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Introduction

• There are roughly two approaches for clustering.

• Model-based clustering often relies on mixture models, i.e.

K∑
k=1

ξkπ(x | θk), K ≥ 1,

with π(x | θ) being a parametric kernel. A representative is a mixture of
Gaussians model.

• Algorithmic clustering is often based on the minimization of loss function, i.e.

Cluster solution = arg min
c
`(c; X).

Representatives are the k-means / k-medoids algorithms and generalizations.
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Model-based clustering

K∑
k=1

ξkπ(x | θk), K ≥ 1.

Pro
• Probabilistic interpretation of the partition mechanism.

• Enable uncertainty quantification e.g. within the Bayesian paradigm.

Cons
• Despite the remarkable advances, computations are still a huge bottleneck.

• Results are highly misleading if the kernel is misspecified.

• Assuming the existence of a latent partition might be unrealistic.
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Loss-based algorithmic clustering

Cluster solution = arg min
c
`(c; X)

Pro
• Computational efficiency → can be used on large / massive datasets.

• Simplicity of the method → well-understood and widely used by practitioners.

• Robust algorithms are easy to design.

• Useful tools for summarizing the data.

Cons
• These methods are based on optimizations → no probabilistic interpretation.

• No uncertainty quantification.
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K-means clustering
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Outline of the talk

• We aim at bridging the model-based and loss-based approaches, inheriting the
advantages of both.

• We rely on a generalized Bayes theorem which has a clear and coherent
justification.

• We propose a large class of models closely related to product partition models.

• We provide uncertainty quantification for most loss-based clustering methods,
including k-means.
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Gibbs posteriors

• Bayesian inference is based on

π(θ | X) = π(θ)π(X | θ)∫
π(θ)π(X | θ)dθ

,

where π(θ) is the prior, π(X | θ) is the likelihood, and θ is a parameter.

• Generalized Bayesian inference is based on

π(θ | X) = π(θ) exp{−λ`(θ; X)}∫
π(θ) exp{−λ`(θ; X)}dθ

, λ > 0,

where π(θ) is the prior, `(θ; X) is a loss function, and θ is a parameter.

• The latter distribution is called Gibbs posterior.
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Model-based Bayesian clustering

• Let xi = (xi1, . . . , xid )ᵀ i = 1, . . . , n be a vector of observations on X ⊆ Rd and
let X be the collection of all the data points.

• Let C = (C1, . . . ,CK ) be a cluster arrangement and c = (c1, . . . , cn) be the
associated indicators.

• Let Xk = {xi : i ∈ Ck} be the observations xi belonging to the Ck cluster.

A Bayesian mixture model is based on the standard posterior

π(c | X) ∝ π(c)
K∏

k=1

[∫
Θ

∏
i∈Ck

π(xi | θ)π(θ)dθ

]
.
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Generalized Bayes product partition models (gb-ppm)

A Generalized Bayes product partition model is based on the Gibbs posterior

π(c | λ,X) ∝ π(c)
K∏

k=1
ρ(Ck ;λ,Xk) ∝

K∏
k=1

exp
{
−λ

∑
i∈Ck

D(xi ; Xk)
}
,

with c : |C | = K and λ > 0.

• The term ρ(Ck ;λ,Xk) is the cohesion associated to the kth cluster.

• The function D(xi ; Xk) measures the discrepancy of the ith unit from the kth
cluster.

• The uniform prior π(c) ∝ 1 is employed. This is a proper prior, since the
partition space is finite.
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Foundations of Gibbs posteriors

• “Isn’t this a Bayesian heresy?” — A colleague.

• Gibbs posteriors have been widely used since the late
90’s.

• They were mainly motivated by the pac-Bayesian
approach, which partially clarifies their interpretation.

• The rigorous foundations of Gibbs posteriors have been recently discussed in
Bissiri, Holmes, & Walker (2016). JRSS-B.
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The target of a gb-ppm

• The target of a gb-ppm is the optimal partition

copt = arg min
c
Eπ0{`(c; X)} = arg min

c:|C|=K

K∑
k=1

∑
i∈Ck

Eπ0 {D(xi ; Xk)} ,

where π0(X) is the unknown data generating process.

Key concepts
• Gibbs posteriors quantify the uncertainty about the optimal and unknown copt.

• We are not assuming the existence of a latent partition in the generating
mechanism.

• copt represent an optimal summary of the data.

Tommaso Rigon (Duke) 11 / 36



The target of a gb-ppm

• The target of a gb-ppm is the optimal partition

copt = arg min
c
Eπ0{`(c; X)} = arg min

c:|C|=K

K∑
k=1

∑
i∈Ck

Eπ0 {D(xi ; Xk)} ,

where π0(X) is the unknown data generating process.

