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Self-Calibrating Quantile–Quantile Plots

R. Wayne OLDFORD

Quantile–quantile plots, or qqplots, are an important visual
tool for many applications but their interpretation requires some
care and often more experience. This apparent subjectivity is
unnecessary. By drawing on the computational and display fa-
cilities now widely available, qqplots are easily enriched to help
with their interpretation. An overview of quantile functions and
quantile–quantile plots is presented against the backdrop of their
early historical development. Strengths and shortcomings of the
traditional display are described. A new enhanced qqplot, the
self-calibrating qqplot, is introduced and demonstrated on a
variety of examples—both synthetic and real. Real examples
include normal qqplots, log-normal plots, half-normal plots for
factorial experiments, qqplots for x̄ and s in process improve-
ment applications, detection of multivariate outliers, and the
comparison of empirical distributions. Self-calibration is had
by visually incorporating sampling variation in the qqplot dis-
play in a variety of ways. The new qqplot is available through
the function and R package qqtest.

KEY WORDS: Daniel plots; Half-normal plots; Multivariate
outlier detection; Ogive; Visual hypothesis testing.; x̄ and s
charts

1. INTRODUCTION

“I shall best explain my graphical method of expressing Dis-
tribution, which I like the more, the more I use it, and which
I have latterly much developed, . . .”

Francis Galton, Natural Inheritance (Galton 1889, p. 37)

Galton’s graphical method is arguably the first
quantile–quantile plot (qqplot) and has continued to be
much developed over the nearly century and a half since its
inception. It is of considerable value in practice and has become
a staple method in all applied statistics courses.
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The quantile curve can say a lot about the corresponding
distribution, including detailed information such as percentiles,
location, and scale, etc. The simple shape of its curve tells much
about the distributional shape (e.g., symmetry/asymmetry,
number of modes, tail weights, etc.). Quantile–quantile plots
can directly compare one distribution to another (on any of these
points) and so provide an informal visual test of whether ob-
served values appear to follow some assumed distribution (e.g.,
the normal). Moreover, contrary evidence appearing in the plot
reveals how the empirical distribution differs from that assumed.

As a visual test, problems of interpretation arise because no
sense of sampling variability is contained in the plot itself. In-
stead, practitioners have come to rely on repeated experience
to guide judgment. Much of this subjectivity is no longer nec-
essary. Quantile–quantile plots can be substantively improved
and made more easily and correctly interpretable by simply en-
hancing the displays with information on sampling variability.
By contrasting the observed data against many that might have
been generated by the assumed distribution, the enhanced plot
builds in a measure of self-calibration.

In what follows, three separate enhancements for self-
calibrated qqplots are described: the use of point-wise confi-
dence envelopes, the overlaying of transparent exemplars, and
the line-up plot that spatially separates exemplars. These en-
hancements are available as the qqtest package contributed to
R (R Core Team 2014; Oldford 2015).

Section 2 provides a self-contained exposition on quantile
functions and quantile–quantile plots to lay the groundwork
needed for their understanding and interpretation. Historical
episodes in the development of the plot from Galton (1875) to
Hazen (1914) and Whipple (1916a, 1916b) are used to provide
context and to illustrate their original practical applications and
interpretation. The section ends with some discussion of the
ambiguity inherent in using the traditional qqplot as a visual test.

Section 3 introduces the self-calibrating quantile–quantile
plot. Its construction is described and its performance under
null and nonnull configurations is illustrated. Point-wise con-
fidence envelopes are introduced as the default self-calibrating
enhancement forqqtest that will be used throughout the article.
Exemplars are also introduced and their use contrasted with that
of the confidence envelopes—each provides a different quality
of self-calibration.

The strength of the self-calibrated qqplot is best seen in its
application in some meaningful context. To this end, in Sec-
tion 4 it is applied to several and varied examples from the
literature. These include the historical uses from Section 2 and
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Figure 1. Galton’s “Ogive” (Galton 1875) or “Scheme of Distribution” (Galton 1889) or, in modern terms, “quantile function.” Data shown are
from measurements taken by Galton at the 1884 International Health Exhibition in London: (a) shows the pull strength in lbs. of 519 men aged
23–26 (source: Galton 1889, pp. 38, 199); (b) the sitting heights in inches of 775 women aged 23–50 (data source: Galton 1885a); (c) is the ogive
given by the law of errors, viz., the quantile function of a normal distribution (as in Galton 1875).

other historically influential applications. The latter include the
half-normal plots of Daniel (1959) for unreplicated factorial
experiments and the exploratory multivariate outlier detection
methods pioneered by Wilk and Gnanadesikan (1964). The re-
maining examples include a novel use of the self-calibrating
qqplot in statistical process improvement and a visual approach
to the classical two-sample problem.

In Section 5, the use of spatially separated exemplars is
demonstrated. This is presented as an instance of the general
visual significance testing method called a line-up plot (Buja
et al., 2009). The article wraps up with a few concluding re-
marks in Section 6.

All data and methods presented are available in the qqtest
R package. Readers are encouraged to download the package
and try the examples themselves.

2. QUANTILE FUNCTIONS

Galton’s graphical innovation (Galton 1875, 1889) was to
plot sample measurements, yi say (i = 1, . . . , n), on the verti-
cal axis against their (smallest to largest) rank, ri say, on the
horizontal axis, drawing a smooth curve through the points to
aid in interpretation. Figure 1(a) and 1(b) shows the plot for
some of the data Galton gathered in 1884 at London’s Interna-
tional Health Exhibition (Galton 1885b, 1885c, 1889)—in these
figures Galton plotted only selected percentiles of the data to
determine the curve. The curvilinear shape seen in Figure 1(a)
and 1(b) and in idealized form in Figure 1(c) suggested the name
“ogive” to Galton, after the architectural shape of an ogival arch
(a contemporary account of which would be Smith 1884, pp.
xvi, 129). Today, we know it as the quantile function—the sam-
ple or empirical quantile function in Figure 1(a) and 1(b) and
the theoretical normal quantile function in Figure 1(c).

