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Introduction

® There are roughly two approaches for clustering.

® Model-based clustering often relies on mixture models, i.e.

K
> Gr(x] 6, K=>1,
k=1

with m(x | @) being a parametric kernel. A representative is a mixture of
Gaussians model.

® Algorithmic clustering is often based on the minimization of loss function, i.e.

Cluster solution = arg min £(c; X).
c

Representatives are the k-means / k-medoids algorithms and generalizations.

Tommaso Rigon (Duke) 2/36



Model-based clustering
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® Probabilistic interpretation of the partition mechanism.

® Enable uncertainty quantification e.g. within the Bayesian paradigm.
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Model-based clustering

K
> &m(x|6e),  K>1.
k=1

Pro

® Probabilistic interpretation of the partition mechanism.

® Enable uncertainty quantification e.g. within the Bayesian paradigm.

Cons

® Despite the remarkable advances, computations are still a huge bottleneck.

® Results are highly misleading if the kernel is misspecified.

® Assuming the existence of a latent partition might be unrealistic.
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Loss-based algorithmic clustering

Cluster solution = arg min £(c; X)
c
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Loss-based algorithmic clustering

Cluster solution = arg min £(c; X)
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e Computational efficiency — can be used on large / massive datasets.
® Simplicity of the method — well-understood and widely used by practitioners.

® Robust algorithms are easy to design.

® Useful tools for summarizing the data.
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Loss-based algorithmic clustering

Cluster solution = arg min £(c; X)
c

Pro

e Computational efficiency — can be used on large / massive datasets.
® Simplicity of the method — well-understood and widely used by practitioners.
® Robust algorithms are easy to design.

® Useful tools for summarizing the data.

Cons

® These methods are based on optimizations — no probabilistic interpretation.

® No uncertainty quantification.
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K-means clustering

K-means clustering Misclassification probabilities

2 A 2 .
Probability
[ |
Cluster 06
0 0
c 1 0.4
A 2
. . 0.2
= - B oo
. .
1 . .
4 . -4 .




Outline of the talk

® We aim at bridging the model-based and loss-based approaches, inheriting the
advantages of both.

® We rely on a generalized Bayes theorem which has a clear and coherent
justification.

® We propose a large class of models closely related to product partition models.

® We provide uncertainty quantification for most loss-based clustering methods,
including k-means.
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Gibbs posteriors

® Bayesian inference is based on

m(0)7(X | 0)
[ (0)r(X | 0)do’

(0| X) =

where 7(8) is the prior, 7(X | 8) is the likelihood, and 8 is a parameter.
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Gibbs posteriors

® Bayesian inference is based on

m(0)7(X | 0)
[ (0)r(X | 0)do’

(0| X) =

where 7(8) is the prior, 7(X | 8) is the likelihood, and 8 is a parameter.

® Generalized Bayesian inference is based on

7(0) exp{—=\(0; X)}
[ () exp{—A(0; X)}dO’

(6| X) = A>0,

where 7(0) is the prior, £(0; X) is a loss function, and 0 is a parameter.

® The latter distribution is called Gibbs posterior.
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Model-based Bayesian clustering

® let x; = (Xj1,-..,Xq)T i =1,...,n be a vector of observations on X C R and
let X be the collection of all the data points.

® Let C=(Cy,..., Ck) be a cluster arrangement and ¢ = (cy,. ..
associated indicators.

, Cn) be the

® let Xy = {x; : i € Cx} be the observations x; belonging to the Cy cluster.

A Bayesian mixture model is based on the standard posterior

(e | X) o 7(c kH:VHw(x,e ]

i€ Cy
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Generalized Bayes product partition models (GB-PPM)

A Generalized Bayes product partition model is based on the Gibbs posterior

K K
m(c| A\ X) x 7(c) Hp(Ck; A, Xi) H exp {—)\ Z D(x,-;Xk)} ,

k=1 k=1 i€ Cy

with ¢ : |[C| = K and A > 0.
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Generalized Bayes product partition models (GB-PPM)

A Generalized Bayes product partition model is based on the Gibbs posterior

K K
m(c| A\ X) x 7(c) Hp(Ck; A, Xi) H exp {—)\ Z D(x,-;Xk)} ,

k=1 k=1 i€ Cy

with ¢ : |[C| = K and A > 0.

