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 The Metropolis-Hastings algorithm is an extremely popular

 Markov chain Monte Carlo technique among statisticians. This

 article explores the history of the algorithm, highlighting key

 personalities and events in its development. We relate reasons

 for the delay in the acceptance of the algorithm and reasons for

 its recent popularity.
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 1. INTRODUCTION

 The Metropolis-Hastings (M-H) algorithm, a Markov chain

 Monte Carlo (MCMC) method, is one of the most popular tech-
 niques used by statisticians today. It is primarily used as a way

 to simulate observations from unwieldy distributions. The algo-

 rithm produces a Markov chain whose members' limiting dis-

 tribution is the target density 7r(x). At step j, an observation

 xj is generated from an instrumental density q(- zi) (which is

 typically easy to simulate from). This candidate observation be-

 comes the next value in the Markov chain with probability

 w(x )q(x x)
 p m (xi)q(xjxi)in

 with probability l-p, set xj = xi, the previous value in the chain

 (Robert and Casella 1999, p. 233). Under certain conditions, the

 limiting distribution of the observations in the Markov chain is
 7(x); see Chib and Greenberg (1995) for a detailed introduction.

 Introduced in 1953, the M-H algorithm is a relatively old

 technique. Yet for decades it languished below the radar, out-

 side the knowledge base of the typical statistician. Consider the
 statistical landscape just two decades ago. In the 1982 edition of

 the Encyclopedia of Statistical Sciences, there was no entry for
 "Metropolis-Hastings algorithm," "Metropolis," "Hastings," or

 "Markov chain Monte Carlo" (Kotz and Johnson 1982). Long
 after the method had originated and even after it had been the-

 oretically validated, this comprehensive reference of all things

 statistical did not bother to mention it. What was the origin of

 the method and what factors accounted for its sudden rise to

 prominence?

 2. THE EARLY DAYS OF MONTE CARLO METHODS

 The use of Monte Carlo methods, defined broadly as the field
 of experiments using random numbers (Hammersley and Hand-

 scomb 1964, p. 2), existed well before the twentieth century.
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 In 1777, Georges Louis Leclerc Comte de Buffon established a

 method for approximating w- by repeatedly, randomly throwing

 a needle onto a grid of parallel lines and tracking how often the

 needle landed on a line (Liu 2001, p. vii). In the early twentieth

 century, William Gosset ("Student") used simulations with ran-

 dom numbers to help determine the sampling distributions of the

 correlation coefficient and the t statistic. But the mathematical

 branch of Monte Carlo methods really began in earnest in the
 1940s among scientists at the Los Alamos Laboratory in New
 Mexico, which is where the seeds of the M-H algorithm were
 sown.

 Nicholas C. Metropolis was born in 1915 in Chicago. He
 attended the University of Chicago, eventually receiving a doc-

 torate in experimental physics there. He researched nuclear re-

 actors with Enrico Fermi and Edward Teller, and, through his

 work with such noteworthy scientists, he came to the attention

 of J. Robert Oppenheimer, head of the Manhattan Project-the

 United States government's plan to build the first atomic bomb.

 In 1943, at the height of World War II, Oppenheimer recruited

 Metropolis to Los Alamos to develop mathematical equations to
 describe the states of physical materials (Ravo 1999). Annoyed

 by the slow, unwieldy electromechanical calculators they had to

 use, Metropolis and colleagues Richard Feynman and John von

 Neumann became interested in the prospect of fast electronic

 calculators (Santa Fe Institute Bulletin 2000).

 After the war, Metropolis went back to the University of

 Chicago to teach, but in 1948 returned to Los Alamos, where

 state-sponsored research was burgeoning under America's top
 scientists. Metropolis led the design of the first programmable
 super-computer, which he called MANIAC (Mathematical An-

 alyzer, Numerical Integrator and Computer) (Liu 2001, p. vii).

 Metropolis chose this name as a satirical poke at the acronyms

 favored by scientists, but it stuck.

 Finally, the computing power was available to drive the de-

 velopment of Monte Carlo (MC) methods, and MC applica-
 tions soon followed. The motivating example was the random

 behavior of neutrons in the fissile material in atomic bombs.

