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Mixtures for density estimation
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m Let k be a kernel such that fle k(x,y)dx =1 foranyy € ©

m Random probability measure poc =

=17 0s; on ©

Random density = f(x) :/ k(x;y) Poo(dy) = erj (x: 05)
Q)

j>1
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Mixtures of stick—breaking processes

Stick—breaking construction of p

m Pitman—Yor process: ’ﬁoc ~ PY(0, a; Po) ‘

m Parameters o € [0,1) and a > —o. Alternatively: o < 0 and 6 > —a.
m (V})i>1 such that V; ) Beta(l — 0, a + io).
m Probability weights & locations

iid

j—1
m =W, WJZVJHU*V:‘) iz2, b6~ P

i=1

for some diffuse Py on ©.

B P ~PY(0,a; P0)) = po is a Dirichlet process with parameters («, Po).
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Inference on 7

m Sampling algorithms for Pitman—Yor mixture model include:
m Marginal algorithms integrate out P for a Gibbs sampler that evaluates
E[f | data].

m Conditional algorithms: truncate po at a level H

H H-1
~ . * 6 * _ >k _ * — 1 *
PH tr = Tj 00;, Ty =Tl «++ ), TH-1 = TTH-1, TH= 41— T
=1 i=1

and simulate the posterior distribution py + | data.
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Blocked Gibbs sampler

Ishwaran & James (2001): Poc +— Py tr

m Conditionally iid (latent) allocation variables v4,..., v,
P(vi = h| By tr) = 7,

m Conditionally on v = (v1,...,v,), one has y; = 6,, and

Xi|(0,v) X k(Xi|6,), i=1,...,n.

m Distribution of (Py tr | —)
j—1
71'; = \/1*7 71'; — \/j* H(l - \/I*)7

i=1

ind .
m V% Beta(l fU+”i»<Y+’U+ZhH:i+1 ")

1
m nj=card{i: v;=j}

m Other full conditionals, i.e. (0| —) & (v | —), are easily identified
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Blocked Gibbs sampler (ctd)

Popularity of the truncated stick—breaking approach
m It is simple to implement
m It overcomes some “limitations” of Pdélya urn—type (or marginal) algorithms

m problems when k(x; -) and Pg are not conjugate
m “underestimation” of uncertainty around point estimates [ f | data]

However...

m Not much is known about py tr
m distribution of the random partition it induces
m associated predictive distributions
[ I
v

m Are there efficient alternatives, that work also for non—exchangeable data?

m Literature on priors on the finite-dimensional simplex is much more limited and mostly
confined to the so—called Dirichlet multinomial process
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Mixtures of NRMls

m (J;,0;)i>1 are random points in R x © such that (J;)i>1 L (6;);>1 and
card({(J;,8i) : i > 1} N A) ~ Po(r(A)) v(A) =« / p(s)ds Po(d0)
JA

with Py a p.m. on © and p: RT — R" such that fow(s/\ 1) p(s)ds < +o0

m The resulting measure

ﬁ:ZJMSe,

i>1
is completely random, i.e. fi(B) L i(B')if BNB = 2.
m Normalized random measure with independent increments (NRMI) are defined as
Ji ~
M= = = Poo = Zm do;, ~ NRMI(c, p; Po)
th1 I

i>1

under the additional condition fooo p(s)ds = oo.
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Truncated NRMls

m Marginal algorithms: Integrate out . and evaluate E[f | data] through a Gibbs
sampler.

m Conditional algorithms:

m Posterior characterization, with 67, ...,0; distinct values in o = (61,...,6n)
poo|(dat39 Zw,,,(ig +ijn59*
i>1

m Representation due to Ferguson and Klass (1972)
T1,n > T2.n > e

m Simulate the truncated NRMI and re-normalize the weights

PHr = E T} 0p; + E wjnoe*

i=1

m See Barrios et al. (2013) and Arbel & Priinster (2017).
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Pros & cons

Pros

m Ordering of the 7; ,'s ensures that the truncation procedure retains most relevant
random probability masses.

m Free from limitations of Pdlya urn—type marginal algorithms.