® The term p(Cyk; A, Xi) is the cohesion associated to the kth cluster.

® The function D(x;; Xi) measures the discrepancy of the ith unit from the kth
cluster.

® The uniform prior w(c) o 1 is employed. This is a proper prior, since the
partition space is finite.
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Foundations of Gibbs posteriors

® “Isn’t this a Bayesian heresy?” — A colleague.

® Gibbs posteriors have been widely used since the late
90’s.

® They were mainly motivated by the PAC-Bayesian
approach, which partially clarifies their interpretation.

10/36

Tommaso Rigon (Duke)



Foundations of Gibbs posteriors

® “Isn’t this a Bayesian heresy?” — A colleague.

® Gibbs posteriors have been widely used since the late
90’s.

® They were mainly motivated by the PAC-Bayesian
approach, which partially clarifies their interpretation.

® The rigorous foundations of Gibbs posteriors have been recently discussed in
Bissiri, Holmes, & Walker (2016). JRSS-B.
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The target of a GB-PPM

® The target of a GB-PPM is the optimal partition

K

Copr = arg mcin E.{¢(c;X)} = arg C_‘rgig Z Z E., {D(x;; Xx)},
T k=1ieC

where mo(X) is the unknown data generating process.
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The target of a GB-PPM

® The target of a GB-PPM is the optimal partition

K

Copr = arg mcin E.{¢(c;X)} = arg C_‘rglig Z Z E., {D(x;; Xx)},
T k=1ieC

where mo(X) is the unknown data generating process.

Key concepts

® Gibbs posteriors quantify the uncertainty about the optimal and unknown copr.

® \We are not assuming the existence of a latent partition in the generating
mechanism.

® copy represent an optimal summary of the data.
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Derivation of Gibbs posteriors

® A posterior v is a better candidate than v, if Z(v1) < Z(v2), with
Z{v(e)} = AE, {{(¢; X)} + x1{v(c) [| w(c)},
being a loss function on the space of conditional distributions.

® The optimal posterior is the one minimizing the loss .Z.
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Derivation of Gibbs posteriors

® A posterior v is a better candidate than v, if Z(v1) < Z(v2), with
Z{v(e)} = AE, {{(¢; X)} + x1{v(c) [| w(c)},

being a loss function on the space of conditional distributions.

The optimal posterior is the one minimizing the loss .Z.

The loss £ balances the proximity to the data and the closeness to the prior.

When A — oo the minimizer of .Z is the point mass g, where
Copr = argmin {(c; X),
c

is the empirical version of the optimal partition copr.

When A — 0 the minimizer of .Z coincides with the prior distribution.
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Derivation of Gibbs posteriors (cont'd)

® Key result 1: Our GB-PPM minimize the loss .Z for general values of A > 0,

that is
7(c | A, X) =argmin Z{v(c)}.

Hence, m(c | A, X) is the best posterior for quantifying the uncertainty about
optimal partition copr.
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® Key result 1: Our GB-PPM minimize the loss .Z for general values of A > 0,
that is
7(c | A, X) =argmin Z{v(c)}.

Hence, m(c | A, X) is the best posterior for quantifying the uncertainty about
optimal partition copr.

® Key result 2: The loss .Z is not arbitrary, because is the only one satisfying
natural coherency conditions (Bissiri et al., 2016).
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Derivation of Gibbs posteriors (cont'd)

® Key result 1: Our GB-PPM minimize the loss .Z for general values of A > 0,
that is
7(c | A, X) =argmin Z{v(c)}.

Hence, m(c | A, X) is the best posterior for quantifying the uncertainty about
optimal partition copr.

® Key result 2: The loss .Z is not arbitrary, because is the only one satisfying
natural coherency conditions (Bissiri et al., 2016).

® Remark: Gibbs posteriors are not a pseudo-Bayes approach nor an approximate
Bayesian procedure. They are coherent Bayesian updates.
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Point estimation

® Although several alternative exist, the MAP is a sensible point estimate.
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Point estimation

® Although several alternative exist, the MAP is a sensible point estimate.

A (trivial) Proposition
Let m(c | A, X) be a GB-PPM. Then,

Cyap = arg max m(c| A X) =arg r|m|n {(c; X).