Key concepts
• Gibbs posteriors quantify the uncertainty about the optimal and unknown copt.

• We are not assuming the existence of a latent partition in the generating
mechanism.

• copt represent an optimal summary of the data.

Tommaso Rigon (Duke) 11 / 36



Derivation of Gibbs posteriors

• A posterior ν1 is a better candidate than ν2 if L (ν1) ≤ L (ν2), with

L {ν(c)} = λEν {`(c; X)}+ kl{ν(c) || π(c)},

being a loss function on the space of conditional distributions.

• The optimal posterior is the one minimizing the loss L .

• The loss L balances the proximity to the data and the closeness to the prior.

• When λ→∞ the minimizer of L is the point mass δĉopt , where

ĉopt = arg min
c
`(c; X),

is the empirical version of the optimal partition copt.

• When λ→ 0 the minimizer of L coincides with the prior distribution.
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Derivation of Gibbs posteriors (cont’d)

• Key result 1: Our gb-ppm minimize the loss L for general values of λ > 0,
that is

π(c | λ,X) = arg min
ν

L {ν(c)}.

Hence, π(c | λ,X) is the best posterior for quantifying the uncertainty about
optimal partition copt.

• Key result 2: The loss L is not arbitrary, because is the only one satisfying
natural coherency conditions (Bissiri et al., 2016).

• Remark: Gibbs posteriors are not a pseudo-Bayes approach nor an approximate
Bayesian procedure. They are coherent Bayesian updates.
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Point estimation

• Although several alternative exist, the map is a sensible point estimate.

A (trivial) Proposition
Let π(c | λ,X) be a gb-ppm. Then,

ĉmap = arg max
c
π(c | λ,X) = arg min

c : |C|=K
`(c; X).

• The ĉmap is the value minimizing a loss.

• Well-known algorithms can be used for finding the map, such as k-means.

• Note that the estimate ĉmap does not depend on λ. This is not the case for
general point estimates.
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Posterior inference

• Posterior inference is conducted through a Gibbs sampling.

Theorem
Let π(c | λ,X) be a gb-ppm. Then, the conditional distribution of ci given c−i is

P(ci = k | c−i , λ,X) ∝ ρ(Ck ;λ,Xk)
ρ(Ck,−i ;λ,Xk,−i )

∝ exp

−λ
∑

i′∈Ck

D(xi′ ; Xk)−
∑

i′∈Ck,−i

D(xi′ ; Xk,−i )

 ,

for k = 1, . . . ,K and for any partition c : |C | = K .

• The ith unit is likely to be allocated in the kth cluster if the cohesion of the
newly created cluster is higher than the old cohesion.
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gb-ppms with Bregman cohesions

Tommaso Rigon (Duke) 15 / 36



gb-ppm with Bregman cohesions

Bregman divergence
Let ϕ : X→ R be a strictly convex function defined on a convex set X ⊆ Rd ,
such that ϕ is differentiable on the relative interior of X. Then

Dϕ(x; µ) = ϕ(x)− [ϕ(µ) + (x − µ)ᵀ∇ϕ(µ)],

is a Bregman divergence, for any x ∈ X and any µ in the relative interior of X.

• A Bregman divergence Dϕ(x; µ) is non-negative.

• The discrepancy between x and µ is measured as the difference between ϕ(x)
and the value of its tangent hyperplane at µ, evaluated at x.

• The squared Euclidean distance (k-means), the Mahalanobis distance, and the
kl are instances of Bregman divergences.
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gb-ppm with Bregman cohesions (cont’d)

Let πϕ(c | λ,X) be a gb-ppm. We will say it has Bregman cohesions if

πϕ(c | λ,X) ∝
K∏

k=1
ρ(Ck ;λ,Xk) =

K∏
k=1

exp
{
−λ

∑
i∈Ck

Dϕ(xi ; x̄k)
}
,

c : |C | = K , where Dϕ(x; µ) is a Bregman divergence.

• The arithmetic mean x̄k is not an arbitrary choice, because

x̄k = arg max
µ

exp
{
−λ

∑
i∈Ck

Dϕ(xi ; µ)
}
,

i.e. is the value maximizing the cohesion.

• The Bregman divergence Dϕ(xi ; x̄k) evaluated at x̄k is not always well-defined,
but there are easy fixes to this issue.
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The Bregman k-means algorithm

Bregman k-means (Banerjee et al., 2005)
Choose K and a set of initial centroids m1, . . . ,mK .
Until the centroids stabilize:
for i = 1, . . . , n do

Set the cluster indicator ci equal to k, so that Dϕ(xi ; mk) is minimum.

for k = 1, . . . ,K do
Let mk be equal to the arithmetic mean x̄k of the subjects belonging to
group k.

return ĉmap = (c1, . . . , cn).

