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Species sampling modes

This first part is a gentle introduction to BNP methods for species discovery, in an
idealized and simplified setting.

Let V1, . . . , Vn be some collection of species with frequencies n1, . . . , nK , sometimes
called abundances in ecology.

Suppose Vi are conditionally iid samples from a species sampling model, so that

(Vi | p̃) iid∼ p̃, p̃ =
∑
h≥1

πhδθh ,

where (πh)h≥1 is a set of random probabilities and θh represent distinct species.

The weights (πh)h≥1 are the species proportions.

The discreteness of p̃ that identify Kn = k distinct taxa, named V ∗
1 , . . . , V ∗

k , with
frequencies n1, . . . , nk .
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Goals of this simplified analysis

This simplified setting has a rich statistical history.

Indeed, there are several quantities of ecological interest that one can try to obtain
using abundances, for example:

The sample coverage, namely the sum of the proportions of species that has been
observed (Good 1953);

The estimation and extrapolation of accumulation curves (aka rarefaction);

The prediction of number of unseen species not observed in the current sample that
we may observe in the future (Good & Toulmin, 1956);

The estimation of bio-diversity, i.e. using the Simpson index, Shannon entropy, etc.

and many more.
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Fisher, Corbet and Williams (1943)
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Bayesian nonparametric priors

The sampling distribution p̃ encodes all the relevant information but it is unknown, so
we are interested in learning it from the data V1, . . . , Vn.

In the Bayesian framework, this amounts to the choice a discrete nonparametric prior
for the sampling distribution p̃.

Then, one can study the following posterior law

p̃ | V1, . . . , Vn.

Remark: many quantities of ecological interest are functionals of p̃ =⇒ this leads to
natural Bayesian estimators for coverage, diversity, etc.

Common nonparametric priors are the Dirichlet process (dp) and the Pitman–Yor (py)
process.
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The discussion of Peter McCullagh (2016)
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The interplay between frequentist and Bayesian methods

There is a clear and strong interplay between frequentist and Bayesian procedures.
Using Peter McCullagh words

“It is fair to say that Fisher almost discovered the Ewens sampling formula”.

The Ewens sampling formula is just another way of defining the Dirichlet process.

However:

The properties of frequentist estimators are often based on asymptotic considerations
=⇒ Bayesian inference could be helpful.

If prior information is available, there is not a simple way to incorporate it into the
modeling.

It is even more problematic to incorporate these estimators into more complex models
e.g. accounting for covariates.
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The Pitman–Yor model I

Let us consider the Pitman–Yor process, written p̃ ∼ py(α, σ), with parameters
σ ∈ [0, 1) and α > −σ. When σ = 0 this reduces to the Dirichlet process.

Marginalization over p̃ leads to specification for the joint distribution of V1, . . . , Vn.

This can be conveniently expressed through a sequential mechanism.

In a py model, the probability that the (n + 1)st sequence belongs to the jth of the
known taxa is

pr(Vn+1 = V ∗
j | V1, . . . , Vn) = nj − σ

α + n , j = 1, . . . , k,

while the probability of observing a new taxon is

pr(Vn+1 = “new” | V1, . . . , Vn) = α + σk
α + n .

Technical note. The law of p̃ is fully characterized by the above sequential scheme,
through de Finetti representation theorem.
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The Pitman–Yor model II

Stick-breaking definition of the py

p̃ =
∞∑

h=1

πhδθh , πh = νh

h∏
ℓ=1

(1 − νℓ), νh
ind∼ beta(1 − σ, α + σh),

with σ ∈ [0, 1) and α > −σ.

Urn-scheme

Vn+1 | V1, . . . , Vn ∼ α + σk
α + n ("new species") + 1

α + n

k∑
j=1

(nj − σ)δV ∗
j

.