® The €yup is the value minimizing a loss.
® Well-known algorithms can be used for finding the MAP, such as k-means.

® Note that the estimate €, does not depend on \. This is not the case for
general point estimates.
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Posterior inference

® Posterior inference is conducted through a Gibbs sampling.
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Posterior inference

® Posterior inference is conducted through a Gibbs sampling.
Theorem
Let m(c | A, X) be a aB-PPM. Then, the conditional distribution of ¢; given c_; is

p(Cr; A, Xi)
P(Cie,—is A, Xie,—i)

]P(C,' =k ‘ C,,',)\,X) XX

xexpg —A ZDX,,Xk Z D(xir; Xk, —i) ,
i'eCy IECk,

for k=1,...,K and for any partition c: |C| = K

® The ith unit is likely to be allocated in the kth cluster if the cohesion of the
newly created cluster is higher than the old cohesion.
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GB-PPMs with Bregman cohesions
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GB-PPM with Bregman cohesions

Bregman divergence

Let ¢ : X — R be a strictly convex function defined on a convex set X C RA,
such that ¢ is differentiable on the relative interior of X. Then

Dy(x; p) = p(x) — [p(p) + (x — u)TV(u)],

is a Bregman divergence, for any x € X and any w in the relative interior of X.
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GB-PPM with Bregman cohesions

Bregman divergence

Let ¢ : X — R be a strictly convex function defined on a convex set X C RA,
such that ¢ is differentiable on the relative interior of X. Then

Dy(x; p) = p(x) — [p(p) + (x — u)TV(u)],

is a Bregman divergence, for any x € X and any w in the relative interior of X.

® A Bregman divergence D,(x; pt) is non-negative.

® The discrepancy between x and p is measured as the difference between ¢(x)
and the value of its tangent hyperplane at u, evaluated at x.

® The squared Euclidean distance (k-means), the Mahalanobis distance, and the
KL are instances of Bregman divergences.
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GB-PPM with Bregman cohesions (cont'd)

Let m,(c | A, X) be a GB-PPM. We will say it has Bregman cohesions if

mo(c| A X) x H (Cr; A, Xi) = Hexp {—)\ Z Dw(x,-;)_(k)},

k=1 i€ Cy

c: |C| = K, where D,(x; p) is a Bregman divergence.
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GB-PPM with Bregman cohesions (cont'd)

Let m,(c | A, X) be a GB-PPM. We will say it has Bregman cohesions if

mo(c| A X) x H (Cr; A, Xi) = Hexp {—)\ Z Dw(x,-;)_(k)},

k=1 i€ Cy

c: |C| = K, where D,(x; p) is a Bregman divergence.

® The arithmetic mean X, is not an arbitrary choice, because

X = argmaxexp{ )\ZD x,,u)}

i€ Cy

i.e. is the value maximizing the cohesion.

® The Bregman divergence D, (x;; X) evaluated at X, is not always well-defined,
but there are easy fixes to this issue.
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The Bregman k-means algorithm

Bregman k-means (Banerjee et al., 2005)

Choose K and a set of initial centroids m, ..., mg.
Until the centroids stabilize:

fori=1,...,ndo
L Set the cluster indicator ¢; equal to k, so that D, (x;; my) is minimum.

for k=1,...,K do
L Let my be equal to the arithmetic mean X, of the subjects belonging to

group k.

return &, = (¢1,...,Cn).

® The Bregman k-means monotonically decreases the loss function, and it reaches
a local optimum in a finite number of steps.
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Connection with exponential dispersion families

Exponential dispersion family (Jgrgensen, 1987)

Let 7(x | A) be a density function on X C R indexed by A > 0. Then, the class
of densities

Ton(X | 0,0) = m(x | X)eMOT*—+O)] 00O, NeA,

is called exponential dispersion family.

® If x ~ mgp(x | B, A), then
1
E(x) = u(0), Var(x) = XV'
® The function u(-) is injective and V is a d x d matrix not depending on A.

