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Customer segmentation: a case study

A private company selling flight tickets is instered in understading its customers’
preferences and need.

In this case study, each statistical unit is a flight route, i.e. the number of times that a
specific route has been searched on the website of an e-commerce company.

We aim at clustering functional observations to perform market segmentation.

Statistical challenges
Functional data. Data points are functions (time series in this case), so traditional
algorithms (e.g. k-means) cannot/should not be directly applied.
Bounding the complexity. We do not want too many clusters, but at the same time
we would like to automatically identify some optimal number.
Constrained estimation. Prior knowledge about the shapes of the functions is
available, but it is not easy to incorporate.
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The e-commerce dataset
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The total number of flight routes is n = 214.

Each trajectory is observed over a weekly time grid ti = (1, . . . , 55). Hence, the
dataset can be represented as a 214 × 55 matrix with 11770 entries.
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Preliminary considerations

Why do focus on web-searches?
Different and potentially more interesting metrics could be considered.

However, private companies are (rightly!) worried about disclosing their data.

In principle, other metrics might include:
Route prices;
Route marginal earnings;
Route-specific customer satisfaction;
Conversion rates;
. . .

Clustering average levels vs clustering shapes
A very crude but operative summary of each time series is its average. Market
segmentation according to the average could be useful, but it is not the focus here.

Missing part of the story (this talk): clustering shapes and not average levels.

Tommaso Rigon (Unimib) EPY PwC 5 / 24



Mixture models I

Functional observations are standardized, i.e. they have zero mean and unit variance.

The clustering method is model-based: not just an algorithm!

The model we assume is:

yi (t) = fi (t) + ϵi (t), i = 1, . . . , n,

where ϵi (t) is a Gaussian error with variance σ2 and t ∈ R+.

Clustering is induced through a discrete distribution p̃ for the latent trajectories fi (t),
namely

(fi | p̃) iid∼ p̃, p̃ =
H∑

h=1

ξhδϕh , i = 1, . . . , n.

Two functional observations yi (t) and yj(t) both belong to the hth group whenever
they share the same latent trajectory, that is fi (t) = fj(t) = ϕh(t).
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Mixture models II

The mixture model of the previous slide can be expressed in an equivalent manner.

The random variable Si ∈ {1, . . . , H} is an unknown cluster indicator, so that fi (t)
and fj(t) belong to the same group if Si = Sj .

Generative step 1. Sample the cluster indicators from

P(Si = h) = ξh, i = 1, . . . , n.

Generative step 2. Suppose that Si = h and assign to the ith observation the latent
function ϕh(t). Then, sample the data points yi (t) from a N (ϕh(t), σ2).

Clustering step. Using Bayes theorem, we obtain the distribution of

P(Si = h | y1(t), . . . , yn(t)) = ξ̃h =
ξh
∏Ti

s=1 N (yi (tis); ϕh(tis), σ2)∑H
h=1 ξh

∏Ti
s=1 N (yi (tis); ϕh(tis), σ2)

,

from which we obtain out clustering solution.
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Mixture models III

Why model-based clustering?
The underlying assumptions are often much more transparent.

Functional observations are noisy and this requires smoothing; however, we want to
avoid two-step procedures.

Probabilistic method. For example, you could compute the probability that two
observations belong to the same group and/or estimate the number of clusters.

Why Bayesian?
It’s a natural choice for mixture model, being based on a data augmentation.

You can easily incorporate prior information, which is often available, and/or control
the complexity of the estimates in a natural fashion (prior penalty).

The estimation of H can be performed together with the estimation of the other
parameters: i.e. you need to fit only a single model.
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Source material

CRAN task view: https://cran.r-project.org/web/views/Cluster.html
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Learning the number of clusters

Normal deviate: Larry Wasserman’s blog
“I have decided that mixtures, like tequila, are inherently evil and should be avoided at all
costs.”

Mixture models are powerful but delicate tools.

Reliably learning the number of clusters has entertained a generation of statisticians!

Caveat. The number of clusters Kn does not coincide with the number of
components H. The quantity Kn ≤ H is the number of non-empty groups among the
cluster indicators.

