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Introduction

Discrete Bayesian nonparametric priors are widely used tools for clustering, density
estimation, and species discovery.

Notable examples are the Dirichlet process (dp) and the Pitman–Yor (py).

It is common to consider a hierarchical specification of the kind

(p̃ | α) ∼ dp(αP), α ∼ π(α),

to learn the precision parameter of the Dirichlet process.

This is particularly relevant for mixture models, as it increases the robustness of the
prior specification.

In a seminal JASA paper, Escobar and West (1995) used α ∼ Ga(a, b).

This talk is about an interpretable and (sometimes) conjugate prior for α.
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A robustness issue
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A common Bayesian nonparametric mixture model is

Xi | θi
ind∼ f (x | θi), θi | p̃ iid∼ p̃, p̃ ∼ Q, (i = 1, . . . , n),

where θ1, . . . , θn are latent parameters.

Center/right panel: prior/posterior distribution of the number of clusters under a
Dirichlet and a Stirling gamma process.
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Discrete random structures

Let us consider a set of exchangeable random variables θ1, . . . , θn, namely

(θi | p̃) iid∼ p̃, i = 1, . . . , n,
p̃ ∼ Q.

The probability measure Q represents the prior law.

A species sampling model is a discrete random probability measure, so that

p̃ =
∞∑

h=1

πhδZh , Zh
iid∼ P,

independently on the random probabilities (π1, π2, . . . ), with P diffuse.

Well-known Gibbs-type priors are recovered: the Dirichlet process, the Pitman–Yor
process, and the normalized generalized Gamma process.
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Gibbs-type priors

The discreteness of p̃ implies that there will be ties among observations θ1, . . . , θn,
therefore inducing a random partition, say Ψn.

In Gibbs-type priors a specific partition of the integers {1, . . . , n} into k sets
C1, . . . ,Ck is regulated by the eppf, which has a product form:

Π(n1, . . . , nk) = pr(Ψn = {C1, . . . ,Ck}) = Vn,k

k∏
j=1

(1 − σ)nj −1,

with σ < 1, nj = card(Cj) and
∑k

j=1 nj = n.

The non-negative weights Vn,k satisfy the forward recursive equation

Vn,k = (n − σ)Vn+1,k + Vn+1,k+1,

for any k = 1, . . . , n and n ≥ 1, with V1,1 = 1.
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Gibbs-type priors

The predictive distribution of θn+1, conditional on θ(n) = (θ1, . . . , θn) has a simple
form:

P(θn+1 ∈ A | θ(n)) = Vn+1,k+1

Vn,k
P(A) + Vn+1,k

Vn,k

k∑
j=1

(nj − σ)δθ∗
j
(A).

Moreover, the number Kn of distinct values in θ(n) has probability distribution

P(Kn = k) = Vn,k
C (n, k;σ)

σk ,

with C (n, k;σ) denoting the generalized factorial coefficient.

The random variable Kn is of great interest e.g. in mixture models, as it denotes the
number of clusters we expect a priori.
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The σ = 0 case

The Dirichlet process is an instance of Gibbs-type prior with σ = 0. Indeed:

The eppf of the Dirichlet process is

Π(n1, . . . , nk | α) = αk

(α)n

k∏
j=1

(nj − 1)!.

The urn-scheme (Blackwell and MacQueen, 1973) is

P(θn+1 ∈ A | θ(n)) = α

α+ n P(A) + 1
α+ n

k∑
j=1

njδθ∗
j
(A).

The distribution of the number of clusters (Antoniak 1974) is

P(Kn = k | α) = αk

(α)n
|s(n, k)|, E(Kn | α) =

n∑
i=1

α

α+ i − 1 ,

with s(n, k) denoting the Stirling number of the first kind.
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The σ = 0 case

As shown in the example, the distribution of Kn is highly concentrated.

Therefore, in order to robustify inference, one could place a prior on α.

Placing a prior on α has a remarkable connection with Gibbs-type priors with σ = 0.

The Vn,k of a Gibbs-type priors with σ = 0 can be always represented as

Vn,k =
∫
R+

αk

(α)n
π(α)dα,

for some probability distribution π(α), a result due to Gnedin and Pitman (2005).

What it is a natural candidate for π(α)? Under a Gamma prior, the resulting marginal
properties are unclear...
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The Stirling-gamma prior

We propose to use the Stirling-gamma prior, denoted α ∼ Sg(a, b,m)

π(α) = 1
Sa,b,m

αa−1

{(α)m}b , Sa,b,m =
∫
R+

αa−1

{(α)m}b dα.

where the hyperparameters a, b > 0 and m ∈ N satisfy the constraints 1 < a/b < m.

Proposition. The above density function is proper (Sa,b,m < ∞). Moreover, iid
samples can be easily obtained using the ratio of uniforms method.

This prior for α leads to a Gibbs-type prior with weights

Vn,k = Va,b,m(n, k)
Va,b,m(1, 1) , Va,b,m(n, k) =

∫
R+

αa+k−1

{(α)m}b(α)n
dα.

