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..and collaborators

f B LIFEPLAN is a worldwide sampling program that aims
‘ to establish the current state of global biodiversity.
|
1‘

m In the Lifeplan team there are statisticians, ecologists,
and computer scientists.

| + —L

I- F E P |- ﬂ n m We interact on a weekly basis to get feedback from the

A PLANETARY INVENTORY OF LIFE Other communities.

m PIs are: prof. Otso Ovaskainen,
Tomas Roslin, David Dunson.

Tommaso Rigon (Unimib) BayesANT



Species sampling modes

m This first part is a gentle introduction to BNP methods for species discovery, in an
idealized and simplified setting.

m Let V4,...,V, be some collection of species with frequencies n, ..., nk, sometimes
called abundances in ecology.

m Suppose V; are conditionally iid samples from a species sampling model, so that

~y did o ~
(Vilb)~b, p=z7rh5eh7

h>1

where (7h)p>1 is a set of random probabilities and 65, represent distinct species.
m The weights (m4)s>1 are the species proportions.

m The discreteness of p that identify K, = k distinct taxa, named Vi, ..., V', with
frequencies n1, ..., ng.

Tommaso Rigon (Unimib) BayesANT



Goals of this simplified analysis

m This simplified setting has a rich statistical history.

m Indeed, there are several quantities of ecological interest that one can try to obtain
using abundances, for example:

m The sample coverage, namely the sum of the proportions of species that has been
observed (Good 1953);

m The estimation and extrapolation of accumulation curves (aka rarefaction);

m The prediction of number of unseen species not observed in the current sample that
we may observe in the future (Good & Toulmin, 1956);

m The estimation of bio-diversity, i.e. using the Simpson index, Shannon entropy, etc.

®m and many more.
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PART 1.

RESULTS OBTAINED WITH MALAYAN BUTTERFLIES

By A. STEVEN CORBET (British Museum, Natural History)

It is well known that the distribution of a series of
biological measurements usually conforms to one of
three types:

(a) the binomial distribution, where the frequen-
cies are represented by the successive terms of the
binomial (g +p)*;

(b) the normal distribution, in which the results
are distributed symmetrically about the mean or
average value, and which is the special case of (@)
when p and g are equal;

(c) the Poisson series, in which the frequencies
are expressed by the series

{] 3
""(x+m+;1'+’31'+‘..),

where C and m are constants.* When m is unity, as
is the case with the Malayan collection, and has since
been found to be a condition which obtains with
collections of butterflies from Tioman Island and
the Mentawi Islands in which the relation between
S and n follows the above equation, the number of
species of which 1, 2, 3, 4, ... specimens were ob-
tained was very close to a series in harmonic pro-
gression. Thus, the series can be written
C(r+3+3+..0).

Although this relation holds accurately with the

rarer species, there is less agreement in the region

of the common species; in fact, theoretical con-
siderations nreclude an exact relationshin here.
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Bayesian nonparametric priors

m The sampling distribution p encodes all the relevant information but it is unknown, so
we are interested in learning it from the data V4,..., V,.

m In the Bayesian framework, this amounts to the choice a discrete nonparametric prior
for the sampling distribution p.

m Then, one can study the following posterior law

Bl Vi,..., Vo

m Remark: many quantities of ecological interest are functionals of p = this leads to
natural Bayesian estimators for coverage, diversity, etc.

m Common nonparametric priors are the Dirichlet process (DP) and the Pitman—Yor (PY)
process.
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The discussion of Peter McCullagh (201

Two Early Contributions to the
Ewens Saga

Peter McCullagh

Abstract. The mixture model devised by Fisher, Corbet and Williams [Jour-
nal of Animal Ecology 12 (1943) 42-58] for species sampling and the sequen-
tial prediction approach pioneered by Good [Biometrika 40 (1953) 237-264]
and Good and Toulmin [Biometrika 43 (1956) 45-63] are both closely related
to the Ewens sampling formula. Fisher’s two-parameter joint distribution for
the species counts includes the Ewens distribution as the conditional distri-
bution given the sample size. The log-series model, as it is known in the
ecological literature, is closely related to a Poisson process model devised by
Arratia, Barbour and Tavaré [Ann. Appl. Probab. 2 (1992) 519-535]. Oddly,
despite its advantages for statistical inference, Fisher does not mention the
conditional distribution. Likewise, athough Good (1953) pioneered the se-
quential prediction approach, neither he nor Toulmin discovered the Ewens
process in a form equivalent to the modern-day Chinese restaurant process.