Galton showed that by simply plotting the data from small-
est to largest against their percent position in that order, any
number of statistical summaries could be had at once. From the
horizontal axis, the value of any percentile is determined by its
coordinate on the curve and conversely the percentile of any

observation can be determined by its value on the horizontal
axis. Robust measures of location are easily had—the median
is the middle point on the curve or, if that is unavailable, the
median can be estimated from a line drawn between any two
available percentile values on the plot, preferably nearer the
middle (Galton 1899). For a measure of variation, or scale, half
the interquartile range is equivalent to the “probable error” and
requires only two further points to be accurately measured (one
corresponding to the first quartile, the other the third). Alterna-
tively, the slope of the central linear part of the curve could serve
as a measure of scale. Any of these are much simpler to deter-
mine than would be the sample mean and standard deviation.
Moreover, as Galton (1889, p. 47) noted, the plot can often still
“be constructed from observations that are barely exact enough
. . . to be called measures.” In fact, for measures of location and
scale one need not even measure all points in the sample—it is
enough to be able to order them and then measure only those at
the three quartile positions and so plot only the middle part of
the curve (e.g., the heights of men as in Galton 1875).

The curve can also say something about the shape of the data
distribution (i.e., beyond its location and scale already summa-
rized by the curve’s height and slope). As Galton (1889) noted,
whatever such information that can be had from a “frequency
distribution” (or histogram) can also be had directly from the
shape of this curve. In a figure similar to Figure 2, Galton (1889)
showed the ogive for pull strength overlaid with boxes marking
the vertical and horizontal difference between points and then
the boxes moved to a common vertical axis (as in Figure 2(b)).
The boxes are thus seen to determine the bins of the corre-
sponding histogram—horizontal distances on the ogive provide
the bin height of the histogram, vertical distances provide the bin
width. Relatively flat plateaus in the quantile function indicate
a concentration of points in the distribution, a mode.

2.1 Non-Gaussian Quantile Functions

The first row of Figure 3 shows the quantile function
for the random variable Y ∼ FY (y) for various cumulative
distribution functions FY (y) = Pr(Y ≤ y). More precisely, the
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Figure 2. The quantile function (ogive) and the histogram have the same information content as regards the shape of the data distribution.
Adapted from figs. 2 and 3 on page 38 of Galton (1889).

quantile function QY (p) is defined to be

QY (p) := inf{y ∈ IR : p ≤ FY (y)}

for p ∈ (0, 1) and the plots show the parametric curves
(p,QY (p)). In the case of continuous FY , this yields QY (p) =
F−1

Y (p) (i.e., swapping the horizontal and vertical axes of any
plot in the first row of Figure 3 will yield a plot of the corre-
sponding distribution function p = FY (y)). The first of these
curves shows the familiar ogival shape of the normal or Gaus-
sian distribution but the rest do not—“ogive” no longer has any
descriptive power.

The second row of Figure 3 shows Galton’s plots of the or-
dered values of yi against their ranks ri for a sample of size
n = 25 drawn from each of these distributions. As can be readily
seen, for these particular samples at least, the plot of the sample
points roughly follows the same shape as that of the quantile
functions immediately above them. Were we to connect the dots
of these points, the resulting sample curve could be considered

an estimate of the theoretical quantile function and denoted by
Q̂Y (p) to emphasize this point. The estimate Q̂Y (p) could pro-
vide evidence to support or refute possible model choices for
QY (p).

What evidence of distributional shape do the plots in
Figure 3 provide? As with Galton’s explication of Figure 2 we
could imagine equal width bins formed along the vertical axis
in each plot and each bin’s height determined from horizontal
box widths (or in the second row by the count of the number of
points in that bin). The same information however can be read
directly from the quantile plot.

All plots of Figure 3 have been given common vertical scales
to focus attention on what they have to say about distributional
shape. To that end, the curves in the first row of Figure 3 are
reliable guides that show the distinct signatures of different dis-
tributional shapes. In every case, relatively flat regions in the
curve indicate a mode in the distribution—a single mode is in-
dicated in the first three plots, two in the fourth, and none in the

Figure 3. Quantile plots for various distributions: first row shows five theoretical quantile functions, second row shows samples of 25 ordered
observations from the same distributions. (i) Y ∼ N (0, 1); (ii) Y ∼ χ2

3 ; (iii) Y ∼ t3; (iv) Y ∼ 1
2 N (0, 1) + 1

2 N (6, 1); and (v) Y ∼ U (0, 1).
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last. In all but the second curve there is a visual symmetry—the
top right and bottom left corners of the curve are (ogival) re-
flections of one another (i.e., doubly reflecting the curve about
a central horizontal axis and about a central vertical axis repro-
duces the curve). This visual symmetry marks symmetric dis-
tributional shape. The χ2

3 quantile function of Figure 3(ii) lacks
such symmetry and is positively skewed—as steeper slopes in-
dicate greater spread of density, the shape shows the upper tail to
be spread out and the lower to be relatively compact. In general,
a positively skewed density has a smile-shaped curve, a neg-
atively skewed density a frown. Tail weights (i.e., probability
mass) can also be compared easily—the quantile functions in
(i) and (iii) are both symmetric and unimodal but the tails in (iii)
are longer than are those in (i). Finally, the quantile function of
(v) is without curvature and hence without variation in spread
(slope), the mark of a uniform distribution.

Similar examination of the estimated quantile functions,
Q̂Y (p), of Figure 3’s second row tells much the same story about
the observed distribution of the data. The first three datasets are
unimodal, the first and third are also symmetric with the third
having longer tails than the first; the second is positively skewed;
the fourth is bimodal and moderately symmetric; the fifth seems
to be symmetric and spread fairly evenly across the range of the
data. While these descriptions apply to the observed data through
Q̂Y (p), as descriptions of QY (p) they remain inferences subject
to the usual vagaries of sampling variability.

As Figure 3 demonstrates, many points of agreement or dis-
agreement between the shapes of distributions can be revealed
by simple visual comparison of their quantile functions.

2.2 Quantile–Quantile Plots

Rather than rely on comparisons across plots, two dif-
ferent quantile functions, say QX(p) and QY (p), are more
effectively compared by examining the parametric curve
(QX(p),QY (p)) for p ∈ (0, 1). The plot of these coordinates
is called a quantile–quantile plot or qqplot for short.

Just as curvature in the quantile function means a local change
in the spread and hence density, curvature in a qqplot indicates
a local change in the relative density of one distribution to the
other. In fact, quantile plots as in Figure 3 are special cases of
a qqplot. When X ∼ U (0, 1), QX(p) = p, and the correspond-
ing qqplot of (QX(p),QY (p)) is the same as the quantile plot
(p,QY (p)).

