A generalized Bayes framework for probabilistic clustering

Tommaso Rigon

Joint work with: Amy Herring and David Dunson

Collegio Carlo Alberto, 2020-05-29

$$
\underbrace{}_{U S \text { IV }}
$$

Introduction

- There are roughly two approaches for clustering.

Introduction

- There are roughly two approaches for clustering.
- Model-based clustering often relies on mixture models, i.e.

$$
\sum_{k=1}^{K} \xi_{k} \pi\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{k}\right), \quad K \geq 1
$$

with $\pi(\boldsymbol{x} \mid \boldsymbol{\theta})$ being a parametric kernel. A representative is a mixture of Gaussians model.

Introduction

- There are roughly two approaches for clustering.
- Model-based clustering often relies on mixture models, i.e.

$$
\sum_{k=1}^{K} \xi_{k} \pi\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{k}\right), \quad K \geq 1
$$

with $\pi(\boldsymbol{x} \mid \boldsymbol{\theta})$ being a parametric kernel. A representative is a mixture of Gaussians model.

- Algorithmic clustering is often based on the minimization of loss function, i.e.

$$
\text { Cluster solution }=\arg \min _{c} \ell(\boldsymbol{c} ; \boldsymbol{X}) .
$$

Representatives are the k-means / k-medoids algorithms and generalizations.

Model-based clustering

$$
\sum_{k=1}^{K} \xi_{k} \pi\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{k}\right), \quad K \geq 1
$$

Model-based clustering

$$
\sum_{k=1}^{K} \xi_{k} \pi\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{k}\right), \quad K \geq 1
$$

Pro

- Probabilistic interpretation of the partition mechanism.
- Enable uncertainty quantification e.g. within the Bayesian paradigm.

Model-based clustering

$$
\sum_{k=1}^{K} \xi_{k} \pi\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{k}\right), \quad K \geq 1
$$

Pro

- Probabilistic interpretation of the partition mechanism.
- Enable uncertainty quantification e.g. within the Bayesian paradigm.

Cons

- Despite the remarkable advances, computations are still a huge bottleneck.
- Results are highly misleading if the kernel is misspecified.
- Assuming the existence of a latent partition might be unrealistic.

Loss-based algorithmic clustering

Cluster solution $=\arg \min _{\boldsymbol{c}} \ell(\boldsymbol{c} ; \boldsymbol{X})$

Loss-based algorithmic clustering

Cluster solution $=\arg \min _{\boldsymbol{c}} \ell(\boldsymbol{c} ; \boldsymbol{X})$

Pro

- Computational efficiency \rightarrow can be used on large / massive datasets.
- Simplicity of the method \rightarrow well-understood and widely used by practitioners.
- Robust algorithms are easy to design.
- Useful tools for summarizing the data.

Loss-based algorithmic clustering

$$
\text { Cluster solution }=\arg \min _{c} \ell(\boldsymbol{c} ; \boldsymbol{X})
$$

Pro

- Computational efficiency \rightarrow can be used on large / massive datasets.
- Simplicity of the method \rightarrow well-understood and widely used by practitioners.
- Robust algorithms are easy to design.
- Useful tools for summarizing the data.

Cons

- These methods are based on optimizations \rightarrow no probabilistic interpretation.
- No uncertainty quantification.

K-means clustering

Outline of the talk

- We aim at bridging the model-based and loss-based approaches, inheriting the advantages of both.
- We rely on a generalized Bayes theorem which has a clear and coherent justification.
- We propose a large class of models closely related to product partition models.
- We provide uncertainty quantification for most loss-based clustering methods, including k-means.

Gibbs posteriors

- Bayesian inference is based on

$$
\pi(\boldsymbol{\theta} \mid \boldsymbol{X})=\frac{\pi(\boldsymbol{\theta}) \pi(\boldsymbol{X} \mid \boldsymbol{\theta})}{\int \pi(\boldsymbol{\theta}) \pi(\boldsymbol{X} \mid \boldsymbol{\theta}) d \boldsymbol{\theta}},
$$

where $\pi(\boldsymbol{\theta})$ is the prior, $\pi(\boldsymbol{X} \mid \boldsymbol{\theta})$ is the likelihood, and $\boldsymbol{\theta}$ is a parameter.

Gibbs posteriors

- Bayesian inference is based on

$$
\pi(\boldsymbol{\theta} \mid \boldsymbol{X})=\frac{\pi(\boldsymbol{\theta}) \pi(\boldsymbol{X} \mid \boldsymbol{\theta})}{\int \pi(\boldsymbol{\theta}) \pi(\boldsymbol{X} \mid \boldsymbol{\theta}) d \boldsymbol{\theta}},
$$

where $\pi(\boldsymbol{\theta})$ is the prior, $\pi(\boldsymbol{X} \mid \boldsymbol{\theta})$ is the likelihood, and $\boldsymbol{\theta}$ is a parameter.

