obviously = Bayes + nonparametric statistics.

Its theoretical development began much later that parametric Bayes, after the seminal
1973 Annals of Statistics paper by Ferguson on the Dirichlet process.

The availability of algorithms for posterior inference opened new directions for bnp
modeling in applications, especially in the ’00s and ’10s.

bnp is nowadays a mature and lively research field.

This talk is a “mixture” of 3 separate projects involving bnp approaches in presence of
complex data, for testing hypotheses, summarizing the data, and making predictions.
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Bayesian testing for network partitions

Joint work with:

Daniele Durante
(Bocconi University)

Sirio Legramanti
(Bocconi University)
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Network data

Sometimes relations are more informative than individual characteristics
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Community detection

From network data Infer the partition of the nodes
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Network data as a binary matrix

Networks (graphs) can be represented via their adjacency matrix Y.

Rearranging rows/columns according to the partition, Y may exhibit a block structure.
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Stochastic block models (sbm)

The entries of adjacency matrix Y = [yvu] are defined as

yvu = 1{v ←→ u}, v , u = 1, . . . ,V .

We consider undirected network (=⇒ yvu = yuv ), with no no self-loops (=⇒ yvv = 0).

Stochastic block models
Let zv ∈ {1, . . . ,H} be the cluster membership of node v

let θhk ∈ (0, 1) be the probability of an edge between clusters h and k.

The likelihood of the adjacency matrix is

p(Y | Θ, z) =
∏

1≤u<v≤n

p(yuv | zu, zv ,Θ) =
∏

1≤u<v≤n

Bern(yuv | θzuzv ).

In other words, within clusters the edges are iid Bernoulli random variables.
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Bayesian stochastic block models

Edge probabilities are given independent Beta(a, b) priors, which are conjugate.

The focus is on the clustering z, implying that Θ is a nuisance parameter and can be
marginalized out:

p(Y | z) =
∫

p(Y | z,Θ)p(Θ) dΘ =
H∏

h=1

h∏
k=1

B(a + mhk , b + mhk )
B(a, b) .

The integers mhk are # of edges between clusters h and k.

The integers mhk are the # of non-edges between clusters h and k.

What prior should we choose for p(z)?
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Bayesian sbms

A simple choice is

pr(zv = h | π) = πh, π = (π1, . . . , πH) ∼ Dir(α),

resulting in a Dirichlet–multinomial prior with H components.

The number H is fixed and finite. How do we estimate it? Usual approaches (aic,
bic, etc.) seem inappropriate here.

The bnp prior
Instead of choosing it, we let H →∞. Hence, we are considering an infinite relational
model. An alternative would be a sparse Dirichlet multinomial.

The corresponding bnp prior is z ∼ Chinese Restaurant Process, so that

pr(zv = h | z−v ) ∝
{

nh,−v if h = 1, . . . , H̄−v ,

α if h = H̄−v + 1.
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Bayesian testing of exogenous partitions

Consider the competing models

M : z ∼ Infinite Relational Model,
M∗ : z = z∗ (exogenous assignment).

We assume that a priori
p(M) = p(M∗).

Then, we testM vsM∗ through the Bayes factor

BM,M∗ = p(Y | M)
p(Y | M∗) =

∑
z∈Z p(Y | z)p(z)

p(Y | z∗) ,

which coincides with the posterior odds

p(M | Y)
p(M∗ | Y) .

Bayes factors are computed using suitable mcmc algorithms.
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Alzheimer’s brain network data

Lobe
frontal
insular
limbic
occipital
parietal
temporal

Hemisphere
left
right

Presence of white matter fibers among 68 anatomical regions in a representative Alzheimer’s
brain network, split according to the estimated endogenous assignments
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Testing exogenous partitions

Do hemispheres or lobes capture endogenous blocks? No, at least according to Bayes
factors.

Recall that 2 log B̂M,M∗ � 0 supports the choiceM = Infinite Relational Model.