• The Bregman k-means monotonically decreases the loss function, and it reaches
a local optimum in a finite number of steps.
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Connection with exponential dispersion families

Exponential dispersion family (Jørgensen, 1987)
Let π(x | λ) be a density function on X ⊆ Rd indexed by λ > 0. Then, the class
of densities

πed(x | θ, λ) = π(x | λ)eλ[θᵀx−κ(θ)], θ ∈ Θ, λ ∈ Λ,

is called exponential dispersion family.

• If x ∼ πed(x | θ, λ), then

E(x) = µ(θ), Var(x) = 1
λ

V .

• The function µ(·) is injective and V is a d × d matrix not depending on λ.

• There is a one-to-one correspondence between the natural parametrization θ
and the mean parametrization µ = µ(θ).
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Connection with exponential dispersion families (cont’d)

Theorem
Let πed(c | λ,X) be a gb-ppm of the form

πed(c | λ,X) ∝
K∏

k=1

∏
i∈Ck

π(xi | λ) exp
{
λ[θ̂ᵀ

k xi − κ(θ̂k)]
}
,

where θ̂k = θ(x̄k) = arg maxθk

∏
i∈Ck

πed(xi | θk , λ).

Then, there exists a gb-ppm
with Bregman cohesion such that

πed(c | λ,X) = πϕ(c | λ,X), c : |C | = K .

• The λ parameter is proportional to the within-cluster precision.

• Key result: this probabilistic interpretation simplifies the estimation / elicitation
of λ.

• The gb-ppm πϕ(c | λ,X) can be also regarded as the Bayesian update of a
profile likelihood.
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gb-ppms with pairwise dissimilarities
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gb-ppm with pairwise dissimilarities

• Let X = Rd and let ||x||p = (|x1|p + · · ·+ |xd |p)1/p be the Lp norm.

• A general measure of dissimilarity is

γ(||xi − xi′ ||pp), xi , xi′ ∈ Rd , p ≥ 1,

for some increasing function γ(·) such that γ(0) = 0.

Let πγ(c | λ,X) be a gb-ppm with covariate space X = Rd . We will say it has
average dissimilarity cohesions if

πγ(c | λ,X) ∝
K∏

k=1
exp

{
−λ2

∑
i∈Ck

1
nk

∑
i′∈Ck

γ(||xi − xi′ ||pp)
}
, c : |C | = K ,

with p ≥ 1 and with γ(·) being an increasing function such that γ(0) = 0.

Tommaso Rigon (Duke) 21 / 36



The k-dissimilarities algorithm

K-dissimilarities
Randomly allocate the indicators c1, . . . , cn into K sets.
Until the partition stabilizes:
for i = 1, . . . , n do

Allocate the indicator ci , given the others c−i , to the k cluster, so that∑
i′∈Ck

Dγ(xi′ ; Xk)−
∑

i′∈Ck,−i

Dγ(xi′ ; Xk,−i )

is minimum. Recursive formulas are available.
return ĉmap = (c1, . . . , cn).

• The k-dissimilarities monotonically decreases the loss function, and it reaches a
local optimum in a finite number of steps.
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Connection with Lp spherical distributions

Lp spherical distributions (Gupta & Song, 1997)
A random vector x ∈ Rd follows a Lp spherical distribution if its density function
can be written as

πsp(x) = g(||x||pp),

for some measurable function g : R+ → R+.

• The class of Lp spherical distributions includes e.g. the multivariate Gaussian,
the multivariate Laplace and the multivariate Student’s t.

• The family is indexed by the function g , which is sometimes called density
generator.
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Connection with Lp spherical distributions (cont’d)

Theorem
Let πγ(c | λ,X) be a gb-ppm with average dissimilarities. If∫

R+

rd−1 exp
{
−λ2 γ(rp)

}
dr <∞,

then there exists an Lp spherical distribution on Rd such that

πγ(c | λ,X) ∝
K∏

k=1

∏
i∈Ck

[ ∏
i′∈Ck

πsp(xi − xi′ | λ)
]1/nk

,

where πsp(xi − xi′ | λ) ∝ exp
{
−λ/2γ(||xi − xi′ ||pp)

}
for any i ∈ Ck and i ′ ∈ Ck .

• Key result: as before, this probabilistic interpretation simplifies the estimation /
elicitation of λ.
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Connection with composite likelihoods
• A gb-ppm with average dissimilarities can be interpreted as the Bayesian
update of a pairwise difference likelihood (Varin et al., 2011).