As with plots of quantile functions, the curve shapes of
quantile–quantile plots can be interpreted when the horizontal
coordinate is determined by any other quantile function QX(p),
not just QX(p) = p.

2.2.1 No Curvature

If the coordinates lie on a straight line, then

QY (p) = a + b × QX(p) (1)

for some a and some b > 0 and it follows that the distributions
are identical up to a location and scale transformation. That is,
Y−a

b
and X have identical distributions—the distributions of X

and of Y have the same shape. Were one to know a, b, and

QX(p), then the value of QY (p) could be easily found for any
value of p.

Based on experience with data such as those appearing in
Figure 1(a) and 1(b), Galton (1899) proposed to take ad-
vantage of this relationship by plotting the ordered observa-
tions y(1) ≤ y(2) ≤ · · · ≤ y(n) versus the corresponding theoreti-
cal quantiles from a standard normal distribution—that is, plot-
ting ("−1(p), Q̂Y (p)) when "(x) is the standard normal or
Gaussian distribution function (see Figure 1(c) for "−1(p)).
Drawing a straight line on this plot not only provides estimates
of location and scale (viz., a and b, respectively) but also pro-
vides a more accurate means of estimating percentiles (partic-
ularly in the tails) than would direct use of Galton’s sample
ogive.

Galton’s normal qqplot was put to great effect for this purpose
years later by civil engineers. Hazen (1914) showed how it could
be used to better understand the storage requirements for water
reservoirs and the natural variation in the flow of water streams
that fed them. Plots such as that of Figure 4(a) were easy to
construct and clearly showed the variation in water volumes over
many years. Calculations were simplified, various important
percentiles easily estimated (e.g., to determine what was meant
by a dry or a wet year), and the pattern of different reservoirs
or streams could be compared. Qqplots would be published to
present the entire dataset and all the essential information that
it contained (e.g., Hazen 1914; Whipple 1916a, 1916b).

Hazen also noted that oftentimes the data did not follow
a straight line as might be expected but rather a “skewed
curve” (pp. 626–632 of Fuller 1914). His solution was to
plot the logarithms of the data against the normal quantiles
as in Figure 4(b)—this would straighten the plot and al-
low the calculations to be made using the line on the log
scale.

Hazen’s great innovation over Galton was the construction
and printing of “probability paper,” paper that had vertical grid
lines placed at horizontal locations according to selected nor-
mal quantiles. As usual, horizontal grid lines were placed equi-
spaced so that the data values could be plotted naturally. This
allowed anyone to easily plot their data simply by knowing their
order without any resort to probability tables—the chance model
was built into the technology. Hazen also had a second grid ar-
rangement, “log probability paper,” which additionally had the
horizontal grid lines placed according to a logarithmic scale.
Using such paper, Whipple (1916b) was able to easily construct
the plot of Figure 4(b) without resort to any tables. Both ar-
rangements were quickly taken up by engineers and were the
standard means of constructing normal and log-normal qqplots
throughout much of the twentieth century, fading in use as soft-
ware to construct them became more widely available in the
1970s, 1980s, and beyond.

As Galton (1885a) first observed, detecting departure from
a straight line is much easier than detecting departure from an
ogival curve. With probability paper, any data analyst could
quickly plot their data and assess its normality.

2.2.2 Curvature Present

A quantile–quantile plot can reveal much about how one
distribution differs from another. A straight line indicates that
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Figure 4. Early quantile–quantile plots: (a) Water storage at the Wachusett Reservoir in Massachusetts 1897–1911, Hazen (1914). (b) Bacteria
from Delaware River water entering the Torresdale Filter of the Philadelphia water supply 1913, Whipple (1916a, b).

the distributions have identical shape, though they may differ in
location and scale. If not a straight line, then as with a quantile
plot, the shape of the curve indicates how the distributional
shapes differ.

For example, the quantile plots of Figure 3 may be reinter-
preted as qqplots where the horizontal quantiles are simply those
of a uniform distribution (since for X ∼ U (0, 1), QX(p) = p).
The earlier descriptions of the shape of QY (p) now describe
how the distribution of Y compares in shape to that of a uniform
(or rectangular) distribution. Only the two plots of Figure 3(v)
show a straight line (a uniform looks uniform in shape); all
others show curvature and hence nonuniform distributional
shape.

Figure 5 repeats the figures of Figure 3 but now with horizon-
tal quantiles from the standard normal, QX(p) = "−1(p). In the
first row, a straight line appears in (i) but not in (v), demonstrat-
ing that the distribution of Y in (i) has shape identical to that
of an N (0, 1) but that of Y in (v) does not. (The latter, having
U (0, 1) quantiles on the vertical axis, is easily recognized as
the N (0, 1) cumulative distribution function.) Comments with
respect to symmetry, number of modes, and tail weights that
earlier applied to Figure 3 also apply here except that the com-
parisons are now being made between the distribution of Y
and that of the standard normal. This change can be seen by
the relative straightening of plots (ii), (iii), and (iv) in the first
row of Figure 5 compared to the same of Figure 3—in these

Figure 5. Normal quantile–quantile plots: (QX(p),QY (p)) with QX(p) = "−1(p). The first row has QY (p), the second row has
Q̂Y (p) for samples of 25 from the same distributions when: (i) Y ∼ N (0, 1); (ii) Y ∼ χ2

3 ; (iii) Y ∼ t3; (iv) Y ∼ 1
2 N (0, 1) + 1

2 N (6, 1); and
(v) Y ∼ U (0, 1).
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Figure 6. Following Daniel and Wood (1980, pp. 33–43), quantile–quantile plots for 10 independent samples of size 25 randomly generated
from N (0, 1). Test distribution is standard Gaussian as well. Gray diagonal lines are the y = x line in each quantile–quantile plot.

cases there is greater agreement between the distribution of Y
and the standard normal than there is between Y and a uniform
distribution.

2.2.3 Ambiguity of Sample Qqplots

The qqplots of the second row of Figure 5 tell essentially the
same story as those of the first row, having very nearly the same
shapes as the theoretical curves above them. However, where the
stories of the first row were definitive, the same stories associated
with second row are somewhat more ambiguous because they
are based on sample, or estimated, quantiles Q̂Y (p) and not
on the exact quantiles QY (p). Each new sample will produce
a new Q̂Y (p) and these will differ somewhat from each other,
each suggesting a possibly different story about QY (p).