- Generalized Bayesian inference is based on

$$
\pi(\boldsymbol{\theta} \mid \boldsymbol{X})=\frac{\pi(\boldsymbol{\theta}) \exp \{-\lambda \ell(\boldsymbol{\theta} ; \boldsymbol{X})\}}{\int \pi(\boldsymbol{\theta}) \exp \{-\lambda \ell(\boldsymbol{\theta} ; \boldsymbol{X})\} d \boldsymbol{\theta}}, \quad \lambda>0
$$

where $\pi(\boldsymbol{\theta})$ is the prior, $\ell(\boldsymbol{\theta} ; \boldsymbol{X})$ is a loss function, and $\boldsymbol{\theta}$ is a parameter.

- The latter distribution is called Gibbs posterior.

Model-based Bayesian clustering

- Let $\boldsymbol{x}_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)^{\top} i=1, \ldots, n$ be a vector of observations on $\mathbb{X} \subseteq \mathbb{R}^{d}$ and let \boldsymbol{X} be the collection of all the data points.
- Let $\boldsymbol{C}=\left(C_{1}, \ldots, C_{K}\right)$ be a cluster arrangement and $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right)$ be the associated indicators.
- Let $\boldsymbol{X}_{k}=\left\{\boldsymbol{x}_{i}: i \in C_{k}\right\}$ be the observations \boldsymbol{x}_{i} belonging to the C_{k} cluster.

A Bayesian mixture model is based on the standard posterior

$$
\pi(\boldsymbol{c} \mid \boldsymbol{X}) \propto \pi(\boldsymbol{c}) \prod_{k=1}^{K}\left[\int_{\Theta} \prod_{i \in C_{k}} \pi\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta}) d \boldsymbol{\theta}\right] .
$$

Generalized Bayes product partition models (GB-PPM)

A Generalized Bayes product partition model is based on the Gibbs posterior

$$
\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \pi(\boldsymbol{c}) \prod_{k=1}^{K} \rho\left(C_{k} ; \lambda, \boldsymbol{X}_{k}\right) \propto \prod_{k=1}^{K} \exp \left\{-\lambda \sum_{i \in C_{k}} \mathcal{D}\left(\boldsymbol{x}_{i} ; \boldsymbol{X}_{k}\right)\right\}
$$

with $c:|\boldsymbol{C}|=K$ and $\lambda>0$.

Generalized Bayes product partition models (GB-PPM)

A Generalized Bayes product partition model is based on the Gibbs posterior

$$
\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \pi(\boldsymbol{c}) \prod_{k=1}^{K} \rho\left(C_{k} ; \lambda, \boldsymbol{X}_{k}\right) \propto \prod_{k=1}^{K} \exp \left\{-\lambda \sum_{i \in C_{k}} \mathcal{D}\left(\boldsymbol{x}_{i} ; \boldsymbol{X}_{k}\right)\right\}
$$

with $c:|\boldsymbol{C}|=K$ and $\lambda>0$.

- The term $\rho\left(C_{k} ; \lambda, \boldsymbol{X}_{k}\right)$ is the cohesion associated to the k th cluster.
- The function $\mathcal{D}\left(\boldsymbol{x}_{i} ; \boldsymbol{X}_{k}\right)$ measures the discrepancy of the i th unit from the k th cluster.
- The uniform prior $\pi(\boldsymbol{c}) \propto 1$ is employed. This is a proper prior, since the partition space is finite.

Foundations of Gibbs posteriors

- "Isn't this a Bayesian heresy?" - A colleague.
- Gibbs posteriors have been widely used since the late 90's.
- They were mainly motivated by the PAC-Bayesian approach, which partially clarifies their interpretation.

Foundations of Gibbs posteriors

- "Isn't this a Bayesian heresy?" - A colleague.
- Gibbs posteriors have been widely used since the late 90's.
- They were mainly motivated by the PAC-Bayesian approach, which partially clarifies their interpretation.
- The rigorous foundations of Gibbs posteriors have been recently discussed in Bissiri, Holmes, \& Walker (2016). JRSS-B.

The target of a GB-PPM

- The target of a GB-PPM is the optimal partition

$$
\boldsymbol{c}_{\mathrm{OPT}}=\arg \min _{\boldsymbol{c}} \mathbb{E}_{\pi_{0}}\{\ell(\boldsymbol{c} ; \boldsymbol{X})\}=\arg \min _{\boldsymbol{c}:|\boldsymbol{C}|=K} \sum_{k=1}^{K} \sum_{i \in C_{k}} \mathbb{E}_{\pi_{0}}\left\{\mathcal{D}\left(\boldsymbol{x}_{i} ; \boldsymbol{X}_{k}\right)\right\},
$$

where $\pi_{0}(\boldsymbol{X})$ is the unknown data generating process.