Hemisphere Lobes

2 log B̂M,M∗ 712.33 1290.50

Explanation: there exist sub–blocks (groups) within hemispheres, comprising regions
in different lobes.
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Testing exogenous partitions

Our network data is a representative brain with Alzheimer’s disease.

We let z∗ be the estimated partition from a representative brains of individuals
characterized by normal aging, early and late cognitive decline

M : z ∼ Infinite Relational Model
M∗ : z = z∗

Normal Aging Early Decline Late Decline

2 log B̂M,M∗ 155.01 100.21 39.88

M∗ is always rejected, BUT evidence againstM∗ decreases moving towards the
disease state =⇒ inferred partitions as diagnostics for the disease progress?
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Extended stochastic block models

The Chinese restaurant process prior for z is a simple yet (sometimes) insufficiently
flexible prior.

In more recent works (Legramanti et al., 2020), we make use of Gibbs-type prior for
p(z) rather than implicitly relying on the Dirichlet process.

We called this class extended stochastic block models (esbm).

The so-called Gnedin process prior seems to have better empirical performance in
sumulations and applications while remaining computationally tractable.

Interestingly, in esbm we can choose whether H is finite, random or infinite within the
same unified framework.
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Enriched processes & flight-route segmentation

Joint work with:

Sonia Petrone
(Bocconi University)

Bruno Scarpa
(University of Padova)
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Outline of the project

We aim at clustering functional observations via nonparametric Bayes.

In this motivating application, each statistical unit is a flight route.

In particular, we consider the number of times that a specific route has been searched
on the website of an e-commerce company.

Statistical challenges
Bounding the complexity. Infinite-dimensional bnp priors often lead to overly
complex cluster solutions.

Functional constraints. Prior knowledge about the functional shapes is available, but
it is not easy to incorporate.
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E-commerce dataset
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The total number of flight routes is n = 214.

Each trajectory is observed over a weekly time grid ti = (1, . . . , 55). Hence, the
dataset can be represented as a 214× 55 matrix with 11770 entries.
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General considerations

Could we consider different metrics?

Yes, but private companies are (rightly!) worried about disclosing their data to the
public. In principle, other metrics might include:

Route prices;
Route marginal earnings;
Route-specific customer satisfaction;
Conversion rates;
. . .

A very crude but operative summary of each time series is its average.

Missing part of the story: clustering shapes and not average levels.
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Model formulation

Functional observations are standardized, i.e. they have zero mean and unit variance.
Moreover, let

yi (t) = fi (t) + εi (t), (fi | p̃) iid∼ p̃, i = 1, . . . , n,

where εi (t) is a Gaussian error and t ∈ R+.

Clustering is induced through a discrete prior p̃, whose choice is critical.

The functional dp (Bigelow and Dunson, 2009; Dunson, Herring and Siega-Riz, 2008)
would fail in bounding the complexity and incorporating functional constraints.
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An enriched discrete prior

The proposed process is a mixture of random probability measures:

p̃ =
L∑
`=1

Π`p̃` =
L∑
`=1

Π`
H∑̀

h=1

π`hδθ`h(t), θ`h(t) ind∼ P`,

for h = 1, . . . ,H` and ` = 1, . . . , L.

Each P` is a diffuse probability measure taking values on a given functional class
(monotone, cyclical, linear, S-shaped functions, etc).

Closely related to the enriched processes of Wade et al. (2011) and Scarpa and
Dunson (2014), but the number of clusters is bounded.

Tommaso Rigon (Bicocca) 25 / 50



Clustering allocation process

Gi ∈ (`, h) is a latent cluster indicator, so that fi (t) and fj (t) belong to the same
group if Gi = Gj .

Fi ∈ {1, . . . , L} is a latent functional class indicator.

Functional class allocation: P(Fi = `) = Π`,
Within-class allocation: P(Gi = (`, h) | Fi = `) = π`h,

Cluster allocation: P(Gi = (`, h)) = Π`π`h.

Sparsity can be induced as in Rousseau and Mengersen (2011).
Functional class prior: (Π1, . . . ,ΠL−1) ∼ dirichlet(α1, . . . , αL).