For example, Figure 5(i) is very nearly a straight line, but not
quite. These data are known to be generated from a normal dis-
tribution so perhaps such slight departure is to be expected from
a sample. Conversely, those of Figure 5(ii–iv) are not from nor-
mally generated data and show more obvious departures from
a straight line. But are these departures large enough to make
the case against normality? The departure from a straight line
seen in Figure 5(v) certainly is not as large as in Figure 5(ii–iv).
If we did not know how the data were actually generated, how
confident would we be about the relative significance of the de-
partures we observe? In real situations such as that of Hazen
(1914) and Whipple (1916b), a judgment must be made on
whether the plots of Figure 4(a) and (b) support (or refute) the
normal and log-normal distributions respectively.

Unfortunately, as Figure 6 illustrates, even when the observed
values from Y are known to have been generated from a standard
distribution there can be considerable variability in the display
from one generated sample to another. Perceived departures
from the straight line can be over-interpreted unless the viewer
is somewhat experienced in viewing plots as they occur when
the null hypothesis holds. Ever since at least Daniel and Wood
(1980) students of statistics have been recommended to gain
that experience by calibrating themselves against such simulated
data.

There are some substantive difficulties with this recommen-
dation. First, it requires some self-discipline to train oneself on
many artificial and hence uninteresting plots. Second, such an
investment would only pay those who were regularly viewing
quantile–quantile plots in application, for others it would be
easily lost from long-term memory. Third, the set of such “null”
quantile–quantile configurations can be immense and changes
with sample size. Finally, the variety of null configurations can
change dramatically with the test distribution—for example,

training only on normal data may not transfer to other test dis-
tributions. A better solution would be to incorporate the training
information in the plot itself.

3. SELF-CALIBRATION

To keep things simple, suppose the qqplot has been con-
structed from n points (qi, y(i)), where y(1) ≤ y(2) ≤ · · · ≤
y(n) are the ordered observed values of some sample and
q1 ≤ q2 ≤ · · · ≤ qn are the corresponding quantiles qi =
QX(pi) from a specified test distribution FX(x). To be con-
crete, for the moment take pi = (i − 1

2 )/n as in Hazen (1914)
(in qqtest other default values are taken for pi depending on
the test distribution following the recommendations of Cunnane
(1978); the user may also supply their own).

Because QX(p) is given, an ordered sample can always be
generated from the test distribution by first randomly generat-
ing n values pi ∼ U (0, 1) independently for i = 1, . . . , n, de-
termining xi = QX(pi) for each i and then sorting the values
x(1) ≤ x(2) ≤ · · · ≤ x(n). A plot of the pairs (qi, x(i)) provides
an exemplar or null configuration against which the qqplot of
(qi, y(i)) may be compared.

Looking at many such exemplars as in Figure 6 (where
FX(x) = "(x)) provides a sense of their variability and also
allows some visual assessment as to how much the observed
qqplot of points (qi, y(i)) resembles that of a typical qqplot for
samples from the test distribution. However, this comparison
could be made much more directly if the plot of (qi, y(i)) could
simply be overlaid with that of (qi, x(i)).

Before such overlaying is possible however, the location and
scale of (qi, x(i)) must be matched to that of the observed data
(qi, y(i)). This is easily done by fitting a line

y = a + b × q

to the values of (qi, y(i)). Since we expect such a plot to often
have outliers, a robust regression is used to get suitable values
for a and b (qqtest employs a high breakdown point robust
regression via lmRob of the R package robust, Wang et al.
(2014)—high breakdown is especially important for small sam-
ples). With a and b in hand, the x values can then be relocated
and scaled to match that of the y’s thus allowing the essential
shapes of the two curves to be compared. That is, the x values
are generated as

xi = a + b × QX(pi)

for pi ∼ U (0, 1) for i = 1, . . . , n.
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Figure 7. Quantile–quantile test plots for the average amount of precipitation (rainfall) in inches for each of 70 United States (and Puerto Rico)
cities in 1975. Test distribution is standard Gaussian.

Several such exemplars could easily be overlaid on the same
plot as the observed data as shown in Figure 7(a) where five
exemplars are laid over the normal qqplot of the precip data
from R. Each exemplar is an independently generated sam-
ple from the test distribution, rescaled, and relocated as de-
scribed above. Both the individual points (qi, x(i)) and the line
segments joining them are plotted for each exemplar—these
produce the colored trails shown. Each trail is plotted using a
transparent color so that colors combine where overlaid (i.e., via
alpha-blending).

Alternatively, a great many exemplars could be generated and
only a summary of their information content presented. Each
exemplar provides a randomly generated ordered value x(i) so
generating a great many such values will give a reasonable
approximation to the distribution of x(i) for any i.

Figure 7(b) shows the summary results for 1000 generated
samples from the normal distribution. Central 90%, 95%, and
99% bands are formed at each qi from the corresponding sample
of 1000 values of x(i). These values, as well as the minimum
and maximum of each set of 1000, are joined together to form
envelopes, each providing an empirical point-wise confidence
region for exemplar quantile–quantile curves. The envelopes are
each drawn with the same transparent gray so that alpha blending
ensures that the envelopes become darker as the confidence
levels increase (since the envelopes are nested). The crisp edges
seen are a natural artifact of the well-known “Mach effect”
optical illusion. As the code below Figure 7(b) shows, this plot
is the default plot produced by the qqtest(·) function. That
below Figure 7(a) shows how to produce one containing only
exemplars.

As can be seen from either plot of Figure 7, the precip
data points (in black) indicate a bimodal shape with modes
separating just before the first quartile. In Figure 7(b), we see
that there is strong (point-wise) evidence against the hypothesis
that the precip data come from a normal distribution—just
before the first quartile the precip points appear at, or just

outside, the range of 1000 samples generated from a normal
distribution. Figure 7(a) tells the same story but is based on only
comparison with five exemplars so the evidence is not as strong.
The advantage that Figure 7(a) has over that of (b) is that the
whole trail of each exemplar can be seen. This allows one to
make an assessment based on the entire shape of the trails rather
than simply on the point-wise limits—the shape of the precip
quantile–quantile curve is very different from any of the five
exemplars. The bimodality seen in the precip data appears to
be real rather than being a spurious artifact of sampling.