 Two leading mathematicians at Los Alamos, Stanislaw Ulam

 and John von Neumann, thought of the idea of performing com-

 putations via simulation, and Metropolis apparently coined the

 catchy name "Monte Carlo methods" (Liu 2001, p. viii). Moti-

 vated by their physics problems, Metropolis and Ulam (1949)
 introduced their idea to the statistics community in their article,

 "The Monte Carlo Method." They gave an example of estimating

 the probability of success of a solitaire strategy by undertaking

 the strategy in many trials and tracking what proportion were

 successful. Appealing to the theory of probability, they noted,

 "The estimate will never be confined within given limits with

 certainty, but only-if the number of trials is great-with great
 probability." (Metropolis and Ulam 1949, p. 336). They gave an-

 other classic example of finding the volume of a 20-dimensional

 region within a unit cube when the required multiple integrals
 were intractable. The sensible solution, they explained, might

 @ 2003 American Statistical Association DOI: 10.1198/0003130032413

This content downloaded from 
            149.132.63.195 on Tue, 31 Aug 2021 13:17:52 UTC              

All use subject to https://about.jstor.org/terms



 be to subdivide the cube into 1020 equally spaced lattice points,

 "Take, say 104 points at random from this ensemble and ...

 count how many of the selected points satisfy all the given in-

 equalities" that define the region. Ergodic theorems imply that

 the resulting estimate should be highly accurate with great prob-

 ability, they said (Metropolis and Ulam 1949, pp. 336-337).

 3. THE BIRTH OF AN ALGORITHM

 If the 1949 article introduced the Monte Carlo philosophy, the

 landmark 1953 paper by Metropolis and the husband and wife
 teams of Marshall and Arianna Rosenbluth and Edward and

 Augusta "Mici" Teller took another step forward in providing

 a specific method in detail. Edward Teller and Marshall Rosen-

 bluth were physicists who had earlier collaborated on research

 that led to the development of the first hydrogen bomb in 1952.

 Rosenbluth provided the theoretical calculations to implement

 Teller's ideas about the hydrogen bomb. They were conducting

 their research at Los Alamos, which brought them into contact
 with Metropolis.

 The part of the 1953 article of interest to statisticians is Sec-
 tion II. In this section the authors describe the method of putting

 N particles at points on a square to allow the calculation of a

 2N-dimensional integral which is a function of the "energy" E.
 (Given the computing power of the day, "N may be as [large] as

 several hundred.") The naive method of Monte Carlo integration
 would randomly place the N particles in the square, calculate the

 energy E of this configuration, and weight this configuration by

 exp(-E/kT) (what statisticians would later call the objective

 function). Interestingly, they never define kT in this article, al-

 though we call T the temperature, and k is Boltzmann's constant
 (Hammersley and Handscomb 1964, p. 117 ). The problem with

 this method is that the random choice of a configuration means

 that "with high probability we choose a configuration where

 exp(-E/kT) is very small," so, "instead of choosing config-
 urations randomly, then weighting them with exp(-E/kT),

 we choose configurations with a probability exp(-E/kT) and

 weight them evenly." (Metropolis et al. 1953, p. 1088)

 Metropolis et al. (1953) described a method which we would
 today call simulated annealing, in which each particle on the

 square is moved according to a random (uniform) perturbation,
 forming a new configuration. This new configuration is accepted

 if the effected change in energy AE < 0 (low energy is good
 here); or if AE > 0, the new configuration is accepted with
 probability exp(-AE/kT). Otherwise the previous one is re-
 tained.

 Having described this simulated annealing method, Metropo-
 lis et al. (1953) proceeded to the important theoretical result of
 this article: that the method is ergodic and the system tends to

 a distribution c exp(-Er/kT) for each state r. They note that
 in their method, the perturbations of the particles are uniform;

 P,s - Ps,, where Prs = probability of considering the move
 from state r to state s before accounting for exp(-AE/kT).

 Today, we would say that the method uses a symmetric instru-
 mental distribution.