® There is a one-to-one correspondence between the natural parametrization 6
and the mean parametrization p = u(6).
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Connection with exponential dispersion families (cont'd)

Theorem

Let mgp(c | A, X) be a GB-PPM of the form

men(e | A, X) o [T I (x| A) exp {A[é;x, - H(ék)]} ,

k=1i€Cy

where ) = 0(X,) = arg maxg, [Ticc, men(Xi | Ok, ).
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20/36




Connection with exponential dispersion families (cont'd)

Theorem
Let mgp(c | A, X) be a GB-PPM of the form

men(e | A, X) o [T I (x| A) exp {A[é;x, - H(ék)]} ,

k=1i€Cy

where ) = 0(X,) = arg maxg, [licc, men(Xi | Ok, A). Then, there exists a GB-PPM

with Bregman cohesion such that

men(c | A\, X) = m,(c | A X),

c:|Cl=K.
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Connection with exponential dispersion families (cont'd)

Theorem
Let mgp(c | A, X) be a GB-PPM of the form

min(e | A X) oc [T TT x| M exp {\BIx - (001}

where ) = 0(X,) = arg maxg, [licc, men(Xi | Ok, A). Then, there exists a GB-PPM
with Bregman cohesion such that

men(C | A, X) = mu(c | A, X), c:|Cl=K.

® The A\ parameter is proportional to the within-cluster precision.

® Key result: this probabilistic interpretation simplifies the estimation / elicitation
of .

® The GB-PPM m,(c | A, X) can be also regarded as the Bayesian update of a
profile likelihood.
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GB-PPMs with pairwise dissimilarities

Tommaso Rigon (Duke) 20/36



GB-PPM with pairwise dissimilarities

e Let X = R and let ||x]|, = (]x1|? + - - + [x4|P)*/? be the LP norm.
® A general measure of dissimilarity is
rY(HX" - Xl'/Hz)? Xi, Xjr € Rd7 1% 2 1a

for some increasing function v(+) such that «(0) = 0.

Let ,(c | A, X) be a GB-PPM with covariate space X = RY. We will say it has
average dissimilarity cohesions if

c|)\X)o<Hexp{—Z Z |x,'—x,-/|5)}7 c:|Cl=K

i€Cy i€ Cy

with p > 1 and with (-) being an increasing function such that (0) = 0.
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The k-dissimilarities algorithm

K-dissimilarities
Randomly allocate the indicators ¢y, ..., c, into K sets.
Until the partition stabilizes:

fori=1,...,ndo
Allocate the indicator ¢;, given the others c_;, to the k cluster, so that

> Dy(xii Xk) = > Doy(xiri Xie—i)

i’eCy i"€Cy,—i

is minimum. Recursive formulas are available.

return &» = (c1,...,Cn).

® The k-dissimilarities monotonically decreases the loss function, and it reaches a
local optimum in a finite number of steps.
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Connection with LP spherical distributions

LP spherical distributions (Gupta & Song, 1997)

A random vector x € RY follows a LP spherical distribution if its density function
can be written as

7"'SP(X) = g(HXHg),

for some measurable function g : Ry — R

® The class of LP spherical distributions includes e.g. the multivariate Gaussian,
the multivariate Laplace and the multivariate Student’s t.

® The family is indexed by the function g, which is sometimes called density
generator.
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Connection with LP spherical distributions (con

Theorem

Let m,(c | A, X) be a GB-PPM with average dissimilarities. If

A
/ r?~Lexp {’y(r")} dr < oo,
R 2
N

then there exists an LP spherical distribution on R? such that

K 1/ny
’/T.Y(C | )\,X) X H H lH 7TSP(Xi — Xj | A)] )

k=1ieC, Li'eCy

where mep(x; — Xir | A) o< exp {=A/2y(||x; — x-||5)} for any i € C; and i’ € Ci.

® Key result: as before, this probabilistic interpretation simplifies the estimation /

elicitation of \.

Tommaso Rigon (Duke)
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Connection with composite likelihoods

® A GB-PPM with average dissimilarities can be interpreted as the Bayesian
update of a pairwise difference likelihood (Varin et al., 2011).
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® A GB-PPM with average dissimilarities can be interpreted as the Bayesian
update of a pairwise difference likelihood (Varin et al., 2011).

® Suppose the observations follow some location family of distributions
i | o A=k Sr(x—pme|N), i€C, k=1,...,K,
where g, € RY.