The target of a GB-PPM

- The target of a GB-PPM is the optimal partition

$$
\boldsymbol{c}_{\mathrm{OPT}}=\arg \min _{\boldsymbol{c}} \mathbb{E}_{\pi_{0}}\{\ell(\boldsymbol{c} ; \boldsymbol{X})\}=\arg \min _{\boldsymbol{c}:|\boldsymbol{C}|=K} \sum_{k=1}^{K} \sum_{i \in C_{k}} \mathbb{E}_{\pi_{0}}\left\{\mathcal{D}\left(\boldsymbol{x}_{i} ; \boldsymbol{X}_{k}\right)\right\},
$$

where $\pi_{0}(\boldsymbol{X})$ is the unknown data generating process.

Key concepts

- Gibbs posteriors quantify the uncertainty about the optimal and unknown $\boldsymbol{c}_{\text {OPT }}$.
- We are not assuming the existence of a latent partition in the generating mechanism.
- $\boldsymbol{c}_{\text {OPT }}$ represent an optimal summary of the data.

Derivation of Gibbs posteriors

- A posterior ν_{1} is a better candidate than ν_{2} if $\mathscr{L}\left(\nu_{1}\right) \leq \mathscr{L}\left(\nu_{2}\right)$, with

$$
\mathscr{L}\{\nu(\boldsymbol{c})\}=\lambda \mathbb{E}_{\nu}\{\ell(\boldsymbol{c} ; \boldsymbol{X})\}+\operatorname{kL}\{\nu(\boldsymbol{c}) \| \pi(\boldsymbol{c})\},
$$

being a loss function on the space of conditional distributions.

- The optimal posterior is the one minimizing the loss \mathscr{L}.

Derivation of Gibbs posteriors

- A posterior ν_{1} is a better candidate than ν_{2} if $\mathscr{L}\left(\nu_{1}\right) \leq \mathscr{L}\left(\nu_{2}\right)$, with

$$
\mathscr{L}\{\nu(\boldsymbol{c})\}=\lambda \mathbb{E}_{\nu}\{\ell(\boldsymbol{c} ; \boldsymbol{X})\}+\operatorname{KL}\{\nu(\boldsymbol{c}) \| \pi(\boldsymbol{c})\},
$$

being a loss function on the space of conditional distributions.

- The optimal posterior is the one minimizing the loss \mathscr{L}.
- The loss \mathscr{L} balances the proximity to the data and the closeness to the prior.
- When $\lambda \rightarrow \infty$ the minimizer of \mathscr{L} is the point mass $\delta_{\hat{c}_{\text {opr }}}$, where

$$
\hat{\boldsymbol{c}}_{\mathrm{OPT}}=\arg \min _{\boldsymbol{c}} \ell(\boldsymbol{c} ; \boldsymbol{X}),
$$

is the empirical version of the optimal partition $\boldsymbol{c}_{\text {OPT }}$.

- When $\lambda \rightarrow 0$ the minimizer of \mathscr{L} coincides with the prior distribution.

Derivation of Gibbs posteriors (cont'd)

- Key result 1: Our GB-PPM minimize the loss \mathscr{L} for general values of $\lambda>0$, that is

$$
\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})=\arg \min _{\nu} \mathscr{L}\{\nu(\boldsymbol{c})\}
$$

Hence, $\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ is the best posterior for quantifying the uncertainty about optimal partition $\boldsymbol{C}_{\text {OPT }}$.

Derivation of Gibbs posteriors (cont'd)

- Key result 1: Our GB-PPM minimize the loss \mathscr{L} for general values of $\lambda>0$, that is

$$
\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})=\arg \min _{\nu} \mathscr{L}\{\nu(\boldsymbol{c})\}
$$

Hence, $\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ is the best posterior for quantifying the uncertainty about optimal partition $\boldsymbol{C}_{\text {OPT }}$.

- Key result 2: The loss \mathscr{L} is not arbitrary, because is the only one satisfying natural coherency conditions (Bissiri et al., 2016).

Derivation of Gibbs posteriors (cont'd)

- Key result 1: Our GB-PPM minimize the loss \mathscr{L} for general values of $\lambda>0$, that is

$$
\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})=\arg \min _{\nu} \mathscr{L}\{\nu(\boldsymbol{c})\}
$$

Hence, $\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ is the best posterior for quantifying the uncertainty about optimal partition $\boldsymbol{C}_{\text {OPT }}$.

- Key result 2: The loss \mathscr{L} is not arbitrary, because is the only one satisfying natural coherency conditions (Bissiri et al., 2016).
- Remark: Gibbs posteriors are not a pseudo-Bayes approach nor an approximate Bayesian procedure. They are coherent Bayesian updates.

Point estimation

- Although several alternative exist, the MAP is a sensible point estimate.

Point estimation

- Although several alternative exist, the MAP is a sensible point estimate.

