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Introduction

m Discrete Bayesian nonparametric priors are widely used tools for clustering, density
estimation, and species discovery.

m Notable examples are the Dirichlet process (DP) and the Pitman—Yor (PY).

m It is common to consider a hierarchical specification of the kind
(Pl a)~pr(aP),  a~mx(a),
to learn the precision parameter of the Dirichlet process.

m This is particularly relevant for mixture models, as it increases the robustness of the
prior specification.

m In a seminal JASA paper, Escobar and West (1995) used a ~ Ga(a, b).

m This talk is about an interpretable and (sometimes) conjugate prior for a.
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A robustness issue
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m A common Bayesian nonparametric mixture model is
ind - iid ., ~ .
Xi |0 f(x|0), 0i|p~p, p~2  (i=1,...,n),
where 01,...,0, are latent parameters.

m Center/right panel: prior/posterior distribution of the number of clusters under a
Dirichlet and a Stirling gamma process.
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Discrete random structures

m Let us consider a set of exchangeable random variables 01, ..., 0,, namely

~y did o .
(0,|p)~p7 l:17"'7na

p~Q.

The probability measure Q represents the prior law.

m A species sampling model is a discrete random probability measure, so that
o0
- iid
pZZmﬂSzh, Zy ~ P,
h=1

independently on the random probabilities (71, 72, ...), with P diffuse.

m Well-known Gibbs-type priors are recovered: the Dirichlet process, the Pitman—Yor
process, and the normalized generalized Gamma process.
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Gibbs-type priors

m The discreteness of p implies that there will be ties among observations 01, ..., 0,,
therefore inducing a random partition, say V,.

m In Gibbs-type priors a specific partition of the integers {1,...,n} into k sets
Gy, ..., C is regulated by the EPPF, which has a product form:

k
N(n,..om) = pr(Wa = {Ci,. o, G}) = Vi [ (1 = @)1,

j=1
. k
with o <1, n; =card(G;) and > . nj = n.
m The non-negative weights V/,, « satisfy the forward recursive equation
Vn,k - (n - G) Vn+1,k + Vn+1,k+17

forany k=1,...,nand n > 1, with V;; = 1.
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Gibbs-type priors

m The predictive distribution of 8,.1, conditional on (" = (61,...,6,) has a simple
form:
V, Vst o
(n)y __ n+1,k+1 n+1, o .
P01 € Al 6™) = oV P(A) + Vot Z;(n, 7)3g: (A).
=

m Moreover, the number K, of distinct values in 8 has probability distribution
é(n, k; o)
P(K, = k)= VMT’

with €(n, k; o) denoting the generalized factorial coefficient.

m The random variable K, is of great interest e.g. in mixture models, as it denotes the
number of clusters we expect a priori.
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m The Dirichlet process is an instance of Gibbs-type prior with ¢ = 0. Indeed:

m The EPPF of the Dirichlet process is

k

k
N(ny, ..., | @) = (Z)n [Tt -1y

J=1

m The urn-scheme (Blackwell and MacQueen, 1973) is

k

n « 1
P01 € A 60™) = P — > nido- (A).
j=1

m The distribution of the number of clusters (Antoniak 1974) is

n

P(Ky = k| @)= ls(m k)l B(Ka o) =37y,

i=

with s(n, k) denoting the Stirling number of the first kind.
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As shown in the example, the distribution of K, is highly concentrated.

Therefore, in order to robustify inference, one could place a prior on «.
Placing a prior on « has a remarkable connection with Gibbs-type priors with o = 0.

The V.« of a Gibbs-type priors with 0 = 0 can be always represented as

k
«Q
Vi k :/ 7(a)da,
o (@,

for some probability distribution 7(c), a result due to Gnedin and Pitman (2005).

What it is a natural candidate for m(«)? Under a Gamma prior, the resulting marginal
properties are unclear...

Tommaso Rigon (Unimib) BISP13 8/

19



The Stirling-gamma prior

m We propose to use the Stirling-gamma prior, denoted o ~ Sg(a, b, m)

1 aa—l aa—l
Sa b,m

O (7 TR G NS (P U

where the hyperparameters a, b > 0 and m € IN satisfy the constraints 1 < a/b < m.

m(a) =

Proposition. The above density function is proper (Sa,5,m < 00). Moreover, iid
samples can be easily obtained using the ratio of uniforms method.

This prior for « leads to a Gibbs-type prior with weights

7/3 b m(n7 k) aa+k71
ML Yaobm(n, k) = ————do.
b, K) w, {(@)m}P(@)a

Moreover, if a, b € IN, then the above integral is explicitly available.