® We model the within-cluster differences x; — x;; with LP spherical distributions,
which are symmetric around 0. The location parameter py simplifies.
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Connection with composite likelihoods

® A GB-PPM with average dissimilarities can be interpreted as the Bayesian
update of a pairwise difference likelihood (Varin et al., 2011).

® Suppose the observations follow some location family of distributions
i | o A=k Sr(x—pme|N), i€C, k=1,...,K,
where g, € RY.

® We model the within-cluster differences x; — x;; with LP spherical distributions,
which are symmetric around 0. The location parameter py simplifies.

® The associated pairwise difference likelihood is proportional to
K l/nk
'/TDIFF(X | C, )\) X H H [H 7TSP(Xi — Xjr ‘ A)] s
k=1ieC, Li’eCy

where the exponent 1/ny is a correction that deflates the likelihood.
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Two notable examples
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Squared Euclidean GB-PPM

Bregman-divergence representation

K
ﬂ¢(c|/\,X)o<Hexp{—)\Z|x,-—)_(k|§}, c:|Cl=K

k=1 i€ Cr

Pairwise dissimilarity representation

c|)\X)o<Hexp{—Z ZHX, x,||2} c:|Cl=K

i€eCy i’eCy

® |n both cases, this is consistent with

(i | o A ¢ = k) S N(ui, @A) My), i€ G, k=1,...,K.

geeey
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Squared Euclidean GB-PPM, estimation of A

® The parameter \ is proportional to the within-cluster precision.

A possibility is to estimate A from the data by considering the joint model

K
(e, | X) uw(A)A”d/QHeXP{—)\Z ||xi —m%}, c:|Cl=K.
k=1

i€Cx

® Note that the term \"?/? follows from our probabilistic interpretation. Without
our Theorems the estimation of A would be much more problematic.

® This constitutes a reasonable and simple default strategy for the estimation of
A, which is otherwise a difficult problem.

If we let A ~ GAMMA(ay, b)) a priori, then the full conditional is conjugate.
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Minkowski dissimilarities GB-PPM

Let y(||x; — xir|[5) = [|xi — xi||p, be the Minkowski distance. The associated
GB-PPM is

c|)\Xo<Hexp{—Z > X — x,|,,} c:|Cl=K

i€ Cy i’ Cy

® The LP spherical distribution associated to the pairs x; — x;» has density

pd=t T(d/p)[A\? A
=30 | ) = gt P (5 ) e { ==l ).

® )\ is therefore a scale parameter and can be estimated paralleling the steps of
the k-means case. The availability of the term \? is crucial.

® The Manhattan distance case (p = 1) has appealing robustness properties.
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[llustrations
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Synthetic dataset |

® In this experiment we consider n = 200 observations evenly divided in K = 4
clusters, each having ny = --- = ny = 50 data points.

® \We simulate the data as follows

(X,‘|[J,k70'2,C,':k)E'iSN([J,k,O'2/2), ieCk, k:17"’7K7

with gy = (=2, -2), po = (=2,2), pu3 = (2,-2), pa = (2,2), and 02 = 1.5.

® We aim at comparing the uncertainty quantification of a GB-PPM with that of
an oracle distribution, i.e. with

n K

7TORACLE(C ‘ M1,y NK7027X) X H H N(X,‘ | ik, 02I2)]1(Ci:k)-
i=1 k=1
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Synthetic dataset | (cont'd)
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hetic dataset | (cont'd)
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Synthetic dataset | (cont'd)
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Synthetic dataset |l

® We consider n = 200 observations evenly divided in K = 4 clusters, each having
m = --- = n4 = 50 data points.

® We simulate the data from
(X,'|[,Lk,0'27C,‘:k)i'igt2(l,l,k,0'2l2)7 iEClﬁ k:17"'7K7

where to(u, ) is a multivariate Student’s t-distribution with location u, scale
32, and 2 degrees of freedom.

® Some “outliers” expected, because a t, distribution has infinite variance.

® We compare our estimates with the oracle distribution also in this case.
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Synthetic dataset Il (cont'd)
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Synthetic dataset Il (cont'd)
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® We introduced a generalized Bayes modeling framework for clustering.

® We studied its general properties and presented two broad classes of tractable
models.

® The manuscript is forthcoming on ArXiv!
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