A (trivial) Proposition
Let $\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-Ppm. Then,

$$
\hat{\boldsymbol{c}}_{\mathrm{MAP}}=\arg \max _{\boldsymbol{c}} \pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})=\arg \min _{\boldsymbol{c}:|\boldsymbol{C}|=K} \ell(\boldsymbol{c} ; \boldsymbol{X}) .
$$

- The $\hat{\boldsymbol{c}}_{\mathrm{MAP}}$ is the value minimizing a loss.
- Well-known algorithms can be used for finding the MAP, such as k-means.
- Note that the estimate $\hat{\boldsymbol{c}}_{\text {MAP }}$ does not depend on λ. This is not the case for general point estimates.

Posterior inference

- Posterior inference is conducted through a Gibbs sampling.

Posterior inference

- Posterior inference is conducted through a Gibbs sampling.

Theorem

Let $\pi(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-PPM. Then, the conditional distribution of c_{i} given \boldsymbol{c}_{-i} is

$$
\begin{aligned}
\mathbb{P}\left(c_{i}=k \mid \boldsymbol{c}_{-i}, \lambda, \boldsymbol{X}\right) & \propto \frac{\rho\left(C_{k} ; \lambda, \boldsymbol{X}_{k}\right)}{\rho\left(C_{k,-i} ; \lambda, \boldsymbol{X}_{k,-i}\right)} \\
& \propto \exp \left\{-\lambda\left[\sum_{i^{\prime} \in C_{k}} \mathcal{D}\left(\boldsymbol{x}_{i^{\prime}} ; \boldsymbol{X}_{k}\right)-\sum_{i^{\prime} \in C_{k,-i}} \mathcal{D}\left(\boldsymbol{x}_{i^{\prime}} ; \boldsymbol{X}_{k,-i}\right)\right]\right\},
\end{aligned}
$$

for $k=1, \ldots, K$ and for any partition $\boldsymbol{c}:|\boldsymbol{C}|=K$.

- The ith unit is likely to be allocated in the k th cluster if the cohesion of the newly created cluster is higher than the old cohesion.

GB-PPMs with Bregman cohesions

GB-PPM with Bregman cohesions

Bregman divergence

Let $\varphi: \mathbb{X} \rightarrow \mathbb{R}$ be a strictly convex function defined on a convex set $\mathbb{X} \subseteq \mathbb{R}^{d}$, such that φ is differentiable on the relative interior of \mathbb{X}. Then

$$
\mathcal{D}_{\varphi}(\boldsymbol{x} ; \boldsymbol{\mu})=\varphi(\boldsymbol{x})-\left[\varphi(\boldsymbol{\mu})+(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \nabla \varphi(\boldsymbol{\mu})\right],
$$

is a Bregman divergence, for any $\boldsymbol{x} \in \mathbb{X}$ and any $\boldsymbol{\mu}$ in the relative interior of \mathbb{X}.

GB-PPM with Bregman cohesions

Bregman divergence

Let $\varphi: \mathbb{X} \rightarrow \mathbb{R}$ be a strictly convex function defined on a convex set $\mathbb{X} \subseteq \mathbb{R}^{d}$, such that φ is differentiable on the relative interior of \mathbb{X}. Then

$$
\mathcal{D}_{\varphi}(\boldsymbol{x} ; \boldsymbol{\mu})=\varphi(\boldsymbol{x})-\left[\varphi(\boldsymbol{\mu})+(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \nabla \varphi(\boldsymbol{\mu})\right],
$$

is a Bregman divergence, for any $\boldsymbol{x} \in \mathbb{X}$ and any $\boldsymbol{\mu}$ in the relative interior of \mathbb{X}.

- A Bregman divergence $\mathcal{D}_{\varphi}(\boldsymbol{x} ; \boldsymbol{\mu})$ is non-negative.
- The discrepancy between \boldsymbol{x} and $\boldsymbol{\mu}$ is measured as the difference between $\varphi(\boldsymbol{x})$ and the value of its tangent hyperplane at $\boldsymbol{\mu}$, evaluated at \boldsymbol{x}.
- The squared Euclidean distance (k-means), the Mahalanobis distance, and the KL are instances of Bregman divergences.

GB-PPM with Bregman cohesions (cont'd)

Let $\pi_{\varphi}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-PPM. We will say it has Bregman cohesions if

$$
\pi_{\varphi}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \rho\left(C_{k} ; \lambda, \boldsymbol{X}_{k}\right)=\prod_{k=1}^{K} \exp \left\{-\lambda \sum_{i \in C_{k}} \mathcal{D}_{\varphi}\left(\boldsymbol{x}_{i} ; \overline{\boldsymbol{x}}_{k}\right)\right\}
$$

$\boldsymbol{c}:|\boldsymbol{C}|=K$, where $\mathcal{D}_{\varphi}(\boldsymbol{x} ; \boldsymbol{\mu})$ is a Bregman divergence.