Cons

m Simulation of the ordered weights 7/, in the truncated representation may lead to
numerical issues.

m Not so much is known about the impact of this approximation on the posterior.

m Are there efficient alternatives, that work also for non—exchangeable data?

m For NRMIs the literature on priors on the finite-dimensional simplex is limited to the
Dirichlet multinomial process.
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The Dirichlet multinomial prior

m A classical finite-dimensional prior is the Dirichlet multinomial process

H
ﬁH:ZWhégh, (71'1,...,7TH_1)NDIR(a/H,...,O&/H)7 ehlfl/Po,
h=1

m The Dirichlet multinomial py and the Dirichlet process poc ~ PY(0,a, Po) are
related through
ﬁf’H - [:,3307 H — .

The Dirichlet multinomial weakly converges to a Dirichlet process (Kingman, 1975).
m This motivates the usage of py also as an approximation of poo.

m However, the connection between py and po is far deeper, in fact holding for any
finite value H.
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Dirichlet multinomial — se—- Dirichlet process

777 — Pitman—Yor process

777 s> homogeneous NRMIS

m Natural extension of the Dirichlet multinomial?

m Would they preserve a good degree of analytical and computational tractability?
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Dirichlet multinomial — s—— Dirichlet process

Bilmagoyor sy Pitman—Yor process
multinomial

Normalized infinitely > homogeneous NRMIs
divisible multinomial

m Natural extension of the Dirichlet multinomial?

® Would they preserve a good degree of analytical and computational tractability? Yes!
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The Pitman—Yor multinomial process

PY multinomial process

Let o € [0,1) and & > —o. The random probability measure py is a Pitman—Yor
multinomial process if

H
. - - 1 iid
(PH | Po,H) ~ PY(0, ; Po,H), o = 4 g do,, On ~ Py
h=1

In symbols py ~ PYMy(o, o; Po).

m Discrete hierarchical Pitman—Yor process, with finitely supported base measure.
m Reminiscent of so—called discrete hierarchical processes (Camerlenghi et al., 2017)
m The baseline E[py | Po,n] = Po,n is atomic.

m This causes serious analytical difficulties, compared to the case where pg 4 is
non—atomic.

Unimib
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The PYM process: two alternative characterization

m In terms of tempered stable random variables:

1 . —AJ, 1 o o
Jh|UNTS(ﬁ,O',U) = E(e ”|U:u):exp{—ﬁ[()\+u) —u}},

U7 ~ Ga(g,l)
o

If v ~ PYMu(o, «; Po), it can be equivalently represented as

J*

h=1

iy H
PH = ! 06, J*:ZJh-
h—1

m In terms of ratio—stable random variables (Carlton, 2002). If py ~ PYMu(0, ; Po) and
(m1y...,mH-1) ~RS(o,;1/H,...,1/H), then

H
PH = E 7Th(§9h
h=1
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Some remarks

m The Dirichlet multinomial is a special case: it corresponds to
(m1y. .., mH-1) ~RS(0,;1/H,...,1/H)

m The density function of the weights (71, ...,mH_1) is not available in closed form, the
only exceptions being:

PYMH(1/2,0; Po) &  PYMu(0,a; Po).

m Simulation for Bayesian inference:

m Simulate tempered stable random variables through an algorithm such as the one, e.g., in
Ridout (2009)

m numerical issues when o = 0 if performed naively
= U tends to generate high values that cause overflows
= a suitable rescaling of J, solves the issue

m Pitman & Yor (1997) = J, = polynomial tilting of a positive stable r.v.
= useful for posterior computations
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NID multinomial processes

Normalized infinitely divisible multinomial processes

Let p: RT™ — R™ be such that fooo p(s)ds = co. The random probability measure py is
a normalized infinitely divisible multinomial process if

H
Y . . 1 R iid
(Bt | Pon) ~ NRMI(, pi Bon), Pon = E 06y,  On~Po
h=1

In symbols py ~ NIDMy(a, p; Po).

m Same technical issues as those already outlined for the PYM process

m It can be described in terms of infinitely divisible random variables

Ee ™ = exp{ -« /000 (1 - e_M) o(s) ds}7

where J ~ ID(«, p).

Tommaso Rigon (Milano-Bicocca) Unimib



NID multinomial processes: a characterization

Let p: R* — R be such that [ p(s)ds = oo and

Jhifi\(/iID(%,p).