Shrinkage prior: (π`1, . . . , π`H`−1) ind∼ dirichlet (c`/H`, . . . , c`/H`).
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Baseline measure specification

Each P` can be interpreted as a functional prior guess, since

E{p̃(·)} =
L∑
`=1

E(Π`)P`(·) = 1
α

L∑
`=1

α`P`(·), α =
L∑
`=1

α`.

We assume that θ`h(t) is linear in the parameters:

θ`h(t) =
M∑̀

m=1

Bm`(t)βm`h,

where each B1`(t), . . . ,BM``(t) for ` = 1, . . . , L is a set of pre-specified basis
functions.

Moreover, we assume (β1`h, . . . , βM``h)ᵀ have Gaussian priors.
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Baseline measure specification

The first functional class (` = 1) captures yearly cyclical patterns and characterizes
the routes having e.g. a peak of web-searches during either the summer or the winter.

θ1h(t) =
4∑

m=1

βm1hSm(t) + β51h cos
(
2π 7

365 t
)

+ β61h sin
(
2π 7

365 t
)
,

where S1(t), . . . ,S4(t) are deterministic cubic spline basis functions.

The second functional class (` = 2) characterizes functions having two peaks per
year, which amounts to let

θ2h(t) =
4∑

m=1

βm2hSm(t) + β52h cos
(
2π 14

365 t
)

+ β62h sin
(
2π 14

365 t
)
.
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Baseline measure specification
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On the selection of the upper bounds

The number of clusters is bounded by H =
∑L

`=1 H`. We consider a large H and
employ a sparse prior, following Rousseau and Mengersen (2011).

In practice, we let H =
∑L

`=1 H` be the largest value for which the resulting
clustering solution is still useful in practice.

Such a value is evidently quite subjective and it depends on the specific statistical
problem.

In our e-commerce application we let the upper bounds H1 = 20 and H2 = 5.
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Clustering solution
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Macro clusters A and B

Arrival
North Center South & Islands

North 0 2 49
Departure Center 0 0 24

South & Islands 6 3 12

Arrival
North Center South & Islands

North 0 7 6
Departure Center 10 0 0

South & Islands 47 21 7
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Appendix: theoretical developments

Define independently among themselves

µ̃x ∼ gap(αPx ), p̃y|x (· | x) ind∼ py{σ(x), β(x)Py|x (· | x)}, x ∈ X.

A gamma and Pitman–Yor (ga-py) random measure µ̃ is defined as

µ̃(A× B) =
∫

A
p̃y|x (B | x)µ̃x ( dx), A ⊆ X, B ⊆ Y.

Then p̃ is called enriched Pitman–Yor process (epy) if

p̃ = µ̃

µ̃(X×Y) .
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Appendix: theoretical characterizations

Theorem
Let µ̃ ∼ ga-py(αPx , σ(x), β(x)Py|x ) and let αPx (·) =

∑L
`=1 α` δx`(·) be a discrete

measure. Then,

E
{

e−µ̃(g)} =
L∏
`=1

E

[{
1 + p̃y|x (g | x`)

}−α`] ,
where p̃y|x (f | x) =

∫
Y

g(x , y)p̃y|x ( dy | x) for any x ∈ X and for any measurable
function g : X×Y → R+ such that µ̃(g) <∞ almost surely.

The expectation appearing in the right hand side of the above Laplace functional is a
generalized Cauchy-Stieltjes transform.

Further simplifications occurs in the edp case thanks to the Cifarelli-Regazzini
identity.

Tommaso Rigon (Bicocca) 34 / 50



A unified class of enriched priors

Our model, the enriched process of Wade et al. (2011), Dunson and Scarpa (2014)
belong to this general class of enriched priors.

Mixture of mixture models by Malsiner-Walli et al. (2017) can be also viewed as epy
processes.

Spike-and-slab Dirichlet priors (Dunson, Herring and Hengel, 2008; Guindani, Müller
and Zhang, 2009) can be also regarded as epys.

Further connections with the dependent Dirichlet processes of Müller, Quintana and
Rosner (2004), Lijoi, Nipoti and Prünster (2014).