This is quite evident in Bayesian nonparametrics, where could have H = ∞.

Can we learn the true number of clusters H0 from the data? Yes, but under many
assumptions and being very careful to prior choices, identifiability issues, etc.
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Overclustering and misspecification I
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Data displayed above are the “true labels”.

If the kernel is wrong, the estimation of Kn using a mixture model is unreliable.
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Overclustering and misspecification II
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In practice, one often get too many clusters, compared to H0. This is exacerbated in
high-dimensional settings when misspecifications are more likely to occur.
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Better kernels?

If the multivariate Gaussian kernel is inappropriate, can’t we use something else? Yes,
but that’s not easy!

Parametric choices (e.g., skew-normals, etc.) may mitigate the problem and/or
protect against outliers, often at the price of increasing the computational burden.

What about nonparametric kernels? Mixture of mixtures are fully nonparametric
models, but some serious identifiability difficulties must be addressed.

References
Mukhopadhyay, M., Li, D., & Dunson, D. B. (2020). Estimating densities with non-linear
support by using Fisher–Gaussian kernels. Journal of the Royal Statistical Society. Series B:
Statistical Methodology, 82(5), 1249–1271.
Scarpa, B., & Dunson, D. B. (2014). Enriched stick-breaking processes for functional data.
Journal of the American Statistical Association, 109(506), 647–660.
Malsiner-Walli, G., Frühwirth-Schnatter, S., & Grün, B. (2017). Identifying mixtures of
mixtures using Bayesian estimation. Journal of Computational and Graphical Statistics, 26(2),
285–295.
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An enriched discrete prior

Let’s get back to the original clustering problem for functional data.

The proposed process is a mixture of mixtures:

p̃ =
L∑

ℓ=1

Πℓp̃ℓ =
L∑

ℓ=1

Πℓ

Hℓ∑
h=1

πℓhδθℓh(t), θℓh(t) ind∼ Pℓ,

for h = 1, . . . , Hℓ and ℓ = 1, . . . , L.

Each Pℓ is a diffuse probability measure taking values on a given functional class
(monotone, cyclical, linear, S-shaped functions, etc).

This is closely related to the enriched processes of Wade et al. (2011) and Scarpa
and Dunson (2014), but the number of clusters is bounded.
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A nested clustering process

The random variable Gi ∈ (ℓ, h) is a latent cluster indicator, so that fi (t) and fj(t)
belong to the same group if Gi = Gj .

The random variable Fi ∈ {1, . . . , L} is a latent functional class indicator.

Generative step 1.a. Functional class allocation:

P(Fi = ℓ) = Πℓ,

Generative step 1.b. Within-class allocation:

P(Gi = (ℓ, h) | Fi = ℓ) = πℓh,

meaning that P(Gi = (ℓ, h)) = Πℓπℓh.

Generative step 2. Suppose that Gi = (ℓ, h) and assign to the ith observation the
latent function θℓh(t). Then, sample the data points yi (t) from a N (θℓh(t), σ2).
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Theoretical corner: enriched urn scheme

The prior specification is as in Rousseau and Mengersen (2011), so that

(Π1, . . . , ΠL−1) ∼ dirichlet(α1, . . . , αL),

and
(πℓ1, . . . , πℓHℓ−1) ind∼ dirichlet (cℓ/Hℓ, . . . , cℓ/Hℓ) .

Observations can be sampled sequentially:

P(Fn+1 = ℓ | F (n)) = αℓ + nℓ

α + n ,

P(fn+1 ∈ · | f (n), F (n), Fn+1 = ℓ) =
(

1 − kℓ

Hℓ

) cℓ

cℓ + nℓ
Pℓ(·) +

kℓ∑
j=1

njℓ + cℓ/Hℓ

cℓ + nℓ
δf ∗

jℓ
(·),

where the notation is as follows:
nℓ =

∑n
i=1 I(Fi = ℓ) is the number of elements belonging to the ℓth functional class;

kℓ ≤ nℓ is the number of distinct values observed in the ℓth class;
f ∗
11, . . . , f ∗

1n1
, . . . , f ∗

L1, . . . , f ∗
LnL

are the distinct functions in the sample;
njℓ is the frequency of each distinct function.