If B ~ NIDMp(a, p; Po) then

H J H
pi= Joo. S =) A
h=1

h=1

The vector of probability weights is referred to as normalized infinitely divisible

( )*<£ JH71> NID(g 3,)
Tlyeesy TH=1) = J*a"'a J* H:"'ava

m Dirichlet multinomial process = p(s) =s 'e™

m Normalized inverse Gaussian multinomial process = p(s) = Cs >/2e™"*

m Generalized Dirichlet multinomial process = p(s) = s 'e™* 7:0 e

Unimib
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Summary of the results
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Exchangeable partition probability function (EPPF)

m Conditionally iid variables

Y| B p, p= md,

ieT
for some countable set 7.

m The discreteness of p implies that with positive probability there will be ties among
Y1,..., Ya, therefore inducing a random partition, say V,, of [n] = {1....,n}

i~j <= Yi=Y;

m The probability distribution of W, is also known as exchangeable partition probability
function (EPPF)

K
N, .om) =pr(Wa={G,...,GH= > E (Hﬁ) ,
A \j=1
with n; = card(C;) and ZJ’;I nj = n.

m The EPPF characterizes p.
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EPPFs (Lijoi, Priinster & R., 2020, 2023)

m The EPPF associated to a py ~ PYMpy(0, a; Po), with Py diffuse, is

H!

(H=k)!' (a+1)pe

15eens

1
S
(

C(a/o +169) 17 €.
» ol(a/o + 1) H

with €9 = (£1,..., ) € x}4{1, ...,

n;}, and €(n, k; o) the GFC.

m The EPPF associated to a py ~ NIDMy(c, p; Po), with Pg diffuse, is

|_|H(n1, ey I‘lk) =

Ho 1
(H*k)!m/ﬂr

o (T}

with (u) = f]R+(1 — e *)p(s)ds and

Vin(
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Distribution of K,  (Lijoi, Priinster & R., 2020)

Once the EPPF T1(n1,...,n) is available, one can determine:

m The distribution of the number of clusters, or partitions sets, K, 4.
= The predictive distribution of Y,.1, conditional on Y = (Y1,...,Y,).

m The posterior distribution of p, given Y.

Example: distribution of K, 4 of a PYM process

If Yi,..., Yo | Pn ig pn and py ~ PYM(0, o; Po), the number K, ; of distinct values in
Y™ has probability distribution

n

P(Knh = k) = (H’j!k)l . +11)n,1 Z (Q/O'U'}:I;-)lfl SR E (. b 0)

k < min{H, n} and .#(¢, k) is the Stirling number of the second kind.
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An example with the Dirichlet multinomial

0.151
(c,0)

0.10
> —— (0,10.68)
3 - (0,18.22)
[
g - (0,31.76)
o —+- (0,6.03)

0.051

B (0,61.85)
0.001
0 10 20 30 40 50
k

m Distribution of the number of cluster when n = 100, H = 50 in the Dirichlet
multinomial case (o = 0).

m The Dirichlet multinomial is highly informative.

Unimib
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An example with the PYM, with o > 0

0154 =
(,0)
0.10
= - (0,18.22)
2 -a- (0.25,10.72)
_g -a- (0.5,4.3)
o
& —+- (0.75,0.18
0.05 e 5 ( )
: ‘\ Yy o= o ~B+ (0.9,-0.72)
E'g 'Ca *_ &
B., -+
_,,,E-?ﬂ-*ﬁ-gﬁ-&
0.001
0 10 20 30 40 50
k

m Distribution of the number of cluster when n = 100, H = 50, and for various choices of
(o, @) so that E(Kj,,n) = 25.

m More robust specification = De Blasi et al. (2015); Canale and Priinster (2017).

Unimib
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Urn schemes for the Pitman—Yor multinomial

m Urn-schemes for posterior inference in mixture models (Neal, 2000).
m The EPPF of a PYM can be interpreted as a mixture over

k
n ¢ (nj, Ij;
P(fl = /1,...,&( = /k | Y( )) X r(()é/0'+ |£(k)|)H%,

j=1

which can be efficiently and independently simulated, through data—augmentation.