3.1 Null Configurations

Applying qqtest to each of the normally generated sam-
ples of Figure 6 gives some sense of the default behavior of
the function when the null hypothesis holds (in this case that
of normality). As Figure 8, shows, in no case is there strong
evidence against the hypothesis of normality. The greatest ev-
idence would seem to be the seventh sample plot of Figure 8
where the lowest point appears inside the 99% envelope and
outside the 95%. This corresponds to a point-wise significance
level between 1% and 5%. As there are 25 points in each plot,
there are really 25 point-wise tests being applied. Taking into
account the problem of multiple tests, the significance level is
actually much larger than 5% and the plot provides little to no
evidence against normality.

3.2 Nonnull Configurations

Applying qqtest to each of the generated samples of Fig-
ure 5 will similarly give some sense of the default behavior
of the function under various alternatives to the null hypothe-
sis, namely, that the test distribution (in this case the normal)
generated the data. The results appear in Figure 9.

At leftmost is a null configuration where the data were gen-
erated according to the test distribution and the plot gives
no evidence against the hypothesis of normality. In contrast,
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Figure 8. qqtest(·) applied to each of the samples from Figure 6.

the next three plots (ii)–(iv) all show strong evidence against the
hypothesis of normality—(ii) has many points far outside the
range of 1000 samples from the test distribution, (iii) has one
such point, and (iv) has several points at the edge of the outer-
most envelopes and its bi-modal curve is easily distinguished in
a plot overlaid with exemplars, as was done with the precip
data of Figure 7(a). From left to right, the strength of evidence
against the hypothesis declines until in (v) there appears to be
no evidence against the hypothesis of normality even though
the data were indeed generated from a U (0, 1) distribution. The
data of (v) do show slightly shorter tails on both sides, which
might be further investigated via exemplars to compare curve
shapes (e.g., as in Figure 7(a)).

4. EXAMPLES

In the more than 100 years since its introduction, the
quantile–quantile plot has been recommended for visual as-
sessment of a wide variety of statistical data. This includes,
for example, experimental effects, residual analysis and outlier
detection, and the direct comparison of any two sets of uni-
variate data (e.g., Daniel 1959; Wilk and Gnanadesikan 1968;
Gnanadesikan 1977; Daniel and Wood 1980; Chambers et al.
1983). The quantile–quantile plot can be used on any sample, or
pair of samples, of univariate data—however large any sample
might be. In this section, the self-calibrating qqplot is illustrated
on a number of such examples.

4.1 Revisiting the Earliest Qqplots

Figure 10 shows the result of applying qqtest to Galton’s
data of Figure 1(a) and 1(b) and to Hazen’s of Figure 4(a). With
the envelopes the plots of Figure 10 have much more to say
about the various datasets than did the original qqplots.

While there are only a few points in each of Figure 10(a)
and 10(b), each point is a sample percentile determined from
a sample of a great many more points (n = 519 and n = 775,
respectively). It is these very large original sample sizes that
bring about the relatively narrow envelopes seen here. Because
of these very large sample sizes, the single point appearing at
the edge, or just outside, of the range envelope in Figure 10(a)
indicates strong evidence against the hypothesis of normality for
Galton’s pull strength data. The pull strength data seem to have a
much longer right tail than would be produced by the vast major-
ity of samples from a normal distribution. Conversely, Galton’s
sitting height data of Figure 10 show no evidence against the
hypothesis of normality. More worrying perhaps is that its sam-
ple quantile–quantile curve appears to be suspiciously close to
perfect.

The envelopes on Hazen’s water reservoir storage data in
Figure 10(c) are much wider because they are based only on
a sample of size n = 15. There would seem to be no evi-
dence against the hypothesis of normality here either. Note
however that at the left most side, a large fraction of even
the 90% central envelope is below zero. This in itself pro-
vides considerable evidence against normality for the data—it
is not possible to have less than zero millions of gallons of
water. In this case, the hard boundary is evident and indicates
that the left tail of the storage distribution is necessarily much
shorter than a normal. Fortunately, Hazen (1914) was more in-
terested in using the quantile–quantile plot to estimate various
percentiles for water storage than its fidelity to the normal
distribution.

It is worth noting that the construction of these plots dif-
fers slightly from one another. For Hazen’s data shown in Fig-
ure 10(c), the entire sample is available and the plot is con-
structed as described previously. For Galton’s data, a slightly
different though statistically equivalent construction is used by
qqtest.

Figure 9. qqtest(y) applied to each of the samples from Figure 5.
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Figure 10. Normal (default) qqtest applied to the datasets of Galton (1889), Galton (1885a), and Hazen (1914), respectively.

Neither dataset of Galton includes the original data points
yi but only the sample values at some selected percentiles
p1, . . . , pk , say, and the total sample size, n (n = 519 and
n = 775, respectively, in Galton’s two cases). In this case,
qqtest generates an individual sample for the order statistic
x(i) corresponding to each percentile p. This is done by ex-
ploiting the fact that ith-ordered value of a U (0, 1) random
variable is distributed as a beta random variable. That is for
a sample of size n from a U (0, 1), the ith largest value has
distribution U(i) ∼ Beta(i, n + 1 − i). An observed value x(i) is
simply generated using the relationship X(i) = QX(U(i)). Tak-
ing i = n × p for each selected percentile p, qqtest need only
have the values of n (as np) and p (as the vector p) to produce
the envelopes.

4.2 Choosing a Scale—The Log-Normal

Figure 11 shows the result of applying qqtest to Whipple’s
data of Figure 4(b). Figure 11(a) shows the raw data plotted
against the quantiles from a log-normal distribution. The points
at the extremes of the envelope (near the 95th percentile) are
evidence against the hypothesis that the bacterial count is log-
normal. This plot has the advantage of preserving the original
linear scale on the vertical axis but, as the envelopes show, there
is considerable variation in the sample quantiles, particularly
at the high end and the data are severely compressed for all
percentiles below 80.

A statistically equivalent approach is that of Hazen (1914),
namely, to take the logarithm of the data and compare that to
normal quantiles. Figure 11(b) shows the result of applying
qqtest in this case. The vertical axis is now a log-scale, the
horizontal quantiles are more spread out, and the vertical spread
of the envelopes is less variable. Several points are now seen to
be at the edge of the envelopes providing very strong evidence
against the hypothesis of a log-normal distribution.