Key words and phrases: Chinese restaurant process, Poisson process,
species richness, species sampling.
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The interplay between frequentist and Bayesian methods

m There is a clear and strong interplay between frequentist and Bayesian procedures.
Using Peter McCullagh words

“It is fair to say that Fisher almost discovered the Ewens sampling formula”.
The Ewens sampling formula is just another way of defining the Dirichlet process.
= However:

m The properties of frequentist estimators are often based on asymptotic considerations
—= Bayesian inference could be helpful.

m If prior information is available, there is not a simple way to incorporate it into the
modeling.

m It is even more problematic to incorporate these estimators into more complex models
e.g. accounting for covariates.
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The Pitman—Yor model |

m Let us consider the Pitman—Yor process, written p ~ PY(«, 0), with parameters
o €[0,1) and @ > —o. When o = 0 this reduces to the Dirichlet process.

m Marginalization over p leads to specification for the joint distribution of Vi,..., V.
m This can be conveniently expressed through a sequential mechanism.

m In a PY model, the probability that the (n + 1)st sequence belongs to the jth of the
known taxa is

ni—o

pr(Vn+1:\/j*|V17-“7Vn):a+n7 j:17~“7k7
while the probability of observing a new taxon is
a+ ok
Vipr =" "IV, V) = .
pr(Vai1 = “new” | V4 )= 2

m Technical note. The law of p is fully characterized by the above sequential scheme,
through de Finetti representation theorem.
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The Pitman—Yor model Il

Stick-breaking definition of the PY

e} h
p= Z’frhégh, Th = Up H(l — V), Un n BETA(1 — 0, + oh),
h=1 =1
with o € [0,1) and o > —o0.
Urn-scheme
K 1 <
Vi1 | Vi, .o, Vo ~ aa—:-an ("new species") + arn Zl(nj - a)évj*.
=
Posterior distribution
K
(b | V17 ey Vﬂ) = Z VVJ(st* + Wkﬂé:
j=1
with (Wi, ..., Wit1) ~DIR(m —0,...,nk — o,a+ oK) and § is a PY(a + ok, o).
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Example: Pitman-Yor process

X a=
& 0=0.25
-
1/10
6)
[ ]
N Vi
18

m Example of a Pitman—Yor process with n =19, « =1, ¢ = 0.25 and K, = 4.
m The probability of re-observing Vi* is (n, — o) /(a4 n) = 39/80.

m The probability for the new taxon is (a + ok)/(a + n) = 1/10.
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The discovery of new species

Proposition (Favaro et al., JRSS-B, 2009)

In a PY model a Bayesian estimate of the rarefaction curve is

0= {1

Moreover, Let K&") be the number of new species we observe in an additional sample of
size m. Then

E(K,Sp)vl,...,vn):(kJrj){W_l}.

m The parameters («a, o) are often estimated using maximum likelihood.

m This Bayesian nonparametric setup has been developed by Lijoi et al. (2007), for the
more general classes of Gibbs-type priors.
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BNP prediction of the number of new species

= Dirichlet Process === Pitman-Yor process === Good-Toulmin
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Modern species discovery

m The models and techniques we just discussed are exciting from a theoretical
perspective and are sometimes useful for getting preliminary estimates.

m Software: https://alessandrozito.github.io/BNPvegan/vignette.html
m The exhangeability assumption is unrealistic in many applied scenarios.

m Indeed, modern sampling strategies for species discoveries are much more sophisticated
than those used in the '40...

m However, the theoretical knowledge of these processes in “controlled” settings enables
the implementation of BNP ideas in much more complex scenarios.

m From here on, we make a big jump into a much more realistic application.
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DNA barcoding
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m DNA barcoding is the practice of placing DNA sequences within a Linnean taxonomy.

m Advantages:

m Processing and classification of a large number of query sequences in a reasonable time
m No need for morphological identification, which is impossible with soups of insects

m Challenges:

m Libraries of labeled DNA (reference libraries) are often incomplete
m Many species are still unknown to science
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Malaysian traps

A Malaysian trap Statisticians "supervising" the data

collection process
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The data structure

m A taxonomic library is a collection of observations of the form D, = (V;, Xi)i_;.

m Each vector V; = (V;1,..., Vi) contains the taxonomic annotations for a DNA
sequence. For example, we could have:

Vi1 = "Insecta”, Vi» = "Diptera”, Vi3 = "Tephritidae”, etc.
m Here L is the number of levels (layers) one wish to consider.

m Each X; contains the output of the DNA barcoding procedure (e.g. the k-mer
decomposition, or the aligned sequences).

m Remark: a relevant amount of pre-processing is needed to get X;.

m From a modelling perspective, the V;'s represent the response variables whereas X;'s
correspond to the covariates.
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A nested classification problem

m Given a new covariate X,11 from the DNA barcoding procedure, we wish to predict the
corresponding taxonomic labels V.