• Suppose the observations follow some location family of distributions

(xi | µk , λ, ci = k) iid∼ π (x − µk | λ) , i ∈ Ck , k = 1, . . . ,K ,

where µk ∈ Rd .

• We model the within-cluster differences xi − xi′ with Lp spherical distributions,
which are symmetric around 0. The location parameter µk simplifies.

• The associated pairwise difference likelihood is proportional to

πdiff(X | c, λ) ∝
K∏

k=1

∏
i∈Ck

[ ∏
i′∈Ck

πsp(xi − xi′ | λ)
]1/nk

,

where the exponent 1/nk is a correction that deflates the likelihood.
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Two notable examples
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Squared Euclidean gb-ppm

Bregman-divergence representation

πϕ(c | λ,X) ∝
K∏

k=1
exp

{
−λ

∑
i∈Ck

||xi − x̄k ||22

}
, c : |C | = K .

Pairwise dissimilarity representation

πγ(c | λ,X) ∝
K∏

k=1
exp

{
−λ2

∑
i∈Ck

1
nk

∑
i′∈Ck

||xi − xi′ ||22

}
, c : |C | = K .

• In both cases, this is consistent with

(xi | µk , λ, ci = k) iid∼ N(µk , (2λ)−1Id ), i ∈ Ck , k = 1, . . . ,K .
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Squared Euclidean gb-ppm, estimation of λ

• The parameter λ is proportional to the within-cluster precision.

• A possibility is to estimate λ from the data by considering the joint model

π(c, λ | X) ∝ π(λ)λnd/2
K∏

k=1
exp

{
−λ

∑
i∈Ck

||xi − x̄k ||22

}
, c : |C | = K .

• Note that the term λnd/2 follows from our probabilistic interpretation. Without
our Theorems the estimation of λ would be much more problematic.

• This constitutes a reasonable and simple default strategy for the estimation of
λ, which is otherwise a difficult problem.

• If we let λ ∼ gamma(aλ, bλ) a priori, then the full conditional is conjugate.
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Minkowski dissimilarities gb-ppm

Let γ(||xi − xi′ ||pp) = ||xi − xi′ ||p be the Minkowski distance. The associated
gb-ppm is

πγ(c | λ,X) ∝
K∏

k=1
exp

{
−λ2

∑
i∈Ck

1
nk

∑
i′∈Ck

||xi − xi′ ||p

}
, c : |C | = K .

• The Lp spherical distribution associated to the pairs xi − xi′ has density

πsp(xi − xi′ | λ) = pd−1

2d Γ(1/p)d
Γ(d/p)

Γ(d)

(
λ

2

)d
exp

{
−λ2 ||xi − xi′ ||p

}
.

• λ is therefore a scale parameter and can be estimated paralleling the steps of
the k-means case. The availability of the term λd is crucial.

• The Manhattan distance case (p = 1) has appealing robustness properties.
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Illustrations
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Synthetic dataset I

• In this experiment we consider n = 200 observations evenly divided in K = 4
clusters, each having n1 = · · · = n4 = 50 data points.

• We simulate the data as follows

(xi | µk , σ
2, ci = k) iid∼ N

(
µk , σ

2I2
)
, i ∈ Ck , k = 1, . . . ,K ,

with µ1 = (−2,−2), µ2 = (−2, 2), µ3 = (2,−2), µ4 = (2, 2), and σ2 = 1.5.

• We aim at comparing the uncertainty quantification of a gb-ppm with that of
an oracle distribution, i.e. with

πoracle(c | µ1, . . . ,µK , σ
2,X) ∝

n∏
i=1

K∏
k=1

N(xi | µk , σ
2I2)1(ci =k).
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Synthetic dataset I (cont’d)
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Synthetic dataset I (cont’d)

Oracle Squared Euclidean
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Synthetic dataset I (cont’d)
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Synthetic dataset II

• We consider n = 200 observations evenly divided in K = 4 clusters, each having
n1 = · · · = n4 = 50 data points.

• We simulate the data from

(xi | µk , σ
2, ci = k) iid∼ t2

(
µk , σ

2I2
)
, i ∈ Ck , k = 1, . . . ,K ,

where t2(µ,Σ) is a multivariate Student’s t-distribution with location µ, scale
Σ, and 2 degrees of freedom.

• Some “outliers” expected, because a t2 distribution has infinite variance.

• We compare our estimates with the oracle distribution also in this case.
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Synthetic dataset II (cont’d)
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Synthetic dataset II (cont’d)
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Thanks!
• We introduced a generalized Bayes modeling framework for clustering.

• We studied its general properties and presented two broad classes of tractable
models.

• The manuscript is forthcoming on ArXiv!
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