These aspects are explored in Rigon, Scarpa and Petrone (2020+).
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bnp modeling of sequential discoveries

Joint work with:

David Dunson
(Duke University)

Otso Ovaskainen
(University of Finland)

Alessandro Zito
(Duke University)
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Outline of the project

The sequential modelling of the appearance of distinct species is a widely studied
problem. Famous example: Fisher et al. (1943)

How many more new species exists in a community I did not observed yet?

Suppose that for a given location we observe a sequence of species.

X1 = “squirrel”, X2 = “dog”, X3 = “cat”, X4 = “squirrel”, etc.

A species accumulation curve is the trajectory of the total number of new species Kn
as a function of n, where

Kn =
n∑

i=1

1(Xi = “new”), n ≥ 1.

In modern experiments however, species may be detected from their dna.
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dna sequencing
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Species sampling modeling

Issue: DNA process is costly, and no guarantee that it captures all the species!

We need a method to assess whether we have detected all the species trapped (sample
saturation).

Given an accumulation curve

Kn =
n∑

i=1

Di , Di = 1(Xi = “new”),

our method should be able to:

Smooth the in-sample trajectory K1, . . . ,Kn.
Predict the out-of-sample trajectory of Kn+1, . . . ,Kn+m for any m ≥ 1.
Study the behavior of K∞ = limn→∞ Kn (i.e. saturation level).
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bnp species sampling models

These requirements can be answered by Bayesian nonparametric species sampling
models.

A common exchangeable model for (Xn)n≥1 is the Pitman–Yor, in which:

pr(Xn+1 = “new” | X1, . . . ,Xn) = α + σKn

α + n

The σ parameters controls the asymptotic behavior of Kn.

If σ = 0 and α > 0 ⇒ Dirichlet process
Kn ∼ α log n and K∞ =∞ a.s.

If σ ∈ (0, 1) and α > −σ ⇒ Pitman-Yor process
Kn ∼ O(nσ) and K∞ =∞ a.s.

If σ < 0 and α = H|σ|, with H ∈ N ⇒ Dirichlet-Multinomial
K∞ = m <∞ a.s, but very hard to estimate

All three models have closed-form estimators for the predictions. However...
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Bayesian nonparametric species sampling models

Species sampling model Dirichlet Dirichlet−Multinomial Pitman−Yor
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n

Failures of common species sampling models. Dots are the observed values for Kn.
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The model

We assume (Dn)n≥1 are independent Bernoullies with probabilities (πn)n≥1.

For any n ≥ 1, the discovery probability is equal to

πn = pr(Dn = 1) = pr(Tn > n − 1) = S(n − 1; θ), θ ∈ Θ ⊆ Rp,

where (Tn)n≥1 are iid continuous latent variables defined in (0,∞) with strictly
decreasing survival function S(t; θ).

The resulting distribution for Kn follows a Poisson-Binomial distribution:

Kn =
n∑

i=1

Di ∼ pb{1, S(1; θ), . . . , S(n − 1; θ)}.

The likelihood is readily available as

L (θ | D1, . . . ,Dn) ∝
n∏

i=2

S(i − 1; θ)Di S(i − 1; θ)1−Di .
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Basic properties

A in-sample prediction of the trajectory is the expectation of Kn, namely

E(Kn) =
n∑

i=1

S(i − 1; θ).

A out-of-sample prediction of the trajectory is a posterior expectation:

E(Km+n | Kn = k) = k +
m∑

j=1

S(j + n − 1; θ).

The latent variable T controls the asymptotic behavior.

Proposition
Under the latent structure setting, E(K∞) =

∑∞
i=1 S(i − 1; θ) is such that

E(T ) ≤ E(K∞) ≤ E(T ) + 1.

Moreover, K∞ =∞ almost surely if and only if E(T ) =∞.
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The Dirichlet process

Our starting point is the Dirichlet process

πn+1 = S(n;α) = α

α + n , α > 0.

Interesting fact: S(t;α) is the survival function of a log–logistic distribution.