Predictive distribution (Lijoi, Prinster & R., 2020)

Let Y;,..., Y be the distinct values recorded in Y, then
k a+ [fP|o
P(Yoi1 € A Y("):(l——) a7 pya
(Yorr € ALY m Py o(A)+

1o+ €W nj — o
+Z( HE Doy b7 5y a)

with 29 = (7., 0) = E(eW | Y.
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Posterior of a PYM (Lijoi, Priinster & R., 20

m The posterior distribution of py ~ PYMpy(0, ; Po), conditional on Y™ and £, is

k H
(Brr | Y, 9) = (W) + Wi R)dy- + Wiis . Rida,,
Jj=1 j=k+1

where 6; % Py. Moreover,
(Wi, ..., Wi | Y("),K(k)) ~ DIR(Mm — l10, ..., n — bo, o + |E(k)|a)
(Ri,...,Ru_1| Y, £W) ~ rs(0, a0 + [€¥|o;1/H, ..., 1/H)
are independent vectors.
m The PYM might be referred to as being quasi-conjugate.
m It resembles the infinite-dimensional structure (i.e. the Pitman—Yor)

k
Boo | Y = Z W, 8y~ + Wiy1 PY (0, + ko Po)

j=1

and (W{,...,W)) ~DIR(m — 0,...,nx — 0, + ko).
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Urn schemes for NIDM processes

m Let us define

m 4
A m < g
Am = — — ar us d
le) Z(H) a Z(,:,l...qg) H/O s7e”p(s)ds,
£=1 q r=1
over all vectors g = (g, ..., q¢) of positive integers s.t. Zle qr = m.

m The density of the latent random variable (U, 4 | X(™) is

K
fa(u | Y) ox u"tem V) HAnj,H(u).

Jj=1

Predictive distribution (Lijoi, Prinster & R., 2023)

Y
P(Yon €Al YD) = (1 - f)f/ Uy () fa(u | Y)du Po(A)+
HJn [t

Anj,H(U)

JANS
J’,Zl uﬂf;—,(u | Y)du 6y (A).
=1 JBF ’
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Posterior characterization of a NIDM

m The posterior distribution of py = fin/fi(X) ~ NIDM(6, p; P), conditional on Y s
a mixture with respect to U, y, with

(ﬂH\Y("),UnH ZJ59 +ZJ+J 5y,

Jj=k+1
where 0411, ...,0y are iid draws from Py and
(i) the jumps (Jy | Y, Upp) for h=1,..., H are iid > (0/H, p\*)) r.v. with

(s) = e %p(s)

(ii) the jumps (Jj(") | y(), Un H) for j=1,..., Ky are independent and nonnegative r.v. such
that

oy )
E(e M

(iii) (Jn | Y, Uy ) and (Jj(”) | Y("), U, ) are mutually independent.

Y("),U) Ap i(A+ U)/ Dy, 1(U)
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Weak limits, as H 7~ oo

Weak limit for PYM processes (Lijoi, Priinster & R., 2020)

Let pn ~ PYMu(o, o; Po) and pos ~ PY(0,6; Po). Then

Ly = Lpo H /oo

Weak limit for NIDM processes (Lijoi, Priinster & R., 2023)

Let pry ~ NIDMu(c, p; Po) and Poc ~ NRMI(c, p; Po). Then

Ly, = Lp. H oo

m In practice, one may select the approximation level H by inspecting the EPPFs or the
cluster distributions: bounds for

I'IH(nl,...,nk)/l'loo(nh...,nk) & dTV(mH,moo)
m Distributional properties hold for any choice of H, not just at the limit.

m This is not true for the truncated stick-breaking construction. Problems if the
truncation is chosen lightly.
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The distribution of the number of clusters: py vs py tr

Probability
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Non—exchangeable data

Observations from different groups/samples

X;nl) = (Xl,la AR Xl,m)v EERR Xsnd) = (Xd,l? o Xd‘”d)

m Data from different, though related experiments: multi—center studies, change—point
problems, meta—analysis, ...

m Exchangeability within each group, not across groups

m Partial exchangeability: at the core of modern approaches (latent Dirichlet allocation
for topics modeling, infinite hidden Markov models, etc.).