Posterior distribution

(p̃ | V1, . . . , Vn) =
k∑

j=1

WjδV ∗
j

+ Wk+1q̃,

with (W1, . . . , Wk+1) ∼ dir(n1 − σ, . . . , nk − σ, α + σK) and q̃ is a py(α + σk, σ).
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Example: Pitman-Yor process
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𝑽𝟒∗

Example of a Pitman–Yor process with n = 19, α = 1, σ = 0.25 and Kn = 4.

The probability of re-observing V ∗
1 is (n1 − σ)/(α + n) = 39/80.

The probability for the new taxon is (α + σk)/(α + n) = 1/10.
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The discovery of new species

Proposition (Favaro et al., JRSS-B, 2009)
In a py model a Bayesian estimate of the rarefaction curve is

E(Kn) = α

σ

{
(α + σ)n

(α)n
− 1

}
.

Moreover, Let K (n)
m be the number of new species we observe in an additional sample of

size m. Then

E(K (n)
m | V1, . . . , Vn) =

(
k + α

σ

) {
(α + n + σ)m

(α + n)m
− 1

}
.

The parameters (α, σ) are often estimated using maximum likelihood.

This Bayesian nonparametric setup has been developed by Lijoi et al. (2007), for the
more general classes of Gibbs-type priors.
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BNP prediction of the number of new species
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Modern species discovery

The models and techniques we just discussed are exciting from a theoretical
perspective and are sometimes useful for getting preliminary estimates.

Software: https://alessandrozito.github.io/BNPvegan/vignette.html

The exhangeability assumption is unrealistic in many applied scenarios.

Indeed, modern sampling strategies for species discoveries are much more sophisticated
than those used in the ’40...

However, the theoretical knowledge of these processes in “controlled” settings enables
the implementation of BNP ideas in much more complex scenarios.

From here on, we make a big jump into a much more realistic application.

Tommaso Rigon (Unimib) BayesANT UCLA 15 / 32

https://alessandrozito.github.io/BNPvegan/vignette.html


DNA barcoding

DNA barcoding is the practice of placing DNA sequences within a Linnean taxonomy.

Advantages:
Processing and classification of a large number of query sequences in a reasonable time
No need for morphological identification, which is impossible with soups of insects

Challenges:
Libraries of labeled DNA (reference libraries) are often incomplete
Many species are still unknown to science
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Malaysian traps

A Malaysian trap Statisticians "supervising" the data
collection process
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The data structure

A taxonomic library is a collection of observations of the form Dn = (Vi , Xi )n
i=1.

Each vector Vi = (Vi,1, . . . , Vi,L) contains the taxonomic annotations for a dna
sequence. For example, we could have:

Vi,1 = “Insecta”, Vi,2 = “Diptera”, Vi,3 = “Tephritidae”, etc.

Here L is the number of levels (layers) one wish to consider.

Each Xi contains the output of the dna barcoding procedure (e.g. the k-mer
decomposition, or the aligned sequences).

Remark: a relevant amount of pre-processing is needed to get Xi .

From a modelling perspective, the Vi ’s represent the response variables whereas Xi ’s
correspond to the covariates.
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A nested classification problem

Given a new covariate Xn+1 from the dna barcoding procedure, we wish to predict the
corresponding taxonomic labels Vn+1.

This is essentially a classification problem, albeit there are several statistical
challenges =⇒ off-the-shelves algorithms cannot be used without modifications.

Challenge 1. The labels Vi , by construction, have a nested structure. The method
should be consistent with the taxonomy and possibly exploit it to improve accuracy.

Challenge 2. We want a probabilistic and well-calibrated method to quantify the
uncertainty associated with our predictions formally.

Challenge 3. Some labels may be absent in the reference dataset or even be unknown
to science. We need to account for the possibility that Vn+1,ℓ = “new”.