4.3 Factorial Effects—The Half-Normal

In the early days of its development, penicillin was pro-
duced by growing the fungus penicillium chrysogenum in a
nutrient medium including a mix of ingredients in various

concentrations. Experiments were conducted to try to determine
which ingredients, and in what concentrations, would optimize
production. Because of the possible interdependence between
the various ingredients and the consequent effect on production,
factorial designs were used extensively to tease out important
main effects and significant interactions.

Davies (1956) presented the design, data, and analysis for
one such experiment (viz., Example 9.2, p. 383ff, p. 416ff).
The design was a 25−0 factorial, with the five two-level factors
under investigation being [A] corn steep liquor (strength 2% and
3%), [B] lactose (2% and 3%), [C] precursor (0% and 0.05%),
[D] sodium nitrate (0% and 0.3%), and [E] glucose (0% and
0.5%). The response was the logarithm of the measured yield
of penicillin. All 32 combinations of factors were used with no
replication and 16 runs executed in 1 week of production and
16 in the next—the design confounded the two blocks with the
ABCDE interaction term. Three- and four-way interaction terms
were used to estimate the error variance for standard testing of
effects. A standard analysis shows three main effects, A, C,
and E, and one two-factor interaction, CE, to be statistically
significant, the last of these only at a 5% level.

There is a problem with this analysis though. Standard signif-
icance testing presumes that the hypothesis to be tested has been
determined before examining the data, whereas factorial designs
are more typically used to test hypotheses that are determined
after seeing the data, namely, those hypotheses that match the
larger observed effects. Unfortunately, as Daniel (1959) pointed
out, for a 32 run 25−0 experiment having no real effects, a stan-
dard test will find the largest effect to be significant at the 5%
level about half the time! Any reliable assessment must take
some account of this post hoc hypothesis selection or there will
always be numerous false positives.

This assessment is considerably improved by use of the
half-normal or Daniel plot introduced by Daniel (1959). Here,
the unsigned and ordered estimated effects are plotted against
the corresponding quantiles of a half-normal distribution (i.e.,
X = |Z| where Z ∼ N (0, 1))—a qqplot with the half-normal
as test distribution. As such, departures from a straight line in-
dicate departure from the hypothesis of null effects. Now the
importance of an effect is associated more with the size of its
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Figure 11. qqtest applied to bacteria count data of Whipple (1916b).

departure from the line of data points than with its absolute
magnitude. How large a departure from the straight line should
be considered significant still depends on the order position of
the effect in the plot.

Figure 12(a) shows the half-normal qqplot produced by
qqtest for these data. As can be easily seen, three main effects
(C, A, and E) are clearly significant, each one being outside
the range of 1000 replicates. The interaction term CE however
is judged not to be statistically significant—Davies (1956, pp.
386–387, 416–417) cautiously concluded that it was, though it
would seem largely on the strength of a priori information about
the relationship.

It is also clear from Figure 12 that the simulated bands in-
crease in width the larger is the observed effect being considered.
This is easily seen mathematically as well. The random variable
Y is related to U ∼ U (0, 1) through the probability integral
transform Y = QY (U ). Taking a first-order Taylor approxima-
tion Y ≈ QY (p) + (U − p)QY

′
(p), the random error for the ith

largest value corresponding to pi (e.g., pi = (i − 0.5)/2) can
be written as

Y(i) − QY (pi) ≈
[
QY

′
(pi)

]
× (U(i) − pi). (2)

Typically, the dominant term here will be the derivative QY
′
(pi),

the slope of the quantile function at pi . One need only examine
the right half of a normal ogive (Figure 3(i), first row) to appre-
ciate how large the magnitude of this slope can be for a half-
normal distribution. Clearly, those effects having pi nearer 1 on
a half-normal plot must demonstrate a greater visual departure
(proportional to QY

′
(pi)) before being marked as statistically

significant. For other qqplots, the regions of large squared error
can also be read from the squared slopes of the quantile function
(e.g., Figure 3(ii–v), first row).

This was not lost on Daniel (1959) who recommended adding
“guardrails” to the plot corresponding to various one-sided crit-
ical values (based on the simulated and mathematical results of

Birnbaum (1959) as well as his own simulations). Figure 12(b)
shows the simulated central percentiles as guardrails for some
values used by Daniel (1959) (his one-sided α = 0.4, 0.2, and
0.05 have central percentiles of 0.2, 0.8, and 0.9). For some
experimental purposes, Daniel (1959) recommended using α =
0.4 (central percentile 0.2) and even larger. If one is trying to
find all real effects then keeping more false positives would en-
sure that fewer false negatives would be lost—the hope would
be that further experimentation would tease out the real from
false effects. For example, in Figure 12(b) α = 0.2 would have
marked CE as significant and Daniel’s choice of α = 0.4 would
have marked many more effects smaller than CE as possibly
worth retaining for further experimentation. Practitioners have
since suggested many alternative ways to assess the significance
of outlying points on a half-normal plot used for unreplicated
experiments (e.g., see Hamada and Balakrishnan 1998 for a
review).

As with every qqplot there is considerable information that
can be seen from the configuration of points beyond which of
them are far from a straight line. This is particularly true in
the case of half-normal plots for the contrasts from a factorial
design. Daniel (1959) discussed these at some length for this
context.

In industrial experimentation, half-normal or Daniel plots
are standard practice but have recently been criticized in Lenth
(2015) for being too difficult for routine interpretation. The
routine interpretation being criticized (departure from a straight
line) is somewhat distant from the careful interpretation and
caveats described in Daniel (1959) or made obvious by Equation
(2).

In contrast and in keeping with the original philosophy
of Daniel (1959), the addition of the envelopes or selected
guardrails as in Figure 12(a) or 12(b) allows a different and
much more reliable routine interpretation, one which clearly
and correctly identifies important effects (see applying qqtest
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to the examples of Lenth 2015). Moreover, the output of qqtest
still allows the deeper interpretations available of the configu-
ration as given in Daniel (1959).

4.4 Statistical Process Improvement—Monitoring x̄ and s

It is common practice in process improvement to measure
important characteristics of individual units as they are produced

and follow how these measurements change over time—process
monitoring. To this end, many charts have been developed and
put to use with good effect to improve product quality.