 Although the article appeared in a chemical physics journal
 and was written from a physics viewpoint, it gained some recog-
 nition from statisticians. J. M. Hammersley and D. C. Hand-

 scomb, in their 1964 book Monte Carlo Methods, mentioned

 the Metropolis method, but they seemingly fail to grasp its great

 potential. They listed it as a method of solving "problems in

 equilibrium statistical mechanics," seeing the method only as a

 way to solve an integral like that in the Metropolis article, not
 as a general way to simulate observations from virtually any
 distribution (Hammersley and Handscomb 1964, pp. 117-121).

 In 1965 a mathematical physicist, A.A. Barker, of the Univer-

 sity of Adelaide, Australia, published an article (Barker 1965)
 with a competing method which employed a slightly different
 algorithm of sampling from the instrumental density. Again, the

 paper was written wholly using physics terminology and focused

 explicitly on the physics problem of Metropolis et al. (1953).
 The Metropolis method was generalized and improved by a

 professor from the University of Toronto named W. Keith Hast-

 ings (1970). Hastings viewed the Metropolis algorithm chiefly
 as a way to sample from high-dimensional probability distribu-
 tions, which reflects its primary modern use. Hastings' article

 was written in a more statistical style, noting that at its heart the

 Metropolis method involved the transition matrix of a Markov

 chain. He presented the target distribution in terms of the in-
 variant distribution r(x) of the Markov chain rather than the
 physically based objective function of Metropolis and Barker.

 Hastings' generalization included the possibility of a non-
 symmetric instrumental distribution. The decision whether to

 move from xi to xj was based on the ratio [7r(xj)q(xi xj)]/
 [r(zi)q(x jli)] (where q(xj xi) represents the instrumental
 density from which the candidate xzj was drawn) whereas
 Metropolis considered only the situation in which q(xj i) =

 q(xi\xj).

 As it turns out, both the Metropolis method and the Barker
 method arise as special cases of Hastings' generalization. Com-

 paring those two predecessors, Hastings wrote, "Little is known

 about the relative merits of these two choices," but suggested that

 "Metropolis's method may be preferable since it seems to en-
 courage a better sampling of the states." (Hastings 1970, p. 100)
 Hastings' reasoning was as follows: The Metropolis method

 would move from xi to xj with probability
 { 1 7r(xj)q(xilj2 )

 min 1 7(xi)q(xj xi) )

 whereas Barker (1965) would make this move with probability

 T(xj)q(xi xj)
 7r(xi)q(xj\xi) + 7r(xj)q(xi xj)

 So under a symmetric instrumental distribution, if moving from

 xi to xj resulted in the same value for the target density,
 Metropolis would make the move with probability 1 but Barker
 would move with probability 1/2 (1970).

 The issue of which method "reigned supreme" was answered
 by P. H. Peskun, a Ph.D. student of Hastings at the University of

 Toronto, who devoted his thesis to the topic. In 1973, Peskun (by
 then at York University in Toronto) published a Biometrika pa-
 per (Peskun 1973) proving that the general Metropolis-Hastings
 method was optimal. Peskun showed that under the M-H algo-
 rithm, the transition matrix led to a sampling method that was
 asymptotically as precise as possible. Meanwhile, the Barker

 algorithm led to a sampling method that was asymptotically
 no better-and in most cases less precise-than M-H (Peskun
 1973).
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 4. MODERN TIMES

 Although Peskun's result established the superiority of M-

 H, it did not lead to statisticians immediately using the method

 in practice, or even being aware of it. To be sure, those who

 specialized in the subfield of Monte Carlo methods knew of

 it, but few practitioners of statistics used the method andc the

 statistical literature contained only passing references to it until

 the 1990s.

 In the early 1990s, the popular MCMC method of Gibbs sam-

 pling became known, mainly due to the work of Gelfand and

 Smith (1990), who built on the seminal paper of Geman and Ge-

 man (1984). The Gibbs sampler is a related simulation algorithm

 that is especially useful for sampling multivariate distributions,

 particularly when the full univariate conditional densities are

 known, or are easy to sample from (Robert and Casella 1999, p.