Moreover, both the training and the prediction step should be performed quickly, as
the number of test covariates is huge.
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Overview of the model

Paralleling the construction, e.g. of naive Bayes classifiers and linear discriminant
analysis, we will specify a joint distribution through the decomposition

p(V (n+1), X (n+1)) = p(V (n+1))p(X (n+1) | V (n+1)),

where V (n+1) = (Vi )n+1
i=1 and X (n+1) = (Xi )n+1

i=1 .

Then, we will obtain a closed-form expression for the predictive distribution

p(Vn+1 | Xn+1, Dn) ∝ p(Vn+1 | V (n))p(X (n+1) | V (n+1)),

recalling that Dn = (Vi , Xi )n
i=1, which can be used for taxonomic classification.

Each Vi is discrete, therefore the normalizing constant is trivial to compute.
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Prior specification for taxonomic labels
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In the first place, we need to specify a distribution for the taxonomic labels p(V (n+1)).

The need for species discoveries (actually, taxon discoveries in this case) naturally calls
for Bayesian nonparametric tools.
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Enriched Pitman–Yor process (L = 2)

The natural next step in the specification of p(V (n+1)) is the L = 2 case.

A possibility is the usage of enriched processes, such as the enriched Dirichlet process
of Wade et al. (2011) and subsequent generalizations to the Pitman–Yor case.

When Vi = (Vi,1, Vi,2), for the first taxon one could assume

(Vi,1 | p̃1) iid∼ p̃1, p̃1 ∼ py(α1, σ1).

For the second taxon, instead, we let

(Vi,2 | Vi,1 = v , p̃2,v ) iid∼ p̃2,v p̃2,v
ind∼ py{α2(v), σ2(v)}

for α2(v) > −σ2(v), σ2(v) ∈ [0, 1).

This induces the desired nested behaviour and induces a specification for p(V (n+1))
through the so-called enriched urn-scheme.
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Taxonomic Pitman–Yor priors

Enriched processes can be naturally extended to general taxonomic priors.

At the first level, we let as before Vi,1 | p̃1
iid∼ p̃1, p̃1 ∼ py(α1, σ1).

For all the subsequent layers ℓ = 2, . . . , L, we specify the following nested priors

(Vi,ℓ | Vi,ℓ−1 = v , p̃ℓ,v ) iid∼ p̃ℓ,v p̃ℓ,v
iid∼ py(αℓ, σℓ).

Remark. To simplify our modeling, we let αℓ(v) = αℓ and σℓ(v) = σℓ.

This produces a taxonomic urn scheme, in which

(Vℓ,n+1 | Vℓ−1,n+1 = v , V(n)
ℓ,· ) =

{
“new” {αℓ + σℓK(v)}/{αℓ + n(v)}
V ∗

ℓ,j {n(V ∗
ℓ,j) − σℓ}/{αℓ + n(v)}

with V(n)
ℓ,· = (Vℓ,i )n

i=1, and where n(v) and K(v) are the number of sequences and
distinct nodes linked to v .
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Taxonomic Pitman–Yor priors

Under a taxonomic prior, the probability of the future taxonomic label Vn+1 can be
obtained using chain rule.

Indeed, the latter is a product of the Pitman–Yor probabilities associated to v , so that

pr(Vn+1 = v | V(n)) = pr(Vn+1 = (v1, . . . , vL) | V(n))

= pr(Vn+1,1 = v1 | V(n))
L∏

ℓ=2

pr(Vn+1,ℓ = vℓ | Vn+1,ℓ−1 = vℓ−1, V(n))

where V(n) = (Vi )n
i=1 is the collection of all taxonomic labels up to n.

This scheme describe a distribution for the taxonomic labels p(V (n+1)), as desired.
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The likelihood component
We let the output of the dna sequence depend on the taxa as follows

(Xi | Vi = (v1, . . . , vL), θvL ) ind∼ K(x ; θvL ),

for some generic kernel K, which must be selected according to the data structure.