m This is essentially a classification problem, albeit there are several statistical
challenges = off-the-shelves algorithms cannot be used without modifications.

m Challenge 1. The labels V;, by construction, have a nested structure. The method
should be consistent with the taxonomy and possibly exploit it to improve accuracy.

m Challenge 2. We want a probabilistic and well-calibrated method to quantify the
uncertainty associated with our predictions formally.

m Challenge 3. Some labels may be absent in the reference dataset or even be unknown
to science. We need to account for the possibility that V11,0 = “new".

m Moreover, both the training and the prediction step should be performed quickly, as
the number of test covariates is huge.
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Overview of the model

m Paralleling the construction, e.g. of naive Bayes classifiers and linear discriminant
analysis, we will specify a joint distribution through the decomposition

p( V("“),X("H)) = p( v("+1))p(x("+1) ‘ V("+1))7
where V") = (V)1 and XD = (X;)rtL
m Then, we will obtain a closed-form expression for the predictive distribution
P(Vas1 | Xni1,Dn) o< p(Vas1 | V)p(XHD | vImD),

recalling that D, = (V;, X;)/_;, which can be used for taxonomic classification.

m Each V; is discrete, therefore the normalizing constant is trivial to compute.
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Prior specification for taxonomic labels

|V g
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m In the first place, we need to specify a distribution for the taxonomic labels p(V (1) )

m The need for species discoveries (actually, taxon discoveries in this case) naturally calls
for Bayesian nonparametric tools.

BayesANT
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Enriched Pitman—Yor process (L = 2)

m The natural next step in the specification of p(V("H)) is the L = 2 case.

m A possibility is the usage of enriched processes, such as the enriched Dirichlet process
of Wade et al. (2011) and subsequent generalizations to the Pitman—Yor case.

m When V; = (V; 1, Vi2), for the first taxon one could assume
Ly did N
(Vix | P1) ~ p1,  pr~ PY(u,01).

m For the second taxon, instead, we let

iid ~

(Vi [ Vi = v,B20) o Bow = PY{aa(v), 02(v)}
for az(v) > —o2(v), o2(v) € [0,1).

m This induces the desired nested behaviour and induces a specification for p( V("+1))

through the so-called enriched urn-scheme.
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Taxonomic Pitman—Yor priors

m Enriched processes can be naturally extended to general taxonomic priors.

. . iid .
m At the first level, we let as before Vi | p1 ~ p1, 1 ~ PY(a1,01).

m For all the subsequent layers £ = 2, ..., L, we specify the following nested priors

Ly id o . iid
(Vie | Viyem1 = v, Pev) ~ Pe,y Bew ~ PY(cu, 00).

Remark. To simplify our modeling, we let ae(v) = g and o¢(v) = oy.

m This produces a taxonomic urn scheme, in which
Voror | Voo = v V1) — {w o + 0K(v)} o + n(v))
’ ’ o Vi, {n(Ve;) — oo} /{ae+ n(v)}

with Vg’? = (V4,i)i=1, and where n(v) and K(v) are the number of sequences and
distinct nodes linked to v.
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Taxonomic Pitman—Yor priors

m Under a taxonomic prior, the probability of the future taxonomic label Vi1 can be
obtained using chain rule.

m Indeed, the latter is a product of the Pitman—Yor probabilities associated to v, so that

pr(Vaia = v [ V) = pr(Voss = (v1,..., ) | V)
L
= pr(Vasr1 = w1 | V) HPF( Vit = Ve | Viyreo1 = ve_1, V?)

=2
where V(") = (Vi)iL; is the collection of all taxonomic labels up to n.

n+1))

= This scheme describe a distribution for the taxonomic labels p( V' , as desired.
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The likelihood component

m We let the output of the DNA sequence depend on the taxa as follows

(X,'| V,':(Vl,...

ind

~

) VL)v 0‘/1_)

K(x;0.,,),

for some generic kernel IC, which must be selected according to the data structure.

m For example, let us assume the DNA sequences are globally aligned, so that:

width
658
658
658
658
658

seq
-ACTTTGTATTTTGTTTTTGGGGCTTGGGCTGCTA. . .
-ACTTTATA ATTTTCGGTGCTTGATCAGGCA. .

-ACTTTATA ATTTTCGGTGCTTGATCAGGCA. . .
-ACTTTATATTTCATTTTTGGTGCTTGATCTGGTA. .
-ACTTTATATTTCATTTTTGGTGCTTGATCTGGTA. .

-ACTTTATATTTTATATTTGGAATTTGATCTGGAC. .
-ACTTTATATTTTATCCTTGGGGCTTGGGCAGGGA. .