Two such charts are the x̄ chart and the s chart that follow esti-
mates of the process mean µ and standard deviation σ over time.
First a group of m items i = 1, . . . , m are selected at a time from
the process and a measurement xi taken on each item i. For each
group, x̄ =

∑m
i=1 xi/m and s =

√∑
(xi − x̄)2/(m − 1) are cal-

Figure 12. The half-normal plot. Thirty-one unsigned contrasts from a 25−0 factorial experiment on penicillin production used by Daniel (1959)
from Davies (1956).

Figure 13. qqtest applied to x̄ and s from page 64 of AIAG (1992).
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Figure 14. qqtest applied to the three independent regressor variables of the stackloss data from Brownlee (1960, p. 491).

culated. If we let x̄t and st be the values at time t then the x̄-
chart plots the pairs (t, x̄t ) and the s-chart plots the pairs (t, st ).
Each chart is supplemented by horizontal lines representing
“control limits”—points beyond these lines are indicators that
some action should be taken to bring the process under
control.

The control limits are intended to be about 3 standard devi-
ations beyond the target or central value being measured. The
standard deviation in question is that of either x̄ or s, depending
on the chart, and is determined by assuming that the original xi’s

are independently N (µ, σ 2). Unfortunately, any such chart will
contain many values of x̄ or s, the largest of which will always
have higher probability of exceeding a limit than will any one
x̄ or s value individually. The control charts do not take this into
account.

In place of either chart, we might consider an appropriate
qqplot as in Figure 13(a) and 13(b).

These values are taken from the training manual AIAG (1992)
where the thickness in mils (thousandths of an inch) of primer
paint applied to an automotive part is recorded as part of a

Figure 15. Beaver tales. Comparing distributional shapes. (a) Could the distribution of body temperatures for Beaver 2 have been generated
from the same distribution as that of Beaver 1? (b) Or vice versa? Data source: beaver1 and beaver2 data from R.
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Figure 16. Line-up test for normal qqplots. The observed data are displayed in just one of the 20 plots shown; every other is sample generated
from the test distribution. Location of the observed data is suspect number: log(4.23911582752162e+28, base=27) - 17.

monitoring study. Ten consecutive pieces were measured twice
a day for 10 days. Each value of x̄t and of st is based on 10
measurements modeled as a sample from a N (µ, σ 2) for
t = 1, . . . , 20. Under these assumptions x̄t ∼ N (µ, σ 2/n) and
s/σ ∼ K9, the latter being the “kay” distribution on 9
degrees of freedom and which is related to the chi-
squared as Km =

√
χ2

m/m. The appropriate arguments to
qqtest are shown under each plot. As can be seen in ei-
ther plot, no point is outside the envelope—there is no
evidence against the hypothesis that the process is behaving as
assumed.

Note that although the time order does not appear in the qq-
plots of Figure 13, there is no longer any need to calculate control
limits. These are automatically calculated by the envelopes—the

location and scale calculations implicitly incorporate the esti-
mates of the overall averages and standard deviations, and the
envelopes adjust to the relative magnitude of the group being
considered. As each new value (x̄ or s) is gathered it is added to
the qqplot and the envelopes update. The plots adjust automati-
cally for the number of groups and the size of the group. Time
order could still be displayed in a visually linked companion
plot as needed.

4.5 Multivariate Outlier Detection—Generalized Distances

Probability plots of generalized (elliptically contoured) dis-
tances have long been used to help identify outliers in multivari-
ate data (e.g., Wilk and Gnanadesikan 1964; Gnanadesikan and
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Kettenring 1972; Gnanadesikan 1977). For multivariate obser-
vations x1, . . . , xn ∈ IRp, the squared generalized distances are
defined to be

d2
i = (xi − c)T D−1 (xi − c) , (3)

where c ∈ IRp is a measure of the center of the data and D is a
symmetric positive definite matrix chosen to capture the disper-
sion of the data x1, . . . , xn in IRp.

For example, if D = S and c = x̄ are the sample covariance
matrix and mean vector (i.e., the standard estimates), then d2

i is
the squared Mahalanobis distance. Large values of d2

i should
be associated with outlying points. Assuming multivariate nor-
mality, the squared distance is approximately χ2

p and both Cox
(1968) and Healy (1968) suggested identifying outliers by plot-
ting a qqplot of these Mahalanobis squared distances against the
quantiles of a χ2

p or gamma distribution as in Wilk, Gnanade-
sikan, and Huyett (1962) (alternatively di could be plotted
against those of Kp). Unfortunately, if there are outlying points
in the sample, these can adversely affect both x̄ and S, pulling
the average away from the center and inflating the variability in
some directions.

Alternatively, a number of authors (e.g., Gnanadesikan
and Kettenring 1972; Gnanadesikan 1977; Campbell 1980;
Rousseeuw and Van Zomeren 1990) have suggested using ro-
bust estimates of location and covariance matrix. The resulting
robust generalized distances should more easily display outly-
ing points when plotted in a χ2

p qqplot. Figure 14 shows the
χ2

3 qqplot produced by qqtest applied to 21 points in IR3. The
data are taken from the stackloss dataset first appearing in
Brownlee (1960). The data have been much used in robust and
exploratory methods with respect to outlier detection (e.g., see
Dodge 1996). They consist of measurements from 21 days of
operation of an industrial process oxidizing ammonia to nitric
acid. The three variables used here correspond to the indepen-
dent variables “rate of operation of the plant,” “the temperature
of some cooling water,” and a transformed “concentration of
acid circulating.” The traditional response variable “stack loss”
is not used here.

As Figure 14(a) shows, five outlying points can be identi-
fied by calling qqtest on the robust generalized squared dis-
tances (using the robust location and covariance provided by the
covRob function of R package robust—Wang et al. 2014). In
order of importance the outliers are seen to be 1, 2, 21, 3, and
17. With the exception of 17, these are the points identified as
significant in Rousseeuw and Van Zomeren (1990).

Figure 14(b) shows the same call on the Mahalanobis dis-
tances as suggested by Cox (1968) and Healy (1968). The
standard estimates S and x̄ are so poor that the qqplot shows
no outliers. Note however that qqtest still indicates some-
thing is amiss. There now appear to be three inliers—5, 6,
and 20—whose squared distances by the standard estimates
are much smaller than would be expected. This is essentially
due to the inflation of the sample variance in some directions
due to outliers.