For example, let us assume the dna sequences are globally aligned, so that:

Then, the nucleotides Xi = (Xij)p
j=1, Xij ∈ {A, C , G , T , −} can be modelled as a

product multinomial kernel, namely

K(x ; θvL ) =
p∏

j=1

∏
g∈{A,C,G,T,-}

θ
1{x=g}
vL,j,g , θvL,j ∼ Dir(ξvL,j,A, . . . , ξvL,j,T ).
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One step-ahead predictions

The predictive probability of a new taxonomic label V (n+1) is

pr(Vn+1 = v | Xn+1, Dn) ∝ pr(Vn+1 = v | V(n))p(X (n+1) | V (n+1))

∝ pr(Vn+1 = v | V(n))
∫

K(Xn+1; θvL )p(θvL | Dn)dθvL .

The above integral is available in closed form under our specifications. Once the
hyperparameters have been selected, this leads to a remarkably fast procedure.

Note that p(θvL | Dn) corresponds to the prior p(θvL ) if vL is “new”.

The probabilities of higher-level taxa can be obtained through marginalization in the
elements of Vn+1, which corresponds to summation here.

Classification rule: iteratively select the taxon with the highest probability given the
previously selected branch, preserving a meaningful taxonomic structure.
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Further practical considerations

The parameters θvL are specific to the last layer of the taxonomy and play an
important role in novel species recognition.

Hence, in order to borrow strenght across branches, the hyperparameters ξv have
been estimated in a careful manner using a method of moments algorithm.

As for the set of hyperparameters αℓ, σℓ, they have been estimated via empirical
Bayes, following standard practice.

Finally, to ensure proper calibration, the predictive probabilities have been
post-processed to account for model misspecification.

Specifically, the predictive probabilities have been raised to a power ρ ∈ (0, 1) and then
renormalized. Optimal ρ is selected on a hold-out dataset.
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Application: FinBOL insects dataset

The Finland Barcode of Life initiative FinBOL data contains 34624 sequences of
insect species recorded in Finland, with a taxonomy of seven levels.

Seven levels: Class, Order, Family, Subfamily, Tribe, Genus, Species - 10, 985 distinct
Species.

How does our model work under incomplete libraries?

Our strategy: employ different train-test splitting strategies
Split on Sequences: purely random subset. Each query has an equal probability of being
on the test.
Split on Taxa: stratified random subset. First select a taxon, and then a sequence within
that taxon.

In the first split train and test are “similar”. In the second they have different
compositions.
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Application: FinBOL insects dataset
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Calibration plot

85.2%

31.1%

93.1%

70.6%

33.7%

93.7%

Scenario 1 Scenario 2

0 25 50 75 100 0 25 50 75 100

0

25

50

75

100

0

25

50

75

100

Cumulative probability %

C
um

ul
at

iv
e 

co
rr

ec
t %

All data New Observed

Tommaso Rigon (Unimib) BayesANT UCLA 30 / 32



Test set accuracy

Results on the FinBOL dataset, on a hold-out dataset (split on sequences).

model class order family subfamily tribe genus species
m-1 100.0 99.9 98.6 97.5 96.0 92.1 85.2

(1) (1) (.98) (.96) (.94) (.91) (.82)
m-2 100.0 99.9 98.4 97.2 95.8 92.4 85.4

(1) (1) (.98) (.97) (.95) (.93) (.86)

Models m-1 and m-2 refer to two distinct specifications for the kernel.

Values report the percentage of DNA sequences correctly labelled.

Values in parenthesis denote the average prediction probabilities in the test set.
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Summary

The proposed model BayesANT is a probabilistic taxonomic classifier that accounts
for the possibility of observing new species.

It can be regarded as a covariate-dependent species sampling model.

The modeling choices reflect a balance between flexibility and pragmatism in
developing an efficient algorithm that can easily handle millions of sequences.

Crucially, this is because closed-form expressions for the predictive structure are
available.

Software: https://alessandrozito.github.io/BayesANT/vignette.html
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