GB-PPM with Bregman cohesions (cont'd)

Let $\pi_{\varphi}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-PPM. We will say it has Bregman cohesions if

$$
\pi_{\varphi}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \rho\left(C_{k} ; \lambda, \boldsymbol{X}_{k}\right)=\prod_{k=1}^{K} \exp \left\{-\lambda \sum_{i \in C_{k}} \mathcal{D}_{\varphi}\left(\boldsymbol{x}_{i} ; \overline{\boldsymbol{x}}_{k}\right)\right\}
$$

$\boldsymbol{c}:|\boldsymbol{C}|=K$, where $\mathcal{D}_{\varphi}(\boldsymbol{x} ; \boldsymbol{\mu})$ is a Bregman divergence.

- The arithmetic mean $\overline{\boldsymbol{x}}_{k}$ is not an arbitrary choice, because

$$
\overline{\boldsymbol{x}}_{k}=\arg \max _{\mu} \exp \left\{-\lambda \sum_{i \in C_{k}} \mathcal{D}_{\varphi}\left(\boldsymbol{x}_{i} ; \boldsymbol{\mu}\right)\right\},
$$

i.e. is the value maximizing the cohesion.

- The Bregman divergence $\mathcal{D}_{\varphi}\left(\boldsymbol{x}_{i} ; \overline{\boldsymbol{x}}_{k}\right)$ evaluated at $\overline{\boldsymbol{x}}_{k}$ is not always well-defined, but there are easy fixes to this issue.

The Bregman k-means algorithm

Bregman k-means (Banerjee et al., 2005)

Choose K and a set of initial centroids $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{K}$.
Until the centroids stabilize:
for $i=1, \ldots, n$ do
Set the cluster indicator c_{i} equal to k, so that $\mathcal{D}_{\varphi}\left(\boldsymbol{x}_{i} ; \boldsymbol{m}_{k}\right)$ is minimum.
for $k=1, \ldots, K$ do
Let \boldsymbol{m}_{k} be equal to the arithmetic mean $\overline{\boldsymbol{x}}_{k}$ of the subjects belonging to group k.
return $\hat{\boldsymbol{c}}_{\mathrm{MAP}}=\left(c_{1}, \ldots, c_{n}\right)$.

- The Bregman k-means monotonically decreases the loss function, and it reaches a local optimum in a finite number of steps.

Connection with exponential dispersion families

Exponential dispersion family (Jørgensen, 1987)

Let $\pi(\boldsymbol{x} \mid \lambda)$ be a density function on $\mathbb{X} \subseteq \mathbb{R}^{d}$ indexed by $\lambda>0$. Then, the class of densities

$$
\pi_{\mathrm{ED}}(\boldsymbol{x} \mid \boldsymbol{\theta}, \lambda)=\pi(\boldsymbol{x} \mid \lambda) e^{\lambda\left[\boldsymbol{\theta}^{\top} \boldsymbol{x}-\kappa(\boldsymbol{\theta})\right]}, \quad \boldsymbol{\theta} \in \Theta, \quad \lambda \in \Lambda,
$$

is called exponential dispersion family.

- If $\boldsymbol{x} \sim \pi_{\mathrm{ED}}(\boldsymbol{x} \mid \boldsymbol{\theta}, \lambda)$, then

$$
\mathbb{E}(\boldsymbol{x})=\mu(\boldsymbol{\theta}), \quad \operatorname{Var}(\boldsymbol{x})=\frac{1}{\lambda} \boldsymbol{V}
$$

- The function $\mu(\cdot)$ is injective and \boldsymbol{V} is a $d \times d$ matrix not depending on λ.
- There is a one-to-one correspondence between the natural parametrization $\boldsymbol{\theta}$ and the mean parametrization $\boldsymbol{\mu}=\mu(\boldsymbol{\theta})$.

Connection with exponential dispersion families (cont'd)

Theorem

Let $\pi_{\mathrm{ED}}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-PPM of the form

$$
\pi_{\mathrm{ED}}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \prod_{i \in C_{k}} \pi\left(\boldsymbol{x}_{i} \mid \lambda\right) \exp \left\{\lambda\left[\hat{\boldsymbol{\theta}}_{k}^{\top} \boldsymbol{x}_{i}-\kappa\left(\hat{\boldsymbol{\theta}}_{k}\right)\right]\right\}
$$

where $\hat{\boldsymbol{\theta}}_{k}=\theta\left(\overline{\boldsymbol{x}}_{k}\right)=\arg \max _{\boldsymbol{\theta}_{k}} \prod_{i \in C_{k}} \pi_{\mathrm{ED}}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}, \lambda\right)$.