Theorem
If (Xn)n≥1 is directed by a Dirichlet process, then for a sample of X1, . . . ,Xn with Kn = k
it holds that

L (α | X1, . . . ,Xn) ∝ L (α | D1, . . . ,Dn) ∝ αk

(α)n
,

where (α)n = α(α + 1) · · · (α + n − 1).

Advantage: Same likelihood =⇒ same inference.

Disadvantage: Kn diverges to ∞ at the rate α log n =⇒ too strict!
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A three parameters log-logistic

A possibile choice for the distribution of T is a three parameter log-logistic.

Hence, when T ∼ ll(α, σ, φ) we obtain

πn+1 = S(n;α, σ, φ) = αφn

αφn + n1−σ ,

with α > 0, σ < 1 and φ ∈ (0, 1].

This embeds several behaviors:
For φ = 1 and σ = 0 ⇒ Dirichlet process

Kn ∼ α log n and K∞ =∞ a.s.
For φ = 1 and σ < 0 ⇒ similar to Dirichlet-Multinomial

K∞ <∞ a.s., E(T ) is in closed form
For φ = 1 and σ ∈ [0, 1) ⇒ similar to Pitman-Yor

Kn ∼ O(nσ) and K∞ =∞ a.s.
For φ < 1 ⇒ convergence always ensured

K∞ <∞ a.s., E(T ) needs approximation.
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Logistic regression representation

Under T ∼ ll(α, σ, φ), the pdf of Kn is available.

The estimation of the parameters can be easily carried due to link with logistic
regression:

log πn+1

1− πn+1
= logα− (1− σ) log n + (log φ)n = β0 + β1 log n + β2n,

with β0 = logα, β1 = σ − 1 < 0 and β2 = log φ ≤ 0 for every n ≥ 1.

If truncated normals are employed for β1 and β2 =⇒ posterior can be obtained via
Pólya-Gamma data augmentation (Polson et al. 2013).

Summary. We trade exchangeability in favor of
A model easier to fit;
A wider and more flexible class of trajectories;
A model in which K∞ is always finite.
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The LIFEPLAN data
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Performance of the three-parameter log-logistic performance.
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The LIFEPLAN data
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Summary

Pros
The Poisson–Binomial offers an alternative general framework to model the sequential
discovery of new species.

The three-parameter log-logistic is simple generalization of the Dirichlet process which
increases the flexibility and allowing for different asymptotic regimes.

The model is easy and fast to estimate both in terms of empirical Bayes and with fully
Bayesian approach.

Side effect
The resulting model drops the exchangeability assumption. This means that the results
will be always sequence-dependent.
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Thanks!
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Appendix for bnp species sampling model

Theorem
Let Kn ∼ pb{1, S(1; θ), . . . , S(n − 1; θ)} and suppose that K∞ =∞ almost surely. Then

Kn

bn
→ 1, bn =

∫ n

1
S(t − 1; θ)dt, n→∞,

almost surely. In addition, it holds that

Kn − E(Kn)
var(Kn)1/2 → N(0, 1), n→∞,

in distribution.
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Appendix for bnp species sampling model

Theorem

Let Kn ∼ pb{1, S(1;α, σ, φ), . . . , S(n − 1;α, σ, φ)} for every n ≥ 1. Then,

pr(Kn = k) = αk∏n−1
i=0 (α + i1−σφ−i )

Cn,k (σ, φ).

where for any 1 ≤ k ≤ n and n ≥ 2 one has

Cn,k (σ, φ) =
∑

(i1,...,in−k )

n−k∏
j=1

i1−σj φ−ij ,

where the sum runs over the (n − k)-combinations of integers (i1, . . . , in−k ) in
{1, . . . , n − 1}.

Recursion: Cn+1,k(σ, φ) = Cn,k−1(σ, φ) + n1−σφ−nCn,k(σ, φ), for any n ≥ 0 and
1 ≤ k ≤ n + 1.
Initial conditions: C0,0(σ, φ) = 1, Cn,0(σ, φ) = 0 for n ≥ 1, Cn,k(σ, φ) = 0 for k > n.
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