Tommaso Rigon (Unimib) EPY PwC 16 / 24



Baseline measure specification I

We need to choose a specification for θℓh(t) ∼ Pℓ.

Note that Each Pℓ can be interpreted as a functional prior guess, since

E{p̃(·)} =
L∑

ℓ=1

E(Πℓ)Pℓ(·) = 1
α

L∑
ℓ=1

αℓPℓ(·), α =
L∑

ℓ=1

αℓ.

We assume that θℓh(t) is linear in the parameters:

θℓh(t) =
Mℓ∑

m=1

Bmℓ(t)βmℓh,

where each B1ℓ(t), . . . , BMℓℓ(t) for ℓ = 1, . . . , L is a set of pre-specified basis
functions and where (β1ℓh, . . . , βMℓℓh)⊺ have Gaussian prior.

For example, you could use B-splines, I-splines and related ideas.
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Baseline measure specification II

The first functional class (ℓ = 1) captures yearly cyclical patterns and characterizes
the routes having one peak of web-searches during either the summer or the winter.

θ1h(t) =
8∑

m=1

βm1hSm(t) + β91h cos
(

2π
7

365 t
)

+ β10,1h sin
(

2π
7

365 t
)

,

where S1(t), . . . , S8(t) are deterministic cubic spline basis functions.

The second functional class (ℓ = 2) characterizes functions having two peaks per
year, which amounts to let

θ2h(t) =
8∑

m=1

βm2hSm(t) + β92h cos
(

2π
14
365 t

)
+ β10,2h sin

(
2π

14
365 t

)
.

We select a Gaussian prior with diagonal covariance for βℓ (a.k.a. a ridge penalty).
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Baseline measure specification III
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Variational inference

Bayesian mixture models are routinely estimated using Markov Chain Monte Carlo.

However, this might be computationally very expensive and complicated by the
label-switching

We employ a mean-field variational approximation of the posterior distribution,
which is easy to get because of conjugacy.

The variational posterior generally leads to accurate point estimates but also it
typically underestimates the variability.

However, in our motivating application we are only interested in a single cluster
solution.

An efficient algorithm (cavi) is available.
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The CAVI algorithm

[1] Update q(Gi ) for each i = 1, . . . , n;

ρiℓh ∝ exp

[
Eq{log (Πℓπℓh)} +

Ti∑
s=1

Eq{log N (yi (tis); θℓh(tis), σ2)}

]
.

[2] Update the variational distribution q(Π) according to

q(Π) = dirichlet

(
Π; α1 +

n∑
i=1

H1∑
h=1

ρi1h, . . . , αL +
n∑

i=1

HL∑
h=1

ρiLh

)
.

[3] Update q(πℓ) for each ℓ = 1, . . . , L;

q(πℓ) = dirichlet

(
πℓ;

cℓ

Hℓ
+

n∑
i=1

ρiℓ1, . . . ,
cℓ

Hℓ
+

n∑
i=1

ρiℓHℓ

)
.

[4] Update q(βℓh) for each h = 1, . . . , Hℓ and ℓ = 1, . . . , L;

q(βℓh) = NMℓ

(
βℓh; µ̃ℓh, Σ̃ℓh

)
.
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Clustering solution
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Macro clusters A and B

Macro-cluster A: labels 2,3,5 (ℓ = 1)

Arrival
North Center South & Islands

North 0 0 59
Departure Center 0 0 26

South & Islands 0 0 13

Macro-cluster B: label 17 (ℓ = 1) and labels 3,4,7 (ℓ = 2)

Arrival
North Center South & Islands

North 0 4 2
Departure Center 9 0 0

South & Islands 46 22 6
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Grazie!

The proposed model is allows nested clustering of the observations

The modeling choices reflect a balance between flexibility and pragmatism in
developing an efficient algorithm that can easily handle thousands of data points.

Crucially, this is because closed-form expressions for the CAVI algorithm and "smart"
choices in the model specification.

Main reference
Rigon, T. (2022). An enriched mixture model for functional clustering. Applied
Stochastic Models in Business and Industry, forthcoming.
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