Conditional independence
Xi,n|(ﬁ1,~~~7bd)’\’bi K):l,...,n,'
Xiws X | (P -+, Pa) ~ Pi X By
(ﬁlw"abd) ~ Qd

Here we will consider
Qg = law of a hierarchical process
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The hierarchical NRMI-PY process

Let Xi, fork =1,...,n;and i=1,...,d, be an array of d collections of random
variables such that

(ﬁi | bo) il"\(‘1NRl\/H(OQp7bO)7 i= 17"'7d

f)o ~ PY(O’Q, o, Po)

where Py is a diffuse probability measure defined on X.

~ ~did o ~
Bi = Zﬂ'j,i 0,5 OijlBo~ Po,  Po= Zﬂj,o d60.;

jz1 jz1
m General theory in Camerlenghi et al. (2019)

m The hierarchical Dirichlet process of Teh et al. (2006) is a particular case.
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Alternative representation

Definition of NIDP's

m Let @ = (a1, a2,...) be a collection of non—negative numbers s.t. Z:; ap < 00.

= An infinite random vector 7 = (71, m2,...) such that >~ ° 7, =1 a.s. is termed

normalized infinitely divisible process if, for finite partition Hi,...,Hm of IN, one has
(Zﬂ'j,..., Z TI'j)NNID(ZOéj,...7ZOéj;p>,
JEH, JEHM-1 JEHL JEHM

and it will be denoted 7 ~ NIDP(a, p).

m If ;30 = ijlm,o (ng'o ~ PY(O’(),O((); P()), then
™o = (7‘('1,0,7'('2,0, .. ) ~ GE]\[(Uo, ao)

m Allocation variables G
Gi,n — \/I',H = QG- 0

ik
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Alternative representation (ctd)

NRMI-PY hierarchical process
The NRMI-PY model can be expressed in an equivalent manner

iid

o ~ GEM(00, ap), 0j0 ~ Po,
(0 | o) % NiDP (o, p), (G | 7)) % CATEGORICAL()),

fork=1,...,mandi=1,...,d.

m Key idea: truncating the GEM sequence up to the H-th term has a cascade
effect, because the infinite dimensional NIDP reduces to a NID

m With a truncation on pg, we end up working with multinomial processes p; 1 at the
level of the single populations

m Almost sure upper bounds for du (i, pi,H)

m Cases where the NID vectors (7i1,..., 7 n—1) have distributions available in closed
form.
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From discrete priors to mixture models

Continuous data: X, fork =1,...,njandi=1,...,d
Let k : X x © — R™ a transition kernel such that for any y € ©
x = k(x;y) is a density
Model:
o ~ GEMy (00, ag, ), 0,0 i Po,
(mi | 7o) = NID(ami,. . ., amtH,0; p), (Giw | 77) % cat(my),
(Xie | Gie, 80) ™ k(x: 06, . 0),

m Marginalizing over the allocation variables G; ., we obtain a finite mixture model

H
(Yo | 71,00) ™ iy | 71,00) = > mink(yi Ono)-
h=1
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Gibbs sampler

for i from 1 to d do Sample the cluster indicator G; . independently
for k from 1 to n; do

L PG = h| —) = — i K(Xini Ono) h=1,...,H.

B Zhlel i K(Xiyki O 0) 7

for i from 1 to d do Sample 7; independently from the full conditional

H
flmi | =)o f(mi | mo) [[ 77, mn =) 1(Giw = h).

h=1 j=1

Sample the baseline mixing parameter g ,

F(mo | =) o F(mo) [ | £(mi | o).
i=1
for h from 1 to H do Sample the kernel parameters Zj ¢ independently

F(Ono | =) o< F(Ono) [ K(XiwiOho), Gn={i,k: Giw=h}.
(i,=)E€GH
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Concluding remarks

m Multinomial processes have appealing properties, and they are both analytically and
computationally tractable.

m Their use may ease the implementation of BNP procedures with more complex
dependence structures than exchangeability.

m Future work might include the implementation of these prior for species discovery.

m Hierarchical processes: the key idea of our approach are the approximation of the
baseline By and, then, use of the resulting multinomial processes at the level of the
single groups/samples.

m Truncation of Py and be either the stick-breaking or, again, multinomial
approximations.
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