Vok = ,
K S em(1,1)
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Parameter interpretation

Theorem (Zito et al., 2023+)

Let o ~ Sg(a,b,m) and Dap.m = IE{Z:”:BI o?/(a+0)?}. The number of clusters K,
obtained from 01, ... ,0 is distributed as
7/3 b m(m7 k)
P(Ky = k) = 22U ) o k),
( ) Toom(L1) |s(m, k)|
for k =1,..., m, with mean and variance equal to
a b+1/a
B(Kn) =2, var(Kn) = 1~ (E - Da,,,,m) .

m It can be shown that D, m ~ 1 for m large enough.

m Hence, a/b is the location, b controls the precision and m is a reference sample size.
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Limiting behavior

Theorem (Zito et al., 2023+)

Let o ~ Sg(a, b, m). Then, the following convergence in distribution holds:
alogm — v, v~ Ga(a—b,b), m— o,

implying that o — 0. Moreover, the following convergence in distribution holds:

b
Km_>K007 KOON].-FNegbln(m,a—b), m — O0.

m Remark. When m is fixed, it is well-known that K,/ logn — « ~ Sg(a, b, m) in
distribution as n — oo.

m (Very) roughly speaking, we will say that the convergence a — 0 counterbalances the
divergence of K.

m In the Dirichlet process case, if & = A/ log m for some A > 0, then K, — Koo, with
Ks ~ 1+ Po(X) as m — oo. Thus, Stirling-gamma prior improves the robustness.
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Graphical representation
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m Density function of a Sg(a, b, m) (solid lines) and a Ga(a — b, blog m) (dashed lines).
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Exponential families: the m = n case

m A simplification occurs when m = n, i.e. the prior depends on the sample size.

m The key observation is noticing that for any n > 1 the distribution

P(K, =k | ) = (Zﬁw(n, k),

is an exponential family, with natural parameter ¢ = log a.

® Indeed, we can equivalently write
P(Kn =k [ ¢) = Is(n, k)| exp {ki) = K(¢)}, ¢ =loga,
where the cumulant generating function is () = log'(e? + n) — logF'(e¥).

m Side comment. The properties of exponential families lead to an alternative proof of
the identity

n

v d
E(Kn | ) = Z ﬁ = @’C(l/))

i=1
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Diaconis and Ylvisaker priors

m Key result. The prior a ~ Sg(a, b, n) is the Diaconis and Ylvisaker conjugate prior for
the exponential family model P(K, = k | ). Note that we let m = n.

A direct application of Bayes theorem leads

m(a | Ko = k) o m(@)P(Kn = k | @) ox — 2

m Hence, the posterior density has the form
1 aa‘*’k*l

Saikbiin {(@)n}bt

m(a| Kh=k) =

m Remark. The number of distinct values k is the minimal sufficient statistics in the
EPPF of the Dirichlet process.

m Hence, all the posterior findings based on the model P(K, = k | «) coincide with those
based on IM(n1,...,nk | @), because the likelihood contribution is the same.
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The role of the hyperparameters: conjugate case

m Let o ~ DY(a, b, n). Then, Theorem 2 of Diaconis and Ylvisaker (1979) ensures that

n

B =0 =3 B(,57) = ¢

i=1

Thanks to conjugacy, we can also obtain the posterior mean for the number of
expected clusters, namely

. « a b 1
E;E(EITTIw“”“%>_<5>511+kEIT

i=

m The posterior is a convex combination of the prior mean a/b and the observed
number clusters k.

m This relationship clarifies that b is a precision parameter, quantifying the weight of the
prior with respect to the data.
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Conjugacy and projectivity

m The prior dependency on the same size n has some important consequences on the
process, which must be handled with care.

m The Gibbs-type recursion characterizing the coefficients V, x no longer holds, namely
vn,k # nvn+1,k + Vn+1,k+1

m This breaks the predictive scheme, causing the sequence to lose the projectivity
property typical of species sampling models.

m This is a limitation if the focus is on extrapolating (Kn+m | Kn = k) from a sample to
the general population, but less so on clustering problems.

m Indeed, several other existing priors for partitions are not projective (e.g. general
product partition models, models for micro-clustering, etc.)
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Communities in ant interaction networks

m We want to identify community structures in a colony of ant workers by modeling
daily ant-to-ant interaction networks via stochastic block models.

m The data were collected by continuously monitoring six colonies of the ant
Camponotus fellah through an automated tracking system, over a period of 41 days.

m Given a random partition of the nodes N, s = {Cis,..., Cx s} in's, call Zis an
auxiliary variable so that Zis = h if the node j € Cp 5, for i =1,...,n.

m The probability of detecting an edge between nodes i and j in network s is specified as
IP(X,'JYS = ]. | Zi,s = h, Zj’s = h/7V) = Vh,h/,sa Vh,h’,s ~ Be(17 1)
m Here, v, 1y s is the edge probability in the block identified by clusters Cp s and Gy .

m The latent partition identifies communities among the ants.
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Muchas gracias!

EScoBAR & WEST (1995). Bayesian density estimation and inference using mixtures. Journal
of the American Statistical Association 90, 577-88.

DE Brasi, FAvARO, Lijol, MENA, PRUNSTER & RUGGIERO (2015). Are Gibbs-Type Priors
the Most Natural Generalization of the Dirichlet Process?. IEEE Transactions on Pattern
Analysis and Machine Intelligence 37, 212-29.

Z1To, RIGON & DUNSON (2023). Bayesian nonparametric modeling of latent partitions via
Stirling-gamma priors. To be submitted

Tommaso Rigon (Unimib) BISP13