 287). Like the Metropolis et al. (1953) article, Geman and Ge-

 man's work, which introduced the Gibbs sampler, was closely

 related to optimization problems in statistical physics. Gelfand

 and Smith (1990) solidified the theory behind Gibbs sampling

 and some related methods, and, crucially for statistical prac-

 titioners, gave examples of common Bayesian analyses which

 could be greatly enhanced by these methods. Notably, although

 Gibbs sampling is newer than the M-H algorithm (and is, in

 fact, a special case of M-H), it came into common use among

 statisticians slightly earlier than M-H.

 In a review (Kass 1997) of the 1996 book Markov Chain

 Monte Carlo in Practice, Robert Kass, a professor at Carnegie-

 Mellon University, recalled that a 1991 conference at Ohio State

 University provided the impetus for the introduction of both

 Gibbs sampling and the M-H algorithm into the statistical main-

 stream. Kass pointed to a presentation by Luke Tierney of the

 University of Minnesota which, Kass wrote, "illustrated the use

 of the Metropolis algorithm to simulate from posterior distribu-

 tions, pointed out its close relationship to Gibbs sampling, and

 ... signaled the advent of what has, within statistics, come to

 be called MCMC" (Kass 1997, p. 1645). The next year, Andrew

 Gelman (1992) showed that the Gibbs sampler was, formally, a

 special case of the M-H algorithm. Tierney (1994) would write

 an influential article which summarized the history and theory

 of the M-H algorithm and showed how it (and the Gibbs sam-

 pler) could be employed to solve the problem of working with

 intractable posterior distributions that often arise in Bayesian in-

 ference. Siddhartha Chib and Edward Greenberg (1995) wrote

 a review article for The American Statistician explaining M-H

 to a wide audience of statistical practitioners. At long last, the

 M-H algorithm had reached the mainstream.

 Kass (1997) pointed out an undeniable factor in the popular-

 ization of the M-H algorithm and other MCMC methods: the

 rise of computing power in the late 1980s and throughout the

 1990s. The speed with which computer simulations could be

 done (not only with giant mainframes like those at Los Alamos,

 but on everyday personal computers that adorned statisticians'

 desks) made such algorithmic computations practical. Wrote

 Kass, "Large numbers of researchers could, in the early 1990s,

 implement [MCMC] on their desktops for interesting, nontrivial

 problems." (Kass 1997, p. 1645)

 Certainly the M-H algorithm and its MCMC cousins have

 been a godsend for Bayesians who, with the ability to simulate
 from complicated posteriors, were freed from the reliance on

 conjugate priors. Frequentists, as well, could work with more

 complicated likelihoods, thanks to these methods.

 In closing, let us return to the story of Nicholas Metropo-

 lis, who planted the seeds for this revolution. After writing the

 1953 article, he founded the Institute for Computer Research at

 Chicago in 1957 but returned in 1964 to the Los Alamos Labo-

 ratory, where he would spend the rest of his career (Ravo 1999).
 Named a senior fellow at the Laboratory in 1980 and given emer-

 itus status in 1987 by the University of California, he enjoyed
 a storied scientific career, editing many scientific journals and

 volumes. With Gian Carlo Rota, Metropolis wrote many articles

 on the dilemmas caused by the rise of computers for the foun-

 dations of mathematics-a topic statisticians must face now and
 in the future (Santa Fe Institute Bulletin 2000). Metropolis died,

 aged 84, in October 1999 in a nursing home in Los Alamos, New
 Mexico.

 Edward Teller and Marshall Rosenbluth, Metropolis's co-

 authors, also continued in the scientific limelight after 1953.

 Teller served as Associate Director of Livermore Laboratory

 (which he helped establish) in Berkeley, California, from 1954

 to 1975 and became Director Emeritus in 1975. In the 1980s

 he resurfaced in the public eye as an important proponent of

 the Strategic Defense Initiative ("Star Wars") and other nuclear

 defense systems. Teller died September 9, 2003, at age 95. Mar-
 shall Rosenbluth has enjoyed a distinguished career as a physi-

 cist that included stints at the General Atomic Corporation, the
 University of California-San Diego, and the Institute for Ad-
 vanced Study in Princeton, New Jersey (McGraw-Hill Modern

 Scientists and Engineers 1980).

 [Received May 2003. Revised August 2003.]
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