Moreover, if a, b ∈ N, then the above integral is explicitly available.
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Parameter interpretation

Theorem (Zito et al., 2023+)

Let α ∼ Sg(a, b,m) and Da,b,m = E{
∑m−1

i=0 α2/(α+ i)2}. The number of clusters Km
obtained from θ1, . . . , θm is distributed as

P(Km = k) = Va,b,m(m, k)
Va,b,m(1, 1) |s(m, k)|,

for k = 1, . . . ,m, with mean and variance equal to

E(Km) = a
b , var(Km) = b + 1

b

( a
b − Da,b,m

)
.

It can be shown that Da,b,m ≈ 1 for m large enough.

Hence, a/b is the location, b controls the precision and m is a reference sample size.
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Limiting behavior

Theorem (Zito et al., 2023+)
Let α ∼ Sg(a, b,m). Then, the following convergence in distribution holds:

α log m → γ, γ ∼ Ga(a − b, b), m → ∞,

implying that α → 0. Moreover, the following convergence in distribution holds:

Km → K∞, K∞ ∼ 1 + Negbin
( b

b + 1 , a − b
)
, m → ∞.

Remark. When m is fixed, it is well-known that Kn/ log n → α ∼ Sg(a, b,m) in
distribution as n → ∞.

(Very) roughly speaking, we will say that the convergence α → 0 counterbalances the
divergence of Kn.

In the Dirichlet process case, if α = λ/ log m for some λ > 0, then Km → K∞, with
K∞ ∼ 1 + Po(λ) as m → ∞. Thus, Stirling-gamma prior improves the robustness.
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Graphical representation
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Density function of a Sg(a, b,m) (solid lines) and a Ga(a − b, b log m) (dashed lines).
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Exponential families: the m = n case

A simplification occurs when m = n, i.e. the prior depends on the sample size.

The key observation is noticing that for any n ≥ 1 the distribution

P(Kn = k | α) = αk

(α)n
|s(n, k)|,

is an exponential family, with natural parameter ψ = logα.

Indeed, we can equivalently write

P(Kn = k | ψ) = |s(n, k)| exp {kψ − K(ψ)} , ψ = logα,

where the cumulant generating function is K(ψ) = log Γ(eψ + n) − log Γ(eψ).

Side comment. The properties of exponential families lead to an alternative proof of
the identity

E(Kn | ψ) =
n∑

i=1

eψ

eψ + i − 1 = ∂

∂ψ
K(ψ).
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Diaconis and Ylvisaker priors

Key result. The prior α ∼ Sg(a, b, n) is the Diaconis and Ylvisaker conjugate prior for
the exponential family model P(Kn = k | α). Note that we let m = n.

A direct application of Bayes theorem leads

π(α | Kn = k) ∝ π(α)P(Kn = k | α) ∝ αa−1

{(α)n}b
αk

(α)n
.

Hence, the posterior density has the form

π(α | Kn = k) = 1
Sa+k,b+1,n

αa+k−1

{(α)n}b+1 .

Remark. The number of distinct values k is the minimal sufficient statistics in the
eppf of the Dirichlet process.

Hence, all the posterior findings based on the model P(Kn = k | α) coincide with those
based on Π(n1, . . . , nk | α), because the likelihood contribution is the same.
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The role of the hyperparameters: conjugate case

Let α ∼ dy(a, b, n). Then, Theorem 2 of Diaconis and Ylvisaker (1979) ensures that

E(Kn = k) =
n∑

i=1

E

(
α

α+ i − 1

)
= a

b .

Thanks to conjugacy, we can also obtain the posterior mean for the number of
expected clusters, namely

n∑
i=1

E

(
α

α+ i − 1 | θ1, . . . , θn

)
=

( a
b

) b
b + 1 + k 1

b + 1 .

The posterior is a convex combination of the prior mean a/b and the observed
number clusters k.

This relationship clarifies that b is a precision parameter, quantifying the weight of the
prior with respect to the data.
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Conjugacy and projectivity

The prior dependency on the same size n has some important consequences on the
process, which must be handled with care.

The Gibbs-type recursion characterizing the coefficients Vn,k no longer holds, namely

Vn,k ̸= nVn+1,k + Vn+1,k+1

This breaks the predictive scheme, causing the sequence to lose the projectivity
property typical of species sampling models.

This is a limitation if the focus is on extrapolating (Kn+m | Kn = k) from a sample to
the general population, but less so on clustering problems.

Indeed, several other existing priors for partitions are not projective (e.g. general
product partition models, models for micro-clustering, etc.)

Tommaso Rigon (Unimib) BISP13 16 / 19



Communities in ant interaction networks

We want to identify community structures in a colony of ant workers by modeling
daily ant-to-ant interaction networks via stochastic block models.

The data were collected by continuously monitoring six colonies of the ant
Camponotus fellah through an automated tracking system, over a period of 41 days.

Given a random partition of the nodes Πn,s = {C1,s , . . . ,Cks ,s} in s, call Zi,s an
auxiliary variable so that Zi,s = h if the node i ∈ Ch,s , for i = 1, . . . , n.

The probability of detecting an edge between nodes i and j in network s is specified as

P(Xi,j,s = 1 | Zi,s = h,Zj,s = h′, ν) = νh,h′,s , νh,h′,s ∼ Be(1, 1).

Here, νh,h′,s is the edge probability in the block identified by clusters Ch,s and Ch′,s .

The latent partition identifies communities among the ants.
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Data and results
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Muchas gracias!
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