CCTGTTTTGTTTCAGCACCTATTT
. GAGGAGGAGACCCAATTCTTTACCAACATTTATT-
=

.GAGGAGGTGATCCTATTCT -~
.GAGGAGGTGATCCTATTCTTTATCAACATTTATTT

.GTGGGGGGGATCCTATTTTATACCAACACTTATTT
GGGGAGGGGATCCAATTCTTTATCAACATTTATTT

-ACATTATATTTTATTTTTGGGGCTTGGGCAGGAA . .
-ACTCTATATTTCATTTTTGGTACTTGAGCAGGAA . .

. A ATCCAATTCTTTATCAACATTTATTT
.GAGGAGGAGACCCAATTTTATATCAACATCTATTT
.GCGGAGGAGACCCAATCTTATACCAACATCTATTT

names

CHEFI1051-12 Root...
COLFC615-12 Root;. ..
COLFC475-12 Root;...
LEFIJ2547-15 Root. ..
COLFH268-14 Root;. ..

TRIFI1080-14 Root...
FINTI475-12 Root;...
FINTIS22-12 Root;...
FINTI089-11 Root;. ..
FINOR608-13 Root;. ..

m Then, the nucleotides X; = (X;)7_;, Xj € {A,C, G, T,—} can be modelled as a
product multinomial kernel, namely

K(x; 8.,

Tommaso

-1 11

j=1 g€{A,C,G,T,-}

1{x=g}
VL8 7

BayesANT

GVLJ ~ Dir(vaJ,A, e
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One step-ahead predictions

The predictive probability of a new taxonomic label V("1 js

pr(Viris = v | Xo1, D) o pr(Vier = v | VI?)p(X (1) | v/ (ri )y

< pr(Vasr = v | V("))/IC(X,,+1; 0,,)p(0., | D,)do,, .

m The above integral is available in closed form under our specifications. Once the
hyperparameters have been selected, this leads to a remarkably fast procedure.

m Note that p(@,, | D,) corresponds to the prior p(6,,) if v, is “new”.

m The probabilities of higher-level taxa can be obtained through marginalization in the
elements of V,.1, which corresponds to summation here.

m Classification rule: iteratively select the taxon with the highest probability given the
previously selected branch, preserving a meaningful taxonomic structure.
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Further practical considerations

m The parameters 6,, are specific to the last layer of the taxonomy and play an
important role in novel species recognition.

m Hence, in order to borrow strenght across branches, the hyperparameters £, have
been estimated in a careful manner using a method of moments algorithm.

m As for the set of hyperparameters ay, o¢, they have been estimated via empirical
Bayes, following standard practice.

m Finally, to ensure proper calibration, the predictive probabilities have been
post-processed to account for model misspecification.

m Specifically, the predictive probabilities have been raised to a power p € (0,1) and then
renormalized. Optimal p is selected on a hold-out dataset.
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Application: FinBOL insects dataset

m The Finland Barcode of Life initiative FinBOL data contains 34624 sequences of
insect species recorded in Finland, with a taxonomy of seven levels.

m Seven levels: Class, Order, Family, Subfamily, Tribe, Genus, Species - 10,985 distinct
Species.

m How does our model work under incomplete libraries?

m Our strategy: employ different train-test splitting strategies

m Split on Sequences: purely random subset. Each query has an equal probability of being
on the test.

m Split on Taxa: stratified random subset. First select a taxon, and then a sequence within
that taxon.

m In the first split train and test are “similar”. In the second they have different
compositions.
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Application: FinBOL insects dataset

Train-test composition
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Calibration plot
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Test set accuracy

m Results on the FinBOL dataset, on a hold-out dataset (split on sequences).

MODEL CLASS ORDER FAMILY SUBFAMILY TRIBE GENUS SPECIES

M-1 100.0 99.9  98.6 97.5 960 921 852
(1) (1)  (9) (.96) (94) (91)  (.82)
M-2 1000 99.9 984 97.2 958 924 854
(1) (1)  (.98) (.97) (95) (.93)  (.86)

m Models M-1 and M-2 refer to two distinct specifications for the kernel.
m Values report the percentage of DNA sequences correctly labelled.

m Values in parenthesis denote the average prediction probabilities in the test set.
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m The proposed model BayesANT is a probabilistic taxonomic classifier that accounts
for the possibility of observing new species.

m It can be regarded as a covariate-dependent species sampling model.

m The modeling choices reflect a balance between flexibility and pragmatism in
developing an efficient algorithm that can easily handle millions of sequences.

m Crucially, this is because closed-form expressions for the predictive structure are
available.

Software: https://alessandrozito.github.io/BayesANT/vignette.html
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