Connection with exponential dispersion families (cont'd)

Theorem

Let $\pi_{\mathrm{ED}}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-PPM of the form

$$
\pi_{\mathrm{ED}}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \prod_{i \in C_{k}} \pi\left(\boldsymbol{x}_{i} \mid \lambda\right) \exp \left\{\lambda\left[\hat{\boldsymbol{\theta}}_{k}^{\top} \boldsymbol{x}_{i}-\kappa\left(\hat{\boldsymbol{\theta}}_{k}\right)\right]\right\}
$$

where $\hat{\boldsymbol{\theta}}_{k}=\theta\left(\overline{\boldsymbol{x}}_{k}\right)=\arg \max _{\boldsymbol{\theta}_{k}} \prod_{i \in C_{k}} \pi_{\mathrm{ED}}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}, \lambda\right)$. Then, there exists a GB-PPM with Bregman cohesion such that

$$
\pi_{\mathrm{ED}}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})=\pi_{\varphi}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}), \quad \boldsymbol{c}:|\boldsymbol{C}|=K
$$

Connection with exponential dispersion families (cont'd)

Theorem

Let $\pi_{\mathrm{ED}}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-PPM of the form

$$
\pi_{\mathrm{ED}}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \prod_{i \in C_{k}} \pi\left(\boldsymbol{x}_{i} \mid \lambda\right) \exp \left\{\lambda\left[\hat{\boldsymbol{\theta}}_{k}^{\top} \boldsymbol{x}_{i}-\kappa\left(\hat{\boldsymbol{\theta}}_{k}\right)\right]\right\}
$$

where $\hat{\boldsymbol{\theta}}_{k}=\theta\left(\overline{\boldsymbol{x}}_{k}\right)=\arg \max _{\boldsymbol{\theta}_{k}} \prod_{i \in C_{k}} \pi_{\mathrm{ED}}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}, \lambda\right)$. Then, there exists a GB-PPM with Bregman cohesion such that

$$
\pi_{\mathrm{ED}}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})=\pi_{\varphi}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}), \quad \boldsymbol{c}:|\boldsymbol{C}|=K
$$

- The λ parameter is proportional to the within-cluster precision.
- Key result: this probabilistic interpretation simplifies the estimation / elicitation of λ.
- The GB-PPM $\pi_{\varphi}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ can be also regarded as the Bayesian update of a profile likelihood.

GB-PPMs with pairwise dissimilarities

GB-PPM with pairwise dissimilarities

- Let $\mathbb{X}=\mathbb{R}^{d}$ and let $\|\boldsymbol{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{d}\right|^{p}\right)^{1 / p}$ be the L^{p} norm.
- A general measure of dissimilarity is

$$
\gamma\left(\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}}\right\|_{p}^{p}\right), \quad \boldsymbol{x}_{i}, \boldsymbol{x}_{i^{\prime}} \in \mathbb{R}^{d}, \quad p \geq 1
$$

for some increasing function $\gamma(\cdot)$ such that $\gamma(0)=0$.
Let $\pi_{\gamma}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-PPM with covariate space $\mathbb{X}=\mathbb{R}^{d}$. We will say it has average dissimilarity cohesions if

$$
\pi_{\gamma}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \exp \left\{-\frac{\lambda}{2} \sum_{i \in C_{k}} \frac{1}{n_{k}} \sum_{i^{\prime} \in C_{k}} \gamma\left(\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}}\right\|_{p}^{p}\right)\right\}, \quad \boldsymbol{c}:|\boldsymbol{C}|=K,
$$

with $p \geq 1$ and with $\gamma(\cdot)$ being an increasing function such that $\gamma(0)=0$.

The k-dissimilarities algorithm

K-dissimilarities

Randomly allocate the indicators c_{1}, \ldots, c_{n} into K sets.
Until the partition stabilizes:
for $i=1, \ldots, n$ do
Allocate the indicator c_{i}, given the others \boldsymbol{c}_{-i}, to the k cluster, so that

$$
\sum_{i^{\prime} \in C_{k}} \mathcal{D}_{\gamma}\left(\boldsymbol{x}_{i^{\prime}} ; \boldsymbol{X}_{k}\right)-\sum_{i^{\prime} \in C_{k,-i}} \mathcal{D}_{\gamma}\left(\boldsymbol{x}_{i^{\prime}} ; \boldsymbol{X}_{k,-i}\right)
$$

is minimum. Recursive formulas are available.
return $\hat{\boldsymbol{c}}_{\mathrm{MAP}}=\left(c_{1}, \ldots, c_{n}\right)$.

- The k-dissimilarities monotonically decreases the loss function, and it reaches a local optimum in a finite number of steps.

Connection with L^{p} spherical distributions

L^{p} spherical distributions (Gupta \& Song, 1997)
A random vector $\boldsymbol{x} \in \mathbb{R}^{d}$ follows a L^{p} spherical distribution if its density function can be written as

$$
\pi_{\mathrm{SP}}(\boldsymbol{x})=g\left(\|\boldsymbol{x}\|_{p}^{p}\right)
$$

for some measurable function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- The class of L^{p} spherical distributions includes e.g. the multivariate Gaussian, the multivariate Laplace and the multivariate Student's t .
- The family is indexed by the function g, which is sometimes called density generator.