Just above the caption of Figure 14 are two different calls
to qqtest that would effect the same plot—one that uses the
′′chi-squared′′ value of the dist argument with degrees of

freedom df=3; the other uses the more general qfunction ar-
gument and passes as its value a function that calculates the
quantile of a gamma random variable with appropriate parame-
ter values as in Wilk, Gnanadesikan, and Huyett (1962).

4.6 Comparing Samples

Two samples can be easily compared via qqplots. Em-
pirical distributions are compared by plotting the pairs
(Q̂X(p), Q̂Y (p)) for a collection of values of p, or
(x(i), y(i)) when sample sizes are equal. If the resulting curve is
very nearly a straight line, then the traditional location and scale
comparisons can be made via the line of Equation (1)—equal
locations or means correspond to a zero intercept, equal scales
or standard deviations correspond to a unit slope. Differences in
the distributional shape are indicated by the quantile–quantile
curve.

Figure 15 illustrates how this would look when comparing
two datasets—in this instance the body temperatures of two
beavers. In each plot, the y = x line has been added to aid
location and scale comparisons. In Figure 15(a), the empirical
distribution of the sample temperatures from beaver 1 is used
as the test distribution and beaver 2’s temperatures are seen to
come from a distribution having shorter tails than does beaver
1’s. In Figure 15(b), it is beaver 2’s sample that gives the test
distribution—again beaver 1’s temperatures are seen to come
from a distribution having longer tails than does beaver 2’s.

5. VISUAL SIGNIFICANCE TESTS

While the envelopes of a qqtest provide a tool for assessing
the evidence against the hypothesis that the data were gener-
ated by the test distribution of the horizontal axis, that test
is based entirely on many individual point-wise tests. In con-
trast, overlaying exemplars rather than envelopes (i.e., as in Fig-
ure 7(a) vs. (b)) allow the shapes of the individual curves to be
compared.

Alternatively, rather than overlay the different exemplars one
might instead lay them out spatially in separate but nearby plots.
This of course makes comparison more difficult and less reli-
able as the eye has to traverse much larger distances to evaluate
differences. The distinct advantage however is that if carefully
and honestly done it can provide some measure of the statisti-
cal significance of the observed data’s departure from the test
distribution.

The protocol is that of a “lineup test” as first formally de-
scribed by Buja et al. (2009). The metaphor is based on the police
lineup of suspects from which a witness must identify the guilty
party. In our case, the witness is the data analyst and the suspects
an arrangement of quantile–quantile plots of data generated from
the test distribution together with the one quantile–quantile plot
of the observed data. Unlike the metaphorical witness, however,
the analyst must not have seen the quantile–quantile plot of the
data. This is essential for any honest determination of statistical
significance.

Figure 16 shows the lineup plot for 20 subjects, one of which
is the quantile–quantile plot of the real data and the remainder
are of datasets of the same size but generated from the test
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Figure 17. Line-up test for normal qqplots with an envelope. The observed data are displayed in just one of the 20 plots shown; every other is
sample generated from the test distribution. Location of the observed data is suspect number: log(1.75478058540818e+130, base=28) -
87

distribution. The true location of the real data’s
quantile–quantile plot is randomly allocated. Out of the
20 plots, the analyst should choose that which gives the greatest
indication (in their view) of a dataset that has not come from the
test distribution. If the true location/suspect is identified, then
the observed significance level is 1/20, otherwise it is greater.

Just as with police lineups, however, this statistical test has
the peculiar feature that the test statistic being used is a function
both of the particular statistical method (in Figure 16 this is
the standard normal quantile–quantile plot) and of the partic-
ular analyst making the judgment—one hopes that more expe-

rienced analysts are statistically more “powerful” than the less
experienced.

Similarly, some particular visual presentations might be
more powerful than others. Figure 17 is a lineup plot for
quantile–quantile plots that include generated envelopes. The
observed data are the same as in Figure 16. If the observed
data are more often chosen (among different analysts) for
quantile–quantile plots with envelopes than it would be without,
then this would indicate that adding the envelope increases the
discriminatory power of the plot. Whatever the display, how-
ever, its power can be substantially diminished when the space
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available is very small (e.g., one need only compare the visi-
ble content of one plot of Figure 17 to that of Figure 7(b) to
appreciate the loss).

6. CONCLUDING REMARKS

Quantile–quantile plots have long been valued for their ver-
satility and wide applicability. They are standard practice in
applied statistics, useful for model checking, residual analysis,
and informal exploratory data analysis. They are however not
easily interpreted without practice. One of the great difficulties
is that correct interpretation of the magnitude of a vertical depar-
ture of a point from a line depends on where that point appears
horizontally—the spread in vertical values expected is roughly
proportional to the magnitude of the slope of the assumed quan-
tile function (see Equation (2)). Sometimes this can be ame-
liorated somewhat by transforming the data first to achieve a
flatter quantile function for the test distribution, as happened
in the log-normal example transforming from Figure 11(a) to
11(b). The problem is that displaying the points alone pro-
vides insufficient information for most users to make good
judgments.

By simulating from the test quantile function and adding this
information to the plot the above shortcomings dissipate—the
qqplot becomes self-calibrating. Envelope bands provide point-
wise confidence intervals, exemplar trails allow more detailed
shape comparisons, and lineup plots permit a formal visual sig-
nificance testing.

The approach taken here, to supplement quantile–quantile
plots with information based on order statistics simulated from
the test distribution, is not new. Birnbaum (1959), for exam-
ple, had the Applied Mathematics and Statistics Laboratory of
Stanford University generated 2500 independent samples from
each appropriate half-normal (which changes with the number
of experimental contrasts) to estimate critical values that Daniel
(1959) would use to serve as “guard rails” on his half-normal
plot.

However, the ubiquity of computational resources and dis-
play capabilities means that we are no longer constrained to
tabulating critical values for each statistic, sample size, and test
distribution. The same procedure can be used universally with
good effect, particularly for exploratory purposes.

The R package called qqtest implements all of the features
and examples described above and is freely available to practi-
tioners, instructors, and students everywhere.

[Received December 2014. Revised August 2015.]
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