Connection with L^{p} spherical distributions (cont'd)

Theorem

Let $\pi_{\gamma}(\boldsymbol{c} \mid \lambda, \boldsymbol{X})$ be a GB-PPM with average dissimilarities. If

$$
\int_{\mathbb{R}_{+}} r^{d-1} \exp \left\{-\frac{\lambda}{2} \gamma\left(r^{p}\right)\right\} \mathrm{d} r<\infty,
$$

then there exists an L^{p} spherical distribution on \mathbb{R}^{d} such that

$$
\pi_{\gamma}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \prod_{i \in \mathcal{C}_{k}}\left[\prod_{i^{\prime} \in \mathcal{C}_{k}} \pi_{\mathrm{sp}}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}} \mid \lambda\right)\right]^{1 / n_{k}},
$$

where $\pi_{\text {sp }}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{i^{\prime}} \mid \lambda\right) \propto \exp \left\{-\lambda / 2 \gamma\left(\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}}\right\|_{p}^{p}\right)\right\}$ for any $i \in C_{k}$ and $i^{\prime} \in C_{k}$.

- Key result: as before, this probabilistic interpretation simplifies the estimation / elicitation of λ.

Connection with composite likelihoods

- A GB-PPM with average dissimilarities can be interpreted as the Bayesian update of a pairwise difference likelihood (Varin et al., 2011).

Connection with composite likelihoods

- A GB-PPM with average dissimilarities can be interpreted as the Bayesian update of a pairwise difference likelihood (Varin et al., 2011).
- Suppose the observations follow some location family of distributions

$$
\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \lambda, c_{i}=k\right) \stackrel{\text { iid }}{\sim} \pi\left(\boldsymbol{x}-\boldsymbol{\mu}_{k} \mid \lambda\right), \quad i \in C_{k}, \quad k=1, \ldots, K
$$

where $\boldsymbol{\mu}_{k} \in \mathbb{R}^{d}$.

Connection with composite likelihoods

- A GB-PPM with average dissimilarities can be interpreted as the Bayesian update of a pairwise difference likelihood (Varin et al., 2011).
- Suppose the observations follow some location family of distributions

$$
\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \lambda, c_{i}=k\right) \stackrel{\text { iid }}{\sim} \pi\left(\boldsymbol{x}-\boldsymbol{\mu}_{k} \mid \lambda\right), \quad i \in C_{k}, \quad k=1, \ldots, K
$$

where $\boldsymbol{\mu}_{k} \in \mathbb{R}^{d}$.

- We model the within-cluster differences $\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{i^{\prime}}$ with L^{p} spherical distributions, which are symmetric around 0 . The location parameter $\boldsymbol{\mu}_{k}$ simplifies.

Connection with composite likelihoods

- A GB-PPM with average dissimilarities can be interpreted as the Bayesian update of a pairwise difference likelihood (Varin et al., 2011).
- Suppose the observations follow some location family of distributions

$$
\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \lambda, c_{i}=k\right) \stackrel{\text { iid }}{\sim} \pi\left(\boldsymbol{x}-\boldsymbol{\mu}_{k} \mid \lambda\right), \quad i \in C_{k}, \quad k=1, \ldots, K
$$

where $\boldsymbol{\mu}_{k} \in \mathbb{R}^{d}$.

- We model the within-cluster differences $\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}}$ with L^{p} spherical distributions, which are symmetric around 0 . The location parameter $\boldsymbol{\mu}_{k}$ simplifies.
- The associated pairwise difference likelihood is proportional to

$$
\pi_{\mathrm{DIFF}}(\boldsymbol{X} \mid \boldsymbol{c}, \lambda) \propto \prod_{k=1}^{K} \prod_{i \in C_{k}}\left[\prod_{i^{\prime} \in C_{k}} \pi_{\mathrm{SP}}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}} \mid \lambda\right)\right]^{1 / n_{k}}
$$

where the exponent $1 / n_{k}$ is a correction that deflates the likelihood.

Two notable examples

Squared Euclidean GB-PPM

Bregman-divergence representation

$$
\pi_{\varphi}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \exp \left\{-\lambda \sum_{i \in C_{k}}\left\|\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}_{k}\right\|_{2}^{2}\right\}, \quad \boldsymbol{c}:|\boldsymbol{C}|=K
$$

Pairwise dissimilarity representation

$$
\pi_{\gamma}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \exp \left\{-\frac{\lambda}{2} \sum_{i \in C_{k}} \frac{1}{n_{k}} \sum_{i^{\prime} \in C_{k}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}}\right\|_{2}^{2}\right\}, \quad \boldsymbol{c}:|\boldsymbol{C}|=K .
$$

- In both cases, this is consistent with

$$
\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \lambda, c_{i}=k\right) \stackrel{\mathrm{iid}}{\sim} \mathrm{~N}\left(\boldsymbol{\mu}_{k},(2 \lambda)^{-1} l_{d}\right), \quad i \in C_{k}, \quad k=1, \ldots, K .
$$

Squared Euclidean GB-PPM, estimation of λ

- The parameter λ is proportional to the within-cluster precision.
- A possibility is to estimate λ from the data by considering the joint model

$$
\pi(\boldsymbol{c}, \lambda \mid \boldsymbol{X}) \propto \pi(\lambda) \lambda^{n d / 2} \prod_{k=1}^{K} \exp \left\{-\lambda \sum_{i \in C_{k}}\left\|\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}_{k}\right\|_{2}^{2}\right\}, \quad \boldsymbol{c}:|\boldsymbol{C}|=K
$$

- Note that the term $\lambda^{n d / 2}$ follows from our probabilistic interpretation. Without our Theorems the estimation of λ would be much more problematic.
- This constitutes a reasonable and simple default strategy for the estimation of λ, which is otherwise a difficult problem.
- If we let $\lambda \sim \operatorname{GAmma}\left(a_{\lambda}, b_{\lambda}\right)$ a priori, then the full conditional is conjugate.

Minkowski dissimilarities GB-PPM

Let $\gamma\left(\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{i^{\prime}}\right\|_{p}^{p}\right)=\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}}\right\|_{p}$ be the Minkowski distance. The associated GB-PPM is

$$
\pi_{\gamma}(\boldsymbol{c} \mid \lambda, \boldsymbol{X}) \propto \prod_{k=1}^{K} \exp \left\{-\frac{\lambda}{2} \sum_{i \in C_{k}} \frac{1}{n_{k}} \sum_{i^{\prime} \in C_{k}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}}\right\|_{p}\right\}, \quad \boldsymbol{c}:|\boldsymbol{C}|=K
$$

- The L^{p} spherical distribution associated to the pairs $\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{i^{\prime}}$ has density

$$
\pi_{\mathrm{SP}}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}} \mid \lambda\right)=\frac{p^{d-1}}{2^{d} \Gamma(1 / p)^{d}} \frac{\Gamma(d / p)}{\Gamma(d)}\left(\frac{\lambda}{2}\right)^{d} \exp \left\{-\frac{\lambda}{2}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{i^{\prime}}\right\|_{p}\right\} .
$$

- λ is therefore a scale parameter and can be estimated paralleling the steps of the k-means case. The availability of the term λ^{d} is crucial.
- The Manhattan distance case ($p=1$) has appealing robustness properties.

Illustrations

Synthetic dataset I

- In this experiment we consider $n=200$ observations evenly divided in $K=4$ clusters, each having $n_{1}=\cdots=n_{4}=50$ data points.
- We simulate the data as follows

$$
\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \sigma^{2}, c_{i}=k\right) \stackrel{\mathrm{iid}}{\sim} \mathrm{~N}\left(\boldsymbol{\mu}_{k}, \sigma^{2} I_{2}\right), \quad i \in C_{k}, \quad k=1, \ldots, K,
$$

with $\boldsymbol{\mu}_{1}=(-2,-2), \boldsymbol{\mu}_{2}=(-2,2), \boldsymbol{\mu}_{3}=(2,-2), \boldsymbol{\mu}_{4}=(2,2)$, and $\sigma^{2}=1.5$.

- We aim at comparing the uncertainty quantification of a GB-PPM with that of an oracle distribution, i.e. with

$$
\pi_{\mathrm{ORACLE}}\left(\boldsymbol{c} \mid \boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}, \sigma^{2}, \boldsymbol{X}\right) \propto \prod_{i=1}^{n} \prod_{k=1}^{K} \mathrm{~N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \sigma^{2} I_{2}\right)^{1\left(c_{i}=k\right)} .
$$

Synthetic dataset I (cont'd)

Cluster

- 1
$\triangle 2$
- 3

1
$+\quad 4$

Synthetic dataset I (cont'd)

Probability
$=1.00$

Synthetic dataset I (cont'd)

Synthetic dataset II

- We consider $n=200$ observations evenly divided in $K=4$ clusters, each having $n_{1}=\cdots=n_{4}=50$ data points.
- We simulate the data from

$$
\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \sigma^{2}, c_{i}=k\right) \stackrel{\text { iid }}{\sim} t_{2}\left(\boldsymbol{\mu}_{k}, \sigma^{2} I_{2}\right), \quad i \in C_{k}, \quad k=1, \ldots, K,
$$

where $t_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is a multivariate Student's t-distribution with location $\boldsymbol{\mu}$, scale $\boldsymbol{\Sigma}$, and 2 degrees of freedom.

- Some "outliers" expected, because a t_{2} distribution has infinite variance.
- We compare our estimates with the oracle distribution also in this case.

Synthetic dataset II (cont'd)

Synthetic dataset II (cont'd)

Thanks!

- We introduced a generalized Bayes modeling framework for clustering.
- We studied its general properties and presented two broad classes of tractable models.
- The manuscript is forthcoming on ArXiv!

